
FollowBench: A Multi-level Fine-grained Constraints Following
Benchmark for Large Language Models

Anonymous ACL submission

Abstract
The ability to follow instructions is crucial001
for Large Language Models (LLMs) to han-002
dle various real-world applications. Exist-003
ing benchmarks primarily focus on evaluating004
pure response quality, rather than assessing005
whether the response follows constraints stated006
in the instruction. To fill this research gap,007
in this paper, we propose FollowBench, a008
Multi-level Fine-grained Constraints Follow-009
ing Benchmark for LLMs. FollowBench010
comprehensively includes five different types011
(i.e., Content, Situation, Style, Format, and012
Example) of fine-grained constraints. To en-013
able a precise constraint following estimation014
on diverse difficulties, we introduce a Multi-015
level mechanism that incrementally adds a sin-016
gle constraint to the initial instruction at each017
increased level. To assess whether LLMs’018
outputs have satisfied every individual con-019
straint, we propose to prompt strong LLMs020
with constraint-evolution paths to handle chal-021
lenging open-ended instructions. By evaluat-022
ing ten closed-source and open-source popular023
LLMs on FollowBench, we highlight the024
weaknesses of LLMs in instruction following025
and point towards potential avenues for future026
work. The data and code will be released.027

1 Introduction028

Large Language Models (LLMs) (Brown et al.,029

2020; OpenAI, 2022) pre-trained on web-scale cor-030

pora have showcased proficiency in generating flu-031

ent and realistic text. Yet, human instructions in032

real-life cases require the model to generate text033

that not only possesses a high degree of natural-034

ness but adheres to specific constraints (Yang et al.,035

2023). For instance, the model may be required to036

recommend ten books that are specifically written037

in Chinese (Figure 1), or it might be expected to038

generate responses that have a certain tone.039

The dominant paradigm for assessing if a model040

can follow instructions involves using human an-041

notators or strongly aligned LLMs to judge its042

I am interested in Tang Dynasty. In Shakespeare's tone,
recommend me ten relevant Chinese books. Use bullet
point in your answer. Please response based on the
examples:⋯

I am interested in Tang Dynasty. In Shakespeare's tone,
recommend me ten relevant Chinese books. Use bullet
point in your answer.

I am interested in Tang Dynasty. In Shakespeare's tone,
recommend me ten relevant Chinese books.

I am interested in Tang Dynasty. Recommend me ten
relevant Chinese books.

Recommend me ten Chinese books.

Recommend me ten books.

+ Content

+ Situation

+ Style

+ Format

+ Example

L1

L2

L5

L4

L3

Figure 1: FollowBench covers five fine-grained con-
straint categories and is constructed based on the Multi-
level mechanism, which increasingly adds a single con-
straint to straightforward instructions. On the right, the
model that can follow instructions with more constraints
is deemed to possess better instruction-following ability.

response quality, in terms of helpfulness, rele- 043

vance, accuracy, depth, creativity, and level of de- 044

tail (Wang et al., 2023a; Li et al., 2023; Zheng 045

et al., 2023; Xu et al., 2023). However, prior 046

work still has two limitations. Firstly, they ig- 047

nore the fine-grained constraints inside instruc- 048

tions, which are essential and objective standards 049

for evaluating the instruction-following capabil- 050

ity. While several benchmarks have rigorously 051

explored individual constraint types, including se- 052

mantic restrictions (Chen et al., 2022) and com- 053

plex formatting (Tang et al., 2023), there exists a 054

lack of comprehensive analysis across the diverse 055

spectrum of constraint categories. Secondly, few 056

benchmarks consider the varying difficulty of in- 057

structions, which is controlled by the number of im- 058

posed constraints. This makes it challenging to pre- 059

cisely assess the degree to which LLMs can follow 060

instructions. Towards this end, our research ques- 061

tion is: how can we systemically and precisely eval- 062

uate the instruction-following capability of LLMs? 063

In this paper, we construct FollowBench, a 064

Multi-level Fine-grained Constraints Following 065
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Benchmark. FollowBench comprehensively066

includes five different types of constraints from067

real-world scenarios, namely Content (i.e., ex-068

plicit restrictions on the response content), Situ-069

ation (i.e., specific situation/background informa-070

tion added to the question), Style (i.e., response071

style requirements), Format (i.e., response format072

requirements), and Example (i.e., example pat-073

tern recognition and following). To precisely es-074

timate the difficulty degree to which LLMs can075

follow instructions, as shown in Figure 1, we pro-076

pose a novel Multi-level mechanism that incremen-077

tally adds a single constraint to straightforward in-078

structions at each increased level. The multi-level079

mechanism enables us to pinpoint the difficulty080

level at which LLMs fail to follow instructions,081

thereby estimating the upper limit of instruction-082

following capability in LLMs more precisely. Over-083

all, FollowBench consists of 820 meticulously084

curated instructions from over 50 NLP tasks, in-085

cluding both closed- and open-ended questions.086

For evaluation purposes, we propose a hybrid eval-087

uation method comprising rule-based and model-088

based solutions. Given LLMs’ outputs, both solu-089

tions judge whether the outputs satisfy each of the090

constraints in the instructions. The rule-based solu-091

tions focus on closed-ended instructions while the092

model-based solutions are applied to opened-ended093

instructions. For model-based solutions, instead of094

merely using current instructions and responses as095

input, we additionally provide the evolution pro-096

cess of the instructions in the input prompts to097

LLM judges to better understand each individual098

constraint. Both the data construction and the eval-099

uation undergo human verification.100

In our experiments, we propose three metrics101

to assess the instruction-following ability of 10102

prominent closed-source and open-source LLMs103

on FollowBench. Our principal observations104

are: (1) the performance of all tested models de-105

clines substantially with an increase in difficulty106

level (the number of constraints in an instruction);107

(2) although closed-source models such as GPT-108

4 and GPT-3.5 only consecutively satisfy around109

three constraints on average, they still markedly110

surpass all open-source models; (3) certain specific111

constraint categories, such as Situation and Exam-112

ple, prove to be more challenging for LLMs than113

others; (4) beyond capabilities such as knowledge114

and reasoning, instruction following can offer an115

additional lens for comprehensively assessing the116

proficiency of LLMs. 117

2 Related Work 118

2.1 Instruction-Following Language Models 119

Prior research has found that LLMs fine-tuned with 120

annotated “instructional” data, which is composed 121

of language instructional commands and their de- 122

sired outcomes, can be effective at following gen- 123

eral language instructions (Weller et al., 2020; Sanh 124

et al., 2021; Mishra et al., 2022). To enhance the 125

understanding of LLMs regarding the intricate and 126

varied intentions of users in real-world scenarios, 127

works like ChatGPT (OpenAI, 2022) and GPT- 128

4 (OpenAI, 2023) implement instruction tuning 129

across a wide range of human-crafted instructions 130

and task categories. Recent studies (Zheng et al., 131

2023; Xu et al., 2023; Jiang et al., 2023) have piv- 132

oted towards automatically generating high-quality 133

data to enhance the instruction-following capabil- 134

ity of LLMs, addressing the challenges posed by 135

labor-intensive human annotation. 136

2.2 Evaluation for Instruction Following 137

There are several research efforts in evaluating 138

LLMs’ following capability towards particular 139

tasks. Tang et al. (2023) focuses on evaluat- 140

ing LLMs’ generation capability towards complex 141

structured tabular data in text, HTML, and Latex. 142

They first collect tables from existing NLP bench- 143

marks and websites, then construct guiding instruc- 144

tions based on these data. Chen et al. (2022) 145

evaluates whether LLMs can follow particular 146

knowledge-intensive generation instructions. They 147

first provide a list of examples (e.g., a list of sports 148

stars in the UK), followed by a constraint that is 149

contradicted by the examples (e.g., not mentioning 150

any athletes). These benchmarks can only demon- 151

strate particular types of instruction-following capa- 152

bility of LLMs. In contrast, FollowBench com- 153

prehensively includes instructions with five differ- 154

ent types of fine-grained constraints in multi-level 155

difficulty and FollowBench should provide a 156

well-rounded and precise estimation of instruction- 157

following capability for existing LLMs. For more 158

details on LLM evaluation, we refer readers to the 159

recent LLMs evaluation survey (Chang et al., 2023; 160

Wang et al., 2023b). 161

3 FollowBench 162

As shown in Table 1, FollowBench encom- 163

passes five distinct fine-grained constraint cate- 164
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Constraint Task Avg Len #Data Evaluation

Data-to-Text Generation 84 25
Document-Level Event Argument Extraction 696 25
Document-Level Named Entity Recognition 376 25
Text Generation with Language Constraints 88 25

Content

Open-ended Question Answering 56 25

Suggestion Generation 69 40
Role-playing 111 15Situation
Complex Situation Reasoning 102 55

Style Open-ended Question Answering 64 150

Text-to-Table Generation 171 30Format
Open-ended Question Answering 74 120

Example 40 diverse NLP tasks 739 200

Text Editing 96 25
Summarization 254 25
Machine Translation 91 25Mixed

Story Generation 34 10

Table 1: An overview of FollowBench. “Avg Len” is the average word number of instructions. refers to
rule-based evaluation, while refers to model-based evaluation.

