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Abstract

Harnessing transformer-based models, visual
tracking has made substantial strides. However,
the sluggish performance of current trackers limits
their practicality on devices with constrained com-
putational capabilities, especially for real-time
unmanned aerial vehicle (UAV) tracking. Ad-
dressing this challenge, we introduce AVTrack,
an adaptive computation framework tailored to se-
lectively activate transformer blocks for real-time
UAV tracking in this work. Our novel Activa-
tion Module (AM) dynamically optimizes ViT
architecture, selectively engaging relevant com-
ponents and enhancing inference efficiency with-
out compromising much tracking performance.
Moreover, we bolster the effectiveness of ViTs,
particularly in addressing challenges arising from
extreme changes in viewing angles commonly
encountered in UAV tracking, by learning view-
invariant representations through mutual infor-
mation maximization. Extensive experiments on
five tracking benchmarks affirm the effectiveness
and versatility of our approach, positioning it
as a state-of-the-art solution in visual tracking.
Code is released at: https://github.com/
wuyou3474/AVTrack.

1. Introduction

As unmanned aerial vehicles (UAVs) continue to evolve and
diversify in their applications, the field of UAV tracking
has become increasingly critical. UAV tracking involves
assessing and predicting the positions of arbitrary targets
within continuous aerial imagery, and presents unique chal-
lenges, including handling extreme view angle, mitigating
motion blur, and overcoming severe occlusion. In addition,
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Figure 1. Compared with state-of-the-art UAV tracking algorithms
on VisDrone2018. Our AVTrack-DeiT sets a new record with
0.860 precision and still runs efficiently at approximately 220 FPS.

the efficiency of UAV tracking is paramount, given the lim-
ited battery capacity and computing resources inherent to
UAVs (Li et al., 2023; Wang et al., 2023; Ma et al., 2023;
Liu et al., 2022a; Li et al., 2020b). Researchers and prac-
titioners are actively exploring innovative approaches to
refine tracking algorithms, accuracy, and efficiency to meet
the unique demands of UAV applications.

Although discriminative correlation filters (DCF)-based
trackers dominate the filed of UAV tracking for their high
efficiency, they hardly match deep learning (DL)-based
methods in tracking precision. Especially notable is the
growing trend in the DL-based methods towards the adop-
tion of single-stream architectures, seamlessly integrating
feature extraction and fusion through pre-trained Vision
Transformer (ViT) backbone networks. The success of
recent approaches like OSTRack (Ye et al., 2022a), Sim-
Track (Chen et al., 2022), Mixformer (Cui et al., 2022), and
DropMAE (Wu et al., 2023) exemplifies the effectiveness
of this paradigm shift. Inspired by this, Aba-VTrack (Li
et al., 2023) delivers an lightweight DL-based tracker based
on this framework with an adaptive and background-aware
token computation method to reduce inference time, and
shows remarkable precision and speed for real-time UAV
tracking. Nonetheless, the utilization of a variable number
of tokens in this approach leads to a significant time cost,
primarily arising from unstructured access operations.
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In this study, we also adopt a single-stream architecture
driven by pre-trained transformer backbone networks. How-
ever, our emphasis lies in improving the efficiency of ViTs
through more structured methods. To this end, we intro-
duce an activation module into each transformer block. The
output of this module is an activation probability, which
determines if a transformer block should be activated for a
certain given input. As the ViT is adaptively trimmed by
blocks, time-consuming unstructured access operations are
avoided in our approach. The rationale behind is grounded
in the recognition that semantic features or relations do not
uniformly impact the tracking task across all abstraction lev-
els. Instead, this impact varies based on the characteristics
of the target and the scene it occupies. For example, when a
target moves against a monochromatic background, effec-
tive tracking can be achieved based on the color contrast
between the target and the background, owing to the simplic-
ity of the scene. In such cases, this straightforward feature
is often sufficient. However, tracking tasks become more
intricate when the target navigates through a cluttered en-
vironment. In cluttered scenarios, capturing and analyzing
sufficient semantic features and relations become crucial for
achieving effective tracking. This highlights the dynamic
nature of tracking demands, intricately tied to the specific
characteristics of the scene and the target being tracked.
In our implementation, the activation module is a linear
layer followed by a nonlinear activation function, which
takes only a slice of all tokens (representing both the target
template and the search image) as input in consideration
of efficiency. By tailoring the architecture of ViTs to the
specific demands of a tracking task, our approach holds
the potential to accelerate the inference process for visual
tracking.

Additionally, to enhance the effectiveness of ViTs for UAV
tracking, we introduce a novel approach to learn view-
invariant feature representations. This is achieved by maxi-
mizing the mutual information between the backbone fea-
tures extracted from two different views of the target. No-
tably, to the best of our knowledge, this perspective on
feature learning has not been extensively explored in the
context of UAV tracking. Mutual information is a measure
that quantifies the dependence or relationship between two
variables (Steuer et al., 2002). Mutual information maxi-
mization refers to the process of enhancing the mutual in-
formation between different components or variables within
a system, which has found wide applications in various
computer vision tasks (Liu et al., 2022b; Yang et al., 2022;
R.D. & et al.,, 2019). By maximizing mutual information of
two different views of the target, we aim to ensure that the
learned representations preserve essential information about
the target regardless of changes in viewpoint. We refer to so
obtained representations as view-invariant representations.
We believe models trained with view-invariant representa-

tions tend to generalize better across diverse viewing con-
ditions, making them more robust in real-world scenarios
where changes in viewpoint are common. The advantages
of such view-invariant representations become especially
pronounced in the context of UAV tracking, where the chal-
lenges of extreme changes in viewing angles are prevalent.
Furthermore, since the template image and the target patch
in the search image represent two different views of the same
target, our method can be seamlessly integrated into exist-
ing tracking frameworks with the incorporation of just an
additional loss. We call this proposed adaptive computation
framework AVTrack. Extensive experiments substantiate
the effectiveness, efficiency and generality of our method
and demonstrate that our AVTrack achieves state-of-the-art
real-time performance. As shown in Fig. 1, our method sets
a new record with a precision of 0.860 and runs efficiently at
around 220 frames per second (FPS) on the VisDrone2018.
Our primary contributions can be summarized as follows:

* In view of that the tracking process is more efficient if
it operates as a dynamic and context-sensitive mecha-
nism, we propose the Activation Module to adaptively
activate transformer blocks for real-time UAV tracking
based on ViTs.

* We propose to learn view-invariant feature representa-
tions by maximizing the mutual information between
the backbone features of two different views of the tar-
get. This approach results in more effective and infor-
mative feature representations, particularly addressing
challenges arising from changes in viewing angles.

* We introduce AVTrack, a family of efficient trackers
based on these components, which integrates seam-
lessly with other ViT-based trackers. AVTrack demon-
strates promising performance while maintaining ex-
tremely fast tracking speeds. Empirical evaluations
show that AVTrack achieves state-of-the-art real-time
performance.

