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ABSTRACT

Mixture-of-Experts (MoE) layers are increasingly central to frontier model architec-
tures. By selectively activating parameters, they reduce computational cost while
scaling total parameter count. This paper investigates the impact of the number
of active experts, termed granularity, comparing architectures with many (e.g., 8
per layer in DeepSeek) to those with fewer (e.g., 1 per layer in Llama-4 models).
We prove an exponential separation in network expressivity based on this design
parameter, suggesting that models benefit from higher granularity. Experimental
results corroborate our theoretical findings and illustrate this separation.

1 INTRODUCTION

Mixture-of-experts (MoE) layers (Jacobs et al., 1991; Eigen et al., 2013; Shazeer et al., 2017) are
emerging as an increasingly important component in the design of frontier architectures (Liu et al.,
2024; Meta, 2025; Jiang et al., 2024; Mosaic Research Team, 2024; Qwen Team, 2024; SnowflakeAI
Research, 2024). The main advantage of MoE layers is that they enable scaling the total number
of parameters in the network while keeping computational costs manageable. This is achieved by
having only a small fraction of the layers’ parameters activate on a particular input. Thus, models can
have a large number of total parameters (unlocking the benefits of scaling laws (Kaplan et al., 2020)),
while simultaneously having a small number of active parameters (enabling low computational cost).

DeepSeek-V3 convincingly demonstrates how MoE layers can dramatically reduce computational
costs in large language models. Despite having 671B total parameters, DeepSeek-V3 activates
only 37B parameters (approximately 5.5%) per token (Liu et al., 2024), resulting in computational
requirements substantially lower than for comparable dense models. Similarly, Meta’s recently
unveiled Llama-4 Maverick model, with 400B parameters (Meta, 2025), achieves 4.3% activation
sparsity because 96% of its parameters lie in MoE layers. As modern architectures increasingly adopt
MoE techniques, understanding optimal design choices for MoE layers becomes increasingly relevant
for designing efficient models. Key decisions include determining the number of experts, the size of
each expert, and the routing mechanism.

With this background in mind, we seek to address the following question:

How do specific MoE design choices influence model expressivity?

In this paper, we focus on a central design choice – the granularity of the MoE layer, which is the
number of experts that activate on a token (Krajewski et al., 2024).

The granularity of an MoE should not be confused with its sparsity, which is the ratio of the number
of active experts to total experts; see Table 1. The sparsity of an MoE is another hyperparameter of
significant interest, which deserves separate study. Indeed, the granularity and sparsity parameters
can be decoupled (e.g. an MoE layer in which 4 out of 16 experts are active has the same sparsity as
an MoE layer in which 1 out of 4 experts are active, but they have different granularities).

Despite the centrality of the granularity parameter, no consensus exists on the optimal number of
active experts to employ, with open-source frontier systems adopting widely varying configurations
as shown in Table 1.

The lack of consensus in Table 1 highlights the ambiguity surrounding optimal MoE layer design.
Specifically, it remains unclear whether large granularity architectures, exemplified by DeepSeek-V3,
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Architecture
# active

out of
# total experts

Granularity Sparsity

DeepSeek-V3 (Liu et al., 2024) 8 out of 256 8 3.1%
Qwen1.5-MoE-A2.7B (Qwen Team, 2024) 4 out of 64 4 6.2%
DBRX (Mosaic Research Team, 2024) 4 out of 16 4 25%
Snowflake Arctic (SnowflakeAI Research, 2024) 2 out of 128 2 1.6%
Google GLaM (Du et al., 2022) 2 out of 64 2 3.1%
Mixtral 8x7B and 8x22B (Jiang et al., 2024) 2 out of 8 2 25%
Llama-4 Maverick (Meta, 2025) 1 out of 128 1 0.8%
Llama-4 Scout Meta (2025) 1 out of 16 1 6.2%

Table 1: MoE hyperparameter choices in various frontier architectures. Granularity can be decoupled
from sparsity of active parameters. For instance, MoE layers in Qwen1.5-MoE and Llama-4 Scout,
have sparsity of 1/16 because 1/16 of the parameters are active on any token for both models.
However, Qwen1.5-MoE has a granularity of 4, whereas Llama-4 Scout has a granularity of 1.

or small granularity architectures, as seen in the Llama-4 suite, are preferable. While granularity,
sparsity, and parameter count all influence model performance, this work aims to isolate the specific
impact of granularity while controlling for other factors.

Our contribution The main insight of this paper is that increasing the granularity of an MoE
improves its expressivity exponentially, even while keeping the sparsity of the MoE unchanged. Thus,
our result suggests that future frontier architectures should be designed with larger granularity, so
as to reap the benefit of this extra expressivity with no significant change to the number of total
and active parameters in the model. Our result agrees with the empirical scaling laws observed in
Krajewski et al. (2024), which show that higher granularity indeed leads to lower loss in trained MoE
models. We discuss other considerations on increasing the granularity in Section 1.1.

In order to describe our result in more detail, let us recall the MoE architecture (Shazeer et al., 2017).
A (m, k)-MoE layer f has granularity k and m experts. It consists of “expert” networks E1, . . . , Em,
and a “gating” network G that outputs a k-sparse vector G(x) ∈ Rm on input token x. The MoE
layer outputs

f(x) =

m∑
i=1

G(x)iEi(x) .

We study the standard setting where the experts are two-layer fully-connected networks, and the
gating network is a linear routing function activating on the top-k experts; see Section 2 for precise
definitions. We prove our main result for constant, linear, and ReLU activation functions, when the
input distribution µ is either standard Gaussian or uniform over the unit ball.

Our main theorem identifies the number of possible configurations of experts
(
m
k

)
as a key combina-

torial quantity controlling the expressivity of an MoE layer. Below, we state the theorem informally
and in a slightly weaker form than the full extent of our results, for the sake of exposition.
Informal Theorem 1.1 (Expressivity benefits of higher granularity). There are constants C, c > 0
such that the following holds. Suppose that m ≥ Ck and that(

m′

k′

)
< c

(
m

k

)0.99

.

Then there is a (m, k)-MoE f that cannot be approximated by any (m′, k′)-MoEs with the same
number of active parameters. Namely, for any such (m′, k′)-MoE f ′, it holds that

Ex∼µ∥f(x)− f ′(x)∥2 > cEx∼µ∥f(x)∥2 .

If the granularity k is held constant and m grows, then the quantity
(
m
k

)
grows on the order of Θ(mk),

which scales exponentially with the granularity. This means that the effects of the granularity on
expressivity are evident at even relatively small granularities such as those in Table 1. For example,
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Figure 1: An intuitive picture to keep in mind when interpreting Theorem 1.1. Imagine expert models
that have just enough parameters to answer questions on one of three different topics (Math, Biology,
Business) in one of three different languages (English, French, Korean). In order to support all
combinations of topics and languages, an MoE model with granularity 1 requires 9 experts – one for
each {topic, language} combination. On the other hand, an MoE model with granularity 2 can support
all combinations with only 6 experts (3 for topics, and 3 for languages), since higher granularity
allows for parameter reuse and thereby for more parameter-efficient models.

for DeepSeek-V3, the number of possible configurations of active experts is
(
256
8

)
≥ 4× 1014. Thus,

Theorem 1.1 heuristically suggests1 that an MoE layer with an equal number of active parameters, but
granularity 1, would need on the order of 1014 experts to approximate an MoE layer of DeepSeek-V3.

The result of this theorem appears intuitively evident in retrospect: higher granularity allows for more
parameter-efficient models because the same parameters can be reused by different configurations of
experts. Figure 1 provides a stylized example to illustrate this intuition.

Proof ingredients Our full results for constant, linear, and ReLU activation functions are formally
stated as Theorems 3.1, 3.4 and 3.6, respectively. Proving these theorems requires developing several
techniques that we expect to be useful to the future study of the expressivity of MoEs.

The first main technical hurdle in the construction of f is the creation of a linear routing gating
network G that partitions the input space into R =

(
m
k

)
regions of roughly balanced probability mass,

U1, . . . , UR. Each region is the subset of input space on which one of the
(
m
k

)
possible configurations

of experts is active. We construct this gating network with a randomized construction analyzed via a
second-moment argument.

Next, we must construct experts such that sufficiently distinct functions are computed in each of the
Uj regions. This is achieved using a random construction reminiscent of those arising in optimal
packing and coding theory. A central technical lemma that we use to analyze the construction is that
when the input distribution µ is Gaussian (or uniform over the unit ball) then the input distribution
conditioned on lying in any large-probability subset V must have a high-rank covariance matrix.

Experimental support We support our theoretical results with experimental evidence in Section 4
illustrating that the expressive benefits of granularity occur at scales relevant to practice.

1.1 DISCUSSION AND RELATED WORK

This paper initiates the theoretical study of the granularity parameter in MoEs. Our work builds
directly on empirical findings demonstrating the benefits of increased granularity in Mixture of
Experts (MoE) architectures. Liu et al. (2023) empirically establish that higher granularity MoEs
achieve lower training loss while maintaining the same parameter count. These findings are further
validated and extended by Krajewski et al. (2024), who quantify this relationship through detailed
scaling laws correlating granularity levels with model performance. Most significantly, Dai et al.
(2024) implemented these insights in the DeepSeek architecture, explicitly designing for increased
granularity based on their empirical observations of improved performance. Their implementation
showed substantial gains in practice, confirming that granularity increases translate to real-world
improvements in large-scale models. Our theoretical analysis provides a potential explanation for

1We write “heuristically suggests” because the constant c in the theorem is not explicitly computed.
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these consistent empirical results by demonstrating that fine-grained MoE architectures have more
expressive power.

Nevertheless, it is known that higher granularity can lead to higher routing costs (asymptotically
linear in the granularity) and increase the wall time of training and inference (Krajewski et al., 2024;
Fedus et al., 2022). So with current routing schemes the granularity cannot in practice be taken
arbitrarily large. Thus, our results suggest that new routing schemes should be developed that allow
scaling the granularity with sublinear overhead (such as in He (2024)).

Beyond the granularity parameter, there has been work fitting scaling laws for MoEs in terms of
floating point operations, parameters and sparsity (Clark et al., 2022; Yun et al., 2024; Abnar et al.,
2025). Finally, it has also been shown that despite their advantages MoE layers can underperform
dense MLP layers on certain “reasoning” tasks (Jelassi et al., 2024). Nevertheless, the sparsity
design principle in the MoE architecture seems fundamental: indeed, it has a close analogue in the
human brain since there are localized regions in the human brain that activate sparsely for specialized
functionality (Saxe et al., 2006; Kanwisher, 2010; Nieto-Castañón & Fedorenko, 2012; Kean et al.,
2025).

2 NOTATION AND PRELIMINARIES

Notation For any integer n ≥ 0, let [n] = {1, . . . , n}. We write
(
[n]
k

)
:= {S ⊆ [n] : |S| = k}.

Denote the unit ball in d dimensions by B = Bd := {x : ∥x∥2 ≤ 1} ⊆ Rd. For any two sets S, S′ we
denote their symmetric difference by S∆S′ := (S∪S′)\ (S∩S′). Additionally, for a measure µ and
a measurable set U of nonzero measure, we denote µ|U to be the probability measure µ conditioned
on U . In other words, µ|U (A) = µ(A ∩ U)/µ(U).

Mixture of Experts architecture We focus on linearly-routed MoEs with fully-connected experts,
which is the most common architecture in practice. A (m, k,w, d)-MoE model f is parametrized by
routing vectors r1, . . . , rm ∈ Rd and weight matrices A1, . . . , Am, B1, . . . , Bm ∈ Rd×w.

The routing scheme activates the k experts whose routing vectors have the highest inner product with
the input. Namely, for each configuration S ∈

(
[m]
k

)
of active experts, the routing scheme defines the

subset US of tokens on which those experts are active

US = {x ∈ Rd : ⟨x, ri⟩ > ⟨x, rj⟩ for all i ∈ S, j ∈ [m] \ S} , (2.1)

and the MoE model f : Rd → Rd computes the following

f(x) =
∑
j∈S

Ajσ(B
⊤
j x) , if x ∈ US , (2.2)

for an activation function σ : R → R applied elementwise. Note that (2.2) is well-defined for any
x ∈ ∪SUS , since the sets US are disjoint. Furthermore, if all routing vectors are distinct, ∪SUS

covers all of Rd except for a zero-Lebesgue-measure subset, so f is defined almost everywhere.
Remark 2.1 (Variations on linear routing architecture). In another important variant of the linear
routing architecture, the active experts are weighted by the softmax of the inner products ⟨x, ri⟩. In
this work, we consider only the simpler linear routing variant in (2.1) and (2.2) with equal weights.
Remark 2.2 (Number of active and total parameters). In a (m, k,w, d)-MoE model, the number of
total and active MoE parameters on any input are given respectively by

ntotal = 2mwd and nactive = 2kwd . (2.3)

Additionally, there are md parameters used to form the routing vectors that are always active, but
in the typical settings that we consider with kw ≫ m these are generally a smaller quantity so we
ignore them for simplicity and consider the sparsity of the MoE layer to be roughly k/m.