gories: Content, Situation, Style, Format, and Ex-165

ample. Each category consists of instructions from166

various NLP tasks. Different from previous bench-167

marks, we introduce a Multi-level mechanism that168

incrementally adds constraints to an initial instruc-169

tion (see examples in Figure 2), producing a set of170

instructions ranging from 1 to 5 constraints. In the171

following part of this paper, we use “level n” to172

denote an instruction containing n constraints. It is173

worth noticing that the way of adding constraints174

is meticulously designed for each task within its re-175

spective constraint category. The multi-level mech-176

anism enables us to pinpoint the difficulty level at177

which LLMs fail to follow instructions, thereby es-178

timating the upper bound of instruction-following179

capability in LLMs more precisely.180

To encapsulate, we will introduce the data con-181

struction process of FollowBench, including182

fine-grained constraints and the Multi-level mech-183

anism, in §3.1. In §3.2, we propose an evaluation184

protocol with three metrics that seamlessly inte-185

grate with the multi-level mechanism.186

3.1 Data Construction187

Content Constraints Content constraints refer188

to explicit impositions of specific conditions that189

shape the depth or scope of the response content.190

An example is shown in Figure 2, which sets spe-191

cific criteria for the retrieved object. Ensuring192

that LLMs adhere to content constraints has be-193

come a critical challenge in Controlled Text Gener-194

ation (Zhang et al., 2022), as it demands models to195

understand specific guidelines and adapt responses 196

to prescribed conditions (Chen et al., 2022). To 197

this end, we first collect data from the following 198

tasks: (1) Complex Information Extraction aims at 199

retrieving specific information about specific ob- 200

jects from the given text; (2) Text Generation with 201

Language Constraints requires to generate fluent 202

on-topic content while respecting a specified con- 203

straint; (3) Open-ended Question Answering comes 204

from real scenarios (e.g., open-source platforms) 205

to prevent the risk of data leakage. Subsequently, 206

we construct multi-level instructions by adding one 207

content constraint to the collected instructions each 208

time. The manners of introducing additional con- 209

straints depend on different tasks (see details in Ap- 210

pendix A.1). For Complex Information Extraction, 211

we gradually narrow down the scope of the infor- 212

mation to be extracted. For Text Generation with 213

Language Constraints, we incorporate additional 214

restrictions from WordNet (Miller, 1992) and Wiki- 215

data (Vrandečić and Krötzsch, 2014). For Open- 216

ended Question Answering, we utilize advanced 217

LLMs like GPT-4 to generate a new instruction 218

with one more constraint based on the given in- 219

struction. While the output from the LLMs serves 220

primarily as a reference, we handpick the most rel- 221

evant and challenging synthesized instructions to 222

ensure data quality. 223

Situation Constraints Situation Constraints re- 224

fer to impositions of specific situations or back- 225

grounds that implicitly guide the appropriate an- 226
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C
O

N
T

E
N

T INITIAL Recommend 5 films to me.

LEVEL 1 Recommend me 5 Chinese films.

LEVEL 2 Recommend me 5 Chinese films released before 1990.
S

IT
U

A
T

IO
N INITIAL How can I increase my productivity while working from home?

LEVEL 1 Since the pandemic began, I've been working remotely. How can I increase my productivity while working from home?

LEVEL 2
I have a small child at home. Since the pandemic began, I've been working remotely. How can I increase my 

productivity while working from home?

S
T

Y
L

E

INITIAL How did US states get their names?

LEVEL 1 How did US states get their names? Please respond in the writing style of Shakespeare.

LEVEL 2
How did US states get their names? Please respond in the writing style of Shakespeare, whilst infusing a touch of 

humor into the answer.

F
O

R
M

A
T INITIAL Why can I see the moon during the day?

LEVEL 1 Why can I see the moon during the day? Answer in a table format with columns “Reason” and “Explanation”.

LEVEL 2
Why can I see the moon during the day? Answer in a table format with columns “Reason” and “Explanation”. Each 

explanation should not exceed 20 words in length.

E
X

A
M

P
L

E LEVEL 1

question_template_1.format(example_1) + answer_template_1.format(example_1) 

question_template_1.format(example_2) + answer_template_1.format(example_2) 

⁝

question_template_1.format(query)

LEVEL 2

question_template_1.format(example_1) + answer_template_1.format(example_1) 

question_template_2.format(example_2) + answer_template_2.format(example_2) 

⁝

question_template_1.format(query)

Figure 2: FollowBench covers five fine-grained categories of constraints. Within each constraint type, we
construct a range of Multi-level instructions by incrementally adding constraints (highlighted in red). There are five
levels in total; however, we only display the first two levels from each category for demonstration purposes.

swer of the response. For instance, it is necessary to227

illustrate the situation when asking for customized228

suggestions, as shown in Figure 2. Another exam-229

ple is to customize LLMs to simulate various char-230

acters under certain circumstances, namely Role-231

playing, which provides a more nuanced interac-232

tion for users (Shanahan et al., 2023; Wang et al.,233

2023c). Situation constraints push LLMs beyond234

mere factual retrieval or surface-level synthesis,235

demanding a nuanced understanding, a dynamic236

adaptation, and complicated reasoning to the situ-237

ation (Yao et al., 2022; Liu et al., 2023). Besides238

real-life questions, we also consider Complex Situ-239

ation Reasoning tasks including Math Word Prob-240

lems, Time/Spatial Reasoning, and Code Genera-241

tion. These tasks all require interpreting and solv-242

ing problems within a given situation, thus match-243

ing the definition of situation constraints. We first244

collect initial instructions from these sources and245

then manually curate multi-level instructions by246

incrementally supplementing situation information247

inside (see Appendix A.2).248

Style Constraints Style Constraints control the249

stylistic variations of output to accomplish specific250

stylistic goals, such as tone, sentiment, formality,251

and empathy (Tsai et al., 2021), as illustrated in252

Figure 2. The challenges of style constraints for253

LLMs are the intricate understanding and adapta- 254

tion of language nuances, ensuring contextually ap- 255

propriate and stylistically consistent outputs (Smith 256

et al., 2020; Cheng and Li, 2022). Drawing from 257

Open-ended Question Answering datasets and on- 258

line platforms, we collect initial instructions and 259

then leverage LLMs’ in-context learning capabil- 260

ity to craft instructions with multi-level style con- 261

straints. The prompt template can be viewed in 262

Figure 8. Human experts subsequently review and 263

refine the outputs produced by LLMs. 264

Format Constraints Format Constraints refer to 265

stipulations governing the structural, linguistic, or 266

output presentation of generated content. An exam- 267

ple is shown in Figure 2, which sets limits on word 268

length and requires the format of the response to 269

be a table. Format constraints necessitate a deep, 270

nuanced understanding of language and structure, 271

allowing them to flexibly adapt outputs according 272

to diverse and often intricate specifications (Zhao 273

et al., 2023). Recent work has pointed out that even 274

the most superior LLMs may struggle with tasks 275

that require generating complex, structured outputs 276

such as tables, JSON, HTML, or LaTeX (Tang 277

et al., 2023). To include a variety of format con- 278

straints, we first collect instructions from broader 279

domains, encompassing Text-to-Table Generation 280
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and Open-ended Question Answering, then we uti-281

lize powerful LLMs to sequentially add format con-282

straints ranging from length and hierarchy to spe-283

cialized linguistic features and output mediums.284

See Figure 9 for the prompt template. Finally, we285

ask human experts to carefully check and refine the286

synthesized instructions.287

Example Constraints LLMs have demonstrated288

stunning few-shot learning ability (Brown et al.,289

2020), which enables them to adapt quickly to290

a new query by recognizing patterns from just a291

few examples provided in the prompt. However,292

the robustness of few-shot learning, which means293

whether LLMs can still follow correct patterns af-294

ter introducing “noise” examples, has not been ex-295

plored. Thus, we propose a novel constraint cate-296

gory named Example Constraints to evaluate the ex-297

ample pattern recognition and following capability298

of LLMs. We automatically craft instructions with299

multi-level example constraints based on Prompt-300

Source (Bach et al., 2022), where instructions at301

level n have n−1 noise examples in the input. The302

details are illustrated in Appendix A.3.303

Mixed Constraints For the above five constraint304

categories, we construct multi-level instructions305

by adding the same type of constraint sequentially.306

Nevertheless, real-world scenarios often require307

more than one type of constraint to be enforced in308

a singular instruction. Therefore, we define Mixed309

Constraints as the composition of varied constraint310

categories. For instance, in the Text Editing task,311

we may want to add some content as well as adjust312

the output format. Besides, we also consider sev-313

eral tasks that are naturally suitable for constructing314

mixed constraints, including Summarization, Ma-315

chine Translation, and Story Generation (see Ap-316

pendix A.4). Instructions with multi-level mixed317

constraints are produced by specifying the format318

of generating answers (Format Constraints), requir-319

ing the generated text to include or not include320

certain keywords (Content Constraints), etc.321

Data Quality Control To ensure the data qual-322

ity of FollowBench, we implement a dual-layer323

verification system for each instruction. Two an-324

notators independently evaluate: (1) the appropri-325

ateness of the instruction for its designated con-326

straint category, and (2) the validity of the added327

constraint within the instruction. In instances of328

divergent evaluations, a third annotator intervenes329

for a detailed review to ensure consensus.330

Given an initial instruction, we add one {constraint_type} constraint per
time and obtain the final instruction with {level_n} additional constraints.

