scipy.spatial.transform: Differentiable
Framework-Agnostic 3D Transformations in Python

Martin Schuck Alexander von Rohr
Learning Systems and Robotics Lab Learning Systems and Robotics Lab
Technical University of Munich Technical University of Munich
Angela P. Schoellig

Learning Systems and Robotics Lab
Technical University of Munich

Abstract

Three-dimensional rigid-body transforms, i.e. rotations and translations, are cen-
tral to modern differentiable machine learning pipelines in robotics, vision, and
simulation. However, numerically robust and mathematically correct implementa-
tions, particularly on SO(3), are error-prone due to issues such as axis conventions,
normalizations, composition consistency and subtle errors that only appear in
edge cases. SciPy’s spatial.transform module is a rigorously tested Python
implementation. However, it historically only supported NumPy, limiting adoption
in GPU-accelerated and autodiff-based workflows. We present a complete over-
haul of SciPy’s spatial.transform functionality that makes it compatible with
any array library implementing the Python array API, including JAX, PyTorch,
and CuPy. The revised implementation preserves the established SciPy interface
while enabling GPU/TPU execution, JIT compilation, vectorized batching, and
differentiation via native autodiff of the chosen backend. We demonstrate how this
foundation supports differentiable scientific computing through two case studies:
(i) scalability of 3D transforms and rotations and (ii) a JAX drone simulation that
leverages SciPy’s Rotation for accurate integration of rotational dynamics. Our
contributions have been merged into SciPy main and will ship in the next release,
providing a framework-agnostic, production-grade basis for 3D spatial math in
differentiable systems and ML.

1 Introduction

Rigid-body rotations and translations underpin modern learning systems in robotics, vision, graphics,
state estimation, and control. Their correct use requires precise numerics on Lie groups and algebras,
in particular SO(3) and SE(3), to ensure stability of composition, interpolation, and differentiation.
Foundational treatments with emphasis on both the geometric structure and numerically stable
parameterizations are well established in mathematics, robotics, and estimation texts [[L, 13} 4} 5].

In practice, practitioners either reimplement 3D transform routines to integrate with autodiff and
accelerators, which can lead to subtle bugs around singularities, small angles, and representation
conventions, or use framework-specific packages. JAX [2] offers a native SciPy [13] reimplementa-
tion, which is planning to drop support for 3D transformations in a future release|'| while PyTorch’s
[7] ecosystem relies on third-party packages such as Kornia [[10] and PyTorch3D [9] to provide

'See JAX Enhancement Proposal (JEP) 18137 at https://docs.jax.dev/en/latest/jep/
18137-numpy-scipy-scope.html#scipy-spatial

1st Workshop on Differentiable Systems and Scientific Machine Learning @ EurIPS 2025

https://docs.jax.dev/en/latest/jep/18137-numpy-scipy-scope.html#scipy-spatial
https://docs.jax.dev/en/latest/jep/18137-numpy-scipy-scope.html#scipy-spatial

Old architecture New architecture
a)\ 7 ” 2)\
% e N oK O %
Cutn .~
Rotation 2
|
_ No V V via autodiff
f N gt select_backend O)
7 N & /
[@ Cython) [Yr array APL J
|z 7 A\ 74

Figure 1: Overview over the changed architecture using Rotation as example. Instead of a pure
Cython implementation which is only compatible with NumPy, the classes are now pure Python. Each
method delegates computations to a backend that is selected depending on the array type. NumPy
arrays are passed to the specialized Cython backend, whereas other array API frameworks use the
new, generic backend. This enables advanced capabilities such as differentiation through transforms.

geometry utilities. The fragmentation into framework-specific packages has so far prevented the
development of a unified, portable solution. SciPy’s spatial.transform module has provided rig-
orously tested transformation algorithms in 3D, yet it historically targeted NumPy only and supported
at most scalar or 1D stacks of rotations, precluding general broadcasting, autodiff, and accelerator
execution.

Orthogonally, SciPy is adopting the Python array API [8]], a standardized subset of NumPy-like
semantics defined by the Python Data API Consortium-| The array API enables library authors to
write backend-agnostic numerical code that runs, unmodified, on compliant array implementations
such as NumPy, JAX, PyTorch, and CuPy [6l], thereby inheriting those backends’ accelerators, JIT
compilation, and autodiff.

This paper outlines the overhaul of SciPy’s spatial.transform module to conform to the array
API and showcases how the new capabilities can be leveraged for differentiable simulation and
ML. The revised implementation is framework-agnostic: it executes on CPUs and GPUs/TPUs,
is compatible with native autodiff and JIT in the selected backend, and offers numerically robust
SO(3) and SE(3) primitives with consistent behavior across libraries. Beyond prior functionality,
we add efficient broadcasting across arbitrary leading dimensions, enabling workloads with multiple
batch axes common in machine learning. Together, these changes provide a stable, rigorously tested
foundation for differentiable 3D spatial computations without reimplementation burden. The overhaul
has been merged into SciPy’s main branch and will be included in the next release, aligning with
the broader effort to reduce parallel reimplementations (e.g., in jax.scipy) as SciPy becomes fully
array API compatible.

