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ABSTRACT

Referring Video Object Segmentation aims to segment object instances referred
to by natural language referring expressions in a video sequence. This interaction
style is quite simple and flexible, being capable of producing high quality seg-
mentation masks. However, the referring expression variation occurs due to the
randomness of expressions provided by users, making the existing state-of-the-art
models still face the problem of wrongly identifying the referred object. To ad-
dress this issue, we present a novel referring video object segmentation network
fed with multiple referring expressions. Specifically, a simple but effective neural
expression generation module is proposed to map the features of multiple referring
expressions to complementary features with less redundancy. This interaction of
multiple referring expressions not only is beneficial to identify the referred object
but also speeds up the training convergence. We make evaluations of the proposed
method on the popular referring video object segmentation datasets, and exper-
imental results demonstrate that our method outperforms the state-of-the-arts by
a significant margin in terms of segmentation quality and achieves considerable
gains in terms of training convergence speed. Our code and pre-trained models
will be available.

1 INTRODUCTION

Video object segmentation is a fundamental task in computer vision, aiming at the segmentation
of object instances across a video sequence. To specify the object to be segmented, various types
of user input have been explored up to now, including unsupervised (no manual annotation), semi-
supervised (1st frame annotation) and interactive (scribble or click annotation) types, etc. Consider-
ing that the language is often used in our daily life to indicate a specific object, a new task, called
Referring Video Object Segmentation (RVOS), is introduced by the methods (Gavrilyuk et al., 2018)
and (Khoreva et al., 2018). The RVOS task exploits language to identify and segment an object re-
ferred to by the given language description (a.k.a. referring expression RE), playing an important
role in human-computer interaction, robotics, and video editing applications.

To accurately segment the referred object in a video clip, one needs to holistically understand the
RE and video content. When the model fails to understand the input RE, this might lead to the
completely wrong mask segmentation. As a fact, the significance of linguistic structure in the RE
is found in syntactic and lexical ablation experiments that were conducted on the RE segmentation
datasets (Cirik et al., 2018; Bellver et al., 2023), where both the length of the RE and combinations
of semantic attributes are reported making a difference to the segmentation performance.

To figure out why this happens, understanding the generation of the RE seems somewhat helpful.
Now, the approaches of generating the RE in the existing referring expression segmentation datasets
could be mainly grouped into 1) template-based, and 2) free-form-based. The former typically gen-
erates the expressions by adding categories, attributes, and relationships (Wu et al., 2020), while the
latter generates natural expressions by Amazon Mechanical Turk workers that are asked to accu-
rately describe the target object (Seo et al., 2020). In contrast, the free-form is mostly used, since
it is simpler and less constrained. Due to the randomness of expressions provided by users, the RE
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Figure 1: Conceptual comparison between (a) the top-performing method ReferFormer (Wu et al.,
2022b) and (b) our proposed method.

variation occurs, which might explain the above significant influence of the RE on the segmentation
performance.

To address the above-mentioned issue, we return to the user guidance: the RE. In a real scenario, we
could imagine that when talking with a person or a voice assistant (e.g. “Siri”), if one sentence is
not effective enough, we typically change the RE and provide a second one with similar meanings
to enhance the understanding. This interaction raises one question: will it improve the accuracy of
the RVOS model with the input of multiple referring expressions?

W.r.t. multiple referring expressions (MRE), as shown in Table 1, the large-scale RVOS dataset
Ref-Youtube-VOS (Seo et al., 2020) provides almost two referring expressions per target instance.
The A2Dre+ dataset (Bellver et al., 2023) generates many more referring expressions for each target
instance through referring expression categorization, enabling the analysis of how referring expres-
sions influence RVOS. Besides, earlier RVOS datasets Ref-DAVIS16 and Ref-DAVIS17 (Khoreva
et al., 2018) offer two more referring expressions per instance. Actually, MRE for the same ob-
ject instance are used by the existing RVOS models in the training, during which the models are
trained with one RE at each iteration. However, they are still limited in predicting the correct object,
which might put down to no interaction between MRE. Nevertheless, the combination of seman-
tic attributes through the fashion of feeding MRE to the network is still unexplored, which is the
research focus of this paper.

Apart from the RE understandings, an efficient end-to-end framework precisely segmenting objects
of interest is also indispensable. With recent advances in object detection and segmentation, DEtec-
tion TRansformer (DETR) (Carion et al., 2020) has emerged as a powerful framework that yields
state-of-the-art quality. Top-performing methods for the RVOS are based on the DETR-like frame-
work. Despite significant improvements that have been achieved, DETR-based methods still suffer
from slow training convergence. For each referred object given with M1 number of referring ex-
pressions, if the input number of referring expressions of the network is M2, the total number of
iterations at each epoch will be decreased from M1 to M1

M2 . Compared with a single RE used per
iteration, the interaction of M2 referring expressions has more potential to generate effective seman-
tic referring features. Here raises another question: is it possible to improve the speed of training
convergence of the DETR-based model for RVOS with well-aggregated MRE?