#Initial Instruction#
{initial_instruction}

#Initial Instruction + 1 constraint#
{level_1_instruction}

⁝

#Initial Instruction + {level_n} constraints#
{level_n_instruction}

#Answer of Initial Instruction + {level_n} constraints#
{answer_of_level_n_instruction}

#System#
1) Please identify all {level_n} added constraints.
2) For the {level_n} added constraints, discriminate if the #Answer of
Initial Instruction + {level_n} constraints# satisfies each constraint.
3) In the final line, only output a Python LIST with {level_n} elements
('YES' or 'NO') indicating whether the answer satisfies each constraint.

Prompt Template for Model-based Evaluation

Figure 3: Prompt template for model-based evaluation.

3.2 Evaluation Protocol 331

Given that nearly half of instructions in 332

FollowBench are open-ended without ref- 333

erence answers, devising a rule-based program to 334

assess the outputs is extremely challenging. To 335

overcome this, inspired by (Gilardi et al., 2023; 336

Huang et al., 2023), we propose to develop a 337

model-based approach by using strong LLMs 338

like GPT-4 as judges. Previous works leverage 339

strong LLMs to determine the quality of a 340

response, by prompting them to consider multiple 341

factors such as usefulness, relevance, and level 342

of detail (Li et al., 2023; Zheng et al., 2023). 343

To effectively guide strong LLMs to judge the 344

constraint following capability objectively and 345

faithfully, we propose a Multi-level-aware prompt 346

template, as shown in Figure 3. Rather than 347

merely presenting the instruction and asking 348

LLMs to determine whether all constraints are 349

met, we illustrate the evolution process of the 350

instruction and prompt LLMs to pinpoint the 351

newly added constraint at each level. Exposing the 352

evolution process of the instruction allows for a 353

more granular understanding and identification of 354

individual constraints, enhancing LLMs’ ability to 355

discriminate with precision. The ablation study in 356

§5.1 validates the effectiveness of this strategy. 357

Moreover, we propose three novel metrics to 358

evaluate the instruction-following ability of LLMs. 359

For an instruction with n constraints (level n), we 360

use the rule-based program or LLM judge (refer to 361

Table 1) to discriminate if the response of a model 362

satisfies each constraint in the instruction. At each 363
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level n, given a set of m instructions, we define the364

Hard Satisfaction Rate (HSR) and Soft Satisfaction365

Rate (SSR) as follows:366

HSR =
1

m

m∑
i=1

n∏
j=1

sji (1)367

SSR =
1

mn

m∑
i=1

n∑
j=1

sji (2)368

where sji = 1 if the j-th constraint of i-th instruc-369

tion is satisfied and sji = 0 otherwise. HSR mea-370

sures the average rate at which all constraints of in-371

dividual instructions are fully satisfied, while SSR372

calculates the average satisfaction rate of individual373

constraints across all instructions.374

As described in §3, we construct375

FollowBench by incrementally adding376

five constraints to an initial instruction, enabling377

us to pinpoint the difficulty level at which LLMs378

fail to follow instructions. Therefore, we propose a379

metric called Consistent Satisfaction Levels (CSL)380

to estimate how many consecutive levels a model381

can satisfy, beginning from level 1:382

CSL =
1

g

g∑
i=1

argmax
l

(
l ×

l∏
n=1

Sn
i

)
(3)383

where g is the group number of initial instructions,384

Sn
i = 1 if all constraints of the i-th instruction at385

level-n are satisfied and Sn
i = 0 otherwise.386

4 Experiments387

This section first introduces experimental setup in388

§4.1, and then presents the main experiment results389

across two key dimensions: difficulty level in §4.2390

and constraint category in §4.3.391

4.1 Experimental Setup392

We evaluate 10 popular LLMs including GPT-393

4 (OpenAI, 2023), GPT-3.5 (OpenAI, 2022),394

LLaMA2-Chat-70B/13B/7B (Touvron et al., 2023),395

WizardLM-13B-V1.2 (Xu et al., 2023), Vicuna-396

13B/7B-V1.5 (Zheng et al., 2023), Baichuan2-Chat-397

7B (Baichuan, 2023), and ChatGLM3-6B (Du et al.,398

2022). We access GPT-4 and GPT-3.5 via OpenAI399

API. We access other open-source LLMs from their400

official repositories. During the inference process,401

we set the temperature to 0 to ensure deterministic402

outputs. We set the maximum generation length403

to 2048. Other parameters use their default val-404

ues. To facilitate the multilingual evaluation of405

LLM’s instruction-following ability, we also craft 406

a Chinese version of FollowBench in Appendix E. 407

4.2 Level-categorized Results 408

Table 2 provides a comprehensive comparison of 409

various models across five difficulty levels, denoted 410

as L1 to L5. The detailed results for each con- 411

straint category are listed in Appendix C. From 412

a bird’s-eye view, we can infer that the perfor- 413

mance typically diminishes as we progress from 414

L1 to L5 for almost all models. This trend coin- 415

cides with the increasing complexity or stringent 416

requirements associated with higher levels. Be- 417

sides, models with larger architectures generally 418

outperform their smaller counterparts. However, 419

it’s worth noting that the scaling law does not apply 420

as effectively to LLaMA2-Chat-70B. More impor- 421

tantly, there’s a marked performance gap between 422

closed-source models (i.e., GPT-4 and GPT-3.5) 423

and open-source models. Regarding CSL, it can 424

be deduced that the instruction-following upper 425

bound for GPT-4 and GPT-3.5 is approximately 426

3 constraints (level 3) added to an initial instruc- 427

tion. In contrast, open-source models typically 428

have an upper limit of about 2 constraints (level 2). 429

This significant difference underscores the better 430

instruction-following ability of proprietary models, 431

possibly due to superior data quality or optimiza- 432

tion strategies such as RLHF (Ouyang et al., 2022). 433

Furthermore, even the most sophisticated models 434

are limited to following instructions with about 435

three constraints, suggesting significant potential 436

for further improvement. 437

4.3 Constraint-categorized Results 438

As depicted in Figure 4, we assess various models 439

over different constraint categories to succinctly 440

showcase the instruction-following capability of 441

LLMs in a singular dimension. Notably, GPT-4 442

and GPT-3.5 surpass open-source models in ev- 443

ery constraint category, with a pronounced advan- 444

tage in Content, Situation, Example, and Mixed 445

constraints. Furthermore, most models demon- 446

strated commendable proficiency under the Style 447

constraint. While GPT-4, GPT-3.5, and LLaMA2- 448

Chat-70B were the frontrunners, the trend suggests 449

that style adaptation is an area where many mod- 450

els excel, hinting at its utility in real-world appli- 451

cations. However, the Example and Mixed con- 452

straints posed a challenge to most models. While 453

GPT-4 led the segment, even its scores were no- 454

ticeably lower than in other categories. This un- 455
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HSR (%) SSR (%)
Model L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 CSL

GPT-4 84.7 76.1 71.3 74.5 62.4 84.7 77.6 76.2 77.9 73.3 3.3
GPT-3.5 80.3 68.0 68.6 61.1 53.2 80.3 71.2 74.2 69.6 67.1 2.9
LLaMA2-Chat-70B 59.9 53.3 46.0 40.2 37.9 59.9 57.3 55.7 53.3 53.2 2.1
WizardLM-13B-V1.2 68.8 64.6 53.7 41.4 36.9 68.8 66.3 62.3 54.1 55.0 2.2
LLaMA2-Chat-13B 57.0 56.0 50.4 44.4 38.1 57.0 60.0 58.0 54.8 52.2 2.2
Vicuna-13B-V1.5 71.2 60.2 49.6 40.6 34.0 71.2 64.8 59.9 54.5 53.6 2.1
LLaMA2-Chat-7B 58.0 51.3 47.4 39.5 35.3 58.0 56.5 55.6 52.5 51.4 1.9
Vicuna-7B-V1.5 60.8 52.0 42.2 33.3 23.9 60.8 58.6 55.5 48.3 49.0 1.7
Baichuan2-Chat-7B 58.3 46.1 40.7 30.4 25.5 58.3 55.4 54.9 49.9 49.3 1.4
ChatGLM3-6B 60.9 46.6 36.7 27.8 21.4 60.9 55.3 51.2 47.9 45.0 1.6

Table 2: Results across five difficulty levels. For each level, we compute the average score of all constraint categories.