3 EXPRESSIVITY BENEFITS OF GRANULARITY IN MOE LAYERS

We prove a separation between MoEs with k active experts (out of m total experts) and MoEs with k′

active experts (out of m′ total experts). For a fair comparison between these architectures, we consider

4
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the regime where both architectures have the same number of total active parameters. Roughly
speaking, we prove that, when

(
m
k

)
≫

(
m′

k′

)
, the former architecture is strictly more expressive –

namely, there are functions that the former architecture can compute that the latter architecture cannot
approximate to better than a constant L2 error.

To build intuition, we establish separation for three activation functions: σconst(t) = 1, σid(t) = t
and σrelu(t) = max(0, t). The proofs for the different activation functions build off of each other
sequentially, and so they are presented in order of increasing complexity in the sections below.

We begin with the constant activation function where the source of separation is most intuitive: MoE
layers with such activations compute piecewise-constant functions with a number of pieces given by
the number of configurations

(
m
k

)
.

3.1 BENEFITS OF GRANULARITY FOR CONSTANT ACTIVATION FUNCTION σ(t) = 1

We compare the expressivity of (m, k,w, d)-MoEs to the expressivity of (m′, k′, w′, d)-MoEs. We
first prove the following theorem, for constant activation function σ(t) = 1.
Theorem 3.1 (Benefits of granularity; constant activation). There are universal constants C, c > 0
such that the following holds for σ(t) = 1. Suppose that µ is a rotationally-invariant probability
distribution, that d ≥ Ck(logm)2, that m ≥ 2k and that(

m′

k′

)
< c

(
m

k

)0.99

.

Then there is a (m, k,w, d)-MoE model f such that for all (m′, k′, w′, d′)-MoE models f ′ we have

Ex∼µ∥f(x)− f ′(x)∥2 > cEx∼µ∥f(x)∥2.

This theorem can be strengthened to a result in L1 norm rather than L2 using the same techniques but
we omit this statement to maintain consistency with our subsequent Theorems 3.4 and 3.6, where the
inapproximability proved is in L2.

We provide an overview of the proof below. The construction of routing vectors r1, . . . , rm remains
consistent throughout this and subsequent sections. The essential property we must ensure is that
these routing vectors partition the input space into regions of approximately equal probability, where
each region corresponds to a distinct subset S of active experts.
Lemma 3.2 (Routing vectors). There is a universal constant C > 0 such that for d ≥ Ck(logm)2

and any rotationally-invariant probability measure µ, the following holds. There exist routing vectors
r1, . . . , rm ∈ Rd defining regions US by (2.1) such that

|{S : µ(US) ≥
1

2
(
m
k

)}| ≥ 1

9

(
m

k

)
. (3.1)

Proof sketch. The construction of these routing vectors is by the probabilistic method. First, draw
random Gaussian routing vectors r1, . . . , rm

i.i.d.∼ N(0, Id). By symmetry,

Er1,...,rm [µ(US)] =
1(
m
k

) ∀ , S . (3.2)

This first moment condition is not sufficient to conclude the lemma, because it could be that µ(US) = 1
with probability 1/

(
m
k

)
, and µ(US) = 0 otherwise. In order to prove that this bad case does not hold,

we also bound the second moment of µ(US). This is done by using the rotational invariance of µ:2

Er1,...,rm [µ(US)
2] ≤ 3(

m
k

)2 . (3.3)

An application of Cauchy-Schwarz using (3.2) and (3.3) means that µ(US) must be within a small
constant factor of its expectation with constant probability. Indeed, one can show using these two
equations that Er1,...,rm [|{S : µ(US) > 1/(2

(
m
k

)
)}|] ≥ 1

9

(
m
k

)
. Thus, by the probabilistic method

there must be a choice of routing vectors satisfying (3.1), which proves the lemma.
2To prove (3.3), we carefully bound PZ1,...,Zk∼N (δ,1),Zk+1,...,Zm∼N (0,1)[Zi > Zj∀i ∈ [k], j ∈ [m] \ [k]]

in Lemma A.3, which is a result of independent interest.
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Next, observe that when the activation function is constant, any expert computing Ajσ(B
⊤
j x) in fact

always outputs a constant vector Aj 1⃗ = uj ∈ Rd where 1⃗ denotes the all-ones vector of Rw. Thus,
we can equivalently write the MoE model f with constant activation as having experts parametrized
by u1, . . . , um ∈ Rd. Written in this form, the model computes

f(x) =
∑
j∈S

uj , if x ∈ US .

We construct constant experts u1, . . . , um ∈ Rd that satisfy the following conditions.
Lemma 3.3 (Construction of constant experts for σ(t) = 1). There are universal constants C, c > 0
such that the following holds for d ≥ Ck logm. There are vectors u1, . . . , um such that the sums
uS =

∑
i∈S ui satisfy the following two conditions

• Boundedness. For any S ∈
(
[m]
k

)
, we have ∥uS∥2 ≤ 1, and

• Separation. For any S, S′ ∈
(
[m]
k

)
we have ∥uS − uS′∥2 ≥ |S∆S′|/(4k).

Proof sketch. The construction of these vectors is again probabilistic. It is similar in spirit
to constructions of random packings of the unit ball. Draw Gaussian vectors u1, . . . , ud ∼
N(0, Id/(2dk)). Notice that, for any S, S′ ∈

(
[m]
k

)
, we have vS ∼ N(0, Id/(2d)) and that

uS − uS′ ∼ N(0, |S∆S′|Id/(2kd)). Hence ∥uS∥2 and ∥uS − uS′∥2 are distributed as rescaled χ2

random variables that satisfy the boundedness and separation conditions in expectation. We can
conclude by invoking tail bounds for χ2 random variables.

Combining the above constructions of routing and expert vectors allows us to prove Theorem 3.1.

Proof of Theorem 3.1. Let f be a (m, k,w, d)-MoE with routing vectors r1, . . . , rm satisfying the
conditions of Lemma 3.2, and expert vectors u1, . . . , um satisfying the conditions of Lemma 3.3.

Because of the constant activation function, for any (m′, k′, w′, d)-MoE f ′, there exist vectors
v1, . . . , vp ∈ Rd with and a partition of Rd into measurable sets V1, . . . , Vp such that f ′(x) = vi if
x ∈ Vi for i = 1, . . . , p =

(
m′

k′

)
.

Our argument to lower-bound the approximation error between f and f ′ analyzes a linear program
that we now introduce. Define the graph with vertex set V and edge set E as

V =
{
S ∈

(
[m]

k

)
: µ(S) ≤ 20/

(
m

k

)}
, E =

{
{S, S′} : |S∆S′| ≥ c′k

}
for a positive constant c′ < 1 to be chosen later. For each i ∈ [p], consider the linear program that
seeks to maximize

∑
e∈E ξe,i subject to the constraints that

ξe,i ≥ 0 for all e ∈ E , and
∑

S∈e∈E
ξe,i ≤ µ(US ∩ Vi) for all S ∈ V ,

where the sum is over all edges that have one endpoint equal to S.

Note that in the graph (V, E), every vertex is connected to all but at most
(

m
⌊c′k⌋

)(
k

⌊c′k⌋
)

of the other
vertices. Therefore, at optimality, we must have

|{S ∈ V :
∑

S∈e∈E
ξe,i ̸= µ(US ∩ Vi)}| ≤

(
m

⌊c′k⌋

)(
k

⌊c′k⌋

)
, (3.4)

since otherwise by the pigeonhole principle, the objective of the linear program can be improved.

Recall that both f and f ′ are constant on US ∩ Vi and define the constant

err(S, i) := ∥f(x)− f ′(x)∥2 , x ∈ US ∩ Vi ,

to be the value of the approximation error in the region US∩Vi. Using these facts, we lower-bound the
approximation error. The key steps are by using (a) the constraints in the linear program, (b) Young’s

6
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inequality, (c) the definition of the edge set and the separation property guaranteed by Lemma 3.3, (d)
the bound (3.4) on the number of vertex constraints that are not saturated, and (e) the guarantee in
Lemma 3.2 ensuring that the regions US , S ∈

(
[m]
k

)
are roughly balanced in size,

Ex∼µ∥f(x)− f ′(x)∥2 =
∑
i∈[p]

∑
S∈([m]

k )

µ(US ∩ Vi) · err(S, i)

(a)

≥
∑
i∈[p]

∑
S∈Vi

∑
S∈e∈E

ξe,i · err(S, i) =
∑
i∈[p]

∑
e={S,S′}∈E

ξe,i · (err(S, i) + err(S′, i)) (3.5)

=
∑
i∈[p]

∑
e={S,S′}∈E

ξe,i(∥uS − vi∥2 + ∥uS′ − vi∥2)
(b)

≥ 1

2

∑
i∈[p]

∑
e=(S,S′)∈E

ξe,i∥uS − uS′∥2

(c)

≥ c′

8

∑
i∈[p]

∑
e=(S,S′)∈E

ξe,i =
c′

16

∑
i∈[p]

∑
S∈Vi

∑
S∈e∈E

ξe,i (3.6)

(d)

≥ c′

16

∑
i∈[p]

( ∑
S∈Vi

µ(S ∩ Vi)− 20

(
m

⌊c′k⌋

)(
k

⌊c′k⌋

)
/

(
m

k

))
=

c′

16

( ∑
S:µ(S)≤20/(mk )

µ(S)− 20p

(
m

⌊c′k⌋

)(
k

⌊c′k⌋

)
/

(
m

k

))
(e)

≥ c′

16

( 3

100
− 20p

(
m

⌊c′k⌋

)(
k

⌊c′k⌋

)
/

(
m

k

))
≥ c′′ > 0 ,

where the last line follows from Claim A.9 of the Appendix, which proves that the inequality
p =

(
m′

k′

)
≤ 1

1000

(
m
k

)
/(
(

m
⌊c′k⌋

)(
k

⌊c′k⌋
)
) holds for small enough c, c′ > 0.

The theorem follows from Ex∼µ∥f(x) − f ′(x)∥2 ≥ c′′ because the boundedness condition in
Lemma 3.3 also implies Ex∼µ∥f(x)∥2 =

∑
S µ(US)∥uS∥2 ≤ 1.

3.2 SEPARATION FOR LINEAR ACTIVATION FUNCTION σ(t) = t

For linear activation functions σ(t) = t, the same theorem holds if each expert has at least Ω(logm)
neurons. Unlike Theorem 3.1, this result applies only to Gaussian N(0, Id/d) or uniform Unif[B]
input distribution rather than any rotationally-invariant distribution.

Theorem 3.4 (Benefits of granularity; linear activation). There is a constant C ′ > 0 such that
the result of Theorem 3.1 holds in the case that σ(t) = t is the linear activation function, if we
additionally assume that w ≥ C ′ logm and that either µ = N(0, Id/d) or µ = Unif[B].

The construction of the routing vectors r1, . . . , rm is identical to in Lemma 3.2 but new ideas are
needed to construct the experts. With a linear activation function, a (m, k,w, d)-MoE f can be
equivalently written as

f(x) = (
∑
j∈S

Mj)x , if x ∈ US

for matrices M1, . . . ,Mm ∈ Rd×d of rank at most w. Similarly, the (m′, k′, w′, d′)-MoE f ′ partitions
the space of inputs into p =

(
m′

k′

)
regions V1, . . . , Vp, and has matrices N1, . . . , Np ∈ Rd×d such that

f ′(x) = Nix, if x ∈ Vi

Intuitively, in order to ensure that f ′ cannot approximate f , we would like to choose M1, . . . ,Mm

to be rank-w matrices satisfying “boundedness” and “separation” properties analogous to those in
Lemma 3.3 for constant experts. The analogous “boundedness” property is simply that we wish to
construct experts so that the L2 norm of f is bounded. But it is a priori unclear what the “separation”
property should be for linear experts.
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Ideally, in order to execute a similar argument to the proof of Theorem 3.1, including the bound from
(3.5) to (3.6), we would want the “separation” condition to lower-bound the following term,

err(S, i) + err(S′, i) := Ex∼µ|US∩Vi
[∥
∑
j∈S

Mjx−Nix∥2] + Ex∼µ|U
S′∩Vi

[∥
∑
j′∈S′

Mj′x−Nix∥2] .

In other words, we want our construction of the experts to guarantee that there is no linear function
Nix that can approximate both (

∑
j∈S Mj)x on US ∩ Vi, and also (

∑
j′∈S′ Mj′)x on US′ ∩ Vi.