In this paper, we make an attempt to seek the answer to two raised questions. Our proposed method
in Figure 1 (b) is built on top of the top-performing method ReferFormer (Wu et al., 2022b) in Fig-
ure 1 (a). To tackle the RE variation, we propose a simple but effective module Neural Expression
Generation (NEG) to learn a mapping from multiple referring expression features to the more repre-
sentative features. In addition, we propose optimization improvements such as sampling more points
around the referred object to aggregate more context in the fine-tuning phase, so as to improve the
ability to handle objects with varying shapes. To summarize, we make the following contributions:

• The first RVOS method that is fed with multiple referring expressions to obtain the com-
plete and concise linguistic features by a simple yet effective neural expression generation
module.
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Table 1: Summary of referring video object segmentation datasets. # RE: the number of Referring
expressions.

Dataset Videos #RE per Instance Form
Ref-DAVIS16 50 4 Free-form
Ref-DAVIS17 90 4 Free-form

Ref-Youtube-VOS 3975 ≈ 2 Free-form
A2Dre+ 190 ≈ 8 -

• Proposed different sampling strategies in cross-modal attention for pre-training and fine-
tuning to boost the model performance.

• Having achieved the superior accuracy over state-of-the-art methods, and 2× faster training
convergence compared to the top-performing method ReferFormer.

2 RELATED WORK

2.1 REFERRING VIDEO OBJECT SEGMENTATION

The objective of RVOS is segmenting an object across a video sequence with given referring expres-
sions. Some early works made an attempt to tackle this task in a two-stage fashion, i.e. decomposing
it into well-known sub-sequential tasks. Khoreva et al. (Khoreva et al., 2018) present a “localize-
then-segment pipeline”, where the referring expression is used to localize the target object, and then
pixel-wise segmentation network is employed to obtain the mask. Seo et al. (Seo et al., 2020) present
two sequential neural networks (URVOS) and semi-supervised video object segmentation respec-
tively, in which one mask with a high confidence is predicted and then propagated to other frames.
Recently, the one-stage learning-based method stood out to be a prevalent method for the RVOS,
which could be classified into two-stream and single-stream spatial-temporal interaction methods.
Ding et al. (Ding et al., 2022) propose a two-stream model architecture (LBDT) that takes into
account the appearance and frame differences, in which linguistic features are leveraged to bridge
spatial-temporal interactions. Zhao et al. (Zhao et al., 2022) propose a multi-modal alignment loss
to align appearance, optical flow, and linguistic features. Regarding single-stream solutions, Gavri-
lyuk et al. (Gavrilyuk et al., 2018) propose to encode linguistic features as kernels of convolutional
dynamic filters to convolve visual features. Li et al. (Li et al., 2022) present a meta-transfer ap-
proach (YOFO) to disregard irrelevant linguistic features and transfer useful linguistic features to
the outputs that are dominated by spatial-temporal features. Wu et al. (Wu et al., 2022a) propose
to model multi-modal interactions by dynamic semantic alignment in a multi-level manner: video-
level, frame-level, and object-level. Liang et al. (Liang et al., 2023) present a computation-efficient
and memory-efficient fully attentional Transformer framework (LOCATER). Hui et al. (Hui et al.,
2023) present a language-aware spatial-temporal collaboration framework (CSTM), in which lan-
guage features are updated progressively. More recently, query-based DETR-like models (Adam
et al., 2022; Wu et al., 2022b) have emerged as a powerful alternative to previous one-stage meth-
ods. Multi-modality interaction is simply implemented by the concatenation of linguistic and vision
features or early cross-attention fusion of linguistic and vision features (Wu et al., 2022b), followed
by the transformer encoder. The temporal coherency is achieved by linking the corresponding in-
dexes across video object queries. Though these methods have achieved impressive results in some
scenarios, but their performance is still limited by the understanding of referring expressions (for
instance, cf. Figure 3).