Content

SituationStyle

Format

Example Mixed

20
40

60
80

GPT-4
GPT-3.5
LLaMA2-Chat-70B
WizardLM-13B-V1.2
LLaMA2-Chat-13B
Vicuna-13B-V1.5
LLaMA2-Chat-7B
Vicuna-7B-V1.5
Baichuan2-7B
ChatGLM3-6B

Figure 4: HSR (%) results in diverse constraint cat-
egories. For each category, we compute the average
score of all difficulty levels.

derscores the complexity of these constraints and456

pinpoints an area for potential improvement.457

5 Analysis458

This section includes: an ablation study confirm-459

ing our prompt template’s effectiveness for model-460

based evaluation (§5.1); a comparison of instruc-461

tion following vs. other LLM’s abilities (§5.2); an462

examination of failure consistency (§5.3); and an463

investigation of various decoding strategies (§5.4).464

In addition, a case study is presented in Appendix465

D for further analysis.466

5.1 Ablation Study of Model-based467

Evaluation468

We randomly sample 100 cases that require LLM469

evaluation, encompassing five constraints, five dis-470

tinct levels, and four diverse models to guaran-471

tee comprehensive representation. Then we ask472

three expert-level human labelers to assess whether473

Prompt Agreement with Human

Ours 88%
Ours w/o ML 79%
Vicuna-Single 67%

Table 3: Agreement between human and diverse prompt
templates. We use ML to denote multi-level.

the model’s response satisfies all the constraints 474

in each case and use the majority voting as the fi- 475

nal human annotations. As shown in Table 3, our 476

prompt template (Figure 3) registers an impressive 477

88% agreement with expert human evaluations, sur- 478

passing even the internal agreement among human 479

experts, which stands at 85%. Remarkably, when 480

the evolution process of multi-level constraints is 481

removed from our prompt template, the agreement 482

rate dips by 9%. This underlines the instrumen- 483

tal role played by the detailed portrayal of the in- 484

struction’s evolution in enhancing LLM’s precision 485

in discernment. In contrast, we also employ the 486

prompt template from Vicuna (Zheng et al., 2023), 487

a standard prompt for assessing the overall quality 488

of response. This template prompts the LLM to 489

assign a score from 0 to 10 for each response. We 490

consider responses with a score above 5.0 to meet 491

all the constraints of an instruction. This approach 492

achieves 67% agreement with human evaluators. 493

Such a disparity highlights the fundamental differ- 494

ence between assessing the instruction-following 495

ability and the overall response quality. 496

5.2 Instruction Following vs. Other Abilities 497

Table 4 presents a comparison of representative 498

LLMs across different abilities, not just instruction 499

following (FollowBench). This includes over- 500

all response quality (AlpacaEval (Li et al., 2023)), 501

knowledge (MMLU (Hendrycks et al., 2021)), and 502
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Model Following Overall Knowledge Reasoning

GPT-4 3.3 95.3 86.4 86.7
GPT-3.5 2.9 81.7 70.0 70.1
LLaMA2-Chat-70B 2.1 92.7 63.0 60.8
WizardLM-13B-V1.2 2.2 89.2 52.7 –
LLaMA2-Chat-13B 2.2 81.1 53.6 40.2
Vicuna-13B-V1.5 2.1 – 55.8 51.5
LLaMA2-Chat-7B 1.9 71.4 45.8 35.6
Vicuna-7B-V1.5 1.7 – 49.8 43.4

Table 4: Model comparison on different abilities.

Model Failure Consistency (%)

GPT-4 42.2
WizardLM-13B-V1.2 57.3
Vicuna-7B-V1.5 61.8
ChatGLM3-6B 64.0

Table 5: Results on failure consistency.

reasoning (BBH (Suzgun et al., 2022)). We can find503

that our FollowBench provides an additional504

perspective for a holistic LLM evaluation. As an505

illustration, while the performance of WizardLM-506

13B-V1.2 exceeds that of GPT-3.5 in terms of507

overall response quality, it notably lags behind in508

instruction-following ability. Similarly, Vicuna-509

V1.5 excels over LLaMA2-Chat in the realms510

of knowledge and reasoning but struggles with511

instruction-following tasks.512

5.3 Does Failure at Lower Level Necessarily513

Lead to Failure at Higher Level?514

For a set of instructions that has five difficulty lev-515

els, if a model’s response doesn’t satisfy the con-516

straints at level n, where n ranges from 1 to 4, we517

define the failure consistency as the percentage that518

the response will also not fulfill the constraints at519

any subsequent level greater than n. Combining520

Table 2 and Table 5, it can be seen that models521

with better instruction-following capability may522

exhibit lower failure consistency. One possible rea-523

son is that the instruction-following ability of more524

powerful models is less sensitive to the number525

of constraints in an instruction, thus they are bet-526

ter equipped to adapt and fulfill the requirements527

even as the constraints increase. This adaptabil-528

ity means that while they may falter at a lower529

difficulty level, they can still manage to meet the530

demands of higher difficulty levels, leading to a531

decrease in failure consistency.532

5.4 Does Different Decoding Strategies Affect533

the Instruction-following Ability?534

In this section, we systematically investigate the im-535

pact of different decoding strategies, represented by536

GPT-4 WizardLM-13B-V1.2 Vicuna-7B-V1.5 ChatGLM3-6B
20

30

40

50

60

70

80

HS
R 

(%
)

= 0
= 0.25
= 0.5
= 0.75
= 1

Figure 5: The effect of varying the temperature parame-
ter τ . We use τ = 0 to denote greedy decoding.

the temperature parameter τ , on LLM’s instruction- 537

following ability. The temperature τ is a commonly 538

used parameter that controls the sharpness of the 539

distribution from which we sample the next token: 540

P (w) =
exp(zw/τ)∑

w′∈V exp(zw′/τ)
(4) 541

where zw is the logit for word w, V is the vocabu- 542

lary. Lower values for temperature result in more 543

consistent outputs, while higher values generate 544

more diverse and creative results. As illustrated in 545

Figure 5, the temperature τ has a tangible influence 546

on the instruction-following ability across all four 547

models. The sweet spot seems to be somewhere 548

in the middle where there’s enough variability to 549

capture the nuances and intricacies of complex in- 550

structions, yet not so much that the model goes 551

off tangent. This balanced behavior ensures that 552

the model remains within the desired context, pro- 553

ducing outputs that align closely with the given 554

instructions while also allowing for a slight cre- 555

ative touch when needed. 556

6 Conclusion 557

In this paper, we introduce FollowBench, a 558

Multi-level Fine-grained Constraints Following 559

Benchmark tailored for gauging the instruction- 560

following capability of LLMs. FollowBench 561

covers five fine-grained constraint categories and 562

over 50 NLP tasks, utilizes a novel Multi-level 563

mechanism for precisely estimating the upper limit 564

of instruction-following capability. Furthermore, 565

we propose an evaluation protocol with three met- 566

rics that seamlessly integrate with the multi-level 567

mechanism. Our extensive tests over 10 popular 568

LLMs reveal a substantial performance advantage 569

for GPT-4 and GPT-3.5 over their counterparts, and 570

there is still significant room for improving the 571

instruction-following ability of current LLMs. 572
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Limitations573

While our study contributes valuable insights, it is574

essential to acknowledge several limitations that575

warrant consideration.576

Firstly, our current investigation is confined to577

single-round interactions. Future research may ex-578

tend its scope to multi-round conversations to com-579

prehensively assess the instruction-following pro-580

ficiency of LLMs in more dynamic and extended581

dialogues.582

Secondly, the model-based evaluation frame-583

work employed in our experiments, while rigorous,584

relies on prompt engineering, introducing an inher-585

ent imperfection. Despite our meticulous selection586

of high-performing prompts, the potential for fur-587

ther optimization remains, which may impact the588

reported evaluation metrics.589

Lastly, we refrain from proposing specific solu-590

tions to address identified weaknesses of LLMs in591

instruction following. A plausible avenue for future592

research involves fine-tuning LLMs using our pro-593

posed FollowBench as a benchmark, providing594

a potential roadmap for enhancing instruction ad-595

herence. We defer the exploration of these aspects596

to subsequent studies, recognizing the need for a597

comprehensive examination of LLM capabilities598

across varying interaction complexities.599

Ethics Statement600

Our paper aims to systemically and precisely eval-601

uate the capability of LLMs to follow natural lan-602

guage instructions. However, it is essential to603

bear in mind that malicious instructions have the604

potential to prompt the model to generate harm-605

ful or inappropriate outputs. Therefore, ensur-606

ing safe and responsible practices when assessing607

the instruction-following capability of LLMs is of608

paramount importance. In FollowBench, each609

piece of data undergoes a meticulous human review610

process to identify and eliminate any potentially611

harmful instructions or offensive content. This rig-612

orous approach underscores our commitment to613

maintaining a secure and ethical evaluation frame-614

work.615
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Denny Vrandečić and Markus Krötzsch. 2014. Wiki- 878
data: a free collaborative knowledgebase. Communi- 879
cations of the ACM, 57(10):78–85. 880

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa 881
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh 882
Hajishirzi. 2023a. Self-instruct: Aligning language 883
models with self-generated instructions. In Proceed- 884
ings of the 61st Annual Meeting of the Association for 885
Computational Linguistics (Volume 1: Long Papers), 886
pages 13484–13508, Toronto, Canada. Association 887
for Computational Linguistics. 888

