
Analyzing Code Injection Attacks on LLM-based
Multi-Agent Systems in Software Development

Brian Bowers
Department of Computer Science

Loyola Marymount University
Los Angeles, USA

bbowers3@lion.lmu.edu

Smita Khapre
Department of Computer Science

University of Colorado Colorado Springs
Colorado Springs, USA

skhapre@uccs.edu

Jugal Kalita
Department of Computer Science

University of Colorado Colorado Springs
Colorado Springs, USA

jkalita@uccs.edu

Abstract—Agentic AI and Multi-Agent Systems are poised to
dominate industry and society imminently. Powered by goal-
driven autonomy, they represent a powerful form of generative
AI, marking a transition from reactive content generation into
proactive multitasking capabilities. As an exemplar, we propose
an architecture of a multi-agent system for the implementation
phase of the software engineering process. We also present a
comprehensive threat model for the proposed system. We demon-
strate that while such systems can generate code quite accurately,
they are vulnerable to attacks, including code injection. Due to
their autonomous design and lack of humans in the loop, these
systems cannot identify and respond to attacks by themselves.
This paper analyzes the vulnerability of multi-agent systems
and concludes that the coder-reviewer-tester architecture is more
resilient than both the coder and coder-tester architectures, but
is less efficient at writing code. We find that by adding a security
analysis agent, we mitigate the loss in efficiency while achieving
even better resiliency. We conclude by demonstrating that the
security analysis agent is vulnerable to advanced code injection
attacks, showing that embedding poisonous few-shot examples in
the injected code can increase the attack success rate from 0%
to 71.95%.

Index Terms—Agentic AI, Threat Model, Software Engineering
Process

I. INTRODUCTION

Agentic AI (AAI) has recently gained momentum due to
its ability to adapt and make decisions in real-world en-
vironments, signaling an innovation in machine-human col-
laboration [15]. Multi-Agentic Systems (MAS) build further
upon AAIs, allowing collaboration between agents to achieve
broader goals. Such systems are being adopted rapidly in
industry, necessitating faster development and deeper research
across various domains. Gartner’s report, “Top Strategic Tech-
nology Trends for 2025: Agentic AI” [4], predicts that by 2028,
33% of applications will incorporate some form of AAI in
enterprise software, starting from a base of 1% in 2024. The
report also highlights the risk to security and quality when AAI
is incorporated in information technology stacks, including
the danger of smart malware cyberattacks. In this paper, we
explore issues in the implementation of MAS in the software
engineering process (SWEP), primarily for the implementation
phase involving coding, code review, and unit testing. We
analyze one of the threats presented in the threat model in the
context of the proposed MAS architecture discussed below,

leading to claims regarding the security and efficiency of such
systems in SWEP. The main contributions of this paper are as
follows.

• We propose a series of MAS architectures (coder, coder-
tester, and coder-reviewer-tester) powered by Large Lan-
guage Models (LLMs) for the implementation phase in
the software development life cycle guided by industry
practices. We then evaluate each architecture’s accuracy,
attack effectiveness, and architecture efficiency against a
code injection attack.

• We introduce an added security analysis agent to miti-
gate code injection attacks and compare its contribution
against industry-recommended architectures.

• We demonstrate that the natural language understanding
of the security analysis agent can be exploited to increase
the attack success rate significantly.

The necessary background to understand this work is de-
scribed in Section II, followed by related work in Section III.
The threat model is explained in Section IV. Our approach is
described in Section V, where the model, attack, and datasets
are discussed in detail. Experiments are discussed in Section
VI, and results are in Section VII. Finally, we discuss the
limitations in Section VIII, future direction of our work in
Section IX, and in Section X, a conclusion is drawn.

II. BACKGROUND

Code generation by Large Language Models (LLMs) in-
volves understanding a natural language description of a
system design and generating code that satisfies the spec-
ified requirements. Recent approaches utilize LLMs, taking
advantage of their natural language comprehension and gen-
erative capabilities to generate functional code. For example,
Microsoft Copilot is an AI-powered assistant built on top of
LLMs.