Establishing this lower bound is substantially more difficult than for the constant expert case, because
a linear expert can be more expressive than a constant expert. Indeed, the above requirement may
sometimes be impossible to guarantee: if US ∩Vi lies in a (d/2)-dimensional subspace, and US′ ∩Vi

lies in an orthogonal (d/2)-dimensional subspace, then one can always choose a linear expert Nix
that perfectly agrees with f on both US ∩ Vi and US′ ∩ Vi.

We circumvent this issue by restricting our attention to sets US ∩ Vi and US′ ∩ Vi of sufficiently large
measure. The main insight is that that the covariance of µ|U must be a high-rank matrix when U has
large measure. We use this insight to prove the following key lemma.

Lemma 3.5 (Approximating linear functions over large-volume sets; Lemma B.10). There are
universal constants C, c > 0 such that the following holds when µ is the Gaussian distribution
N (0, Id/d) or the uniform distribution over the unit ball Unif[B]. Let U ⊆ Rd be a measurable set
on which f1(x) = A1x and f2(x) = A2x for x ∈ U . Then, for any κ ≥ C(1 + log(1/µ(U))), we
have

Ex∼µ|U ∥f1(x)− f2(x)∥22 ≥ c

d
min

B,rank(B)≤κ
∥A1 −A2 −B∥2F .

By the Courant-Fischer theorem, this lemma implies that the functions f1 and f2 are far apart as long
as A1 −A2 has a heavy tail of singular values.

Applying this lemma to U ∈ {US ∩ Vi, US′ ∩ Vi} with µ(US ∩ Vi), µ(US′ ∩ Vi) = Ω(1/
(
m
k

)2
), we

get

err(S, i) + err(S′, i) ≥ c

d
min

B,rank(B)≲k logm

B′,rank(B′)≲k logm

∥(
∑
j∈S

Mj)−Ni −B∥2 + ∥(
∑
j′∈S′

Mj′)−Ni −B′∥2

≥ c

2d
min

B,rank(B)≲2k logm
∥(
∑
j∈S

Mj)− (
∑
j′∈S′

Mj′)−B∥2 . (3.7)

Thus, to prove Theorem 3.4 it is sufficient to construct M1, . . . ,Mm that satisfy a separation property
of the form “(3.7) ≳ |S∆S′|/k”. This is achieved by a probabilistic construction, where we pick
the matrices randomly and prove that they satisfy the separation and boundedness properties with
nonzero probability. The full proof is in Appendix B.

3.3 SEPARATION FOR RELU ACTIVATION FUNCTION σ(t) = max(0, t)

Finally, we are ready to consider the case most relevant to practice: the ReLU activation function
σ(t) = max(0, t). We prove an expressivity separation that applies whenever (i) the size of the
experts is mildly lower-bounded, w ≳ logm, (ii) the number of active parameters in f and f ′ match,
(iii) the number of active neurons is kw ≤ 0.99d (i.e. smaller than the embedding dimension), and
(iv) the number of experts is sufficiently larger than the granularity, m ≳ k.3

Theorem 3.6 (Benefits of granularity; ReLU activation). There is a constant C ′ > 0 such that
Theorem 3.1 holds in the case that σ(t) = max(0, t) is the ReLU activation function, if we additionally
assume (i) that w ≥ C ′ logm, (ii) that k′w′ = kw, (iii) that kw ≤ 0.99d, (iv) that m ≥ C ′k, (v) and
that µ = N(0, Id/d) or µ = Unif[B].

3Of these conditions, the most interesting one to try to relax is (iii), as this would prove expressivity
separations for a broader range of MoE hyperparameters. But this is beyond the range of our current techniques.
Concretely, it is open to prove a separation for the regime in which kw = k′w′ = 2d, which is interesting since
in most cases architectures have d ≤ kw ≤ 6d. Nevertheless, in our experiments we observe no significant
difference between the regime kw = d and kw = 2d.
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While the routing vectors are constructed as before, the experts require a distinct analysis and
construction because ReLU activations permit a much broader function range than linear ones. A
central difficulty is the apparent lack of a Lemma 3.5-style lower bound for ReLU activations.

Let us again use the notation that f ′ is an MoE with p regions V1, . . . , Vp. In each region, the function
f ′ is given by a kw-width ReLU network (because k′w′ = kw). Again, our main approach is to try
to lower-bound err(S, i) + err(S′, i). Namely, we want to show that f ′ cannot approximate f well
on both US ∩ Vi and on US′ ∩ Vi.

We leverage the property that f ′ depends on a fixed kw-dimensional subspace on (US ∪ US′) ∩ Vi.
In contrast, f depends on distinct kw-dimensional subspaces in US ∩ Vi and US′ ∩ Vi. So if experts
depend on sufficiently different subspaces, no single kw dimensional space can capture all of the
variance in f across US ∩ Vi and US′ ∩ Vi. This line of argument intuitively should give a lower
bound on err(S, i) + err(S′, i). There are some technical complications in the analysis and we
instead only lower-bound sums of errors err(S1, i) + . . .+ err(SC′ , i) for a large enough constant
C ′. Thus, in order to make the argument go through we also have to use a “tensorized” version of the
linear program, analyzing a linear program over an appropriate hypergraph instead of a graph. Our
argument also relies on our earlier lemma for linear activations, which lower-bounds the spectrum of
µ|U ’s covariance matrix. The full proof is in Appendix C.

4 EXPERIMENTS

We validate our theory with experiments demonstrating that the effects of granularity are relevant
at practical scales. In Figures 2 and 3, we train student MoE models to learn random teacher MoE
models with Mean-Squared Error loss over Gaussian input data in dimension d = 256. The teacher
and student models have roughly equal numbers of active parameters.4 In Figure 2, we vary the
granularity while keeping the total parameters and active parameters fixed. In Figure 3, we vary both
the granularity and the number of total parameters, while keeping the number of active parameters
fixed. The shorthand 16e8a denotes a 16-expert model with 8 active experts. In both figures, we
observe that the granularity of the student model must match the granularity of the teacher in order to
learn. Full experimental details and further corroborating results in the regime where kw = 4d are in
Appendix D.
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Effect of granularity at constant sparsity and size

Figure 2: Each data point is the test loss of a
teacher MoE trained to learn a student MoE.
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Figure 3: We fix a 16-expert 8-active teacher model,
and train student models with varying granularities and
total number of parameters. Note that even with up to
16 times as many total parameters, student models do
not fit the teacher unless their granularity is at least 8.

4In all experiments, teachers have ~65K active parameters and students are slightly overparametrized to have
~82K active parameters to make optimization easier.
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A PROOF FOR CONSTANT EXPERT SEPARATION, THEOREM 3.1

Below, we give the full proof of Theorem 3.1, restated below.
Theorem A.1 (Benefits of granularity; constant activation; restated Theorem 3.1). There are universal
constants C, c > 0 such that the following holds for σ(t) = 1. Suppose that µ is a rotationally-
invariant probability distribution, that d ≥ Ck(logm)2, that m ≥ 2k and that(

m′

k′

)
< c

(
m

k

)0.99

.

Then there is a (m, k,w, d)-MoE model f such that for all (m′, k′, w′, d′)-MoE models f ′ we have
Ex∼µ[∥f(x)− f ′(x)∥2] > cEx∼µ[∥f(x)∥2].

The proof can be broken into three parts:

1. Construction of routing vectors that partition the input space roughly evenly. This construc-
tion is also used for the case of linear activation functions and ReLU activation functions;
see Appendix A.1.

2. Construction of constant experts such that the functions computed by activating experts
S ∈

(
[m]
k

)
versus experts S′ ∈

(
[m]
k

)
are far from each other; see Appendix A.2.

3. Proof that an MoE with the routing vectors and experts constructed in the previous two
sections is inapproximable by an MoE with many fewer possible configurations of experts;
see Appendix A.3.

In the below calculations some of the constants are loose and we do not seek to optimize them here.
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A.1 THERE ARE ROUTING VECTORS THAT SPLIT THE SPACE INTO
(
m
k

)
ROUGHLY EQUAL

REGIONS

We first recall a technical fact bounding the deviations of chi-squared deviations from Laurent &
Massart (2000).

Proposition A.2 (Equations (4.3) and (4.4) of Laurent & Massart (2000)). Let Z ∼ χ2
d be distributed

as a chi-squared random variable with d degrees of freedom. Then for any positive x ≥ 0, we have

P[Z ≤ d− 2
√
dx] ∨ P[Z ≥ d+ 2

√
dx+ 2x] ≤ e−x

This will be used as a technical ingredient in the following derivations.

Lemma A.3. Let X1, . . . , Xk ∼ N (δ, 1) and Xk+1, . . . , Xm ∼ N (0, 1), and δ > 0 and

f(δ) = P[Xi > Xj , ∀i ∈ [k], j ∈ [m] \ [k]].

Then

f(δ) ≤ exp(δk
√

2 logm)/

(
m

k

)
.

Proof. By symmetry f(0) = 1/
(
m
k

)
.

We can write

f(δ) =
1

(2π)m/2

∫
Ω

exp(−
k∑

i=1

(xi − δ)2/2) exp(−
m∑

i=k+1

x2
i /2)dx,

where Ω = {x : xi > xj ∀ i ∈ [k], j ∈ [m] \ [k]}.

In the next sequence of inequalities we use the following facts:

(a) The inequality:

E[X1 + · · ·+Xk | Xi ≥ z ∀ i ∈ [k]] ≤ E[X1 + · · ·+Xk | Xi ≥ z + δ ∀ i ∈ [k]]

(b) Z(1) ≥ · · · ≥ Z(m) denotes the order statistics of standard Gaussian random variables

(c) The maximal inequality: E[maxi Zi] ≤
√
2 logm.

It holds

d

dδ
f(δ) =

1

(2π)m/2

∫
Ω

(

k∑
i=1

(xi − δ)) exp(−
k∑

i=1

(xi − δ)2/2) exp(−
m∑

i=k+1

x2
i /2)dx

= E[
k∑

i=1

(Xi − δ) | X ∈ Ω]f(δ)

(a)

≤ E[
k∑

i=1

(Xi − δ) | Xi − δ > Xj ∀ i ∈ [k], j ∈ [m] \ [k]]f(δ)

(b)
= EZ∼N (0,Id)[Z(1) + · · ·+ Z(k)]f(δ)

(c)

≤ (k
√

2 logm)f(δ) .

By (d) Grönwall’s inequality,

f(δ) ≤ f(0) exp(δk
√

2 logm) .

Lemma A.4. Let Z ∼ N (0, σ2). Then for any t > 0, E[exp(t|Z|)] ≤ 2 exp(t2σ2/2).
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Proof.

E[exp(t|Z|)] ≤ 2E[exp(tZ)] =
2√
2πσ

∫
exp(−z2/(2σ2) exp(tz)dz

=
2√
2πσ

∫
exp(−(z − tσ)2/(2σ2)) exp(t2σ2/2)dz = 2 exp(t2σ2/2) .

Lemma A.5. Let S ⊆ [m] with |S| = k, and let r1, . . . , rm ∼ N (0, Id). Define US = {x :
⟨x, ri⟩ > ⟨x, rj⟩∀i ∈ S, j ∈ [m] \ S}. There is a universal constant C s.t. if d ≥ Ck(logm)2, then
E[µ(US)

2] ≤ 3/
(
m
k

)2
for any rotationally-invariant probability measure µ.

Proof. By homogeneity of US and rotational invariance of the distribution of r1, . . . , rm and µ, we
have

E[µ(Us)
2] = Er[Ex′,x′′∼µ[1(x

′ ∈ US)1(x
′′ ∈ US)]]

= Er[Ex∼N (0,Id)[1(e1 ∈ US)1(x ∈ US)]] = (∗) .

Define h = maxi∈S,j ̸∈S xi,1 − xj,1, and let Z =
√
x2
2 + · · ·+ x2

d, so that Z2 ∼ χ2
d−1. Let E be the

event that {h ≤ C
√
k logm} ∩ {Z2 ≥ d/2} for a constant C that we will determine later. Then by

(a) rotating x to be in span{e1, e2}, by (b) Lemma A.3, and by (c) Lemma A.4,

(∗) ≤ Er[1(e1 ∈ US)Ex∼N (0,Id)[1(E)1(x ∈ US)]] + P[¬E]

(a)

≤ Er[1(e1 ∈ US)Ex1∼N(0,1),Z2∼χ2
d−1

[1(E)1(x1ri,1 + Zri,2 > x1rj,1 + Zrj,2∀i ∈ S, j ∈ [m] \ S]] + P[¬E]

≤ Er[1(e1 ∈ US)Ex1∼N (0,1),Z2∼χ2
d−1

[1(E)1(|X1|h+ Zri,2 > Zrj,2∀i ∈ S, j ∈ [m] \ S]] + P[¬E]

(b)

≤ Er[1(e1 ∈ US)Ex1∼N (0,1),Z2∼χ2
d−1

[1(E) exp(|x1|h
√

2 logm/Z)/

(
m

k

)
]] + P[¬E]

≤ Er[1(e1 ∈ US)Ex1∼N (0,1),Z2∼χ2
d−1

[1(E)(exp(2|x1|h
√
logm/

√
d)/

(
m

k

)
])] + P[¬E]

(c)

≤ Er[1(e1 ∈ US)(2 exp(2C
2k(logm)2/d)/

(
m

k

)
] + P[¬E]

= 2 exp(2C2k(logm)2/d)/

(
m

k

)2

+ P[¬E]

≤ 2 exp(2C2k(logm)2/d)/

(
m

k

)2

+ 1/m−Ω(
√
C)k + exp(−C ′d) ,

which is ≤ 3/
(
m
k

)2
for d ≥ C ′′k(logm)2 for large enough constant C ′′.