2. Related Works
2.1. Visual Tracking

There are two main types of modern visual trackers: DCF-
based and DL-based trackers (Zhang et al., 2022b; Li et al.,
2020a; 2021a;b; Zhong et al., 2022; Liu et al., 2022a). DCF-
based trackers are known for their high efficiency on CPUs.
However, they face challenges in maintaining robustness in
challenging conditions due to limited feature representation
capabilities. Lightweight DL-based trackers, like those in
(Caoetal., 2021; 2022), show advancements in tracking pre-
cision and robustness for UAV tracking, but their efficiency
lags behind DCF-based trackers considerably. Although
model compression techniques, as seen in (Wang et al.,
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2022; Wu et al., 2022; Zhong et al., 2023), were utilized
to enhance efficiency, these trackers still face challenges
associated with unsatisfactory tracking precision. Vision
Transformers (ViTs) are becoming prominent for stream-
lining and unifying frameworks in generic visual tracking,
as evident in studies like (Xie et al., 2021; Cui et al., 2022;
Ye et al., 2022a; Xie et al., 2022). Notable ones include
a Siamese-style dual-branch network (Xie et al., 2021), a
Transformer-based Mixed Attention Module (MAM) (Cui
et al., 2022), and a single-stream tracking framework fea-
turing an elimination module for in-network candidates (Ye
et al., 2022a). Although these frameworks are efficient ow-
ing to their compact nature, very few of them are based
on lightweight ViTs, rendering them impractical for real-
time UAV tracking. In an effort to overcome this limitation,
Aba-ViTrack (Li et al., 2023) utilized lightweight ViTs and
implemented an adaptive, background-aware token com-
putation method to improve efficiency for real-time UAV
tracking. However, the variable token number in this ap-
proach necessitates unstructured access operations, leading
to notable time costs. In this work, we focus on enhancing
the efficiency of ViTs through more structured methods for
UAV tracking.

2.2. Efficient Vision Transformer

Efforts to improve the efficiency of ViTs have attracted
considerable attention in recent research, reflecting the ne-
cessity to balance their representation capabilities with com-
putational efficiency. Methods include the development of
lightweight ViTs utilizing low-rank methods, model com-
pression, and hybrid designs (Wang et al., 2020; Zhang
et al., 2022a; Mao et al., 2021; Chen et al., 2021b; Li et al.,
2022b). However, ViTs designed with low-rank and quan-
tization methods often sacrifice considerable accuracy to
achieve efficiency gains. Pruning-based ViTs usually neces-
sitate careful decisions regarding pruning ratios and entail a
time-consuming fine-tuning process. Additionally, hybrid
ViTs incorporating CNN-based stems impose restrictions
on input size flexibility.

With growing popularity, recent developments in efficient
ViTs with conditional computation focus on adaptive infer-
ence for model acceleration. This approach dynamically
adjusts the computational load based on input complex-
ity, allowing ViTs to allocate resources judiciously during
inference. For example, DynamicViT (Rao et al., 2021)
introduces control gates to selectively process tokens, while
A-ViT (Yin et al., 2022) employs an Adaptive Computation
Time strategy to avoid auxiliary halting networks, achieving
gains in efficiency, accuracy, and token prioritization. The
latter is also exploited in Aba-VTrack (Li et al., 2023) to
built efficient trackers for real-time UAV tracking. However,
the use of a variable number of tokens incurr significant
time costs due to additional unstructured access operations.

In this study, we explore the adaptive activation of spe-
cific Transformer blocks for feature representation, a more
structured and effective form of conditional computation, to
improve the efficiency of ViTs.

2.3. View-Invariant Feature Representation

View-invariant feature representation has garnered signif-
icant attention in the field of computer vision and image
processing. This technique aims to extract features from
images or visual data that remain consistent across various
viewpoints or orientations, providing robustness to changes
in the camera angle or scene configuration (Kumie et al.,
2024; Bracci et al., 2018; Li et al., 2017; Rao et al., 2002).
Early efforts in achieving view-invariant representations
often relied on handcrafted features and geometric trans-
formations (Xia et al., 2012; Ji & Liu, 2010; Rao et al.,
2002). These methods, while effective in certain scenarios,
struggled to handle the complexity and variability inher-
ent in real-world visual data. The advent of deep learning
revolutionized the field. Many studies have explored the
application of Convolutional Neural Networks (CNNs) and
other deep architectures for extracting view-invariant rep-
resentations (Kumie et al., 2024; Gao et al., 2022; Shiraga
et al., 2016). These approaches leverage the capacity of
deep models to capture complex patterns and variations
in visual data. By ensuring that learned features are re-
silient to changes in viewpoint, these methods contribute to
the robustness and generalization of vision-based systems.
View-invariant feature representation has proven valuable
across a spectrum of computer vision applications, such
as action recognition (Kumie et al., 2024), pose estima-
tion (Bracci et al., 2018), and object detection (Feng et al.,
2022). Despite its efficacy in these domains, the exploration
of view-invariant feature representations in the context of
visual tracking remains limited. Notably, there is a dearth of
research on integrating view-invariant representations into
visual tracking frameworks, to the best of our knowledge. In
this study, we embark on the exploration of learning view-
invariant feature representations with mutual information
maximization based on ViTs, specifically tailored for UAV
tracking. This marks the first instance where ViTs are em-
ployed for the purpose of acquiring view-invariant feature
representations in the context of UAV tracking.

3. Method

In this section, we first provide a brief overview of our end-
to-end tracking framework, named AVTrack, as shown in
Fig. 2. Then, we introduce the Activation Module (AM) for
dynamically activating transformer blocks based on inputs
and the method for learning View-Invariant Representations
(VIR) via mutual information maxmization. Finally, we
detail the prediction head and training loss.
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Figure 2. (left) Overview of the proposed AVTrack’s framework, which consists of a single-stream backbone and a prediction head.
Activattion Modules (AMs) are added into Transformer blocks (TBlocks) to make the ViT adaptive and Mutual Information Maximization
is employed to learn View-Invariance Representations (VIR). (right) The detailed structure of the Activation Module (AM).

3.1. Overview

The proposed AVTrack introduces an novel single-stream
tracking framework, featuring an adaptive ViT-based back-
bone and a prediction head. Each transformer block except
the first n y ones within the ViT-based backbone incorporates
an Activation Module (AM), which is trained to adaptively
decide whether to activate the associated transformer block
or not to enhance the efficient of the ViT. The framework
takes a pair of images as input, comprising a template de-
noted as Z € R3*H=*W= and a search image denoted as
X € R3*H=xWa  These images are split into patches of
size P x P, and the number of patches for Z and X are
P, =H, xW,/P?and P, = H, x W, /P?, respectively.
The features extracted from the backbone are input into the
prediction head to generate tracking outcomes. To obtain
view-invariant representation with ViTs, we maximize the
mutual information between the feature representations of
two different views of the target, i.e., the template image
and the target patch in the search image. During the training
phase, since the ground truth localization of the target in the
search image is known, we can obtain the feature represen-
tation of the subsequent view from the representation of the
search image using interpolation techniques. The details of
the these components will be elaborated in the subsequent
subsections.