2 Framework-Agnostic Rotations and Translations

Previous Design and Limitations The original spatial.transform implementation was tightly
coupled to NumPy and entirely written in Cython for improved performance. It assumed CPU
execution, offered limited broadcasting (only scalars or single-axis stacks), and was incompatible
with JIT compilation or automatic differentiation. As a result, downstream users reimplemented core
SO(3)/SE(3) functionality per framework, duplicating effort and risking subtle numerical errors.

Revised Architecture The Cython implementation offers speed advantages over a native Python
implementation with NumPy, especially for common use cases such as single rotations or transforms.
However, it cannot support arbitrary array API frameworks. To maintain the speedups for NumPy
while still supporting other frameworks, we redesigned the architecture of the spatial.transform
module. The established object-oriented interface is preserved, but methods now delegate to functional

https://data-apis.org/array-api

https://data-apis.org/array-api

Rotation multiply Rigid transform multiply

101 —+- numpy cpu
—4— torch cpu 101
—4— torch gpu

1074 3 jax cpu 102
—+ jax gpu

-

—$— cupy gpu _ 102

104 '—"//‘V/ e 2

kf*“' 10

10° 10t 102 10° 10* 10° 108 107 10° 10t 102 10° 10* 10° 10¢
Number of samples Number of samples

—4— numpy cpu
—4— torch cpu

Time (seconds)
s
Time (seconds)

—4— torch gpu
—4— jax cpu
—+ jaxgpu
—+— cupy gpu

Rotation apply Rigid transform apply
—3$— numpy cpu 10t —4— numpy cpu
107 3 torch cpu —4— torch cpu
—4— torch gpu N —4— torch gpu
3 10724 —3— jax cpu 3 2073 3 jaxcpu
S —3— jax gpu s —4— jax gpu
81071 —3— cupy gpu $1077 3~ cupy gpu
o o
£ 10 — E—— £ 1074
— -
= =
10-° 10 ://

10° 10t 102 10° 104 10° 10° 107 10° 10t 102 10° 104 10° 10° 107
Number of samples Number of samples

Figure 2: Computation time versus number of samples N for the multiply and apply operations
of Rotation and RigidTransform across array API backends. JAX timings are evaluated after
JIT compilation. GPU backends incur a fixed overhead at small NV but achieve higher asymptotic
throughput for large N. Notably, JAX often performs on par or better than the custom Cython
backend for numpy.

backends selected by the array namespace of their inputs. Fig. [T] provides an overview over the
revised architecture. NumPy arrays are processed via the Cython backend, whereas other frameworks
use a new reimplementation of rotations and rigid transforms that is fully compatible with the
Python array API and thus works for inputs from any frameworks. Each functionality has been
rewritten in framework-agnostic, non-branching code, enabling execution on CPUs, GPUs, and TPUs;
compatibility with native autodiff and JIT of the chosen framework; and consistent semantics for
dtypes, devices, and promotion rules.

Data Model and Backends Rotations are represented canonically as unit quaternions, rigid trans-
forms as a homogeneous transformation matrix. All constructors and operations support broadcasting
across arbitrary leading dimensions, allowing multiple batch axes common in ML workloads without
specialized code paths. Third-party arrays that implement the array API are supported out of the box.
Advanced users can register custom backends to override operations with optimized versions that are
not possible under the limitations of the array API while continuing to use the SciPy interface. These
backend are then automatically selected at runtime depending on the array type. This design provides
a single, rigorously tested foundation for accurate SO(3)/SE(3) computations across frameworks,
eliminating the need for reimplementations.

3 Case Studies

In this section, we showcase the capabilities of the new framework-agnostic implementations. First,
we evaluate the performance of different frameworks on standard tasks such as rotations and trans-
forms. Then, we demonstrate how the new Rotation class can be used to yield correct analytical
gradients for the rotational dynamics using a newly developed differentiable drone simulator written
in JAX.

3.1 Performance per Framework

We measure throughput for two core operations in the new implementation as a function of the
number of rotations or transforms N. The microbenchmarks cover composition and application to 3D
points. We evaluate NumPy, PyTorch (CPU and CUDA), JAX (CPU and CUDA), and CuPy. The
results can be seen in Fig. |Z[For small N, CPU backends are faster due to lower overhead timings.
GPU backends underperform at small batch sizes, then improve as N increases. JAX with JIT
compilation attains the highest throughput across the tested workloads; the compiler eliminates array

N o »v R W =

Figure 3: Several drone trajectories optimized with fully differentiable dynamics and drone con-
trollers leveraging scipy.spatial.transform.Rotation. Optimization progress from left to
right, reference positions in green. The visualization is based on MuJoCo [12].