Lemma A.6. There exists a universal constant C > 0 such that, with r1, . . . , rm ∼ N (0, Id) and
US defined as in Lemma A.5, we have P[µ(US) ≤ 1/(2

(
m
k

)
)] ≤ 8/9 whenever d ≥ Ck(logm)2 and

µ is a rotationally-invariant probability measure.

Proof. Let E be the event {µ(US) ≤ 1
2

1

(mk )
}. Let p = Pr[E] and a = E[µ(US)

(
m
k

)
| E] and

b = E[µ(US)
(
m
k

)
| ¬E]. Then since E[µ(US)] = 1/

(
m
k

)
by symmetry, we have ap+ b(1− p) = 1.

We also clearly have a < 1/2. And, finally,

3 ≥ E[µ(US)
2/

(
m

k

)2

] = E[µ(US)
2/

(
m

k

)2

| E]p+ E[µ(US)
2/

(
m

k

)2

| ¬E](1− p) ≥ a2p+ b2(1− p) ,

where the first inequality is by Lemma A.5. Putting these together, we have b = (1− ap)/(1− p), so
a2p+((1−ap)/(1−p))2(1−p) ≤ 3, so a2p+(1−ap)2/(1−p) ≤ 3, so a2p(1−p)+(1−ap)2 ≤
3(1−p), so a2p+1−2ap ≤ 3−3p, so a2−2a+3p ≤ 2, so p ≤ 2/(a2−2a+3) ≤ 2/(1/4+2) ≤
8/9.
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Finally we can prove the following lemma, which is stated as Lemma 3.2 in the main text.

Lemma A.7. There is a universal constant C ≥ 0 such that, for any k ≤ m, and d ≥ Ck(logm)2

and any rotationally-invariant probability measure µ, there are routing vectors r1, . . . , rm ∈ Rd

defining regions US = {x : ⟨x, ri⟩ > ⟨x, rj⟩∀i ∈ S, j ∈ [m] \ S} for all S ∈
(
[m]
k

)
such that

|{S : µ(US) >
1

2
(
m
k

)}| ≥ 1

9

(
m

k

)
.

Proof. Immediate from Lemma A.6.

A.2 CONSTRUCTION OF CONSTANT EXPERTS THAT ARE FAR FROM EACH OTHER

We now restate and prove Lemma 3.3.

Lemma A.8. There are universal constants C, c > 0 such that the following holds for d ≥ Ck logm.
There are vectors v1, . . . , vm such that if we define the sums vS =

∑
i∈S vi, these satisfy the following

two conditions

• Bounded sums. For any S ∈
(
[m]
k

)
, we have ∥vS∥2 ≤ 1, and

• Well-separated sums. For any S, S′ ∈
(
[m]
k

)
we have ∥vS − vS′∥2 ≥ |S∆S′|/(4k).

Proof. Draw Gaussian vectors v1, . . . , vd ∼ N(0, Id/(2dk)). Notice that, for any S, S′ ∈
(
[m]
k

)
, we

have vS ∼ N(0, Id/(2d)) and that vS − vS′ ∼ N(0, |S∆S′|Id/(2kd)).
Notice that (2d)·∥vS∥2 is distributed as a χ2

d random variable, so by the tail bounds in Proposition A.2,
it holds that

P[∥vS∥2 > 1] = P[(2d) · ∥vS∥2 > 2d] ≤ exp(−d/8) .

Similarly, (2dk/|S∆S′|) · ∥vS − v′S∥2 is distributed as a χ2
d random variable, so by the tail bounds

in Proposition A.2, it holds that

P[∥vS − vS′∥2 > |S∆S′|/(4k)] = P[(2dk/|S∆S′|) · ∥vS − vS′∥2 < d/2] ≤ exp(−d/16) .

Letting d ≥ Ck logm for large enough constant C, and taking a union bound over all
(
m
k

)2 ≤ m2k

pairs S, S′, it follows that the vectors v1, . . . , vd satisfy the conditions of the lemma with high
probability.

A.3 PROOF OF SEPARATION FOR CONSTANT EXPERTS

Given the proof sketch in the main text, the missing ingredient in the proof of Theorem 3.1 is the
following claim.

Claim A.9. There are sufficiently small universal constants c, c′ > 0 such that p ≤ c
(
m
k

)0.99
guarantees that p ≤ 1

1000

(
m
k

)
/(
(

m
⌊c′k⌋

)(
k

⌊c′k⌋
)
) for any m ≥ 2k.

Proof. Since we may take c′ < 1/2000 and c ≤ 1/1000, we may assume that k ≥ 2000 without loss
of generality. Next, letting H(p) denote the binary entropy, we have

mH(c′k/m) ≤ c′k(log2(m/k) + 1/ ln(2)− log2(c
′))

≤ 3 log2(1/c
′)c′k(log2(m/k) + 1)

≤ 4 log2(1/c
′)c′k(log2(m/k) + 1− log2(m+ 1)/k)

≤ 4 log2(1/c
′)c′(mH(k/m)− log2(m+ 1)) ,

14
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So by standard inequalities between the binomial coefficients and the entropy we have that(
m

⌊c′k⌋

)
≤ 2mH(c′k/m)

≤
(

1

m+ 1
2mH(k/m)

)4 log2(1/c
′)c′

≤
(
m

k

)4c′ log2(1/c
′)

≤
(
m

k

)0.0001

,

for small enough c′ > 0. Therefore,(
m

k

)0.99

≤
(
m

k

)
/(

(
m

k

)
)0.0002 ≤

(
m

k

)
/(

(
m

⌊c′k⌋

)(
k

⌊c′k⌋

)
) .

Applying Claim A.9 at the end of the proof of Theorem 3.1 in the main text concludes the proof of
the theorem.

B PROOF FOR LINEAR EXPERT SEPARATION, THEOREM 3.4

Let us restate the separation between MoE models with linear activation σ(t) = t for convenience.
Theorem B.1 (Benefits of granularity; linear activation; restated Theorem 3.4). There are universal
constants C, c > 0 such that the following holds for σ(t) = t and either choice of µ = N(0, Id/d)
or µ = Unif[B]. Suppose that d ≥ Ck(logm)2 and that m ≥ 2k and that w ≥ C logm, and that(

m′

k′

)
< c

(
m

k

)0.99

.

Then there is a (m, k,w, d)-MoE model f such that for all (m′, k′, w′, d′)-MoE models f ′ we have

Ex∼µ[∥f(x)− f ′(x)∥2] > cEx∼µ[∥f(x)∥2].

The proof can be broken into four parts:

1. We prove a technical lemma stating that for any high-probability set U , the distribution µ|U
has high-rank covariance; see Appendix B.1.

2. Next, we provide a probabilistic construction of linear experts M1, . . . ,Mm that are well-
separated, in the sense that for distinct sets S, S′ ∈

(
[m]
k

)
, the difference (

∑
j∈S Mj) −

(
∑

j′∈S′ Mj′) has high (numerical) rank; see Appendix B.2.

3. Next, we prove Lemma 3.5, which is the crucial lemma that allows us to control the
approximation error of a linear expert by another linear expert on a large-enough subset of
the input; Appendix B.3.

4. Finally, we combine the ingredients to prove that an MoE with the routing vectors and
experts constructed by the above lemmas is inapproximable by an MoE with many fewer
possible configurations of experts; see Appendix B.4.

In the below calculations some of the constants are loose and we do not seek to optimize them here.

B.1 LARGE-VOLUME SETS HAVE HIGH-RANK COVARIANCE

Lemma B.2 (Tube volumes in Gaussian measure). For any t > 0, n ≤ d, and p ∈ Rd we have

Px∼N (0,Id)[x− p ∈ [−t, t]n × (−∞,∞)d−n] ≤ (t
√

2/π)n .
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Proof. By direct calculation,

Px∼N (0,Id)[x− p ∈ [−t, t]n × (−∞,∞)d−n] =

n∏
i=1

(
1√
2π

∫ t+pi

−t+pi

exp(−x2/2)dx

)
≤ (t

√
2/π)n .

Lemma B.3 (Tube volumes in uniform ball). For any t > 0, n ≤ d, and p ∈ Rd we have

Px∼Unif[B][x ∈ p+ ([−t/
√
d, t/

√
d]n × (−∞,∞)d−n)] ≤ 2−d+1 + (8t)n .

Proof. Define T = [−t/
√
d, t/

√
d]n × (−∞,∞)d−n. Define q ∈ Rd as :

qi =


0, i > n or pi ∈ [−t/

√
d, t/

√
d]

pi − t/
√
d, i ≤ n and pi > t/

√
d

pi + t/
√
d, i ≤ n and pi < −t/

√
d

.

Notice that for any x ∈ B∩ (p+T ), we have ∥x− q∥ ≤ ∥x∥, so x ∈ B. Notice also that x− q ∈ 2T .
This implies that (B ∩ (p+ T ))− q ⊆ B ∩ 2T , so with µ̃ as the Lebesgue measure on Rd we have

Px∼Unif[B][x ∈ p+ T ] = µ(p+ T ) = µ̃(B ∩ (p+ T )) = µ̃((B ∩ (p+ T ))− q)

≤ µ̃(B ∩ 2T ) = µ(2T ) = Px∼Unif[B][x ∈ 2T ] .

Since Px∼Unif[B][∥x∥ ≤ 1
2 ] = 2d, we have

Px∼Unif[B][x ∈ p+ T ]

≤ Px∼Unif[B][x ∈ 2T ]

≤ 2−d + Px∼Unif[B][x ∈ [−2t/
√
d, 2t/

√
d]n × (−∞,∞)d−n | ∥x∥ ≥ 1/2]

≤ 2−d + Px∼Sd−1 [x ∈ [−4t/
√
d, 4t/

√
d]n × (−∞,∞)d−n]

= 2−d + Pz∼N (0,Id)[z/∥z∥ ∈ [−4t/
√
d, 4t/

√
d]n × (−∞,∞)d−n]

≤ 2−d + exp(−d) + Pz∼N (0,Id)[z/∥z∥ ∈ [−4t/
√
d, 4t/

√
d]n × (−∞,∞)d−n, ∥z∥2 ≤ 5d]

≤ 2−d + exp(−d) + Pz∼N (0,Id)[z ∈ [−4
√
5t, 4

√
5t]n × (−∞,∞)d−n]

≤ 2−d + exp(−d) + (4t
√
10/π)n

≤ 2−d+1 + (8t)n .

Definition B.4. For a distribution µ and a measurable set U , let µ|U be the probability measure from
restricting µ to U . I.e., µ|U (A) = µ(A ∩U)/µ(U) for all measurable sets A. Given a distribution µ
and measurable set U of nonzero measure, additionally define ΣU = cov(X,X) for X ∼ µ|U .

Lemma B.5 (Covariance of large-measure set lower-bounded). There is a universal constant C > 0
such that the following is true. If either µ = N (0, Id/d) is the Gaussian distribution, or µ = Unif[B]
is the uniform distribution over the ball, and U has nonzero measure µ(U) > 0, then the eigenvalues
of the covariance conditioned on U satisfy:

λ1(ΣU ) ≥ λ2(ΣU ) ≥ . . . λd−κ+1(ΣU ) ≥ 1/(30000d) ,

for any κ ≥ C(1 + log(1/µ(U))).

Proof. A high level overview is that the proof uses a Markov inequality and a union bound over tube
volumes. Let v1, . . . , vd be eigenvectors of ΣU associated with the eigenvalues λ1(ΣU ), . . . ,Σd(U).
Since µ is rotationally invariant and the eigenvalues of ΣU are invariant to rotations of U , we may
without loss of generality rotate U so that v1 = e1, . . . , vd = ed are aligned with the standard basis.
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Suppose for the sake of contradiction that λd−κ+1(ΣU ) < 1/(30000d) and throughout this proof
assume that X ∼ µ. Let ρ = E[X|U ]. Then, we must have for i ≤ κ that

E[(Xd−i+1 − ρd−i+1)
2|U ] = var[Xd−i+1|U ] = λd−i+1(ΣU ) ≤ λd−κ+1(ΣU ) <

1

30000d
.