To improve the accuracy and security of generated code,
LLMs’ capabilities can be enhanced in various ways. One,
an LLM can use a code execution tool to make sure code
executes without errors. Two, an LLM can be prompted to
use a chain of thought (CoT) or self-reflection during software
development. Three, an LLM can also be upgraded with action
planning capabilities, given a suitable design, appropriate
tools, and other resources. Generally, such empowered LLMs

1131

2025 International Conference on Machine Learning and Applications (ICMLA)

1946-0759/25/$31.00 ©2025 IEEE
DOI 10.1109/ICMLA66185.2025.00174

are referred to as Agents. An agent typically has a profile that
may include demographic, personality, and social information,
as well as technical details, responsibilities, and capabilities.
Other resources may include memory by utilizing Retrieval-
Augmented Generation or vector databases, and action plan-
ning capabilities to adapt to feedback from other agents and
their environment. Lastly, such agents can carry out actions
autonomously, such as exploring, communicating, and using
tools with direct human oversight [24]. When multiple such
agents collaborate on the same overall problem, they are
known as a Multi-Agent System (MAS). Dong et al. found that
self-collaboration can improve code generation by 29.9-47.1%
when compared to the naı̈ve single LLM agent approach [5].

To work together effectively, agents must communicate
with each other in a structured manner. The nature of their
communication is usually determined by the system architec-
ture, which is often specifically crafted for the problem. A
common approach is to mimic industry practitioners on how
to solve a specific type of problem. Software development
life-cycle (SDLC) [1] is a well-developed process developed
by the International Standards Organization. Our focus is
on the implementation phase of SDLC, often referred to
as implementation or coding phase. It involves three steps:
namely, code generation, code reviews, and unit testing [13].
Code generation is a crucial part of the SDLC, and if incorrect
or insecure code is generated, it may lead to vulnerabilities
and malicious effects [23]. In this paper, we propose a multi-
agent system, where each of these steps has a corresponding
agent, specialized for the task. With this architecture, we
aim to evaluate the feasibility of engaging a state-of-the-
art current MAS in the implementation phase of SLDC. We
simulate insider threats using a code injection attack, where
malicious code is inserted into a system to alter its behavior.
In MAS, such an attack is likely to be more damaging,
due to their autonomous nature, without any expert human
oversight. The attack may go unnoticed unless the agents can
identify the attack themselves, either alone or collaboratively.
With the proposed simple MAS architecture, the intention is
to investigate the tradeoffs between system performance and
security.

III. RELATED WORK

Several prior works have proposed using three-agent ar-
chitectures. Dong et al. [5] used an analyst, a coder, and a
tester, increasing Pass@1 accuracy on the HumanEval dataset
by 29.9% over a single LLM. AlMorsi et al. [2] achieved an
increase of 23.97%, compared to direct one-shot generation,
on HumanEval using a testing agent, a code generation agent,
and a generalist agent for problem decomposition and building
a search tree. MapCoder, which has four agents to recall
relevant examples, plan, generate code, and debug, achieved
57.6% on HumanEval Pass@1 using a small 7b model [11].
MetaGPT, proposed by Hong et al., coordinated communica-
tions between LLMs following standard operating procedures,
utilizing software-design-inspired agents along with iterative
code improvement and debugging to achieve 85.9% on Hu-

manEval [8]. Other works have found that simpler designs can
perform better. For example, AgentCoder, which consists of
a programmer, test designer, and test executor, outperformed
larger MAS (5+ agents) in both accuracy and token efficiency
[9]. Recently, an approach by Shi et al. [20] achieved 100%
accuracy on HumanEval Pass@1 using a hierarchical debug-
ging approach with a latest generation LLM.

Wu et al. proposed the open-source AutoGen framework
for MAS application implementation [25]. It provides flexi-
bility for adding human inputs, tools, resources, and decision-
making. It can be customized for a variety of applications in
various domains.