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xing- 889
shan Zeng, Wenyong Huang, Lifeng Shang, Xin 890
Jiang, and Qun Liu. 2023b. Aligning large lan- 891
guage models with human: A survey. arXiv preprint 892
arXiv:2307.12966. 893

Zekun Wang, Ge Zhang, Kexin Yang, Ning Shi, 894
Wangchunshu Zhou, Shaochun Hao, Guangzheng 895
Xiong, Yizhi Li, Mong Yuan Sim, Xiuying Chen, 896
et al. 2023c. Interactive natural language processing. 897
arXiv preprint arXiv:2305.13246. 898

Orion Weller, Nicholas Lourie, Matt Gardner, and 899
Matthew E. Peters. 2020. Learning from task de- 900
scriptions. In Proceedings of the 2020 Conference on 901

11

https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
http://arxiv.org/abs/2303.08774
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2021.nlp4convai-1.21
https://doi.org/10.18653/v1/2021.nlp4convai-1.21
https://doi.org/10.18653/v1/2021.nlp4convai-1.21
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2020.emnlp-main.105
https://doi.org/10.18653/v1/2020.emnlp-main.105
https://doi.org/10.18653/v1/2020.emnlp-main.105


Empirical Methods in Natural Language Processing902
(EMNLP), pages 1361–1375, Online. Association for903
Computational Linguistics.904

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,905
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin906
Jiang. 2023. Wizardlm: Empowering large language907
models to follow complex instructions.908

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter909
Abbeel, and Dale Schuurmans. 2023. Foundation910
models for decision making: Problems, methods, and911
opportunities. arXiv preprint arXiv:2303.04129.912

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak913
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.914
React: Synergizing reasoning and acting in language915
models. arXiv preprint arXiv:2210.03629.916

Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou,917
and Dawei Song. 2022. A survey of controllable918
text generation using transformer-based pre-trained919
language models. ACM Computing Surveys.920

Yilun Zhao, Haowei Zhang, Shengyun Si, Linyong Nan,921
Xiangru Tang, and Arman Cohan. 2023. Large lan-922
guage models are effective table-to-text generators,923
evaluators, and feedback providers. arXiv preprint924
arXiv:2305.14987.925

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan926
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,927
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,928
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging929
llm-as-a-judge with mt-bench and chatbot arena.930

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,931
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,932
and Nan Duan. 2023. Agieval: A human-centric933
benchmark for evaluating foundation models. CoRR,934
abs/2304.06364.935

A Data Generation Process936

Here we outline the sources for our data and pro-937

vide a detailed description of the data generation938

process for each constraint category.939

A.1 Content Constraints940

The data of content constraints is constructed from941

five tasks as follows:942

• Data-to-Text Generation We create instruc-943

tions with 1 to 5 constraints by adapting sam-944

ples from E2E (Novikova et al., 2017). Differ-945

ent from the original task, we ask the model946

to extract the flat meaning representations ac-947

cording to the corresponding natural language948

texts. The number of constraints increases949

with the number of attributes and the num-950

ber of restaurants. We use exact match as the951

evaluation metric.952

• Document-Level Event Argument Extrac- 953

tion We create instructions by adapting sam- 954

ples from WIKIEVENTS (Li et al., 2021). 955

Given a document, the model is required to 956

extract n events that satisfy a specific event 957

template, where n ∈ [1, 5] corresponds to the 958

number of constraints. We use accuracy as the 959

evaluation metric. 960

• Document-Level Named Entity Recogni- 961

tion We derive instructions from samples in 962

the CONLL-2003 dataset (Tjong Kim Sang 963

and De Meulder, 2003). We ask the model 964

to extract a single named entity from a pro- 965

vided document. Notably, as the number of 966

constraints rises, the requirements for the re- 967

trieved named entity correspondingly increase. 968

For example, “extract one named entity that is 969

a location” → “extract one named entity that 970

is a location in east Asia”. We use accuracy 971

as the evaluation metric. 972

• Text Generation with Language Con- 973

straints COGNAC (Chen et al., 2022) is a 974

challenging benchmark wherein models are 975

presented with a topic accompanied by exam- 976

ple text and explicit constraints on the text to 977

avoid. We curate data from COGNAC, for- 978

mulating instructions with 1 to 5 constraints 979

by integrating additional linguistic restric- 980

tions from WordNet (Miller, 1992) and Wiki- 981

data (Vrandečić and Krötzsch, 2014). 982

• Open-ended Question Answering We first 983

choose initial instructions from existing 984

datasets including self-instruct evaluation 985

set (Wang et al., 2023a), helpful evaluation re- 986

leased by Anthropic(Bai et al., 2022), Vicuna 987

evaluation(Zheng et al., 2023), and Koala eval- 988

uation(Geng et al., 2023), as well as open- 989

source platforms such as Quora 1, Reddit 2, 990

and ShareGPT 3. Given the challenges associ- 991

ated with iteratively adding constraints to an 992

initial instruction, we prompt GPT-4 with a 993

specific prompt shown in Figure 7 to generate 994

a new instruction with one more constraint 995

based on the given instruction. The above 996

process is repeated five times. Finally, we ob- 997

tain a set of instructions ranging from 1 to 5 998

constraints. 999

1https://www.quora.com
2https://www.reddit.com
3https://sharegpt.com
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A.2 Situation Constraints1000

The data of situation constraints is constructed from1001

tasks as follows:1002

• Suggestion Generation, Role-playing We1003

collect multi-level instructions that fit within1004

the paradigm of situation constraints from1005

Open-ended Question Answering datasets and1006

online platforms. Examples include asking1007

the model to give suggestions under specific1008

circumstances, asking the model to act as a1009

terminal and output based on the given infor-1010

mation, etc.1011

• Math Word Problems The initial instruc-1012

tions are collected from GSM8K (Cobbe et al.,1013

2021) and AGIEval (Zhong et al., 2023). We1014

then manually add constraints progressively1015

by enhancing the situation descriptions, ensur-1016

ing that the core question remains unaltered.1017

We use accuracy as the evaluation metric.1018

• Time/Spatial Reasoning We generate data by1019

refining samples from BIG-Bench Hard (Suz-1020

gun et al., 2022). For Time Reasoning, we1021

increase the difficulty level by incorporating1022

additional temporal concepts, such as weeks,1023

months, and years. In the realm of Spatial Rea-1024

soning, we opt for a logical deduction task that1025

necessitates deducing the order of a sequence1026

of objects. Here, the number of constraints1027

escalates by augmenting the task with detailed1028

location descriptions for a new object. We use1029

accuracy as the evaluation metric.1030

• Code Generation We sourced initial instruc-1031

tions from HumanEval (Chen et al., 2021) and1032

enhanced the difficulty level by adding com-1033

plexity to the function descriptions within the1034

instructions. We use pass@1 (Kulal et al.,1035

2019) as the evaluation metric.1036

A.3 Example Constraints1037

Specifically, we choose 40 diverse NLP tasks from1038

PromptSource (Bach et al., 2022), where each task1039

has more than 5 question templates. Additionally,1040

we create 29 answer templates (shown in Table 6)1041

that regulate the format of the response. For instruc-1042

tions at difficulty level 1, we utilize the standard1043

5-shot prompting, where 5 shots are equipped with1044

1 sampled question template and 1 sampled answer1045

template, and the model is required to respond to1046

Answer template

{question}\n{answer}
{question}\nA: {answer}
{question}\nAnswer: {answer}
{question}\nANSWER: {answer}
{question}\n[Answer]\n{answer}
{question}\n#Answer#\n{answer}
{question}\nThe answer is: {answer}
{question}\n{"answer": "{answer}"}
{question}\n{"Answer": "{answer}"}
{question}\n<body>{answer}</body>
{question}\nResponse: {answer}
{question}\nRESPONSE: {answer}
{question}\n[Response]\n{answer}
{question}\n#Response#\n{answer}
{question}\nThe response is: {answer}
{question}\n{"response": "{answer}"}
{question}\n{"Response": "{answer}"}
{question}\nBot: {answer}
{question}\nBOT: {answer}
{question}\n[Bot]\n{answer}
{question}\n#Bot#\n{answer}
{question}\nThe response of the bot is: {answer}
{question}\n{"bot": "{answer}"}
{question}\n{"Bot": "{answer}"}
{question}\nAI assistant: {answer}
{question}\n[AI assistant]\n{answer}
{question}\n#AI assistant#\n{answer}
{question}\nThe response of the AI assistant is: {answer}
{question}\n{"AI assistant": "{answer}"}

Table 6: Answer template of Example Constraints.