Hence, by Chebyshev’s inequality,

P
[
ρd−i+1 −

1

100
√
d
≤ Xd−i+1 ≤ ρd−i+1 +

1

100
√
d

∣∣U]
≥ 2

3
.

Summing over i, we get

E
[ κ∑
i=1

1
(
ρd−i+1 −

1

100
√
d
≤ Xd−i+1 ≤ ρd−i+1 +

1

100
√
d

)∣∣U)]
≥ 2κ

3
.

By a Markov bound,

P
[ κ∑
i=1

1
(
ρd−i+1 −

1

100
√
d
≤ Xd−i+1 ≤ ρd−i+1 +

1

100
√
d

)
≥ κ

3

∣∣U)]
≥ 1

2
.

In other words, if for any S ⊆ [κ] we define

VS =
{
x : xd−i+1 ∈

[
− 1

100
√
d
,

1

100
√
d

]
for all i ∈ S

}
and V =

⋃
S⊆[κ]

|S|≥κ/3

VS ,

we have

P[X ∈ V + ρ|U ] ≥ 1/2 .

So it follows that

µ(U ∩ {V + ρ})/µ(U) ≥ 1/2 ,

so

µ(U) ≤ 2µ(V + ρ) . (B.1)

On the other hand, from the bounds on the volumes in Lemma B.2 if the input distribution is Gaussian,
then

µ(U) ≤ 2µ(V + ρ) ≤ 2 ·
(

κ

⌈κ/3⌉

)
max
S⊆[κ]

|S|≥κ/3

µ(VS + ρ)

≤ 2 · 20.97κ((1/100)
√

2/π)κ/3 ≤ 2 · (0.4)κ < µ(U) ,

for κ ≥ C(1 + log(1/µ)) for a large enough constant C > 0. This contradicts (B.1).

In the case that the input distribution is uniform over B, then from the bounds on the volumes in
Lemma B.3,

µ(U) ≤ 2µ(V + ρ) ≤ 2 · 20.97κ(2−d+1 + ((1/100)8)κ/3) ≤ 2 · (2−d/2 + (0.87)κ) < µ(U) ,

which is again a contradiction since d ≥ κ ≥ C(1 + log(1/µ(U))) for a large enough constant
C > 0.

B.2 CONSTRUCTION OF EXPERT FUNCTIONS THAT LEAD TO HIGH-RANK DIFFERENCE

We use the following technical ingredient on the operator norms of random matrices.

Proposition B.6 (Implied by Theorem 4.4.5 of Vershynin (2018)). There is a constant C > 0 such
that for A ∼ N (0, 1)⊗(d×w) we have

PA[∥A∥ > C
√
max(d,w)] ≤ 2 exp(−min(d,w)) .
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Lemma B.7. Let A,B ∼ N (0, 1)⊗(d×w). There are constants C, c > 0 such that

P
[
|∥AB⊤∥2F − d2w| > d2w

5

]
≤ C exp(−cmin(d,w)) .

Proof. We may rewrite ∥AB⊤∥2F as follows:

∥AB⊤∥2F =


B⊤

1,∗
B⊤

2,∗
...

B⊤
d,∗


⊤

Ã


B⊤

1,∗
B⊤

2,∗
...

B⊤
d,∗


where

Ã =


A⊤A 0 0 . . . 0
0 A⊤A 0 . . . 0
...

...
0 0 0 . . . A⊤A

 .

This is a quadratic form in B. We may bound its deviations by the Hanson-Wright inequality
Rudelson & Vershynin (2013) as

PB [|∥AB⊤∥2F − EB∥AB⊤∥2| > t] ≤ 2 exp(−cmin(t2/∥Ã∥2F , t/∥Ã∥))
= 2 exp(−cmin(t2/(d∥A∥2F ), t/∥A∥) .

Note that ∥A∥2F ∼ χ2
dw, so by Proposition A.2, PA[|∥A∥2F − dw| > dw/10] ≤ exp(−dw/1600).

Additionally, recall from Proposition B.6 that P[∥A∥ ≤ C ′
√
max(d,w)] ≥ exp(−c′ min(d,w)), so

PB [|∥AB⊤∥2F − EB∥AB⊤∥2F | > t] ≤ C exp(−c′′ min(d, t2/(d2w), t/
√
max(d,w)) .

Since EB∥AB⊤∥2F = d∥A∥2F ], combining with the above we have

PA,B [|∥AB⊤∥2F − d2w| > d2w/10 + t] ≤ C ′ exp(−c′′′ min(d, dw, t2/(d2w), t/
√
max(d,w))) .

So

PA,B [|∥AB⊤∥2F − d2w| > d2w/5] ≤ C ′ exp(−c′′′ min(d, dw, d2w, d2w/
√
max(d,w)))

≤ C ′ exp(−c′′′ min(d, dw, d2w,
√
dw))

≤ C ′ exp(−c′′′ min(d,w)) .

Lemma B.8. There are universal constants c > 0 such that the following holds. Let A,B ∼
N (0, 1)⊗(d×w). Then, for any k ≤ cd2w/max(d,w)2,

PA,B

[
min
U

rank(U)≤k

∥AB⊤ − U∥2F <
d2w

2

]
≤ C exp(−cmin(d,w)) .

Proof. Let E be the event that ∥A∥, ∥B∥ ≤ C
√
max(d,w) and that ∥AB⊤∥2F ≥ 4d2w/5. By

Proposition B.6 and Lemma B.7 we have P[E] ≥ 1− C ′ exp(−c′ min(d,w)). Under event E, we
have ∥AB⊤∥ ≤ ∥A∥∥B∥ ≤ C2 max(d,w). By the Eckart-Young-Mirsky theorem, and under this
event,

min
U

rank(U)≤k

∥AB⊤ − U∥2F =

min(d,w)∑
i=k+1

σ2
i (AB⊤)

≥
min(d,w)∑

i=1

σ2
i (AB⊤)− C4k(max(d,w))2

≥ 4d2w/5− C2k(max(d,w))2 .
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Lemma B.9 (Construction of linear pieces of MoE model). There are universal constants c, C > 0
such that the following holds for any ϵ > 0, integers 0 ≤ k ≤ m and d ≥ Ck logm and w ≥
(C/ϵ) logm, and probability measure µ and disjoint measurable sets {US ⊆ Rd}

S∈([m]
k ).

There are matrices M1, . . . ,Mm ∈ Rd×d satisfying rank(Mi) ≤ w such that we have

• the following upper bound

Ex∼µ[
∑

S∈([m]
k )

1(x ∈ US)∥
∑
i∈S

Mix∥2] ≤ Ex∼µ[∥x∥2] , (B.2)

• and for all S, S′ ∈
(
[m]
k

)
satisfying |S ∩ S′| ≤ (1− ϵ)k it holds that

min
U :rank(U)≤cmin(d,kwϵ)

∥
∑
i∈S

Mi −
∑
i′∈S′

Mi′ − U∥2F ≥ cdϵ (B.3)

Proof. Without loss of generality, let us prove this statement for the case where kw ≤ d(1 + 1/ϵ).
Since if kw > (1+1/ϵ)d, then we can prove the statement with w′ = ⌈d/(kϵ)⌉, so kw′ ≤ (1+1/ϵ)d,
which can be seen to imply the original statement.

Pick A1, . . . , Am, B1, . . . , Bm ∼ N (0, 1)⊗(d×w), and let Mi = AiB
⊤
i . To prove (B.2), notice that

by (a) linearity of expectation and the fact that 1(x ∈ US)∥
∑k

i=1 Mix∥2 has the same distribution
as 1(x ∈ US)∥

∑
i∈S Mix∥2 for each S ∈

(
[m]
k

)
, (b) disjointness of the sets US

EM1,...,Mm
[Ex∼µ[

∑
S∈([m]

k )

1(x ∈ US)∥
∑
i∈S

Mix∥2]]

(a)
= EM1,...,Mm

[Ex∼µ[
∑

S∈([m]
k )

1(x ∈ US)∥
k∑

i=1

Mix∥2]]

(b)

≤ EM1,...,Mm [Ex∼µ[∥
k∑

i=1

Mix∥2]]

= EM1,...,Mm
[Ex∼µ[x

⊤(

k∑
i=1

Mi)
⊤(

k∑
i=1

Mi)x]]

= EM1,...,Mm [Ex∼µ[tr((
k∑

i=1

Mi)
⊤(

k∑
i=1

Mi)xx
⊤)]]

= tr(EM1,...,Mm
[(

k∑
i=1

Mi)
⊤(

k∑
i=1

Mi)]Ex∼µ[xx
⊤]]

= tr(EA1,...,Ak,B1,...,Bk
[

k∑
i=1

BiA
⊤
i AiB

⊤
i ]Ex∼µ[xx

⊤])

= kwd · tr(Ex∼µ[xx
⊤])

= kwd · Ex∼µ∥x∥2

By a Markov bound, we have

PM1,...,Mm
[Ex∼µ[

∑
S∈([m]

k )

1(x ∈ US)∥
∑
i∈S

Mix∥2] > 2kwd · Ex∼µ∥x∥2] ≤ 1/2 . (B.4)

For any S, S′ ∈
(
[m]
k

)
, notice that

∑
i∈S Mi −

∑
j∈S′ Mj has the same distribution as AB⊤ for

A,B ∼ N (0, 1)⊗(d×(2k−2|S∩S|)w). It follows that there is a small enough c > 0 such that if
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|S ∩ S′| ≤ (1− ϵ)k, then by Lemma B.8 (using that kw ≤ d(1 + 1/ϵ)), we have

P[ min
U

rank(U)≤cmin(d,kwϵ)

∥
∑
i∈S

Mi −
∑
i′∈S′

Mi′ − U∥2F ≥ d2wkϵ] ≥ 1− C ′ exp(−cmin(d, kwϵ))

≥ 1− 1

10

(
m

k

)2

.

By a union bound over all S, S′ ∈
(
[m]
k

)
such that |S ∩ S′| ≤ (1− ϵ)k, we have

P
[ ⋂

S,S′∈([m]
k )

|S∩S′|≤(1−ϵ)k

min
U

rank(U)≤cmin(d,kwϵ)

∥
∑
i∈S

Mi −
∑
i′∈S′

Mi′ − U∥2F ≥ d2wkϵ

3

]
≥ 9

10
. (B.5)

Taking a union bound over (B.4) and (B.5), we have that M1, . . . ,Mm satisfy the properties in the
Lemma statement (after normalizing by a factor of

√
2kwd) with probability at least 4/10. Therefore

there do exist such M1, . . . ,Mm, as claimed in the lemma.

B.3 ERROR OF APPROXIMATING LINEAR FUNCTION ON LARGE-VOLUME SET

We are now ready to prove Lemma 3.5.
Lemma B.10 (Stated in the main text as Lemma 3.5). There are universal constants C, c > 0 such
that the following holds when µ is the Gaussian distribution N (0, Id/d) or the uniform distribution
over the unit ball Unif[B]. Let U ⊆ Rd be a measurable set on which f1|U (x) = A1x and
f2|U (x) = A2x. Then, for any κ ≥ C(1 + log(1/µ(U))), we have

Ex∼µ|U ∥f1(x)− f2(x)∥22 ≥ c

d
min

M,rank(M)≤κ
∥A1 −A2 −M∥2F .

Proof. Let ρ = Ex∼U [x] be the center of mass of the set U . By Lemma B.5 we know that ΣU =
cov(X,X) for X ∼ µ|U satisfies λ1(ΣU ) ≥ . . . λd−κ+1(ΣU ) ≥ c/d. So

Ex∼µ|U ∥f1(x)− f2(x)∥22 = Ex∼µ|U ∥(A1 −A2)x∥22
= Ex∼µ|U [tr((A1 −A2)

⊤(A1 −A2))xx
⊤)]

= tr((A1 −A2)
⊤(A1 −A2))(ρρ

⊤ +ΣU ))

≥ tr((A1 −A2)
⊤(A1 −A2))ΣU )

= tr((A1 −A2)
⊤(A1 −A2)(cI/d+ V )) = (∗) ,

where rank(V ) ≤ κ and ∥V ∥ ≤ c/d. So

(∗) = c

d
∥A1 −A2∥2F + ⟨(A1 −A2)

⊤(A1 −A2), V ⟩

≥ c

d
∥A1 −A2∥2F − c

d

κ∑
i=1

σ2
i (A1 −A2)

=
c

d
min

M,rank(M)≤κ
∥A1 −A2 −M∥2F .

The penultimate line is due to Von Neumann’s trace inequality Von Neumann (1937), and the last
line is due to Fact 17.5.1 in Hogben (2006) (the Eckart-Young-Mirsky theorem).