2.2 REFERRING EXPRESSION GENERATION

To generate referring expressions for natural scenes, previous works mainly follow two directions:
template-based and free-form-based.
Template-based. Kazemzadeh et al. (Kazemzadeh et al., 2014) present an automatic method to
generate template-based referring expressions from sentences in image retrieval datasets under a set
of pre-defined attributes, e.g. category, color, relative location, etc. Wu et al. (Wu et al., 2020)
generate referring expression annotations by adding categories, attributes, and relationships, based
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on the Visual Genome dataset which includes images and scene-graph annotations.
Free-form-based. Kazemzadeh et al. (Kazemzadeh et al., 2014) present a free-form-based method,
in which a two-player game is developed, and posted online for players to generate expressions
referring to objects and click on the location of referred objects. To generate Ref-DAVIS17 (Khoreva
et al., 2018) and Ref-Youtube-VOS dataset (Seo et al., 2020), annotators were given a pair of videos,
i.e. the original video and the mask-overlaid video with the target object highlighted, and then asked
to describe the target object accurately. The natural language expressions in the RVOS dataset
behave differently on aspects of the length, semantic attributes, and so on. The interaction between
natural language expressions for the same object instance has not been explored in existing RVOS
models which are usually trained with one referring expression at each iteration.

2.3 TRANSFORMERS

The Transformer (Vaswani et al., 2017) has been introduced to a variety of computer vision tasks,
having demonstrated a more appealing performance than previous works. DETR (Carion et al.,
2020), i.e. a typical successful transformer-based method is presented as the first end-to-end frame-
work for object detection, achieving comparable performance with previous methods. Unfortu-
nately, this is achieved at the expense of many more epochs to converge, which is quite slow. Many
works are dedicated to resolving the convergence speed issue, e.g., (Zhu et al., 2021) propose de-
formable attention to speed up the training. In recent years, DETR has fostered similar research
fields, e.g. extending DETR-like models to the RVOS. MTTR (Adam et al., 2022) models this
task as a sequence prediction via a multi-modal transformer. Following this work, ReferFormer
(Wu et al., 2022b) replaces the transformer used in MTTR with the deformable transformer (Zhu
et al., 2021), achieving much faster training speed. Nevertheless, ReferFormer still has unfavorable
limitations of lengthy training progress. In this work, our method is built on top of ReferFormer,
and multi-referring features aggregation is proposed, enabling fewer epochs to converge and higher
segmentation accuracy.

3 METHOD

In this section, we first review the model architecture for referring video object segmentation that
the proposed method is built upon. Then, the proposed Neural Expression Generation module which
is the core component to model multiple referring expressions is introduced, followed by the opti-
mization of sampling strategy and losses. Figure 2 depicts the model architecture of the proposed
method.
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Figure 2: The model architecture of the proposed method.

3.1 PRELIMINARIES

Feature Extraction. The model begins with the visual encoder and the linguistic encoder for visual
feature extraction and text feature extraction respectively. The backbone of the visual encoder takes
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as input a video clip with T frames of the resolution H × W , denoted as VT ∈ RT×3×H×W , and
outputs multi-scale pixel-level features F l

T ∈ RT×Cl×Hl×W l

, where l denotes the spatial scale and
Cl denotes the feature channels at the scale l. Regarding the linguistic encoder, it takes as input
the referring expression. The word features are extracted by the weights-sharing linguistic encoder,
denoted as L.
Multi-modal Fusion. After the projection of multi-scale visual features to the same channel C, the
language features cross-attend to the visual features in a multi-scale manner, outputting multi-scale
fused features T × C ×H l ×W l.
Deformable Transformer. Considering the computational burden and memory footprint, the tem-
poral dimension of fused features is moved to the batch dimension beforehand. The encoder, com-
posed of a stack of deformable self-attention layers, progressively attend to the early fused features
at each spatial scale, so as to capture the global context of each frame. The query embedding associ-
ated with a learnable positional encoding is input to the decoder comprising of a stack of deformable
attention layers to query the instance features from encoded memories. Note that the query embed-
ding is initialized by text features from the linguistic encoder instead of zero-values, leading to
considerable performance gains. This decoder outputs Nq instances per frame.
Instance Sequence Segmentation. The Cross-Modal Feature Pyramid Network (CM-FPN) is em-
ployed to upsample multi-level low-resolution encoded memory features to generate high-resolution
features Fseg . Meanwhile, multiple prediction heads implemented by different Feed Forward Net-
works independently decode the instance embedding from the decoder into the class label and
bounding box coordinates. Moreover, the instance embeddings are transformed into dynamic con-
volutional weights and then features Fseg are passed through dynamic convolutional layers to obtain
mask predictions ŷ.
Instance Sequence Matching and Losses. At the last step, the bipartite matching and loss calcula-
tion between the instance sequence predictions and the corresponding ground truth are sequentially
performed. Specifically, let us denote by ŷ = {ŷi}

Nq

i=1 the set of Nq predictions, and by y the ground
truth. Next, a permutation of Nq elements (i ∈ SNq

) are searched with the minimum pair-wise
matching cost between the two sets using Eq. 1 and Eq. 2.