3.2. Activation Module (AM)

The Activation Modules dynamically activates transformer
blocks based on inputs, allowing adaptive adjustments to

the ViT’s architecture, hopefully activating only the nec-
essary blocks to successfully perform the tracking task.
AM takes a slice of all tokens representing both the tar-
get template and the search image as input for efficiency
considerations. Its output indicates the probability of ac-
tivating the current Transformer block. If not activated,
the tokens from its preceding block won’t pass through
it. Specifically, let’s consider the i-th layer (¢ > ny).
We denote the total number of tokens by /C, the embed-
ding dimension of each token by d, and all the tokens out-
put by the (i — 1)-th layer by t' 2 (Z, X) € RX**9. The
slice of all tokens generated by the (i — 1)-th Transformer
block is expressed as e]t! ! (Z, X) := r'~! € RX, where
el = [1,0,...,0] € R¥ is a standard unit vector in R,
the linear layer is denoted by £°. Formally, the Activation
Module (AM) at layer ¢ is defined by

p’i :U(Si(ri—l))’ (1)

where p’ € [0, 1] represents the activation probability of
the i-th Transformer block, o(z) = 1/(1 + e~*) indicates
the sigmoid function. If p’ > 3, where 3 € (0.5, 1) is the
activation probability threshold, the transformer block at
layer ¢ will be activated; otherwise, it is deactivated and
the output tokens from the (i — 1)-th layer will be fed into
the (7 + 1)-th block directly. Let A denote the total num-
ber of transformer blocks in the given ViT. Theoretically,
deactivating all A/ blocks simultaneously would result in
no correlation being computed between the template and
search image. To avoid such unfavorable conditions, the
first n s layers are mandated to remain activated. This strat-
egy helps alleviate computational burdens associated with
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AM, as these initial layers are typically essential, provid-
ing foundational information on which high-level and more
abstract features and representations can be built. Another
extreme situation is that, for whatever input, all Transformer
blocks are activated so that the model could reduce classi-
fication and regression losses more easily and quickly as
larger models exhibit more powerful fitting capabilities. To
cope with this, we propose a block sparsity loss Lpq, that
penalizes higher mean probability of all adaptive layers so
that, on average, many blocks are deactivated to enhance
efficiency. The block sparsity loss is formulated as follows,

1 N
=l 2= 2~ ¢l ®)

i:nf+l

Espar

where ¢ € [0, 1] is a constant used in conjunction with /3 to
regulate block sparsity. We refer to ( as the block sparsity
constant. In general, for a given 3, a smaller value of (
results in a sparser model. Note that, if ( = 0, p; can be
considered as the weight of the block ¢ and the sparsity loss
is proportional to the /; norm of the vector consisting of
these weights, thus a convex-relaxed sparsity regularization
penalty commonly used in the area of statisitcal learning
theory. ¢ can be considered as a hyperparameter to facilitate
finer adjustments.

3.3. View-Invariant Representations (VIR) via Mutual
Information Maximization

To begin, we outline the idea of mutual information (MI)
and establish the relevant notations. Leta € Aand b € B
represent two random variables. The MI between a and b is
indicated by I(a, b) and is expressed as follows:

pla,b)
p(a)p(b)
where p(a,b) represents the joint probability distribution,
while p(a) and p(b) are the marginal distributions. The sym-
bol D, denotes the Kullback—Leibler divergence (KLD)
(MacKay, 2004). In practical scenarios, estimating Mutual
Information (MI) is challenging, as we typically have access
only to samples and not the underlying distributions (Poole
etal., 2019). Many estimators were thus proposed to approx-
imate the MI between variables based on observed samples.
In this work, we leverage the MI estimator Deep InfoMax
(R.D. & et al., 2019), which relies on Jensen-Shannon di-
vergence (JSD) rather than KLD as the basis for the MI
estimation. The selection of this method is driven by its
established stability and effectiveness. The Jensen-Shannon

MI estimator, represented by i(@')] P) (a,b), is defined by:
Ep@b[—a(=Te(ab))] — Ep@ypm [a(Te(a,b))], 4)
where Tg : X XY — R is a neural network parameter-

ized by ©, and a(z) = log(1 + e*) represents the softplus
function.

Epan) [wg } — Dicr(p(a, b)[Ip(@)p(b)), ()

In this study, our approach involves learning view-invariant
feature representations by maximizing the MI with the
above Jensen-Shannon MI estimator between the feature
representations of two different views of the target. Let
t95%c (2, X) = t%, ik (£, X), Kz, UKx = [1, K], denote
the final output tokens of the ViT, where t§_ and t; repre-
sent the tokens corresponding to the template and the search
image, respectively. Given the ground truth localization of
the target, denoted by Z’ in the search image, we are able
to obtain the tokens corresponding to Z’ with linear inter-
polation, which is denoted by tg  (Z,X) C tg, (Z, X).
The proposed loss L, for learning view-invariant feature
representations is defined as follows,

~(JSD)

‘Cm"r = _I@ (tI%OZ,(ZvX)atI%CZ(Z>X)) (5)

As L, is exclusively computed during the training phase,
our approach imposes no additional computational cost
during the inference phase. Moreover, the proposed view-
invariant representation learning is ViT-agnostic, which can
be easily applied to other tracking frameworks.

3.4. Prediction Head and Training Loss

Following the corner detection head in (Cui et al., 2022; Ye
et al., 2022a), we use a prediction head H comprising multi-
ple Conv-BN-ReLU layers to directly estimate the target’s
bounding box. The output tokens associated with the search
image are first turned into a 2D spatial feature map before
being fed into the prediction head. The head ouputs a lo-
cal offset o € [0, 1)>*H=/PxWa/P 3 normalized bounding
box size s € [0,1]2*H=/PXWa/P "and a target classifica-
tion score p € [0, 1]H=/P*W=/P a5 prediction outcomes.
The preliminary estimation of the target position relies on
identifying the location with the highest classification score,
ie., (zc,ye) = argmax, ,)P(z, y). Subsequently, the final
target bounding box is estimated by

{(:L‘t, yt)? (w, h>} = {(xmyC) +0(370a y6)5 s(scc, yC)}- (6)

As to training loss, we adopt the weighted focal loss (Law
& Deng, 2018) for classification, a combination of L; loss
and GloU loss (Rezatofighi et al., 2019) for bounding box
regression. Finally, the total loss function is given by

Etotal = Ecls +)\iou£iou+)\L1 ELl +7£spar+"{£vir7 (7)

where the constants \;o,, =2 and Ap,, =5 are set as in (Cui
et al., 2022; Ye et al., 2022a), v is set to 50 , k is set to
0.0001. Our framework undergoes end-to-end training using
the overall loss L,yerqi after loading the pretrained weights
of the ViT trained with ImageNet (Russakovsky et al., 2014).