B.4 PROOF OF SEPARATION FOR LINEAR EXPERTS

The construction of the (m, k,w, d)-MoE model with σ(t) = t that we will use to show the separation
is the following. We let 0 < ϵ < 1/2 be a tunable parameter, and we suppose that d ≥ Ck(logm)2

and w ≥ C(1/ϵ) logm for a large enough constant C so that we can invoke Lemma A.7 and
Lemma B.9 to construct the routing vectors and the linear functions on the different pieces, respec-
tively. We consider either the Gaussian measure µ = N(0, Id/d) or the uniform measure on the unit
ball µ = Unif[B].
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Construction of routing vectors First, pick routing vectors r1, . . . , rm ∈ Rd as guaranteed by
Lemma A.7, yielding disjoint measurable regions {US ⊆ Rd}

S∈([m]
k ) on which the top-k experts are

active, satisfying

|{S : µ(US) >
1

2
(
m
k

)}| ≥ 1

9

(
m

k

)
. (B.6)

Construction of linear functions Next, let M1, . . . ,Mm ∈ Rd×d be matrices of rank ≤ w
satisfying (B.2) and (B.3) for some ϵ > 0, and define the mixture-of-experts model

f(x) =
∑
i∈S

Mix for any S ∈
(
[m]

k

)
and x ∈ US . (B.7)

First, we prove that the constructed (m, k,w, d)-MoE f has upper-bounded L2 norm with respect to
the distribution µ.

Lemma B.11 (Upper-bound on L2 norm of MoE model). The MoE f that we have constructed in
(B.7) satisfies

Ex∼µ[∥f(x)∥2] ≤ 1 .

Proof. By a direct calculation

Ex∼µ∥f(x)∥2 =
∑

S∈([m]
k ) s.t. µ(US)>0

µ(US)Ex∼µ|US
∥f(x)∥2

=
∑

S∈([m]
k ) s.t. µ(US)>0

µ(US)Ex∼µ|US
∥
∑
i∈S

Mix∥2

= Ex∼µ[
∑

S∈([m]
k )

1(x ∈ US)∥
∑
i∈S

Mix∥2]

≤ Ex∼µ∥x∥2

≤ 1 ,

where the penultimate line is by (B.2) and using that either µ = N (0, Id/d) or µ = Unif[B].

Next, we will show that f is inapproximable by MoEs with too few regions. For convenience, we
define a general-routing linear MoE below.

Definition B.12. A function g is a general-routing linear MoE with p regions if there are matrices
G1, . . . , Gp ∈ Rd×d and measurable sets V1, . . . , Vp partitioning Rd such that

g(x) = Gix if x ∈ Vi .

The above definition is for convenience, since it abstracts away some of the structure of MoEs
that we will not use to prove our separation (in particular, the bounded rank of the matrices and
the linearity of the routing scheme will not be used). Indeed, note that under our notation any
(m′, k′, w′, d)-MoE (with linear routing functions) and identity activation function σ(t) = t is a(
m′

k′

)
-region general-routing linear MoE.

Lemma B.13. There are universal constants C, c′ > 0 such that for the (m, k,w, d)-MoE f defined
in (B.7) and any general-routing linear MoE g with

p ≤
c′
(
m
k

)(
m

⌊kϵ⌋
)(

k
⌊kϵ⌋

)
regions, we have

Ex∼µ∥f(x)− g(x)∥2 ≥ c′ϵ .
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Proof. Define H = {(S, i) ∈
(
[m]
k

)
× [p] : µ(US ∩ Vi) ∈ [1/(4

(
m
k

)
p), 20/

(
m
k

)
}. Next, for any

i ∈ [p], define Hi = {S : (S, i) ∈ H}. This satisfies the following property, which will be useful
later:∑

i∈[p]

∑
S∈Hi

µ(US ∩ Vi) =
∑

S∈([m]
k )

µ(US)−
∑

i∈[p] s.t. S ̸∈Hi

µ(US ∩ Vi)

≥
∑

S∈([m]
k ) s.t. µ(S)∈[ 1

2(mk )
,20/(mk )]

(µ(US)−
∑

i∈[p] s.t. S ̸∈Hi

µ(US ∩ Vi))

≥
∑

S∈([m]
k ) s.t. µ(S)∈[ 1

2(mk )
,20/(mk )]

(µ(US)− p/(4

(
m

k

)
p))

≥ |{S ∈
(
[m]

k

)
s.t. µ(S) ∈ [

1

2
(
m
k

) , 20/(m
k

)
]}| · (1/(2

(
m

k

)
))

≥ (
1

9

(
m

k

)
− 1

20

(
m

k

)
) · (1/(2

(
m

k

)
))

≥ 3/100 . (B.8)

We have by (a) by Lemma B.10 for κ = ⌈C ′k logm⌉ ≥ C ′ log(1 + 4
(
m
k

)2
) ≥ C ′ log(1 + 4

(
m
k

)
p)

for a universal constant C ′

Ex∼µ∥f(x)− g(x)∥] ≥ Ex∼µ[
∑

(S,i)∈H

1(x ∈ US ∩ Vi)∥f(x)− g(x)∥2]

= Ex∼µ[
∑

(S,i)∈H

1(x ∈ US ∩ Vi)∥(Gi −
∑
j∈S

Mj)x∥2]

=
∑

(S,i)∈H

µ(US ∩ Vi)Ex∼µ|US∩Vi
[∥(Gi −

∑
j∈S

Mj)x∥2]

(a)

≥ c′

d

∑
(S,i)∈H

µ(US ∩ Vi) min
A,rank(A)≤κ

∥(Gi −
∑
j∈S

Mj)−A∥2F . (B.9)

For any i ∈ [p], let us construct a maximal “fractional matching” of the graph with vertex set Hi, and
edge set Ei = {(S, S′) : S, S′ ∈ Hi and |S ∩ S′| ≤ (1− ϵ)k}. Namely, our fractional matching are
weights

0 ≤ wi
e for all e ∈ Ei

such that for each vertex S ∈ Hi we have∑
e∈Ei s.t. S∈e

wi
e ≤ µ(US ∩ Vi).

Any maximal fractional matching must satisfy

|{S ∈ Hi :
∑

e∈Ei s.t. S∈e

wi
e < µ(US ∩ Vi)}| ≤ max

S
|{S′ ∈ Hi : (S, S

′) ̸∈ Ei}| ≤
(

k

⌊ϵk⌋

)(
m

⌊ϵk⌋

)
,

(B.10)

since otherwise it can be greedily improved because by the pigeonhole principle there is an edge with
two nonsaturated endpoints. It follows that by (b) using (B.3) which applies by taking C sufficiently
large, (c) using (B.10), and (d) using (B.8), and (e) using p ≤ (1/1000)

(
m
k

)
/(
(

m
⌊ϵk⌋

)(
k

⌊ϵk⌋
)
)

(B.9) ≥ c′

d

∑
i∈[p]

∑
e=(S,S′)∈Ei

wi
e( min

A,rank(A)≤κ
∥(Gi −

∑
j∈S

Mj)−A∥2F + min
A′,rank(A′)≤κ

∥(Gi −
∑
j∈S′

Mj)−A′∥2F )

≥ c′

2d

∑
i∈[p]

∑
e=(S,S′)∈Ei

wi
e( min

A,A′

rank(A),rank(A′)≤κ

∥(Gi −
∑
j∈S

Mj)−A∥F + ∥(Gi −
∑
j∈S′

Mj)−A′∥F )2
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≥ c′

2d

∑
i∈[p]

∑
e=(S,S′)∈Ei

wi
e min

A,A′

rank(A),rank(A′)≤κ

∥(
∑
j∈S

Mj)− (
∑
j∈S′

Mj′)−A−A′∥2F

=
c′

2d

∑
i∈[p]

∑
e=(S,S′)∈Ei

wi
e min

A
rank(A)≤2κ

∥(
∑
j∈S

Mj)− (
∑
j∈S′

Mj′)−A∥2F

(b)

≥ c′′

2d

∑
i∈[p]

∑
e=(S,S′)∈Ei

wi
edϵ

=
c′′

4d

∑
i∈[p]

∑
S∈Hi

∑
e∈Ei s.t. S∈e

wi
edϵ

(c)

≥ c′′ϵ

4

∑
i∈[p]

((
∑
S∈Hi

µ(US ∩ Vi))−
(

k

⌊ϵk⌋

)(
m

⌊ϵk⌋

)
max
S∈Hi

µ(US ∩ Vi))

≥ c′′ϵ

4

∑
i∈[p]

((
∑
S∈Hi

µ(US ∩ Vi))− 20

(
k

⌊ϵk⌋

)(
m

⌊ϵk⌋

)
/

(
m

k

)
)

(d)

≥ c′′ϵ

4
(

3

100
− 20p

(
k

⌊ϵk⌋

)(
m

⌊ϵk⌋

)
/

(
m

k

)
)

(e)

≥ c′′′ϵ .

Finally, Theorem 3.4 follows as a corollary of Lemma B.13.

Proof of Theorem 3.4. By Claim A.9, there are universal c0 > 0 and ϵ0 > 0 such that if 0 < ϵ < ϵ0
and 0 < c < c0 then c

(
m
k

)0.99 ≤
(
m
k

)
/(
(

m
⌊ϵk⌋

)(
k

⌊ϵk⌋
)
). Thus, the theorem follows from Lemma B.13

by letting c > 0 in the construction be small enough.

C PROOF FOR RELU EXPERT SEPARATION, THEOREM 3.6

Let us restate the separation between MoE models with ReLU activation σ(t) = max(0, t) for
convenience.
Theorem C.1 (Benefits of granularity; ReLU activation; restated Theorem 3.6). There are universal
constants C, c > 0 such that the following holds for σ(t) = max(0, t) and either choice of µ =
N(0, Id/d) or µ = Unif[B]. Suppose that d ≥ Ck(logm)2 and that m ≥ Ck, that w ≥ C logm,
that k′w′ = kw, that kw ≤ 0.99d, that m ≥ C ′k, and that(

m′

k′

)
< c

(
m

k

)0.99

.

Then there is a (m, k,w, d)-MoE model f such that for all (m′, k′, w′, d′)-MoE models f ′ we have
Ex∼µ∥f(x)− f ′(x)∥2 > cEx∼µ∥f(x)∥2.

The proof can be broken into three parts:

1. Since the experts that we construct in f will be implicitly linear functions, we first prove a
technical lemma lower-bounding the approximation error of a linear function by a potentially
nonlinear function that depends on a subspace of the input; see Appendix C.1.

2. Next, we provide a probabilistic construction of linear experts M1, . . . ,Mm that are well-
separated, in the sense that for S1, . . . , S10000 with |S1 ∪ S2 ∪ · · · ∪ S10000| ≥ 750k, we
have that f |S1

, . . . , f |S10000
cannot be approximated by one nonlinear expert that depends

on a kw-dimensional subspace of the input; see Appendix C.2.
3. Finally, we combine the ingredients to prove that an MoE with the routing vectors and

experts constructed by the above lemmas is inapproximable by an MoE with many fewer
possible configurations of experts; see Appendix C.3.
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C.1 ERROR OF APPROXIMATING LINEAR FUNCTION WITH NONLINEAR FUNCTION ON
LOWER-DIMENSIONAL SPACE

The first lemma that we prove will lower-bound the error of approximating a linear function Ax on a
large-volume set U , by a function h(Πx), where Π is a projection to a p-dimensional subspace. The
bound is given below, and applies technical elements from the separation for linear experts. Notably,
it uses Lemma B.5 to prove that if U is of large enough volume, then most (d − p)-dimensional
slices of U conditioned on Πx are of large volume and therefore have large covariance in the
(d− p)-dimensional space orthogonal to the image of Π.

The constants in the bounds have not been optimized.
Lemma C.2. There are universal constants C, c > 0 such that the following is true for µ =
N (0, Id/d) or µ = Unif[B]. Let U ⊆ Rd be a measurable set, and let Π ∈ Rd×d be a projection
matrix to a subspace of dimension p ≤ 99d/100, and let h : Rd → Rd be a measurable function,
and let A ∈ Rd×d be a linear transformation. Then,

Ex∼µ|U ∥Ax− h(Πx)∥2 ≥ c

d

∑
i≥C(1+log(1/µ(U)))

σ2
i (AΠ⊥) ,

where Π⊥ ∈ Rd×d is the orthogonal projection to Π.

Proof. Without loss of generality (by rotating), let Π project to the subspace spanned by
ed−p+1, . . . , ed. Let ν be the distribution of (xd−p+1, . . . , xd) for x ∼ µ. For each t ∈ Rp,
define the slices Ut = {x ∈ Rd−p : (x, t) ∈ U} ⊆ Rd−p. Disintegrate µ along the last p coordinates
to get corresponding probability measures µt on Rd−p so that we have

µ(U) =

∫
µt(Ut)dν(x) .