API dispatch overhead and fuses kernels. For large IV, all GPU backends scale favorably and surpass
their CPU counterparts. The crossover depends on the operation and hardware but consistently occurs
at sufficiently large batch sizes. NumPy with the Cython-backed SciPy path remains competitive for
small N and single transforms, reflecting the optimization targets of the legacy implementation.

3.2 Differentiable Drone Simulation

We integrate the new Rotation primitives into a quadrotor simulator to model rigid-body rotational
dynamics and differentiate through the simulation. Let g be the quaternion describing the current
attitude of the drone, w;, € R? the angular velocity in the body frame, J the inertia matrix and
7, € R3 the applied control torques in the body frame. The rotational dynamics are then

Gy =J 7 (n —wy x (Jwp)), G = 5@ qu,), M

with the pure-w quaternion q,,, = [ws,wy,w;,0]. We integrate these dynamics using the group
exponential, which preserves unit quaternions by construction:

import os

os.environ["SCIPY_ARRAY_API"] = "1" # Enable SciPy's array API features
from jax import Array

from scipy.spatial.transform import Rotation as R

def integrate_ang_vel(rot: R, omega: Array, dt: float) -> R:
return rot * R.from_rotvec(omega * dt)

Here, the exponential mapping is implemented via Rotation.from_rotvec and composition uses
Rotation multiplication. Because the entire update is expressed with array API operations, autodiff
tracks gradients through integration steps in JAX and PyTorch without custom adjoints.

We use this differentiable simulator to optimize trajectories for imitation learning in drone flight.
Example trajectories can be seen in Fig.[3] Gradient-based trajectory optimization adjusts control
sequences to minimize a task loss to achieve time optimal flight [11]], backpropagating through
the rotational dynamics integrated with Rotation. This yields optimized trajectories that can, for
example, be used as task-aligned supervision signals for policy learning.

4 Conclusion

We overhauled SciPy’s spatial.transform to be array API compliant and framework-agnostic
while preserving its API, delivering rigorously tested SO(3)/SE(3) primitives that run with NumPy,
JAX, PyTorch, CuPy, and others. The new design enables GPU/TPU execution, JIT compatibility,
native autodiff, and efficient broadcasting, removing the need for individual, framework-specific reim-
plementations. Case studies on performance scaling and differentiable drone dynamics demonstrate
portability and correctness across devices and frameworks. We invite researchers to incorporate this
new capability in their research on differentiable systems whenever they require gradients of rigid
transforms or rotations. The implementation is merged and will ship in the next SciPy release.

Acknowledgments and Disclosure of Funding

We thank Lucas Colley, Guido Imperiale and Scott Shambaugh for their input and thorough review
of the code. This work was supported by the Robotics Institute Germany under BMFTR grant
16MEO0997K, and by the Humboldt Professorship for Robotics and Artificial Intelligence.

References
[1] T. D. Barfoot. State Estimation for Robotics. Cambridge University Press, 2017.

[2] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018.

[3] G. Chirikjian, A. Kyatkin, and A. Buckingham. Engineering applications of noncommutative
harmonic analysis: With emphasis on rotation and motion groups. Applied Mechanics Reviews,
54(6):B97-B98, 11 2001.

[4] J. B. Kuipers. Quaternions and rotation sequences: A primer with applications to orbits,
aerospace, and virtual reality. Princeton Univ. Press, Princeton, NJ, 1999.

[5] R. M. Murray, S. S. Sastry, and L. Zexiang. A Mathematical Introduction to Robotic Manipula-
tion. CRC Press, Inc., USA, 1st edition, 1994.

[6] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis. Cupy: A numpy-compatible li-
brary for nvidia gpu calculations. In Proceedings of Workshop on Machine Learning Systems
(LearningSys) in The Thirty-first Annual Conference on Neural Information Processing Systems
(NIPS), 2017.

[7] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024-8035. Curran Associates, Inc., 2019.

[8] Python Data API Consortium. Python array api standard, 2023. Version 2023.12.

[9] N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-Y. Lo, J. Johnson, and G. Gkioxari.
Accelerating 3d deep learning with pytorch3d. arXiv:2007.08501, 2020.

[10] E.Riba, D. Mishkin, D. Ponsa, E. Rublee, and G. Bradski. Kornia: an open source differentiable
computer vision library for pytorch. In Winter Conference on Applications of Computer Vision,
2020.

[11] A.Romero, S. Sun, P. Foehn, and D. Scaramuzza. Model predictive contouring control for
time-optimal quadrotor flight. IEEE Transactions on Robotics, 38(6):3340-3356, 2022.

[12] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In 2072
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026-5033, 2012.

[13] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, I. Polat, Y. Feng,
E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,
C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261-272, 2020.

	Introduction
	Framework-Agnostic Rotations and Translations
	Case Studies
	Performance per Framework
	Differentiable Drone Simulation

	Conclusion