a query using the answer template. For instruc- 1047

tions at difficulty level n (1 < n ≤ 5), the 5 shots 1048

are randomly paired with n question templates and 1049

n corresponding answer templates. Based on the 1050

question template of the query, the model is re- 1051

quired to recognize the matched question template 1052

in the 5 shots and respond using the corresponding 1053

answer template. We use accuracy as the evaluation 1054

metric. 1055

A.4 Mixed Constraints 1056

In this paper, we consider four below tasks which 1057

are naturally suitable for constructing mixed con- 1058

straints: 1059

• Text Editing We start by gathering text from 1060

different online sources, like sentences, let- 1061

ters, and emails. Next, we create instructions 1062

with multi-level mixed constraints by increas- 1063

ingly adding an editing requirement to the 1064

text at each level. For example, “swap the first 1065

and last words in the sentence” (Content Con- 1066

straints), “response using ’###’ at the begin- 1067

ning” (Format Constraints), etc. We write rule- 1068

based programs for individual instructions to 1069

assess the satisfaction of internal constraints, 1070
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employing exact match as the evaluation met-1071

ric.1072

• Summarization The initial instructions are1073

sampled from CNN/Daily Mail(Nallapati1074

et al., 2016), XSum (Narayan et al., 2018),1075

SAMSum (Gliwa et al., 2019), English Giga-1076

word (Graff et al., 2003), and arXiv (arXiv.org1077

submitters, 2023). The instructions with multi-1078

level mixed constraints are produced by speci-1079

fying the format of generating answers (For-1080

mat Constraints), requiring the generated text1081

to include or not include certain keywords1082

(Content Constraints), etc. We write rule-1083

based programs for individual instructions to1084

assess the satisfaction of internal constraints,1085

employing accuracy as the evaluation metric.1086

• Machine Translation The initial instructions1087

are sampled from OpenSubtitles (Lison and1088

Tiedemann, 2016), TED Talks (Cettolo et al.,1089

2012), and News-Commentary (Tiedemann,1090

2012). Then we construct instructions from1091

level 1 to level 5 using a similar pipeline as1092

that of Summarization. We write rule-based1093

programs for individual instructions to assess1094

the satisfaction of internal constraints, employ-1095

ing accuracy as the evaluation metric.1096

• Story Generation We collect initial instruc-1097

tions from ROCStories (Mostafazadeh et al.,1098

2016) and WritingPrompts (Fan et al., 2018).1099

Then we add 5 mixed constraints sequentially1100

to the initial instructions based on the ground1101

truth, such as the number of sentences in the1102

generated story (Format Constraints), requir-1103

ing the generated text to include certain key-1104

words (Content Constraints), specifying the1105

writing style (Style Constraints), etc.1106

B Data Diversity1107

We analyze the comprehensiveness and diversity1108

of in FollowBench, which includes 820 instruc-1109

tions in total. To maintain data diversity, we strive1110

to ensure that the ROUGE-L score between any1111

two initial instructions is below 0.7. Figure 6 shows1112

the verb-noun structure of FollowBench instruc-1113

tions, where the top 20 verbs (inner circle) and their1114

top 4 direct noun objects (outer circle) are depicted.1115

C Detailed Experimental Results1116

Here we list the experimental results across 5 dif-1117

ficulty levels for each constraint category, includ-1118

Figure 6: Verb-noun structure of FollowBench In-
structions.

ing Content Constraints in Table 7, Situation Con- 1119

straints in Table 8, Style Constraints in Table 9, For- 1120

mat Constraints in Table 10, Example Constraints 1121

in Table 11, and Mixed Constraints in Table 12. 1122

D Case Study 1123

Table 13 and Table 14 show the respective re- 1124

sponses and evaluation results of GPT-4 and 1125

WizardLM-13B-V1.5 when tasked with a level- 1126

5 instruction under the category of Content Con- 1127

straints. It can be observed that GPT-4 meets all 1128

five specified constraints, whereas WizardLM-13B- 1129

V1.5 fails to fulfill the third constraint, which man- 1130

dates that the output animals must be able to swim. 1131

Besides, these two cases also validate the effective- 1132

ness of our model-based evaluation. 1133

E FollowBench-zh 1134

To facilitate the multilingual evaluation of LLM’s 1135

instruction-following ability, we have additionally 1136

crafted a Chinese version of FollowBench, de- 1137

noted as FollowBench-zh. This involved em- 1138

ploying a data generation process analogous to 1139

that utilized in the development of the English 1140

version. Overall, FollowBench-zh consists of 1141

790 meticulously curated instructions from over 50 1142

NLP tasks, including both closed- and open-ended 1143

questions. The detailed data statistics are listed in 1144

Table 15. 1145

Following §3.2 and §4.1, we evaluate 10 1146

popular LLMs on FollowBench-zh. The 1147

14



You are an Instruction Rewriting Expert. You need to rewrite #Given Instruction# based on #Rewriting Requirement#, in order to obtain a #Rewritten
Instruction#. Basically, #Rewritten Instruction# should adhere to the following guidelines:
1. Your rewriting cannot omit the non-text parts such as the table and code in #Given Instruction#.
2. #Rewritten Instruction# must be reasonable and must be understood and responded by humans.
3. You should try your best not to make the #Rewritten Instruction# become verbose, #Rewritten Instruction# can only add 10 to 20 words into #Given
Instruction#.

#Given Instruction#
{given_instruction}

#Rewriting Requirement#
Please add one proper content constraint to the #Given Instruction#. The content constraints include but are not limited to:
1. Add a Subtask or Another Related Question.
2. Narrow Down the Topic: Instead of a general theme or topic, provide a more specific subset.
3. Set a Higher Standard: Raise the bar for what's considered acceptable or successful.
4. Limit Resources: Restrict the number or type of resources someone can use.
5. Introduce Specific Criteria: Mandate particular components or features that must be included.
6. Specifying Sequence: Dictate the order in which certain steps or actions should be taken.

#Rewritten Instruction#

Prompt Template (Open-ended Question Answering in Content Constraints)

Figure 7: The prompt template for Open-ended Question Answering in Content Constraints.

You are an Instruction Rewriting Expert. You need to rewrite #Given Instruction# based on #Rewriting Requirement#, in order to obtain a #Rewritten
Instruction#. Basically, #Rewritten Instruction# should adhere to the following guidelines:
1. Your rewriting cannot omit the non-text parts such as the table and code in #Given Instruction#.
2. #Rewritten Instruction# must be reasonable and must be understood and responded by humans.
3. You should try your best not to make the #Rewritten Instruction# become verbose, #Rewritten Instruction# can only add 10 to 20 words into #Given
Instruction#.

#Given Instruction#
{given_instruction}

#Rewriting Requirement#
Please add one proper style constraint that #Given Instruction# does not have. The style constraints include but are not limited to:
1. Tone and Emotion: Specify the desired emotional tone for the response.
2. Writing Style: Ask the AI to mimic a specific author's writing style.
3. Contradiction: Ask the AI to provide a response that contradicts the previous statement or take a stance opposite to its prior response.
4. Ambiguity: Instruct the AI to create responses with intentional ambiguity or double meanings.
5. Humor or Satire: Request that the response be humorous or satirical, requiring the AI to generate jokes or witty remarks.

#Rewritten Instruction#

Prompt Template (Open-ended Question Answering in Style Constraints)

Figure 8: The prompt template for Open-ended Question Answering in Style Constraints.

You are an Instruction Rewriting Expert. You need to rewrite #Given Instruction# based on #Rewriting Requirement#, in order to obtain a #Rewritten
Instruction#. Basically, #Rewritten Instruction# should adhere to the following guidelines:
1. Your rewriting cannot omit the non-text parts such as the table and code in #Given Instruction#.
2. #Rewritten Instruction# must be reasonable and must be understood and responded by humans.
3. You should try your best not to make the #Rewritten Instruction# become verbose, #Rewritten Instruction# can only add 10 to 20 words into #Given
Instruction#.

#Given Instruction#
{given_instruction}

#Rewriting Requirement#
Please add one proper format constraint that #Given Instruction# does not have. The format constraints include but are not limited to:
1. Length: Imposing constraints on the length of individual words, sentences, or paragraphs.
2. Hierarchical Instructions: Providing instructions that have a hierarchical structure, where the AI needs to understand and follow a hierarchy of tasks to
construct a response.
3. Special Output Format: Asking the AI to respond by using data format like table, json, HTML, LaTeX, etc.
4. Morphological Constraints: Asking the AI to avoid or use specific morphemes.
5. Multi-lingual Constraints: Asking the AI to respond in multiple languages or switch between languages according to complex patterns.
6. Incorporation of Specific Literary Devices: Requiring the inclusion of specific, and perhaps numerous, literary devices.
7. Following a Specific Grammatical Structure: Requiring the AI to create responses that strictly follow a particular grammatical structure.