In the case that µ is the Gaussian measure N (0, Id/d), note that each µt is the Gaussian measure
N (0, Id−p/d). In the case the µ is the uniform measure on the unit ball in d dimensions then for
µ = Unif[Bd], then for ∥t∥ ≤ 1 we have µt = Unif[

√
1− ∥t∥2Bp−d].

For any t where µt is defined and µt(Ut) > 0, define the covariance matrix

Σt = Ex∼µt|Ut
[xx⊤]− Ex∼µt|Ut

[x]Ex∼µt|Ut
[x]⊤ ∈ R(d−p)×(d−p).

For any vector v ∈ Rd−p,

Varx∼µt|Ut
[v · x] = Ex∼µt|Ut

[v⊤xx⊤v]− (Ex∼µt|Ut
[v⊤x])2

= v⊤Σtv .

Let ν′ denote the probability measure over Rp that is the law of (xd−p+1, . . . , xd) for x ∼ µ|U .
Notice that almost surely for t ∼ ν′ it holds that µt is defined and µt(Ut) > 0. We have

Ex∼µ|U ∥Ax− h(Πx)∥2 = Ex∼µ|U [E[∥Ax− h(Πx)∥2 | Πx]]

≥ Ex∼µ|U [E[∥Ax− E[Ax | Πx]∥2 | Πx]]

=

d∑
i=1

∫
Varx∼µt|Ut

[

d−p∑
j=1

Ai,jxi]dν
′(t)

=

d∑
i=1

∫
[Ai,1, . . . , Ai,d−p]Σt[Ai,1, . . . , Ai,d−p]

⊤dν′(t)

=

∫
tr(AΠ⊥(Π⊥)⊤A⊤SΣt)dν

′(t) . (C.1)

Let us show how to lower-bound (C.1) separately for the Gaussian case and the ball case. For the
Gaussian measure µ = N (0, Id/d), note that by a Markov bound

Pt∼ν′ [µt(Ut) ≥ µ(U)/2] ≥ 1/2.
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Note that µt = N (0, Id−p/d). Define κ = C(1+ log(1/µ(U)) for a large enough universal constant
C, and use Lemma B.5 to obtain

(C.1) ≥
∫

tr(AΠ⊥(Π⊥)⊤A⊤Σt)1(µt(Ut) ≥ µ(U)/2)dν′(t)

≥ 1

30000d

∫ ∑
i≥κ

σ2
i (AΠ⊥)1(µt(Ut) ≥ µ(U)/2)dν′(t)

≥ 1

60000d

∑
i≥κ

σ2
i (AΠ⊥) .

Note that we did not use p ≤ 99d/100 for the Gaussian case. We use it for the ball case µ = Unif[B],
where the reasoning is otherwise identical. First, note that by a Markov bound and a union bound

Pt∼ν′ [µt(Ut) > µ(U)/2, ∥t∥2 > 999/1000] ≥ 1/10.

This allows us to aply Lemma B.5 as above.

Next, we prove a technical lemma that will be used to show that if A1, . . . , As are sufficiently
high-rank and their kernels span sufficiently distinct subspaces, then there is no low-dimensional
projection Π that contains most of their Frobenius norm. The technical content of the statement is
below.
Lemma C.3. For any A1, . . . , As ∈ Rd×d, and any κ, p ≤ d, and any projection Π ∈ Rd×d to a
p-dimensional subspace ∑

j∈[s]

∑
i>κ

σ2
i (AjΠ

⊥) ≥
∑

i>κ+p

λi(
∑
j∈[s]

A⊤
j Aj)

Proof. Define A ∈ Rsd×d by A =

A1

...
As

. Using the Eckart-Mirsky-Young theorem,

∑
j∈[s]

∑
i>κ

σ2
i (AjΠ

⊥) =
∑
j

min
Vj ,rank(Vj)≤κ

∥AjΠ
⊥ − Vj∥2F

=
∑
j

min
Cj ,Dj∈Rd×κ

∥AjΠ
⊥ − CjD

⊤
j ∥2F

= min
C∈Rsd×κ,D∈Rd×κ

∥AΠ⊥ − CD⊤∥2F

= min
C∈Rsd×κ,D∈Rd×κ

∥A−AΠ− CD⊤∥2F

≥ min
V,rank(V )≤κ+p

∥A− V ∥2F

=
∑

i>κ+p

σ2
i (A)

=
∑

i>κ+p

λi(
∑
j

A⊤
j Aj) .

C.2 CONSTRUCTION OF LINEAR FUNCTIONS DEPENDING ON SEPARATE HIGH-RANK
SUBSPACES

Lemma C.4 (Number of unique elements sampled with replacement). Let p1, . . . , pn ∼ Unif[d],
and let Xn = |{pi : i ∈ [n]}| be the number of unique elements. We have

P[Xn ≤ min(n, d)/12] ≤ exp(−min(n, d)/18) . (C.2)

Additionally, for any 0 < ϵ < 1/2, n ≥ 4d log(1/ϵ), we have

P[Xn ≤ d(1− ϵ)] ≤ exp(−d) . (C.3)
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Proof. First consider the case when n ≥ 4d log(1/ϵ). The argument is a union bound over all bad
events, where below H(α) = (α log(1/α) + (1− α) log(1/(1− α)))/ log 2 is the binary entropy.

P[Xn ≤ d(1− ϵ)] = P[∃S ⊆ [d], |S| = ⌈ϵd⌉ s.t. pi ̸∈ S ∀i ∈ [n]]

≤
∑

S⊆[d],|S|=⌈ϵd⌉

P[pi ̸∈ S for all i ∈ [n]]

≤
(

d

⌈ϵd⌉

)
(1− ϵ)d

≤ 2H(d/⌈ϵd⌉)(1− ϵ)n

= exp(dH(ϵ+ 1/d) log 2− n log(1/(1− ϵ))

= exp(dH(ϵ+ 1/d) log 2− ϵn)

≤ exp(d((ϵ+ 1/d) log(1/(ϵ+ 1/d)) + (1− ϵ+ 1/d)(log(1/(1− ϵ− 1/d))))− ϵn)

≤ exp(d((ϵ+ 1/d) log(1/ϵ) + 0.5)− ϵn) .

So if n ≥ 0.5d+ log(1/ϵ)/ϵ+ 2d log(1/ϵ), then P[Xn ≤ d(1− ϵ)] ≤ exp(−d). Finally, note that
ϵ ≥ 0.9/d without loss of generality, so the second bound (C.3) follows.

Next, we consider the case when we have no guarantee on n. In this case, we know from (C.3) that if
n ≥ 3d ≥ 4d log 2, then P[Xn ≤ d/2] ≤ exp(−d). So we may assume without loss of generality
that n ≤ 3d, and so it suffices to upper-bound

P[Xn ≤ min(n, d)/2] ≤ P[Xn ≤ n/6] .

Define f(p1, . . . , pn) = |{pi : i ∈ [n]}| and note that |f(p1, . . . , pn) −
f(p1, . . . , pi−1, p

′
i, pi+1, . . . , pn)| ≤ 1 almost surely for any i ∈ [n] and p′i ∈ [d]. So by

McDiarmid’s inequality, for any t > 0 we have

exp(−2t2/n) ≥ P[f(p1, . . . , pn) ≤ E[f(p1, . . . , pn)]− t]

= P[f(p1, . . . , pn) ≤ d(1− (1− 1/d)n)− t]

≥ P[f(p1, . . . , pn) ≤ d(1− e−n/d)− t]

≥ P[f(p1, . . . , pn) ≤ n/4− t]

= P[Xn ≤ n/4− t] .

Letting t = n/6, we have P[Xn ≤ n/12] ≤ exp(−n/18).

We will only need a version of this bound in a special case choice of parameters:
Lemma C.5 (Number of elements sampled without replacement, special case). Let p1, . . . , pn ∼
Unif[d], and let Xn = |{pi : i ∈ [n]}|. Then for any t ≤ 0.99d and n ≥ 750t, we have

P[Xn ≤ t · (1 + 2/10000)] ≤ exp(−min(d, n)/18)

Proof. Suppose t ≥ d/15. Then, for n ≥ 50d ≥ 750t, we have

P[Xn ≤ t(1 + 2/10000)] ≤ P[Xn ≤ d(1− 1/100000)] ≤ exp(−d).

Suppose t ≤ d/15. Then, for n ≥ 15t

P[Xn ≤ t(1 + 2/10000)] ≤ P[Xn ≤ min(n, d)/12] ≤ exp(−min(n, d)/18) .

Lemma C.6 (Main construction of matrices inapproximable by small subspaces). There are universal
constants C, c > 0 such that the following holds for any m and any w ≥ C logm, d ≥ Ck logm
such that kw ≤ 0.99d, and probability measure µ and disjoint measurable sets {US ⊆ Rd}

S∈([m]
k ).

There are matrices M1, . . . ,Mm satisfying rank(Mi) ≤ w/2 such that we have

• the following upper bound

Ex∼µ[
∑

S∈([m]
k )

1(x ∈ US)∥
∑
i∈S

Mix∥2] ≤ Ex∼µ[∥x∥2] (C.4)
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• and letting R = 106, for all S1, . . . , SR ∈
(
[m]
k

)
such that |S1 ∪ S2 ∪ . . . SR| ≥ 750k, and

projection Π ∈ Rd×d with rank(Π) ≤ kw, it holds that∑
j∈[R]

∑
i≥kw/10000

σ2
i (
∑
l∈Sj

MlΠ
⊤) ≥ cd . (C.5)

Proof. Define w′ = ⌊w/2⌋. For each i ∈ [m], and j ∈ [w′], let pi,j ∼ Unif[d], and let

Mi =

w′∑
j=1

epi,je
⊤
pi,j

.

By analogous reasoning to the proof of (B.2), we have

EM1,...,Mm [Ex∼µ[
∑

S∈([m]
k )

1(x ∈ US)∥
∑
i∈S

Mix∥2]]

= EM1,...,Mm [Ex∼µ[
∑

S∈([m]
k )

1(x ∈ US)∥
k∑

i=1

Mix∥2]]

≤ EM1,...,Mm
[Ex∼µ[∥

k∑
i=1

Mix∥2]]

= tr(EM1,...,Mm
[(

k∑
i=1

Mi)
⊤(

k∑
i=1

Mi)]Ex∼µ[xx
⊤])

= tr(E{pi,j}i,j
[(

k∑
i=1

w′∑
j=1

epi,j
e⊤pi,j

)⊤(

k∑
i=1

w′∑
j=1

epi,j
e⊤pi,j

)]Ex∼µ[xx
⊤])

= tr((kw′Id/d+ kw′(kw′ − 1)Id/d
2)Ex∼µ[xx

⊤])

= (kw′/d)tr((Id + (kw′ − 1)Id/d)Ex∼µ[xx
⊤])

= (kw′/d)(1 + (kw′ − 1)/d)Ex∼µ∥x∥2

≤ (2kw′/d)Ex∼µ∥x∥2

≤ (kw/d)Ex∼µ∥x∥2 .

Consider now S1, . . . , SR ∈
(
[m]
k

)
. Let S̃ = S1 ∪ · · · ∪ SR and suppose that |S̃| ≥ 750k. For any

projection Π ∈ Rd×d to a (≤ kw)-dimensional subspace we have by (a) Lemma C.3,∑
j∈[R]

∑
i≥kw/10000

σ2
i (
∑
l∈Sj

MlΠ
⊤)

(a)

≥
∑

i≥kw(1+1/10000)

λi(
∑
j∈[R]

(
∑
l∈Sj

Ml)
⊤(

∑
l∈Sj

Ml)) (C.6)

≥
∑

i≥kw(1+1/10000)

λi(diag(1(1 ∈ S̃), 1(2 ∈ S̃), . . . 1(d ∈ S̃))

(C.7)

≥ |{pi,j : i ∈ S̃, j ∈ [w]}| − kw(1 + 1/10000) . (C.8)

By Lemma C.5, we know that

P[|{pi,j : i ∈ S̃, j ∈ [w]}| − kw(1 + 1/10000) ≤ kw/10000] ≤ exp(−min(750kw, d)/18) ,

which when combined with equations (C.6) through (C.8) and taking a union bound over all ≤
(
[m]
k

)R
choices of sets S1, . . . , SR, and taking a large enough constant C, implies the second part of the
lemma. The result as reported in the lemma follows by scaling the matrices by

√
d/kw.
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C.3 CONSTRUCTION OF MOE MODEL FOR RELU SEPARATION

The construction of the (m, k,w, d)-MoE model with σ(t) = max(0, t) that we will use to show the
separation is the following. We suppose that d ≥ Ck(logm)2 and w ≥ C logm for a large enough
constant C, and that kw ≤ 0.99d so that we can invoke Lemma A.7 and Lemma C.6 to construct the
routing vectors and functions on the different pieces respectively. We consider either the Gaussian
measure µ = N (0, Id/d) or the uniform measure on the unit ball µ = Unif[B].