4. Experiments

In this section, a comprehensive evaluation of our method
is presented based on five UAV tracking benchmarks, i.e.,
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Tracker Source DTB70 UAVDT VisDrone2018 UAV123 UAV123@10fps Avg. Avg.FPS
Prec. Succ. | Prec. Succ. | Prec. Succ. | Prec. Succ. | Prec. Succ. Prec. Succ. | GPU CPU
AVTrack-ViT | 81.3 633 | 799 57.7 | 864 659 | 840 66.2 | 83.2 65.7 829 63.8 | 2502 59.7
B Ours AVTrack-EVA | 82.6 64.0 | 788 572 | 834 625 | 830 64.7 | 81.2 63.5 81.8 623 | 283.7 628
é AVTrack-DeiT | 84.3 65.0 | 82.1 58.7 | 86.0 653 | 848 66.8 | 83.2 65.8 84.1 643 | 256.8 59.5
- Aba-ViTrack(Li et al., 2023) ICCV 23 859 664 | 834 599 | 86.1 653 | 864 66.4 | 85.0 65.5 853 647 | 181.5 503
> | LiteTrack (Wei et al., 2023a) arXiv’'23 825 639 | 81.6 593 | 797 614 | 842 659 | 83.1 65.0 822 63.1 | 141.6 -
SMAT(Gopal & Amer, 2024) WACV 24 819 638 | 80.8 58.7 | 825 634 | 81.8 64.6 | 80.4 63.5 81.5 628 | 1242
- HiFT(Cao et al., 2021) ICCV 21 80.2 594 | 652 475|719 526 | 787 59.0 | 749 57.0 742 55.1 | 160.3 -
2 TCTrack(Cao et al., 2022) CVPR 22 81.2 622 | 725 530|799 594 | 80.0 60.5 | 78.0 59.9 783 59.0 | 139.6 -
_‘S UDAT(Ye et al., 2022b) CVPR 22 80.6 61.8 | 80.1 59.2 | 81.6 619 | 76.1 59.0 | 77.8 58.5 792 60.1 | 33.7 -
4 SGDViT(Yao et al., 2023) ICRA 23 785 604 | 657 48.0 | 72.1 52.1 754 575 | 86.3 66.1 75.6 56.8 | 110.5 -
5 ABDNet(Zuo et al., 2023) RAL 23 76.8 59.6 | 755 553 | 750 572 | 793 60.7 | 773 59.1 76.7  59.1 | 130.2 -
DRCI(Zeng et al., 2023) ICME 23 814 618 | 84.0 59.0 | 834 600 | 76.7 59.7 | 73.6 55.2 79.8 59.1 | 281.3 624
KCF(Henriques et al., 2015) TPAMI 15 46.8 28.0 | 57.1 29.0 | 685 41.3 | 523 33.1 | 40.6 26.5 53.1 31.6 - 622.5
-§ fDSST(Danelljan et al., 2017) TPAMI 17 534 357 | 66.6 383 | 69.8 510 | 583 40.5 | 51.6 37.9 60.0 40.7 193.4
& | ECO_HC(Danelljan et al., 2017) CVPR 17 63.5 448 | 694 416 | 80.8 58.1 71.0 49.6 | 64.0 46.8 69.7 482 83.5
E-‘) MCCT_H(Wang et al., 2018) CVPR 18 604 405 | 66.8 402 | 80.3 56.7 | 659 457 | 59.6 434 66.6 453 63.4
a AutoTrack(Li et al., 2020b) CVPR 20 716 478 | 71.8 450 | 78.8 573 | 689 472 | 67.1 47.7 71.6  49.0 57.8
RACF(Li et al., 2022a) PR 20 726 505 | 773 494 | 834 60.0 | 70.2 47.7 | 694 48.6 746 812 35.6

Table 1. Comparison of precision (Prec.), success rate (Succ.), and speed (FPS) between AVTrack and lightweight trackers on DTB70,
UAVDT, VisDrone2018, UAV123, and UAV123@10fps. Red, blue, and green signify the first, second, and third places. Please note that

the percent symbol (%) is excluded for Prec. and Succ. values.

UAV 123 (Mueller et al., 2016), UAV123 @ 10fps (Mueller
et al., 2016), VisDrone2018 (Zhu et al., 2018), UAVDT
(Du et al., 2018), and DTB70 (Li & Yeung, 2017). Our
evaluation is performed on a PC that was equipped with
an 19-10850K processor (3.6GHz), 16GB of RAM, and
an NVIDIA TitanX GPU. We assess our approach against
a total of 13 state-of-the-art (SOTA) lightweight trackers
(see Table 1) as well as 14 SOTA deep trackers developed
specially for generic visual tracking (refer to Table 2).

4.1. Implementation Details

Model. We adopt different ViTs as backbones, including
ViT-tiny (Dosovitskiy et al., 2021), DeiT-tiny (Touvron
etal., 2021), and EVA-tiny (Fang et al., 2023), to build three
trackers for evaluation, i.e., AVTrack-ViT, AVTrack-DeiT,
and AVTrack-EVA, respectively. The head of AVTrack
consists of a stack of four Conv-BN-Relu layers. The sizes
of the search region and template are set to 256 x 256 and
128 x 128, respectively.

Training. We employ the training splits of multiple datasets
for training, including GOT-10k (Huang et al., 2021), La-
SOT (Fan et al., 2019), COCO (Lin et al., 2014), and Track-
ingNet (Muller et al., 2018). It is noteworthy that all three
trackers share the same train pipeline for consistency and
comparability. The batch size is uniformly fixed at 32. We
utilize the AdamW optimizer with a weight decay of 104,
and 4 x 1077 is used as the initial learning rate. The to-
tal number of training epochs is uniformly fixed at 300,
with 60,000 image pairings processed every epoch, and the
learning rate drops by a factor of 10 after 240 epochs.

Inference. In accordance with conventional practices
(Zhang et al., 2020), Hanning window penalties are applied
during inference to incorporate positional prior in tracking.

Specifically, we execute a multiplication of the classification
map by a Hanning window of the same size. Subsequently,
the box exhibiting the highest score is designated as the
result of the tracking process.

4.2. Comparison with Lightweight Trackers

The evaluation results of our trackers and the rival
lightweight trackers are shown in Table 1. As can be seen,
our AVTrack demonstrate superior performance among all
these trackers in terms of average (Avg.) precision (Prec.),
success rate (Succ.) and speeds. On average, RACF (Li
et al., 2022a) demonstrated the highest Prec. (74.6%) and
Succ. (51.2%) among DCF-based trackers, DRCI (Zeng
et al., 2023) achieves the highest Prec. at 79.8%, while
UDAT (Ye et al., 2022b) attains the highest Succ. of 60.1%
among CNN-based trackers. However, the Prec. and Succ.
of all ViT-based trackers are greater than 81.0% and 62.0%,
respectively, clearly surpassing DCF- and CNN- based ap-
proaches. When considering GPU speed, AVTrack-EVA
stands out with the highest speed of 283.7 FPS. Follow-
ing closely are DRCI and AVTrack-DeiT, achieving the
second and third positions with speeds of 281.3 FPS and
256.8 FPS, respectively. However, despite having a GPU
speed comparable to AVTrack-DeiT, DRCI shows signifi-
cantly lower Avg. Prec. and Succ. compared to AVTrack-
DeiT. Regarding CPU speed, all of our trackers demonstrate
real-time performance on a single CPU', even faster than
some DCF-based trackers such as AutoTrack and RACF.
Despite Aba-ViTrack achieving the top Avg. performance
with 85.3% Avg. Prec. and 64.7% Avg. Succ., AVTrack-
DeiT claims the second spot with only slight gaps of 1.2%
and 0.4%, respectively. Notably, AVTrack-ViT outperforms