#Rewritten Instruction#

Prompt Template (Open-ended Question Answering in Format Constraints)

Figure 9: The prompt template for Open-ended Question Answering in Format Constraints.
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HSR (%) SSR (%)
Model L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 CSL

GPT-4 84.0 76.0 72.0 80.0 72.0 84.0 78.0 74.7 83.0 80.8 3.5
GPT-3.5 72.0 68.0 72.0 56.0 48.0 72.0 70.0 76.0 67.0 64.0 2.7
LLaMA2-Chat-70B 48.0 44.0 44.0 40.0 40.0 48.0 48.0 48.0 47.0 47.2 2.2
WizardLM-13B-V1.2 68.0 56.0 48.0 44.0 28.0 68.0 60.0 56.0 51.0 45.6 2.4
LLaMA2-Chat-13B 48.0 44.0 48.0 48.0 36.0 48.0 48.0 50.7 50.0 47.2 2.1
Vicuna-13B-V1.5 60.0 52.0 52.0 44.0 32.0 60.0 58.0 58.7 53.0 44.8 2.3
LLaMA2-Chat-7B 44.0 48.0 44.0 40.0 36.0 44.0 48.0 46.7 46.0 46.4 1.8
Vicuna-7B-V1.5 60.0 48.0 52.0 40.0 16.0 60.0 56.0 61.3 51.0 44.0 1.9
Baichuan2-Chat-7B 60.0 48.0 40.0 36.0 24.0 60.0 52.0 45.3 50.0 44.8 1.7
ChatGLM3-6B 68.0 44.0 44.0 36.0 24.0 68.0 52.0 49.3 50.0 40.8 1.9

Table 7: Results of Content Constraints across 5 difficulty levels.

HSR (%) SSR (%)
Model L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 CSL

GPT-4 90.0 90.0 85.0 65.0 50.0 90.0 90.0 88.3 76.2 69.0 3.5
GPT-3.5 72.7 72.7 72.7 63.6 68.2 72.7 72.7 75.8 71.6 75.5 3.2
LLaMA2-Chat-70B 72.7 68.2 54.6 40.9 50.0 72.7 70.5 66.7 61.4 68.2 2.4
WizardLM-13B-V1.2 65.0 65.0 70.0 35.0 45.0 65.0 67.5 71.7 50.0 58.0 1.9
LLaMA2-Chat-13B 63.6 77.3 59.1 45.5 36.4 63.6 81.8 69.7 58.0 53.6 2.2
Vicuna-13B-V1.5 68.2 63.6 54.5 31.8 40.9 68.2 65.9 60.6 47.7 54.5 1.9
LLaMA2-Chat-7B 68.2 45.5 54.5 27.3 54.5 68.2 59.1 63.6 54.5 65.5 1.8
Vicuna-7B-V1.5 45.5 45.5 31.8 22.7 27.3 45.5 50.0 43.9 34.1 49.1 1.4
Baichuan2-Chat-7B 36.4 40.9 40.9 22.7 18.2 36.4 54.5 54.5 42.0 41.8 0.9
ChatGLM3-6B 63.6 63.6 40.9 27.3 22.7 63.6 70.5 56.1 44.3 43.6 1.8

Table 8: Results of Situation Constraints across 5 difficulty levels.

HSR (%) SSR (%)
Model L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 CSL

GPT-4 96.7 93.3 86.7 96.7 90.0 96.7 95.0 93.3 98.3 98.0 4.3
GPT-3.5 96.7 93.3 90.0 93.3 86.7 96.7 96.7 95.6 98.3 97.3 4.1
LLaMA2-Chat-70B 96.7 93.3 93.3 83.3 83.3 96.7 96.7 97.8 95.0 96.0 4.1
WizardLM-13B-V1.2 96.7 93.3 80.0 83.3 60.0 96.7 95.0 91.1 92.5 90.0 3.6
LLaMA2-Chat-13B 96.7 93.3 90.0 86.7 86.7 96.7 96.7 95.6 96.7 96.0 4.1
Vicuna-13B-V1.5 90.0 90.0 60.0 73.3 60.0 90.0 95.0 83.3 87.5 89.3 3.1
LLaMA2-Chat-7B 96.7 93.3 90.0 86.7 70.0 96.7 96.7 95.6 96.7 93.3 4.1
Vicuna-7B-V1.5 80.0 80.0 53.3 63.3 53.3 80.0 88.3 80.0 87.5 82.0 2.3
Baichuan2-Chat-7B 76.7 83.3 56.7 53.3 50.0 76.7 90.0 80.0 85.8 87.3 2.2
ChatGLM3-6B 80.0 60.0 50.0 36.7 33.3 80.0 76.7 73.3 74.2 74.7 1.9

Table 9: Results of Style Constraints across 5 difficulty levels.

HSR (%) SSR (%)
Model L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 CSL

GPT-4 90.0 93.3 86.7 93.3 80.0 90.0 95.0 94.4 98.3 93.3 4.1
GPT-3.5 90.0 76.7 80.0 70.0 50.0 90.0 85.0 88.9 85.0 82.0 3.2
LLaMA2-Chat-70B 83.3 76.7 66.7 53.3 36.7 83.3 85.0 86.7 78.3 70.0 2.4
WizardLM-13B-V1.2 83.3 96.7 76.7 60.0 46.7 83.3 98.3 90.0 81.7 80.0 2.9
LLaMA2-Chat-13B 86.7 80.0 70.0 56.7 40.0 86.7 86.7 86.7 80.0 72.7 3.1
Vicuna-13B-V1.5 86.7 76.7 76.7 53.3 30.0 86.7 85.0 86.7 78.3 70.7 2.6
LLaMA2-Chat-7B 80.0 80.0 66.7 53.3 33.3 80.0 88.3 86.7 78.3 68.0 2.4
Vicuna-7B-V1.5 80.0 76.7 73.3 43.3 20.0 80.0 86.7 85.6 70.8 67.3 2.4
Baichuan2-Chat-7B 80.0 56.7 60.0 40.0 36.7 80.0 73.3 81.1 72.5 72.7 1.9
ChatGLM3-6B 80.0 60.0 46.7 33.3 23.3 80.0 71.7 72.2 69.2 68.0 2.1

Table 10: Results of Format Constraints across 5 difficulty levels.
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HSR (%) SSR (%)
Model L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 CSL

GPT-4 87.5 57.5 57.5 45.0 42.5 87.5 57.5 57.5 45.0 42.5 2.4
GPT-3.5 80.0 50.0 50.0 42.5 42.5 80.0 50.0 50.0 42.5 42.5 2.2
LLaMA2-Chat-70B 0.0 2.5 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0
WizardLM-13B-V1.2 40.0 30.0 27.5 12.5 15.0 40.0 30.0 27.5 12.5 15.0 0.9
LLaMA2-Chat-13B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Vicuna-13B-V1.5 57.5 37.5 25.0 17.5 17.5 57.5 37.5 25.0 17.5 17.5 1.2
LLaMA2-Chat-7B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Vicuna-7B-V1.5 52.5 32.5 25.0 12.5 15.0 52.5 32.5 25.0 12.5 15.0 1.2
Baichuan2-Chat-7B 50.0 30.0 35.0 12.5 12.5 50.0 30.0 35.0 12.5 12.5 1.1
ChatGLM3-6B 32.5 22.5 15.0 10.0 7.5 32.5 22.5 15.0 10.0 7.5 0.6

Table 11: Results of Example Constraints across 5 difficulty levels.

HSR (%) SSR (%)
Model L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 CSL

GPT-4 60.0 46.7 40.0 66.7 40.0 60.0 50.0 48.9 66.7 56.0 1.9
GPT-3.5 70.6 47.1 47.1 41.2 23.5 70.6 52.9 58.8 52.9 41.2 1.7
LLaMA2-Chat-70B 58.8 35.3 17.7 23.5 17.7 58.8 41.2 35.3 38.2 37.7 1.2
WizardLM-13B-V1.2 60.0 46.7 20.0 13.3 26.7 60.0 46.7 37.8 36.7 41.3 1.4
LLaMA2-Chat-13B 47.1 41.2 35.3 29.4 29.4 47.1 47.1 45.1 44.1 43.5 1.5
Vicuna-13B-V1.5 64.7 41.2 29.4 23.5 23.5 64.7 47.1 45.1 42.6 44.7 1.5
LLaMA2-Chat-7B 58.8 41.2 29.4 29.4 17.6 58.8 47.1 41.2 39.7 35.3 1.5
Vicuna-7B-V1.5 47.1 29.4 17.6 17.6 11.8 47.1 38.2 37.2 33.8 36.5 1.1
Baichuan2-Chat-7B 47.1 17.6 11.8 17.6 11.8 47.1 32.4 33.3 36.8 36.5 0.7
ChatGLM3-6B 41.2 29.4 23.5 23.5 17.7 41.2 38.2 41.2 39.7 35.3 1.1

Table 12: Results of Mixed Constraints across 5 difficulty levels.