Construction of routing vectors First, pick routing vectors r1, . . . , rm ∈ Rd as guaranteed by
Lemma A.7, yielding disjoint measurable regions {US ⊆ Rd}

S∈([m]
k ) on which the top-k experts are

active, satisfying

|{S : µ(US) >
1

2
(
m
k

)}| ≥ 1

9

(
m

k

)
. (C.9)

Construction of ReLU functions Next, even though we have access to the ReLU activation,
we will construct a piecewise linear function that is linear on each section of the network.5 Let
M1, . . . ,Mm ∈ Rd×d be matrices of rank ≤ ⌊w/2⌋ satisfying the conditions (C.4) and (C.5), which
are guaranteed by Lemma C.6. We define the mixture-of-experts model

f(x) =
∑
i∈S

Mix for any
(
[m]

k

)
and x ∈ US . (C.10)

Notice that this can be expressed as a (m, k,w, d)-MoE model with ReLU activation σ(t) =
max(0, t), since writing Mi = AiB

⊤
i for Ai, Bi ∈ Rd×⌊w/2⌋, we have

Mix = AiB
⊤
i x = Aiσ(B

⊤
i x)−Aiσ(−B⊤

i x) = [Ai,−Ai]σ([Bi,−Bi]
⊤x) .

First, we prove that the constructed (m, k,w, d)-MoE f has upper-bounded L2 norm with respect to
the distribution µ.
Lemma C.7 (Upper-bound on L2 norm of MoE model). The MoE f in (C.10) satisfies

Ex∼µ∥f(x)∥2 ≤ 1 .

Proof. The proof is identical to the proof of Lemma B.11, but the guarantee from (C.4) rather than
(B.2).

Next, we show that f is inapproximable by MoEs with too few regions. For convenience, we define a
general-routing MoE with width bounded below.
Definition C.8. A function g is a general-routing width-s MoE with p regions if there are functions
h1, . . . , hp : Rs → Rd, projection matrices Π1, . . . ,Πd : Rd×s and measurable sets V1, . . . , Vp

partitioning Rd such that

g(x) = hi(Πix) if x ∈ Vi .

The above definition is for convenience, since it abstracts away some of the structure of MoEs
that we will not use to prove our separation (in particular, the linearity of the routing scheme will
not be used and the ReLU activation will not be used). Indeed, note that under our notation any
(m′, k′, w′, d)-MoE (with linear routing functions) and ReLU activation function σ(t) = max(0, t)

is a
(
m′

k′

)
-region general-routing width-(k′w′) MoE.

Lemma C.9. There are universal constants C, c′ > 0 such that for the (m, k,w, d)-MoE f defined
in (C.10) with kw ≤ 0.99d, and any general-routing width-kw MoE g with

p ≤ c′
(
m

k

)
/(

(
750k

⌈k⌉

)(
m

⌊0.0001k⌋

)
)

regions, we have

Ex∼µ∥f(x)− g(x)∥2 ≥ c′ .
5The main difficulty in proving this separation, over proving the separation with σ(t) = t, is to show that

even ReLU MoE models cannot approximate this MoE model.
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Proof. Define H = {(S, i) ∈
(
[m]
k

)
× [p] : µ(US ∩ Vi) ∈ [1/(4

(
m
k

)
p), 20/

(
m
k

)
}. Next, for any

i ∈ [p], define Hi = {S : (S, i) ∈ H}. By the same reasoning as in (B.8), this satisfies the following
property, which will be useful later:∑

i∈[p]

∑
S∈Hi

µ(US ∩ Vi) ≥ 3/100 . (C.11)

Let g be a p-region, width-w MoE, given by functions h1, . . . , hp : Rd → Rd, projection matri-
ces Π1, . . . ,Πd : Rd×d of rank at most w, and measurable sets V1, . . . , Vp partitioning Rd, as in
Definition C.8.

The error in approximating f by g can be lower-bounded by (a) Lemma C.2, for universal constants
C ′, c′′ > 0

Ex∼µ∥f(x)− g(x)∥2 =
∑
i∈[p]

∑
S∈([m]

k )

µ(Vi ∩ US)Ex∼µ|Vi∩US
[∥(

∑
j∈S

Mjx)− hi(Πix)∥2]

≥
∑

(S,i)∈H

µ(Vi ∩ US)Ex∼µ|Vi∩US
[∥(

∑
j∈S

Mjx)− hi(Πix)∥2]

(a)

≥ c′′

d

∑
(S,i)∈H

µ(Vi ∩ US)
∑

l≥C′(1+log(1/µ(Vi∩US)))

σ2
l ((

∑
j∈S

Mj)Π
⊥
i )

≥ c′′

d

∑
(S,i)∈H

µ(Vi ∩ US)
∑

l≥C′(1+log(1/µ(Vi∩US)))

σ2
l ((

∑
j∈S

Mj)Π
⊥
i )

≥ c′′

d

∑
(S,i)∈H

µ(Vi ∩ US)
∑

l≥C′′k logm

σ2
l ((

∑
j∈S

Mj)Π
⊥
i ) , (C.12)

where we use that p ≤ mO(k) in the last line.

Next, let R = 106 as in Lemma C.6 and define the set of hyperedges Ei = {(S1, . . . , SR) ∈ HR
i :

|S1 ∪ S2 ∪ · · · ∪ SR| ≥ 750k}, and for any i ∈ [p] consider a maximal fractional matching of the
graph with vertex set Hi and hyper-edge set Ei, which is a set of weights wi

e ≥ 0 for all e ∈ Ei,
satisfying that for each S ∈ Hi, we have∑

e∈Ei s.t. S∈e

wi
e ≤ µ(US ∩ Vi) .

We have the following claim

Claim C.10. Let S1, . . . , Sl ∈ Hi be distinct. If l >
(
750k
k

)(
m

⌊0.0001k⌋
)
, then there are j1, . . . , jR

such that (Sj1 , . . . , SjR) ∈ Ei.

Proof. We we will construct the hyperedge greedily. Denoting Ts = ∪a≤sSia . For con-
venience, let T0 = ∅. Note that for any s < R, if |Ts| ≥ 750k we are done, because
(Sj1 , . . . , Sjs , S1, . . . , S1) ∈ Hi. Otherwise, note that |{S ∈ Hi : |S ∩ Ts| ≥ 0.9999k}| ≤(

750k
⌈0.9999k⌉

)(
m

⌊0.0001k⌋
)
≤

(
750k
k

)(
m

⌊0.0001k⌋
)
, so by the pigeonhole principle there is js+1 such that

|Ts+1| ≥ 0.0001k + |Ts|. So in the end we have TR ≥ 0.0001Rk = 1000k ≥ 750k.

By the above claim, any fractional matching that maximizes
∑

e w
i
e must satisfy

|{S ∈ Hi :
∑

e∈Ei s.t. S∈e

wi
e < µ(US ∩ Vi)}| ≤

(
750k

k

)(
m

⌊0.0001k⌋

)
,

since otherwise there is a non-saturated hyperedge by Claim C.10, and the matching can be greedily
improved. It follows that by (a) using that kw/10000 ≥ C ′′k logm for large enough constant C > 0,
and (b) using Lemma C.6,

(C.12) ≥ c′′

d

∑
i∈[p]

∑
e∈Ei

wi
e

∑
S∈e

∑
l≥C′′k logm

σ2
l ((

∑
j∈S

Mj)Π
⊥
i )
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(a)

≥ c′′

d

∑
i∈[p]

∑
e∈Ei

wi
e

∑
S∈e

∑
l≥kw/10000

σ2
l ((

∑
j∈S

Mj)Π
⊥
i )

(b)

≥ c′′

d

∑
i∈[p]

∑
e∈Ei

wi
ed

≥ c′′d

10000d

∑
i∈[p]

∑
e∈Ei

∑
S∈e

wi
e

≥ c′′

10000

∑
i∈[p]

((
∑
S∈Hi

µ(US ∩ Vi))−
(
750k

k

)(
m

⌊0.0001k⌋

)
· 20(

m
k

) )
≥ c′′

10000
(3/100− p ·

(
750k

k

)(
m

⌊0.0001k⌋

)
· 20(

m
k

) ) .
The lemma follows.

We also need the following technical bounds showing that the conditions for Lemma C.9 occur under
the premise of Theorem 3.6.
Claim C.11. There is a universal constant C0 > 0 such that for any m ≥ C0k we have

C0

(
m

k

)0.0005

≥
(

m

⌊0.0001k⌋

)
.

Proof. Let H(p) denote the binary entropy. We use standard inequalities between the binomial
coefficients and the entropy:

log2

(
m

⌊0.0001k⌋

)
≤ mH(0.0001k/m)

≤ 10−4k(log2(10
4m/k) + 1/ ln(2)− log2(10

−4))

≤ 10−4k(log2(m/k) + 30)

≤ 2 · 10−4k log2(m/k)

≤ 2 · 10−4(k log2(m/k)− log2(m+ 1))

≤ 4 · 10−4(mH(k/m)− log2(m+ 1))

≤
(
m

k

)0.0004

.

Claim C.12. There is a universal constant C0 such that if m ≥ C0k, then

C0

(
m

k

)0.0005

≥
(
750k

k

)
.

Proof. First, it is clear that in the case k ≤ 1000 we are done, so we may assume k ≥ 1000. Let
H(p) denote the binary entropy. We use standard inequalities between the binomial coefficients
and the binary entropy. Letting C0 > 0 be large enough that 0.0002 log2(m/k) ≥ 1, and that
k log2(m/k) ≥ 2 log(m+ 1), we have

log2

(
k

750k

)
≤ k

≤ 0.0002k log2(m/k)

≤ 0.0004(k log2(m/k)− log2(m+ 1))

≤ 0.0004(mH(k/m)− log2(m))

≤
(
m

k

)0.0004

.
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Finally, Theorem 3.6 follows as a corollary of Lemma C.9 and the above claims.

Proof of Theorem 3.4. By Claims C.11 and C.12, there are universal c0 > 0 and ϵ0 > 0 such that if
0 < ϵ < ϵ0 and 0 < c < c0 then c

(
m
k

)0.99 ≤
(
m
k

)
/(
(
750k
k

)(
m

⌊0.0001k⌋
)
). Thus, the theorem follows

from Lemma C.9 by letting c > 0 in the construction be small enough.

D EXPERIMENTAL DETAILS

Experiments were run on an A40 48GB GPU. The experiments in Figure 2 ran in about 10 GPU
hours. The experiments in Figure 3 ran in about 8 GPU hours.

Experimental details for Figures 2 and 3 In both of these figures, the input and output dimension
is d = 256. The teacher model has kw = 256 active neurons, and the student model has k′w′ = 320
active neurons. This extra overparametrization of 25% active parameters, respectively, helps with
optimization when the parameters in the student models are matched they sometimes cannot match
the teacher models with the same architecture. For each student-teacher setup we try two learning
rates in {0.01,0.001} with cosine learning rate decay, batch size 2048, and about 26M data points.
For each data point, we report the results with the learning rate in {0.01,0.001} that leads to the best
fit. In Figure 3, we add a trainable bias parameter to the student model’s routing vectors, which is not
present in Figure 2.

Replication of Figures 2 and 3 for kw = 4d active neurons We re-run the experiments in
Figures 2 and 3 for d = 256 and a teacher model with kw = 1024 active neurons, so as to be
in the practical regime kw = 4d. The student model has k′w′ = 1280 neurons, which is a 25%
overparametrization to aid with optimization. Results are in Figures 4 and 5 below.All other details
of the experiments are the same, except that we train for 500 epochs in Figure 5 to aid optimization.
The results in this hyperparameter regime are qualitatively the same as for kw = d active neurons.
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Figure 4: Each data point is the test loss of a
teacher MoE trained to learn a student MoE.
Here kw = 1024 and d = 256.
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Figure 5: We fix a 16-expert 8-active teacher model,
and train student models with varying granularities and
total number of parameters. Note that even with up to
16 times as many total parameters, student models do
not fit the teacher unless their granularity is at least 8.
Here kw = 1024 and d = 256.

Extra compute and unreported experiments Manually tuning the hyperparameters and debugging
the code took under 3 GPU hours. We also ran an experiment analogous to Figure 3, which also took
about 8 GPU hours, but without a trainable bias term in the routing vectors. There, we had trouble
optimizing the student model even at granularity 8, which motivated adding the bias term to allow
models such as 256e8a to ignore all but 16 of their experts, and therefore fit a 16e8a teacher model.
Finally, we also ran an experiment analogous to Figure 2 with 12.5% student overparametrization.
This took 3 hours to run and gives the same results as with 25% student overparametrization and is
available in the Github but we do not report it here because it is redundant.
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Under review as a conference paper at ICLR 2026

E LLM USAGE

LLM tools were used to with writing clarity and wording, as well as for coding assistance. However,
they were used neither for research ideation nor for proofs.
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