"Note that the real-time performance discussed in this paper
may only apply to platforms similar to or more advanced than ours.
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Method Prec. Succ. FPS Tracker Prec. Succ. FPS Tracker Prec. Succ. FPS
AVTrack-DeiT (Ours) 86.0 65.3 220.0 | SLT-TrDiMP(Kim et al., 2022) | 85.1 63.6 27.3 KeepTrack(Mayer et al., 2021) 84.0 635 187
ROMTrack(Cai et al., 2023) | 86.3 66.7 51.1 OSTrack(Ye et al., 2022a) 842 648 66.0 TransT(Chen et al., 2021a) 859 652 517
SeqTrack(Chen et al., 2023) | 85.3 65.8 11.0 | SLT-TransT(Kim et al., 2022) | 85.6 653 29.5 TrSiam(Wang et al., 2021) 847 64.0 328
MAT(Zhao et al., 2023) 81.6 622 712 ToMP(Mayer et al., 2022) 84.1 64.4 21.6 | PrDIMP50(Danelljan et al., 2020) | 79.4 59.7 413
SparseTT(Fu et al., 2022) 814 62.1 28.3 | AutoMatch(Zhang et al., 2021) | 78.1 59.6 62.1 SiamRPN++(Li et al., 2019) 79.1 60.0 55.1

Table 2. Precision (Prec.), success (Succ.), and GPU speed comparison between our AV Track-Deit and DL-based tracker on VisDrone2018.

Aba-ViTrack in both Prec. and Succ. on VisDrone2018,
while AVTrack-DeiT surpasses Aba-ViTrack in Succ. on
UAV123. Moreover, all our trackers demonstrate higher
speeds compared to Aba-ViTrack. Remarkably, AVTrack-
DeiT achieves over 1.4 times the GPU speed and 1.2 times
the CPU speed of Aba-ViTrack, demonstrating a superior
balance between tracking precision and efficiency, under-
scoring the advantages of our method and substantiate its
SOTA performance in UAV tracking.

4.3. Comparison with Deep Trackers

The proposed AVTrack-DeiT is also compared with 14 deep
trackers, as illustrated in Table 2. The table presents the
Prec., Succ., and GPU speed of the competing trackers on
VisDrone2018. Notably, our AVTrack-DeiT stands out by
achieving the second-ranked Prec., the third-ranked Succ.,
and the fastest GPU speed, showcasing its competitiveness
in both accuracy and speed. Also note that the gaps of Prec.
and Succ. of our method to the first place are slight, only
0.3% and 1.4%, respectively. While several deep track-
ers, including ROMTrack, SLT-TransT, and TansT, achieve
comparable accuracy to AVTrack-DeiT, their GPU speeds
are significantly slower. For instance, our method is 3, 6,
and 3 times faster than ROMTrack, SLT-TransT, and TansT,
respectively.

4.4. Attribute-Based Evaluation

To evaluate the robustness of the proposed method against
view variances of targets, we compare AVTrack-DeiT with
20 SOTA trackers on the viewpoint change subset of the
VisDrone2018. Note that we also assessed AVTrack-DeiT
without applying the proposed method for learning View-
Invariant Representations (VIR), denoted as AV Track-DeiT*
for reference. The precision plot is depicted in Fig. 3, and
additional attribute-based evaluation results can be found
in the supplemental materials. As observed, AVTrack-DeiT
achieves the third-highest precision, with a Prec. of 85.4%.
Notably, the incorporation of the proposed components re-
sults in a substantial improvement over AVTrack-DeiT* by
3.1% in precision, underscoring the effectiveness of the
proposed method.

4.5. Ablation Study

Impact of Activation Module (AM) and View-Invariant
Representations (VIR). To support the effectiveness of

Viewpoint Change (30)

—ROMTrack(ICCV 23) [0.858]

0.8

e
N

— AVTrack-DeiT*(Ours) [0.823]
— ToMP(CVPR 22) [0.823
Sparse TT(IJCAI 22) [0.819)
— MAT(CVPR 23) [0.812]
— UDAT(CVPR 22) [0.797]
— P-SiamFC++(ICME 22) [0.790]
21)

Precision

e
=

0.2

— DRCI(ICME 23) [0.758]

CSWinTT(CVPR 22) [0.750;
= ABDNet(RAL 23) [0.727]
50 |— SGDVIT(ICRA 23) [0.699]
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Figure 3. Attribute-based comparison on the viewpoint change
subset of VisDrone2018. Note that AVTrack-DeiT* refers to
AVTrack-DeiT without utilizing the proposed VIR component.

Method VIR AM Prec. Succ. FPS
83.0 62.7 188.3
AVTrack-ViT v 87.114.1 66.413.7 -
v V864134 659135  238.6100%
79.7 60.7 235.6
AVTrack-EVA v 84'3T4.6 63.2¢2_5 -
v V83437 625115 28561019
82.3 63.2 192.7
AVTrack-DeiT v 86.7T4 .4 65.97-2 .7 -
v v 860137 653121 22004149

Table 3. Impact of AM and VIR on the performance of the baseline
trackers on VisDrone2018.

the proposed AM and VIR, Table 3 presents the evaluation
results on VisDrone2018 by gradually incorporating these
components into the baselines. To eliminate any potential
nuances arising from randomness, we only present the speed
of the baseline since the GPU speeds of the baseline and
its VIR-enhanced version are theoretically equal. As can
be seen, the incorporation of VIR significantly enhances
both Prec. and Succ. for all baseline trackers. Specifi-
cally, the Prec. increases for AVTrack-ViT, AVTrack-EVA,
and AVTrack-DeiT are 4.1%, 4.6%, and 4.4%, respectively,
while the Succ. increases are 3.7%, 2.5%, and 2.7%, re-
spectively. These significant enhancements highlight the
effectiveness of VIR in improving tracking precision. The
further integration of AM leads to consistent enhancements
in GPU speeds, with only slight reductions in Prec. and Succ.
Specifically, all baseline trackers undergo GPU speed en-
hancements of more than 14.0% with AVTrack-ViT demon-
strating an outstanding improvement of 26.0%, affirming
the effectiveness of AM in optimizing tracking efficiency
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B AV Track-DeiT(Ours)
ABDNet

I SGDViT

I Aba-ViTrack

I T CTrack
I AutoTrack

O HiF T

UDAT

Figure 4. Qualitative evaluation on 4 video sequences from, respectively, DTB70, UAVDT, UAV123@ 10fps, and VisDrone2018 (i.e.

Animal2, S301, personl0, and uav0000180-00050_s).

Method VIR AM Prec. Succ. FPS

777 59.5 77.5

ARTrack(Wei et al., 2023b) v 799122 60.841.3 -
V V7193116 604109 9451509

81.5 62.7 177.4

DropTrack(Wu et al., 2023) v 831416 64.041.3 -
V v 827112 636700 2145159

82.7 63.4 198.5

GRM(Gao etal., 2023) v 841414 6455 -
v V837410 64lor 2347418y

Table 4. Evaluation of the generalizability of our VIR and AM by
applying them to three SOTA trackers. Note that we substitute
their backbones to ViT-Tiny to save training time. The evaluation
is performed on VisDrone2018.

with only minor impact on tracking performance.