î = argmin
i∈SNq

Lmatch(y, ŷi) (1)

Lmatch(y, ŷi) = λclsLcls(y, ŷi) + λboxLbox(y, ŷi)

+ λmaskLmask(y, ŷi)
(2)

where λcls, λbox, λmask ∈ R are hyper-parameters, and Lcls , Lbox, mask loss Lmask represents
classification loss, bounding box loss and mask loss respectively. Finally, the total loss Lmatch for
all pairs matched in the previous step is optimized for training the whole network.

3.2 NEURAL EXPRESSION GENERATION

Instead of feeding one referring expression to a deep neural network, we draw inspiration from
an early work (Bellver et al., 2023) (experimental results from their various combinations of vi-
sual attributes illustrate the full-length referring expression improves performance, especially for
non-trivial samples), and propose to introduce multiple referring expressions to learn the referring
expression representation for improving the segmentation quality.

A straightforward approach to handling the referring expression variation is the concatenation of
multiple linguistic features, dubbed as “MRE Concat”. The concatenation is placed before early fu-
sion, since this early fusion is surprisingly found much more effective compared to intermediate and
late fusion. Specifically, multiple referring expressions, denoted by RE = {REi}Ni=1, are fed into
the Linguistic encoder to generate the corresponding linguistic features L = {Li}Ni=1 respectively.
N means the number of referring expressions. The concatenated fashion is shown in Eq. 3.

LConcat = Concat(L1, L2, ..., LN ) (3)

The concatenated features usually involve more attributes, being beneficial to the accuracy of sepa-
ration of objects. However, this approach may not be sufficient to disregard useless features, causing
distraction in mask outputs. Therefore, we propose to approximate the referring expression represen-
tation with a multi-layer perceptron (MLP) network and optimize the weights of the MLP network
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to map MRE features to the more representative RE features.

LMLP = MLP (LConcat) (4)

To make the MLP well-trained, we follow a common practice (Vaswani et al., 2017; Carion et al.,
2020), i.e. to use residual connections, dropout and layer normalization, cf. Eq. 5.

LNEG = Lq +Norm(Dropout(LMLP ))) (5)

3.3 OPTIMIZATION IMPROVEMENTS

Sampling points in Deformable Attention. To quickly make attention weights Amqk focus on
instance features from the encoded memory, the deformable attention is used in the pre-training
phase, which attends to only a sparse set of points around the object of interest instead of all possible
points. The multi-head attention features are computed by Eq. 6,

DeformAttn(zq, Pq, x) =

J∑
j=1

Wj [

K∑
k=1

Ajqk ·W
′
jx(Pq + Pjqk)]) (6)

where k denotes the number of sampling points and j is the index of attention head. K is the number
of total sampled points. J is the number of total attention heads. W

′

j and Wj are learnable weights.

After pre-training, the attention weights could be more or less focused on instance features in the
new data. Thus, the querying instance in a global context seems more potential to boost perfor-
mance. In order to aggregate more context to segment referred dynamic objects, in the fine-tuning
phase, more points with larger K are sampled around the object instances. Table 2 (b) shows that
the improvement is achieved by optimizing the sampling of the deformable attention.
Instance Sequence Matching and Losses. To accurately sample the points around the center of
reference points, the training begins with the supervision of a bounding box. Once the object in-
stances are localized, we find the movement of bounding box supervision improves the segmentation
accuracy. Therefore, the bounding box supervision is not used during the fine-tuning.

3.4 IMPLEMENTATION DETAILS

The visual encoder in the proposed method is implemented as different visual backbones, including
ResNet (He et al., 2016), swin transformer (Liu et al., 2021) and video swin transformer (Liu et al.,
2022), as similarly done in ReferFormer. Our method is pre-trained on MS-COCO (Lin et al., 2014)
dataset with referring expressions, i.e. Ref-COCO/+ (Yu et al., 2016) and Ref-COCOg (Mao et al.,
2016), then fine-tuned on the Ref-Youtube-VOS (Seo et al., 2020) training set. Regarding the fine-
tuning phase, we adopt the almost same hyperparameters with ReferFormer except that the total
batch size is 8, the maximum image size is 448, and the initial learning rate is 5e-5. The whole
fine-tuning took about 5 hours on 4 Nvidia RTX A6000 GPUs. No post-processing techniques are
used in the inference phase.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