Code injection within MAS is examined by Huang et al.
[10], studying the effect of injecting code errors on three
different types of architectures. They determined that hierar-
chical structures were the most resilient. They also proposed a
defense method called Inspector beyond using more resilient
structures, by adding an external agent that reviews and
corrects messages passed by the other agents [10]. Zhou et al.
proposed a different approach of defense called GUARDIAN,
introducing a discrete-time temporal graph to prevent errors
[26]. Triedman et al. were able to get a MAS to execute
malicious code through control-flow hijacking, tricking a web-
surfer agent into processing a file with deceptive comments
that led the LLM to send code to a test executor for execution
[22]. He et al. proposed an approach to intercept messages
between agents, accomplished by red teaming, although this
paper did not explicitly focus on code injection [7].

Many studies have explored code injection into traditional
software systems, while others have looked into attacking
multi-agent systems via memory, tool execution, and com-
munication [16]. However, there is still a lack of research
looking at code injection and methods of mitigating the effects
in multi-agent autonomous systems.

Threat STRIDE MITRE ATFAA Explanation
Name Category ATLAS Domain
Code Spoofing Phishing, Trust Someone with
Injection Impersonation, Boundary access to code,

Unsecured changes or add
Credentials malicious code

AI Tamper- LLM Trusted Cognitive It results in
Reasoning -ing Output Architect- false output.
Manipula- Components -ure CRT approves
-tion Manipulation instead of

disapproving

TABLE I: A mapping of our proposed MAS architecture
threats to STRIDE, ATLAS, and ATFAA categories.

IV. THREAT MODEL

Our threat model for a reflective and task-oriented multi-
agent system, is inspired by “OWASP Top 10 Agentic AI
Threats and Mitigation” [18] and distilled from the threat
model proposed by Narajala and Narayan [16]. The threats
to the architecture designed for this project are summarized in
Table I. We combine Microsoft’s STRIDE threat model frame-
work [21], mapping Amazon Web Services’ Advanced Threat

1132

Framework for Autonomous AI Agents (ATFAA) proposed
by [16] and MITRE ATLAS Matrix tactics and techniques
[14]. The threat ID 1 Code Injection is exploited in the
experimentation of the proposed design, which also results in
exploitation of threat ID 2 AI Reasoning Manipulation.

We assume that the attacker has full access to the code
created by the coding agent. This access could be gained
through social engineering, insider threat, or exploitation of
software vulnerabilities. In addition, communications between
agents can be compromised, giving access to generated code
[7].
def helper():

with open("/etc/shadow.txt", "rb") as f:
requests.post("http://random.example.com/upload",
files={"file": f})

Listing 1: Function that tries to send encrypted passwords
out of the system to a specified address.

V. APPROACH

The general design of our MAS architectures is shown in
Figure 1, and explained as follows. We chose these three
architectures because they involve multiple agents and reflect a
real-world software development structure involving humans.

1) Coder (C): This architecture uses a single LLM-based
agent that employs chain-of-thought prompting. The
coder agent receives the problem and then generates a
solution.

2) Coder-Tester (CT): The coder receives the problem,
generates code, and then writes it out to a database.
Once writing is completed, the coder sends a request
to the testing agent. The testing agent reads the code
from the database and runs it against the test cases it
has generated.

3) Coder-Reviewer-Tester (CRT): This model includes an
additional review agent, which must first approve the
code generated by the coder before it is sent to the tester.

Fig. 1: Architecture for Coder-Tester (inner blue colored
dashed lined box) and Coder-Reviewer-Tester (outer green
colored dashed lined box).

A. Attacks

We define two different levels of adversarial access in CT
and CRT architectures.

• Single: One-time access to the generated code. It will
launch a single Code Injection attack after the response
from the coding agent.

• Continued: Continuous access to the generated code.
Here, every section of generated code could be changed
by the attacker at any point in the system process. Thus, it
will launch an attack each time the coder agent generates
a response.