Application to SOTA trackers. To demonstrate the gen-
eralizability of our approach, we incorporate the proposed

VIR and AM into three state-of-the-art (SOTA) trackers:
ARTrack (Wei et al., 2023b), GRM (Gao et al., 2023), and
DropTrack (Wu et al., 2023). Note that we substitute their
original backbones with the tiny ViT, i.e., ViT-Tiny (Doso-
vitskiy et al., 2021), to save training time. The evaluation
results on VisDrone2018 are presented in Table 4. Similar
to the preceding part, we provide only the speed of the base-
line to eliminate potential nuances arising from randomness.
As can be seen, incorporating VIR leads to substantial im-
provements in both Prec. and Succ. for all baseline trackers.
Specifically, the Prec. increases for ARTrack, DropTrack,
and GRM by 2.2%, 1.6%, and 1.4%, respectively, while
the Succ. increases are 1.3%, 1.3%, and 1.1%, respectively.
Further integration of AM consistently results in enhanced
GPU speeds, with only slight decreases in Prec. and Succ.
Specifically, the GPU speeds of all baseline trackers show
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improvements of more than 18.0%, while the tracking per-

i

| - q
Figure 5. For each group, we display the target images from var-
ious viewpoints (top), followed by a feature map generated by

AVTrack-DeiT without the proposed VIR (middle), and with the
proposed VIR (bottom).

formance experiences only marginal drops of less than 0.6%.
These outcomes well confirm the generalizability of our
method.

4.6. Qualitative Results

Fig. 4 showcases the qualitative tracking results generated
by AVTrack-DeiT and 7 SOTA trackers. Remarkably, our
tracker stands out as the only one successfully tracking
all the targets in all these challenging examples, including
scenarios with background clusters (i.e., Animal2), scale
variations (i.e., S0301 and uav0000180_00050_s), and pose
variations (e.g., across all sequences). The superior perfor-
mance and visual appeal of our method in these challenging
scenarios provide additional evidence of the effectiveness
of the proposed approach for UAV tracking.

Fig. 5 illustrates the feature maps for two examples from
UAV123 (Mueller et al., 2016), as generated by AVTrack-
DeiT before and after integrating the proposed component
VIR. In each group, the top row showcases different frames
from the same video sequence, each offering a unique per-
spective that enables a comparison of the visual representa-
tions and showcases the impact of the proposed VIR compo-
nent. The feature maps generated by AVTrack-DeiT exhibit
more consistency than the baseline in the presense of view-
point changes, further demonstrating the effectiveness of
our method in learning view-invariant robust feature repre-
sentations using ViTs.

5. Conclusions

In this paper, our focus was on investigating the effective-
ness of a unified framework for real-time UAV tracking
using efficient Vision Transformers (ViTs). To achieve this,
we streamlined the framework by implementing an adaptive
computation paradigm that selectively activates Transformer
blocks. Furthermore, to tackle the challenges presented by
significant changes in viewing angles commonly encoun-
tered in UAV tracking, we utilized mutual information max-

imization to learn view-invariant representations. Thanks
to its simplicity, our method can be seamlessly integrated
or adapted into other ViT-based trackers. Exhausitive ex-
periments across five UAV tracking benchmarks validate
the effectiveness of our method and show that our AVTrack-
DeiT achieves SOTA performance in UAV tracking.
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Appendices

A. Comparison with Deep Trackers

To adhere to the page length limitation in our main paper, we conducted a comparison solely between our approach and
14 state-of-the-art deep trackers on the VisDrone2018 (Zhu et al., 2018) dataset. Table A1 presents the evaluation of our
AVTrack-DeiT’s performance compared to these trackers on three additional datasets, namely DTB70 (Li & Yeung, 2017),
UAVDT (Du et al., 2018), and UAV123@ 10fps (Mueller et al., 2016). The table displays the results for precision (Prec.)
and success rate (Succ.), their respective averages (Avg.), and average FPS (Avg.FPS). The values for precision and success
rate are presented in the form of (Prec, Succ). Notably, our AVTrack-DeiT stands out with its unparalleled GPU speed,
maintaining high performance and showcasing a competitive edge in both accuracy and speed. Using the top three average
performance trackers on four datasets, namely ToMP, KeepTrack, and ROMTrack, as examples, we can observe that while
they may have slightly better Avg. Prec. and Succ. than our AVTrack-DeiT, their GPU speeds are significantly slower.
Specifically, our method outperforms ToMP, KeepTrack, and ROMTrack by being 11, 12 and 5 times faster, respectively.

Trcker DTB70 UAVDT VisDrone2018 UAVI23@10fps  Avg.  Avg.EPS
AVTrack-DeiT(Ours) (84.3,65.0) (82.1,58.7) (86.0,65.3)  (83.2,65.8) (83.9,63.7) 253.4
ROMTrack(Cai et al., 2023)  (87.1, 67.4) (81.9,61.6) (86.3,66.7)  (85.0,67.7) (85.1,65.9) 53.1
MAT(Gao et al., 2023) (83.2,64.5) (72.9,54.6) (81.6,62.2)  (89.3,68.6) (81.8,62.5) 72.3
SeqTrack(Chen et al., 2023)  (85.7, 65.6) (79.0,59.8) (85.3,65.8)  (88.2,68.1) (84.6,64.8) 17.6
SparseTT(Fuet al,, 2022)  (82.3,65.8) (82.8,65.4) (81.4,62.1)  (822,64.9) (822,64.6) 315
OSTrack(Ye et al., 2022a) (827, 65.1) (85.0, 67.2) (84.2,64.8)  (85.5,66.1) (84.4,65.8) 65.8
SLT-TranT(Kim et al., 2022)  (83.4, 65.6) (82.9, 62.5) (85.6,65.3)  (86.2,67.4) (84.5,652) 32.6
ToMP(Mayer et al., 2022)  (85.6, 67.1) (85.4, 64.1) (84.1,64.4)  (87.5,67.9) (85.7,65.8) 23.8
AutoMatch(Zhang et al., 2021)  (82.5, 63.4) (82.1,60.8) (78.1,59.6)  (85.2,65.7) (81.9,62.3) 352
KeepTrack(Mayer et al., 2021)  (83.6, 64.3) (83.8,60.5) (84.0,63.5)  (89.7,68.2) (85.2,64.1) 20.3
TransT(Chen et al., 2021a)  (83.6, 65.8) (82.6, 64.2) (85.9,65.2)  (84.8,66.5) (84.2,65.4) 55.0
SAOT(Zhou et al., 2021)  (83.1, 64.6) (82.1,60.7) (76.9,59.1)  (85.2,65.7) (81.8,62.5) 352
SiamGAT(Guo et al., 2020)  (75.1, 57.9) (76.4,58.9) (78.3,59.2)  (77.6,59.7) (76.9,58.9) 95.8
PrDiMP50(Danelljan et al., 2020) (76.4, 59.5) (82.7, 60.1) (79.4,59.7)  (87.9,67.5) (81.6,59.7) 42.3
SiamRPN++(Li et al., 2019)  (79.9, 61.4) (82.2,61.0) (79.1,60.0)  (78.4,59.4) (79.9,60.5) 57.6

Table Al. The comparison of the precision (Prec.), success rate (Succ.), and speed (FPS) of deep-based trackers on DTB70, UAVDT,
VisDrone2018 and UAV123@10fps with AVTrack-DeiT. Note that precision and success rate are represented in the form of (Prec., Succ.),
while the average GPU speed is presented as GPU fps. The top three results are displayed in red, blue and green fonts.