Ref-Youtube-VOS dataset (Seo et al., 2020) is a large-scale RVOS dataset, which covers 3,978
YouTube videos from the YouTube-VOS dataset (Xu et al., 2018) with around 15k language expres-
sions. 6,388 unique objects are included in the train set with 12,913 expressions and 1,063 unique
objects are included in the validation set with 2,096 expressions. On average, each object has around
2 referring expressions and each expression has more or less 10 words. Since the annotations of the
validation set are not publicly available, our validation results are reported by submitting mask pre-
dictions to the evaluation server.
Ref-DAVIS17 dataset (Khoreva et al., 2018) has 1544 expressions for 205 objects in 90 videos from
DAVIS17 dataset (Pont-Tuset et al., 2017). This dataset is split into 60 videos and 30 videos for
training and validation, respectively. The results of the validation set are reported as done in the
compared methods.
A2Dre+ dataset (Bellver et al., 2023) is built upon the A2D-Sentence (Gavrilyuk et al., 2018) test
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set that collects language expressions for 746 videos from the A2D dataset (Xu et al., 2015). This
dataset is extended from the A2Dre dataset (Bellver et al., 2023) that contains 433 non-trivial ex-
pressions (corresponding to the referred object that is not the only object of a certain object class
in a video) for 190 videos selected from the A2D-Sentence test set. 4 major semantic categories
out of the 7 semantic categories in A2Dre, i.e. appearance, spatial location, motion, and static, are
selected. With the available semantic categories, each expression is augmented by either including
the semantic category or removing the semantic category.

Metrics. The standard metrics are used: region similarity J , contour accuracy F , and average
value of J and F . All results on Ref-Youtube-VOS are evaluated using the online validation server
and results on Ref-DAVIS17 are evaluated by the official code. Following the previous work (Wu
et al., 2022b), Overall IoU and Mean IoU are used to evaluate the RVOS models on the A2Dre+
dataset, which computes the ratio between the total intersection and the total union area over the test
samples, and calculates the averaged IoU over all the test samples respectively.

4.2 ABLATION EXPERIMENTS

All ablation experiments are conducted on the Ref-Youtube-VOS validation set, and the Video-
Swin-T is used as the backbone of the visual encoder.

Impact of removing bounding box supervision. Bounding box loss summing up the L1 loss and
GIoU loss is used for object location supervision. Here we verify if removing bounding box loss
helps the improvement of the accuracy. Specifically, we conducted several fine-tuning experiments
with various combinations of coefficients for bounding box losses between 0 (i.e. without) and
2. As is shown in Table 2 (a), we could learn that the higher score is achieved by weakening
the bounding box effect during fine-tuning, and the best accuracy is obtained when this loss is
completely removed, probably because the global context information helps to accurately segment
the referred object.

Impact of number of sampling points. We discuss the impact of the number of sampling points
K in deformable attention. As shown in Table 2 (b), the increase from the original K = 4 to
K = 16 witnesses the improvement of J & F from 60.8 to 61.1, illustrating that the performance
is possiblely to be boosted from a larger context of the encoded memory.

Impact of NEG module. Table 2 (c) shows various design choices for multi-referring feature aggre-
gation. The “Single RE” listed in this Table is regarded as the baseline. Compared to the Single RE,
the proposed NEG achieves gains of 1.6% in J & F , 1.7% in J , and 1.6% in F respectively. “MRE
Ranking” ranks the likelihood of candidate indexes from MRE in the inference phase. Compared to
the MRE Ranking, the number of epochs that the MRE Concat and NEG takes is 2× less.

L1 GIoU J & F J F
2 2 59.6 57.9 61.4
1 1 60.4 58.7 62.0

0.5 0.5 60.4 58.8 62.0
0.25 0.25 60.5 58.8 62.2

0 0 60.8 59.1 62.4

(a): impact of with and without
bounding box loss.

J & F J F
K=4 60.8 59.1 62.4
K=16 61.1 59.5 62.7

(b): impact of K used in
deformable attention.

J & F J F #Eps
Single RE 61.1 59.5 62.7 6

MRE Ranking 62.6 61.1 64.2 6
MRE Concat 62.2 60.4 64.1 3

NEG 62.7 61.2 64.3 3

(c): impact of various designs for the
MRE.

Table 2: Ablation studies of model settings and model design choices on the Ref-Youtube-VOS
validation set. #Eps indicates the number of fine-tuning epochs.