prompt template for model-based evaluation1148

of FollowBench-zh is shown in Figure 10.1149

It is noticeable that although LLaMA2-Chat-1150

70B/13B/7B, WizardLM-13B-V1.2, and Vicuna-1151

13B/7B-V1.5 are not specifically trained on Chi-1152

nese corpora, they can still understand and re-1153

spond in Chinese. Table 16 provides a compre-1154

hensive comparison of various models across five1155

difficulty levels, denoted as L1 to L5. Similar1156

to FollowBench, the performance of nearly all1157

models on FollowBench-zh typically dimin-1158

ishes as we progress from L1 to L5. Nevertheless,1159

GPT-3.5 exhibits a notably diminished proficiency1160

in following instructions on FollowBench-zh1161

in comparison to GPT-4, showcasing a more1162

pronounced performance gap than observed on1163

FollowBench. Moreover, models such as1164

Baichuan2-Chat-7B and ChatGLM3-6B, which are1165

pre-trained on a combination of English and Chi-1166

nese corpora, demonstrate comparable or even bet-1167

ter performance compared to their open-source1168

counterparts. This highlights the significance of1169

incorporating diverse linguistic datasets in pre-1170

training to enhance the multilingual instruction-1171

following capability of LLMs. Figure 11 depicts1172

the instruction-following capability of LLMs over 1173

different constraint categories, with GPT-4 stand- 1174

ing out notably among its counterparts. In a nut- 1175

shell, there is still a substantial opportunity for 1176

enhancing the instruction-following capabilities of 1177

existing LLMs. 1178

给定一个初始指令，我们每次添加一个{constraint_type}约束，获得
了有{level_n}个附加约束的最终指令。

#初始指令#
{initial_instruction}

#初始指令 + 1个约束#
{level_1_instruction}

⁝

#初始指令 + {level_n}个约束#
{level_n_instruction}

#初始指令 + {level_n}个约束的答案#
{answer_of_level_n_instruction}

#系统#
1)请识别出添加的{level_n}个约束。
2)对于添加的{level_n}个约束，请判断#初始指令 + {level_n}个约束的
答案#是否满足了每个约束。
3)在最后一行，只输出一个包含{level_n}个元素（“YES”或“NO”）的
Python列表，表明答案是否满足添加的每一个约束。

Prompt Template for Model-based Evaluation (zh)

Figure 10: Prompt template for model-based evaluation
of FollowBench-zh.
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The response and evaluation result of GPT-4 for a level-5 instruction

Instruction

Talk about domestic animal:
== the norwegian elkhound is one of the northern spitz type breed of dog and is the national dog of
norway. ==
== the irish terrier (irish: brocaire rua) is a dog breed from ireland, one of many breeds of terrier. ==
== a hearing dog is a type of assistance dog specifically selected and trained to assist people who are
deaf or hard of hearing by alerting their handler to important sounds, such as doorbells, smoke alarms,
ringing telephones, or alarm clocks. ==
Could you list three more domestic animals that satisfy ALL of following conditions:
1. Do not talk about dog.
2. Their weights are less than 100kg.
3. Can swim.
4. Have 4 legs.
5. Are hairy.

Response

1. The Maine Coon cat is a large domesticated cat breed that originates from the United States. Known
for their size, they typically weigh less than 100kg. They have a thick, water-resistant fur coat, which
allows them to swim if necessary.

2. The American Mink is a semi-aquatic, fur-bearing mammal that is often domesticated for
its fur. It has four legs, can swim, and weighs significantly less than 100kg.

3. The Norwegian Forest Cat, also known as the "Wegie", is a breed of domestic cat originat-
ing in Northern Europe. This breed is adapted to a very cold climate, with a top coat of glossy, long,
water-shedding hairs, and a woolly undercoat for insulation. Despite their large size, they weigh less
than 100kg and are known to be good swimmers.

Evaluation

1) The 5 added constraints are:
- Do not talk about dog.
- Their weights are less than 100kg.
- Can swim.
- Have 4 legs.
- Are hairy.

2) For the 5 added constraints, the #Answer of Initial Instruction + 5 constraints# satisfies
each constraint as follows:
- Do not talk about dog: Yes, the answer talks about Maine Coon cat, American Mink, and Norwegian
Forest Cat, not dogs.
- Their weights are less than 100kg: Yes, all the animals mentioned weigh less than 100kg.
- Can swim: Yes, all the animals mentioned can swim.
- Have 4 legs: Yes, all the animals mentioned have 4 legs.
- Are hairy: Yes, all the animals mentioned are hairy.

3) [’YES’, ’YES’, ’YES’, ’YES’, ’YES’]

Table 13: The response and evaluation result of GPT-4 for a level-5 instruction belonging to Content Constraints.
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The response and evaluation result of WizardLM-13B-V1.2 for a level-5 instruction

Instruction

Talk about domestic animal:
== the norwegian elkhound is one of the northern spitz type breed of dog and is the national dog of
norway. ==
== the irish terrier (irish: brocaire rua) is a dog breed from ireland, one of many breeds of terrier. ==
== a hearing dog is a type of assistance dog specifically selected and trained to assist people who are
deaf or hard of hearing by alerting their handler to important sounds, such as doorbells, smoke alarms,
ringing telephones, or alarm clocks. ==
Could you list three more domestic animals that satisfy ALL of following conditions:
1. Do not talk about dog.
2. Their weights are less than 100kg.
3. Can swim.
4. Have 4 legs.
5. Are hairy.

Response

1. Cat: Cats are domestic animals that weigh less than 100kg, have four legs, and are hairy. They are
also known for their swimming abilities, making them suitable for households with access to water.
2. Rabbit: Rabbits are small, furry animals that weigh less than 100kg and have four legs. They are also
excellent swimmers, thanks to their powerful hind legs and water-resistant fur.
3. Hamster: Hamsters are small, furry rodents that weigh less than 100kg and have four legs. They are
popular pets due to their gentle nature and low maintenance care.

Evaluation

1) The 5 added constraints are:
- Do not talk about dog.
- Their weights are less than 100kg.
- Can swim.
- Have 4 legs.
- Are hairy.

2) For the 5 added constraints:
- Do not talk about dog: The answer does not mention any dogs. It talks about cats, rabbits, and hamsters.
So, it satisfies this constraint.
- Their weights are less than 100kg: The animals mentioned in the answer (cats, rabbits, and hamsters)
all weigh less than 100kg. So, it satisfies this constraint.
- Can swim: The answer mentions that cats and rabbits can swim. However, hamsters are not natural
swimmers. So, it does not satisfy this constraint.
- Have 4 legs: All the animals mentioned in the answer (cats, rabbits, and hamsters) have four legs. So, it
satisfies this constraint.
- Are hairy: All the animals mentioned in the answer (cats, rabbits, and hamsters) are described as being
hairy or furry. So, it satisfies this constraint.

3) [’YES’, ’YES’, ’NO’, ’YES’, ’YES’]

Table 14: The response and evaluation result of WizardLM-13B-V1.2 for a level-5 instruction belonging to Content
Constraints.

19



Constraint Task Avg Len #Data Evaluation

Data-to-Text Generation 158 25
Document-Level Event Argument Extraction 1,356 15
Document-Level Named Entity Recognition 652 25
Text Generation with Language Constraints 167 25

Content

Open-ended Question Answering 116 25

Suggestion Generation 139 40
Role-playing 203 15Situation
Complex Situation Reasoning 187 55

Style Open-ended Question Answering 120 150

Text-to-Table Generation 305 30Format
Open-ended Question Answering 136 120

Example 40 diverse NLP tasks 1,556 200

Text Editing 195 20
Summarization 481 25
Machine Translation 179 10Mixed

Story Generation 56 10

Table 15: An overview of FollowBench-zh. “Avg Len” is the average character number of instructions. refers
to rule-based evaluation, while refers to model-based evaluation.

HSR (%) SSR (%)
Model L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 CSL

GPT-4 86.7 83.9 68.7 67.0 61.1 86.7 84.8 76.0 74.0 71.8 3.1
GPT-3.5 69.6 65.2 52.8 49.1 39.5 69.6 70.8 63.8 64.0 59.5 2.2
LLaMA2-Chat-70B 52.8 46.4 41.0 30.3 23.5 52.8 53.1 54.0 51.0 49.1 1.5
WizardLM-13B-V1.2 55.9 46.5 37.8 29.4 19.6 55.9 50.9 51.3 50.2 47.3 1.6
LLaMA2-Chat-13B 53.3 46.0 36.1 30.6 29.5 53.3 51.9 50.4 48.3 49.0 1.6
Vicuna-13B-V1.5 56.4 43.8 36.9 32.4 22.5 56.4 53.0 52.0 52.2 46.5 1.5
LLaMA2-Chat-7B 54.0 44.7 37.6 21.7 21.7 54.0 51.3 51.0 44.2 44.4 1.5
Vicuna-7B-V1.5 52.6 37.8 30.0 22.0 13.4 52.6 48.8 46.6 46.7 40.5 1.2
Baichuan2-Chat-7B 59.8 45.7 34.2 27.2 17.1 59.8 53.0 52.0 46.9 44.5 1.4
ChatGLM3-6B 62.0 45.9 36.6 28.1 17.8 62.0 53.4 54.3 49.1 45.6 1.5

Table 16: Results across five difficulty levels of FollowBench-zh. For each level, we compute the average score
of all constraint categories.

Content

SituationStyle

Format

Example Mixed

0.2
0.4

0.6
0.8

GPT-4
GPT-3.5
LLaMA2-Chat-70B
WizardLM-13B-V1.2
LLaMA2-Chat-13B
Vicuna-13B-V1.5
LLaMA2-Chat-7B
Vicuna-7B-V1.5
Baichuan2-7B
ChatGLM3-6B

Figure 11: HSR (%) results in diverse constraint cate-
gories of FollowBench-zh. For each category, we
compute the average score of all difficulty levels.
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