B. Impact of Weighting the Loss for Learning View-Invariant Feature Representations

We utilize Table A2 to provide the comprehensive analysis of the performance, assessed across all five datasets, of the
proposed loss (L,;,) for learning view-invariant feature representations. The data presented in the table indicates that our
tracker achieves the best performance when the value of « is set to 1 x 10~—%. Furthermore, we’ve noted that there are no
discernible trends among the second and third-best performances, which are dispersed both above and below the value of
1 x 10~*. When the & is set to 0.5, we observe an average maximal difference of 1.6% in Prec. and a maximal difference of
1.2% in Succ. These substantial margins clearly indicate that the selection of weight significantly influences the tracking
performance. Specifically, when the loss is weighted appropriately, the tracker can attain optimal performance. Conversely,
if the weight is not chosen properly, it can lead to unsatisfactory performance.

C. Impact of Activation Module (AM) and View-Invariant Representations (VIR).

Table A3 provides a detailed analysis of the impact of activation module and view-invariant representations, evaluated
across all five datasets. It is important to note that the GPU speed of both the baseline and its enhanced version by VIR
are theoretically equal. In order to minimize any potential variations due to randomness, we only present the speed of the
baseline. As shown in the table, when the VIR component is incorporated, the Avg. Prec. increases for AVTrack-ViT,
AVTrack-EVA, and AVTrack-DeiT are 2.6%, 3.6%, and 2.5%, respectively, while the Avg. Succ. increases are 1.8%, 1.5%,
and 1.6%, respectively. The integration of AM leads to consistent enhancements in GPU speeds, with only slight reductions
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x  DTB70 UAVDT  VisDrone2018  UAVI23  UAVI23@]10fps Ave.

0.5 (823,632) (81.1,57.9) (84.2,64.1) (83.1,65.6)  (82.1,64.9)  (82.5,63.1)
0.6 (82.8,63.5) (80.5,57.4) (84.7,643) (83.4,658)  (82.6,653)  (82.8,63.3)
0.7 (83.5,64.4) (82.2,58.8) (85.4,64.8) (82.9,654)  (81.8,64.7)  (83.2,63.6)
0.8 (83.0,642) (81.7,585) (83.9,63.8) (83.6,659)  (83.1,657)  (83.1,63.6)
0.9 (83.8,64.6) (82.6,59.0) (85.0,64.6) (84.1,66.3)  (83.8,66.2)  (83.9,64.1)
1.0 (84.3,65.0) (82.1,58.7)  (86.0,65.3) (84.8,66.8)  (83.2,65.8)  (84.1,64.3)
1.1 (82.9,63.5) (82.4,589) (86.5,65.6) (84.4,66.6)  (82.5,652)  (83.7,64.0)
12 (825,63.3) (83.1,59.3) (85.1,64.7) (83.8,66.0)  (83.0,65.6)  (83.5,63.9)
1.3 (84.0,64.8) (81.8,58.5)  (85.6,65.0) (84.2,66.3)  (82.2,64.9)  (83.6,63.9)
14 (84.1,64.9) (81.3,582) (84.8,64.4) (83.4,647)  (82.6,652)  (83.2,63.5)
1.5 (83.4,64.4) (82.4,59.1) (84.6,64.3) (83.1,645)  (81.7,64.7)  (83.0,63.4)

Table A2. By changing & from 0.5 x 10™* to 1.5 x 10™*, an ablation research was conducted on loss for learning view-invariant feature
representations (L.:-) weighting for DTB70, UAVDT, VisDrone2018, UAV123, and UAV123@ 10fps. Please take note that x10~* has
been omitted for clarity. The Prec. and Succ. are shown as (Prec., Succ.).

Tracker VIR AM DTB70 UAVDT VisDrone2018 UAV123 UAV123@10fps Avg Avg.FPS

(79.3,62.4) (77.0,56.2) (83.0, 62.7) (83.2,65.8) (82.1, 64.8) (80.9, 62.4) 195.5

AVTrack-ViT v (82.4, 64.1) (80.8, 58.5) (87.1, 66.2) (84.4, 66.5) (82.9, 65.5) (83.5,64.2) -
v v (81.3, 63.3) (79.9, 57.7) (86.4, 65.9) (84.0, 66.2) (83.2, 65.7) (82.9, 63.8) 250.2
(82.5, 63.0) (79.1, 56.6) (79.7, 60.7) (80.4,63.2) (80.7, 63.3) (78.9, 61.2) 237.1

AVTrack-EVA v (83.0, 64.3) (79.3, 56.8) (85.0, 63.8) (83.3, 64.9) (81.8, 63.8) (82.5, 62.7) -
v v (82.6, 64.0) (78.8,57.2) (83.4,62.5) (83.0, 64.7) (81.2, 63.5) (81.8, 62.3) 283.7
(84.2,65.1) (78.6, 56.7) (81.6, 62.2) (83.7, 66.1) (82.7, 65.6) (82.2,63.2) 208.4

AVTrack-DeiT v (84.8, 65.5) (83.2,59.4) (86.4, 65.6) (85.3,67.1) (83.7, 66.3) (84.7, 64.8) -
v v (84.3, 65.0) (82.1, 58.7) (86.0, 65.3) (84.8, 66.8) (83.2, 65.8) (84.1, 64.3) 256.8

Table A3. A evaluation of the effects of VIR and AM on the performance of the baseline trackers on DTB70, UAVDT, VisDrone2018,
UAV123, and UAV123@ 10fps.

in Prec. and Succ. During this process, all baseline trackers undergo Avg. GPU speed enhancements of more than 20.0%,
with AVTrack-ViT demonstrating an outstanding improvement of 26.0%.

D. Application to SOTA Trackers

In Table A4, a comprehensive evaluation of the application to three SOTA trackers, i.e., ARTrack (Wei et al., 2023b),
DropTrack (Wu et al., 2023), and GRM (Gao et al., 2023), is presented, encompassing all five datasets. Note that we
substitute their original backbones with the tiny ViT, i.e., ViT-Tiny (Dosovitskiy et al., 2021), to save training time. In
accordance with the statement made in the previous section, we only provide baseline speeds to eliminate any potential
nuances caused by randomness. Specifically, when the VIR component is incorporated, the Avg. Prec. increases for
ARTrack, DropTrack, and GRM are 2.6%, 1.7%, and 1.5%, respectively, while the Avg. Succ. increases are 1.7%, 1.1%,
and 1.0%, respectively. After integrating AM, all baseline trackers witness GPU speed enhancements exceeding 14.0%,
with DropTrack showcasing a remarkable improvement of 18.0%.