4.3 PERFORMANCE ON REF-YOUTUBE-VOS AND REF-DAVIS17

Quantitative comparisons. Table 3 demonstrates the quantitative comparisons between the pro-
posed method and the state-of-the-art methods (URVOS (Seo et al., 2020), YOFO (Li et al., 2022),
LOCATER (Liang et al., 2023), CSTM (Hui et al., 2023), LBDT (Ding et al., 2022), MTTR (Adam
et al., 2022), ReferFormer (Wu et al., 2022b)). Here, for the sake of fair comparisons, the compared
methods using the same backbone are put together since the backbone makes a big difference in the
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Table 3: Performance comparison results on the Ref-Youtube-VOS validation set and Ref-DAVIS17
validation set. NT indicates the number of epochs pre-trained on Ref-COCO/+ (Yu et al., 2016),
Ref-COCOg (Mao et al., 2016), and NF is the number of epochs fine-tuned or trained on Ref-
Youtube-VOS training set Seo et al. (2020).

Method backbone Epochs Ref-Youtube-VOS Ref-DAVIS17
(NT+NF) J & F J F J & F J F

URVOS ResNet-50 0+120 47.2 45.3 49.2 51.5 47.3 56.0
YOFO ResNet-50 0+150 48.6 47.5 49.7 53.3 48.8 57.8

LOCATER ResNet-50 0+30 50.0 48.8 51.1 - - -
CSTM ResNet-50 0+15 49.3 48.2 50.5 54.5 - -

LBDT-4 ResNet-50 0+15 49.4 48.1 50.6 54.5 - -
ReferFormer ResNet-50 12+6 55.6 54.8 56.5 58.5 55.8 61.3

Ours ResNet-50 12+3 58.0 57.0 59.1 59.4 56.6 62.2
ReferFormer Swin-T 12+6 58.7 57.6 59.9 55.8 53.2 58.3

Ours Swin-T 12+3 61.7 60.3 63.1 59.7 56.8 62.5
ReferFormer Swin-L 12+6 62.4 60.8 64.0 60.5 57.6 63.4

Ours Swin-L 12+3 65.4 63.5 67.2 62.6 59.9 65.3
MTTR Video-Swin-T 0+30 55.3 54.0 56.6 - - -

ReferFormer Video-Swin-T 12+6 59.4 58.0 60.9 59.7 56.6 62.8
Ours Video-Swin-T 12+3 62.7 61.2 64.3 61.0 58.0 64.0

RVOS task. Note that all variants of our method share the same parameters except the backbones.
In this comparison, the proposed method surpasses the previous works in terms of segmentation
accuracy by a significant margin. Besides, our method consistently outperforms ReferFormer by
more than 2.4% J & F on the Ref-Youtube-VOS dataset irrespective of the backbones. Likewise,
superior segmentation quality is achieved on the Ref-DAVIS17 dataset. Apart from the segmenta-
tion quality metric, our method also shows superior performance in terms of training speed, taking
the fewest epochs to converge among all the top-performing methods. Reaching the same quality
of segmentations, our method seems around 4× faster than the ReferFormer in terms of fine-tuning
convergence speed, cf. Figure 4 in Appendix A.1.
Qualitative comparisons. Figure 3 shows the visual comparison results between our method and
ReferFormer. As seen in Figure 3, our method significantly improves the segmentation quality,
especially for non-trivial samples (i.e. multiple objects of the same class), while ReferFormer some-
times might misidentify one object as another object, miss some keywords, or not fully understand
the sentence. Besides, the order of the two referring expressions makes little difference in our results.

4.4 PERFORMANCE ON A2DRE+

The A2Dre+ is further used to verify the effectiveness of multi-referring feature aggregation for the
RVOS. The Video-Swin-T is used as the backbone of the visual encoder in all compared methods.
Quantitative comparisons. From Table 4, we observe that, compared with only feeding the refer-
ring expression w/o APP (without appearance category) or only feeding the referring expression w/o
SP (without spatial location category), ReferFormer is more beneficial from feeding the concatena-
tion of referring expressions w/o APP and w/o SP (i.e. 57.4% Overall IOU (w/o APP + w/o SP)
higher than 52.2% (w/o APP) and 50.0 (w/o SP)). With the same referring expressions (w/o APP +
w/o SP), Ours gets a much higher 60.2% Overall IOU than 57.4% of ReferFormer, which illustrates
the effectiveness of the proposed Neural expression generation module for multi-referring feature
aggregation.

5 CONCLUSION

In this paper, we present a novel network fed with multiple referring expressions for referring video
object segmentation. A novel neural expression generation module is proposed to obtain complete
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RE1: the first giraffe from the right
RE2: the giraffe is on the right side of the railing and has its head hanging over and eating grass

RE1: a lady strapped to a man both skydiving
RE2: a person with red glasses is in front of another and both are going to jump out of the plane

Frame ReferFormer (RE1) ReferFormer (RE2) Ours (RE1,RE2) Ours (RE2,RE1)

Figure 3: Visual comparison results on the Ref-Youtube-VOS validation set.