Tracker VIR AM DTB70 UAVDT _ VisDrone2018  UAVI23@10fps Avg Avg.EPS

(78.1,59.8)  (77.1,54.6)  (77.7,59.5) (772, 60.8) (775, 58.7) 79.1

ARTrack(Wei et al., 2023b) v/ (82.9,63.1) (762,54.0)  (79.9,60.8) (81.2, 63.8) (80.1, 60.4) -
v v (82.1,62.6) (75.8,537)  (79.4,60.5) (80.7, 63.5) (79.5, 60.1) 90.2
(80.7,633)  (169,559) _ (81.5,62.7) (84.6, 66.6) (809, 62.1) 196.7

DropTrack(Wu et al,, 2023) v (82.8,63.9) (81.1,59.1)  (83.1, 64.0) (83.5, 65.8) (82.6,63.2) -
v v (824,63.6) (80.5,58.7)  (82.7,63.7) (82.3, 64.8) (82.0,62.7) 2323
(829,643) (79.0,57.7)  (82.7,63.4) (832, 65.6) (820,628 2133

GRM(Gao et al., 2023) v (84.8,65.2)  (80.1,58.6)  (84.1,64.6) (84.8, 66.8) (83.5, 63.8) -
v v (844,648) (79.8,58.3)  (83.7,64.1) (84.3, 66.5) (83.1,634) 2485

Table A4. A evaluation of the effects of AM and VIR on the performance of the baseline trackers on DTB70, UAVDT, VisDrone2018,
UAV123, and UAV123@ 10fps
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n;  DIB70 UAVDT  VisDrone2018  UAVI23  UAVI23@10fps Ave. Avg.FPS
1 (843,65.0) (82.1,58.7) (86.0,65.3) (84.8,668)  (83.2,658)  (84.1,643) 256.8
2 (84.8,65.3) (81.2,58.1) (86.3,654) (85.4,67.1)  (83.4,659)  (84.2,644) 2413
3 (85.0,654) (81.0,58.0) (865,655  (85.0,66.9)  (84.0,662)  (84.3,64.4) 2266
4 (84.1,64.9) (83.4,59.4) (87.0,65.8) (84.5,66.6)  (83.6,66.0) (845,645 2114
5 (84.0,64.8) (84.0,59.7) (87.1,65.8)  (83.5,659)  (84.8,66.5)  (84.7,64.5)  193.5
6  (84.5,65.1) (81.9,584) (87.4,66.0) (85.1,67.0)  (84.3,66.3)  (84.6,64.6) 1789
7 (85.1,65.4) (81.5,58.2) (87.7,66.2) (84.2,664)  (84.1,66.2)  (84.5,64.5) 1637
8  (84.4,65.1) (84.0,59.8) (88.0,66.3) (83.8,66.1)  (84.0,66.1)  (84.8,64.7)  148.5

Table A5. Ablation study of the effect of layer ny (AM added only at layer ¢ > n¢) on the Prec., Succ. and FPS of AVTrack on DTB70,
UAVDT, VisDrone2018, UAV123, and UAV123 @ 10fps.

E. Study on When to Initiate the AM

In this section, we employ Table A5 to conduct a comprehensive analysis of the relationship between different initiating AM
number of layers and performance. The evaluation is performed across all five datasets, with n ¢ ranging from 1 to 8. As
shown in the table, we observed that each incremental increase in n s results in a modest improvement in both Prec. and
Succ., but also leads to a significant decrease of more than 5% in FPS. Taking into account the trade-off between precision
and speed, we have opted to set the default value of ny as 1 in our implementation.

F. Real-world Tests

We assess our AVTrack-DeiT and the baseline AVTrack-DeiT* on real-world tests by deploying them onto a standard UAV
platform equipped with a Jetson AGX Xavier. Two example tracking results are shown in Fig. Al. As can be seen, our
AVTrack-DeiT are able to track the two targets more accurately than the baseline in these examples where viewpoint change
challenges are present. In order to test our method on a real drone, we integrated an embedded onboard processor, the
NVIDIA Jetson AGX Xavier 32GB, into a typical UAV platform. In real-world UAV testing, the utilization rates of GPU and
CPU are 39.7% and 13.5%, respectively, for AVTrack-DeiT, while those of the baseline are 43.3% and 16.7%, respectively.
They remain at an average speed of 42.4 FPS and 36.7 FPS during the tests. Real-world testing on embedded systems
directly verifies it can still maintain good robustness during viewpoint change and excellent performance and efficiency in
various UAV specific challenges.

Bl AvTrack-DeiT B AvTrack-DeiT*

Ay

Figure Al. The actual data visualization captured from the UAV platform is presented, with the tracked target indicated by a bounding
box. Various line representations illustrate target tracking across different environments, with the frame annotated in the upper left corner.

16



Learning Adaptive and View-Invariant Vision Transformer for Real-Time UAV Tracking

G. Attribute-Based Evaluation

In order to demonstrate the superiority of our tracker against different trackers, i.e, DCF(Henriques et al., 2015), KCF
(Henriques et al., 2015), SAMF (Li & Zhu, 2015), SAMF_CA (Mueller et al., 2017), STRCF (M. & et al., 2016), CN
(Danelljan et al., 2014), HiFT (Cao et al., 2021), fDSST (Danelljan et al., 2017), MCCT_H (Wang et al., 2018), Staple
(Bertinetto et al., 2016), Staple_CA (Mueller et al., 2017), SGDViT (Yao et al., 2023), ECO_HC (Danelljan et al., 2017),
AutoTrack (Li et al., 2020b), ARCF (Huang et al., 2019), TCTrack (Cao et al., 2022), ABDNet(Zuo et al., 2023), UDAT (Ye
et al., 2022b), RACF(Li et al., 2022a), P-SiamFC++ (Wang et al., 2022), and Aba-ViTrack (Li et al., 2023), we conducted
an attribute-based comparison on three attribute subsets of UAVDT (row 1 to row 2), VisDrone 2018 (row 3 to row 4), and
UAV123@10fps (row 5 to row 6), as depicted in Fig. A2. AVTrack-DeiT showcases remarkable performance in terms of
Prec. and Succ. across the majority of these attributes. It is important to note that we also evaluate AVTrack-DeiT without
implementing the components (AM and VIR), referred to as AVTrack-DeiT* for reference.

As shown in Fig. A2, taking the UAVDT dataset as an example (row 1 to row 2), our AVTracker exhibits optimal performance
in terms of ‘Large Occlusion’, yet it secures the third and second positions in terms of *Background Clutter’ and *Object
Motion’, respectively. Remarkably, across these three attributes, the integration of our proposed components leads to
significant improvements when compared to AVTrack-DeiT*, achieving enhancements of 5.1%, 5.5%, and 8.5% in Prec.,
and 2.8%, 4.1%, and 5.8% in Succ., respectively. These results provide strong evidence for the effectiveness of our method
in improving tracking performance.
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Figure A2. The precision plots and success plots of attribute-based comparison are presented for the attribute subsets of UAVDT (row 1
to row 2), VisDrone 2018 (row 3 to row 4), and UAV123 @ 10fps (row 5 to row 6). Note that AVTrack-DeiT* denotes AVTrack-DeiT
without the application of the proposed components.
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