Table 4: Performance comparison results on A2Dre+ dataset. Different kinds of referring expres-
sions, annotated with semantic categories are included or not included, are used. APP: appearance
category, SP: spatial location category.

Referring Expression Method
IoU

Overall Mean
w/o APP ReferFormer 52.2 50.3
w/o SP ReferFormer 50.0 50.6

APP+w/o SP ReferFormer 55.8 54.9
APP+w/o SP Ours 59.4 55.2
w/o APP+SP ReferFormer 56.1 54.0
w/o APP+SP Ours 59.6 56.1

w/o APP+ w/o SP ReferFormer 57.4 54.8
w/o APP+ w/o SP Ours 60.2 56.8

and concise linguistic features by multi-referring feature aggregation. Moreover, optimization strate-
gies are proposed to boost the model performance by different sampling strategies in cross-modal
attention and different bounding box supervision for pre-training and fine-tuning. Evaluations are
made on the two popular RVOS datasets, and experimental results show a superior performance than
previous methods. We believe this work makes progress toward the modeling of referring expres-
sions in segmenting the referred object, and hope it will open up the possibilities in exploring the
essential understanding of referring expressions in referring video object segmentation.

6 REPRODUCIBILITY STATEMENT

The experimental results in the paper are reproducible with additional implementation details, which
could be found in Appendix A.5.
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A APPENDIX

A.1 COMPARISON OF THE ACCURACY AND THE FINE-TUNING SPEED

Figure 4 shows comparisons of the accuracy between ReferFormer (Wu et al., 2022b) and the pro-
posed method under various fine-tuning epochs. The experimental results notably show the benefit
of the proposed NEG module for multi-referring feature aggregation and optimization improvements
on aspects of RVOS accuracy and fine-tuning convergence speed.
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Figure 4: Performance comparison on the Ref-Youtube-VOS validation set (Seo et al., 2020). “Ours-
NEG” means our method without the proposed NEG module. The higher J & F represents the
better accuracy.

A.2 INDIRECT IMPROVEMENT OF THE TRAINING SPEED

To further validate the efficiency of multi-referring feature aggregation on the training speed of the
whole “pretrain-then-finetune” process, we also report the results from various epochs spent in the
pre-train stage, as shown in Table 5.

Table 5: Performance comparison results on the Ref-Youtube-VOS validation set. NT indicates the
number of epochs pre-trained on Ref-COCO/+ (Yu et al., 2016) and Ref-COCOg (Mao et al., 2016).
NF is the number of epochs fine-tuned on the Ref-Youtube-VOS training set (Seo et al., 2020). †:
32 Nvidia V100 GPUs with 32GB memory used in ReferFormer (Wu et al., 2022b). Other results
are obtained using 4 Nvidia RTX A6000 GPUs with 48GB memory.

Method Epochs Ref-Youtube-VOS
(NT+NF) J & F J F

ReferFormer 12†+6† 59.4 58.0 60.9
Ours 12†+3 62.7 61.2 64.3
Ours 12+3 62.0 60.3 63.8
Ours 7+3 62.0 60.4 63.6
Ours 4+3 62.0 60.6 63.4

Comparing the second row (32 Nvidia V100 GPUs with 32GB memory in use) with the third row (4
Nvidia RTX A6000 GPUs with 48GB memory in use), our proposed model is still able to achieve
high performance with limited GPU memory footprints. Comparing the first row with the last row,
our method, spending only 1/3 epochs in the pre-training stage, still outperforms the ReferFormer
(Wu et al., 2022b) by a significant margin, which demonstrates that the proposed method with the
interaction of multiple referring expressions is capable of improving the speed of the whole training.
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A.3 MORE COMPARISONS WITH RECENTLY PUBLISHED METHODS

Table 6 shows comparisons with recently published methods, including R2-VOS (Li et al., 2023),
OnlineRefer (Wu et al., 2023), HTML (Han et al., 2023). The results of all compared methods are
obtained from the published paper. The proposed method still outperforms these recently published
methods by a non-negligible margin with the fewest training epochs.

Table 6: Performance comparison results on the Ref-Youtube-VOS validation set. NT indicates the
number of epochs pre-trained on Ref-COCO/+/g datasets and NF is the number of epochs fine-tuned
on Ref-Youtube-VOS training set (Seo et al., 2020).

Method backbone Epochs Ref-Youtube-VOS
(NT+NF) J & F J F

ReferFormer ResNet-50 12+6 55.6 54.8 56.5
R2-VOS ResNet-50 12+6 57.3 56.1 58.4

OnlineRefer ResNet-50 12+6 57.3 55.6 58.9
HTML ResNet-50 12+6 57.8 56.5 59.0
Ours ResNet-50 12+3 58.0 57.0 59.1

ReferFormer Swin-T 12+6 58.7 57.6 59.9
R2-VOS Swin-T 12+6 60.2 58.9 61.5

Ours Swin-T 12+3 61.7 60.3 63.1
OnlineRefer Swin-L 12+6 63.5 61.6 65.5

HTML Swin-L 12+6 63.4 61.5 65.3
Ours Swin-L 12+3 65.4 63.5 67.2

R2-VOS Video-Swin-T 12+6 61.3 59.6 63.1
HTML Video-Swin-T 12+6 61.2 59.5 63.0
Ours Video-Swin-T 12+3 62.7 61.2 64.3

OnlineRefer Video-Swin-B 12+6 62.9 61.0 64.7
HTML Video-Swin-B 12+6 63.4 61.5 65.2
Ours Video-Swin-B 12+3 65.3 63.6 66.9

A.4 VISUALIZATION

A.4.1 RESULTS ON REF-YOUTUBE-VOS

In Figure 5, we visualize a sequence of mask predictions of the proposed method. These examples
show that our method is capable of predicting meaningful and accurate segmentation masks associ-
ated with the input referring expressions. Additionally, our method is able to produce temporarily
consistent segmentation masks.

A.4.2 RESULTS ON A2DRE+

Figure 6 shows the visual predictions of the proposed method using the fine-tuned model on Ref-
Youtube-VOS, in which textual inputs are composed of different combinations of semantic cate-
gories. Without any fine-tuning on this dataset, our proposed method is capable of identifying the
referred object, and segmenting the object in a high quality.

A.5 ADDITIONAL IMPLEMENTATION DETAILS

Our model is built upon the ReferFormer ((Wu et al., 2022b)) model, which is publicly available
on the github “ReferFormer” repository. Regarding the pre-training stage, we adopt the same hy-
perparameters with ReferFormer except that the total batch size is 16. Regarding the results on
Ref-DAVIS17 dataset and A2Dre+ dataset, they are both predicted by the fine-tuned model on Ref-
Youtube-VOS dataset.
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a red tennis racket; a tennis racket on the left being held by a person

a white truck is in front of a white fence moving down the road to the left; a white truck driving on a road 

a person wearing a white shirt is driving a white truck moving down the road; a person driving a white truck down a road     

a sedan is on the right side behind the white truck and in front a wall; a white suv

a man in a white shirt; a person dressed in white and gray holding a tennis racket

a white hat on the head of a skateboarder; a white hat is being worn by a person riding a skateboard uphill

a black backpack being used by a skateboarder doing tricks on a skateboard; a black backpack is being worn by a person riding a skateboard uphill

a skateboard being used by a person wearing a green t-shirt; a skateboard is being rode by a person wearing a green shirt and tan shorts        

a person riding a black skateboard down the street; a person wearing a green shirt is riding a skateboard up the road

an owl which is sitting on left eat something from its leg; a small yellow and black owl is sitting in the tree to the left of another

a stuffed white and blue costume; a stuffed toy is moving front with a person

a person in a red hoodie; a person carry a lion head mask used for lion dance

a man walkng in an all black outfit; a man next to the one carrying the mask for lion dance

an owl sitting on the right scratches his body around with its beak; a yellow and black owl is sitting next to another on the right side in a tree

a dog is waiting to catch the ball shown to him; a dog standing on a deck

a hand is showing a ball to a dog; a hand giving a yellow ball to a dog

a lawn tennis ball in the hand of a person; a tennis ball

Figure 5: Visualization results on Ref-Youtube-VOS validation set. The color of the rectangle con-
tour corresponds to the color of the mask overlaid on the referred object.
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the child is crawling up onto the sofa baby girl sitting on the couch

the child in a red pijama is crawling up onto the sofa

the child is crawling upW/o SPP

W/o APP

W/ APP

the child is crawling up

the child is crawling up onto the sofaW SPP

the child is crawling up onto the sofaW/o APP

W/o SPP

baby girl sitting

baby girl in red shirt and red pants sitting on the couch

baby girl sitting

baby girl sitting on the couch

baby girl sitting on the couch

Figure 6: Visualization results on A2Dre+ dataset. The color of the rectangle contour corresponds
to the color of the mask overlaid on the referred object.
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