The adversary’s goal is to inject a malicious function into the
code and have it executed. We define an attack as successful
if the injected code is present in the output of the MAS and
executed in the production environment. Our target is data
exfiltration. The specific function we insert into the code is
shown in Listing 1. This is for proof of concept only.

Additionally, we introduce a security analysis agent to
the coder-tester architecture. This agent is prompted to only
review for security concerns. This agent is added at the end
of the architecture, where it only checks the final output. This
follows established MAS practices, such as the OpenSDKs
guidelines feature [17]. The position of the security analysis
agent at the end allows us to disregard the access levels,
assuming that the attack happens before the final output is
passed to the security analysis agent.

We define advanced attack levels to extensively test the
ability to recognize code injection attacks by the security
analysis agent. These attacks are all variations of the function
shown in Listing 1 referred to in the following sections as the
exfiltration function:

1) Attack 1: An import for the requests library is added to
the exfiltration function, and the function is then called,
resulting in the malicious code being executed.

2) Attack 2: The exfiltration function is obfuscated using
a Python obfuscator [6].

3) Attack 3: A comment is added just before the ex-
filtration function that falsely claims the function is
commented out and should be ignored.

4) Attack 4: This attack is the same as Attack 3, except an
additional comment is added above the import statement,
also falsely claiming the import is commented out.

5) Attack 5: A comment is added before the exfiltration
function, claiming the following code will not execute
and therefore should be ignored.

6) Attack 6: A comment is added before the exfiltration
function, including poisoned few-shot examples. These
examples include malicious functions that are correctly
and incorrectly labeled.

B. Software & Hardware

Three different backbone LLMs are explored. The first is
Code Llama [19]. We explore the seven-billion parameter
model due to resource limitations and time constraints. This

1133

model was specifically trained on code to increase its perfor-
mance on coding-specific tasks. The second model we use is
Mistral 7b. This model is included due to its strong instruction-
following capabilities. Both these models are run locally
on a single NVIDIA GeForce RTX 3090, through Ollama.
Finally, we also explore a closed-source model, GPT-4.1-mini.
The focus of this paper is on the impact of code injection
attacks and not system accuracy, so using smaller models does
not invalidate our results. The different model architectures,
coder, coder-tester, coder-tester-reviewer, and coder-tester
with security agent are implemented using Autogen [25]. This
framework was chosen for its low-level control over the agents
and programmable message passing. We provide our methods
to ensure our results are fully reproducible.

C. Datasets
We evaluate our models and attack success rates using

HumanEval, consisting of 164 hand-written Python program-
ming problems [3]. This dataset provides a function signature,
a docstring containing a natural language description of the
problem, and tests to determine if a solution is correct. Hu-
manEval is a widely used standard for evaluating performance
on coding tasks [12].

VI. EXPERIMENTS

To establish a baseline for each architecture, we first de-
termine accuracy, Pass@1, with no attack on HumanEval.
Next, we carry out our attacks. We measure the accuracy
of the models under each attack. Since none of our attacks
are immediately disruptive, we anticipate the accuracy to
remain roughly the same, making it difficult for the attack
to be detected. In addition, we measure the efficiency of
each architecture. For the coder-tester architecture, we set the
maximum number of testing rounds to three. For the coder-
tester-reviewer, we set both the maximum number of review
and test rounds to three. Once the maximum number of testing
rounds has been reached, the last generated code is output from
the model. Maximum rounds are necessary to prevent wasteful
LLM calls and stop the models from unnecessarily going
back and forth without any significant progress being made.
Both maximum review and test rounds are hyperparameters,
and we found that as the number of review and test rounds
increases, the system becomes less accurate. For GPT-4.1-
mini, this was not the case. To assess the effectiveness of
an attack, we look at the number of times the malicious
function remains in the code output by the system. For the
reviewing agent, we assume the attack is successful if the
code is approved at the final review round. Finally, we add
the security analysis agent to the coder-tester architecture and
examine its effectiveness against the exfiltration function as
well as more complex variations, described in Section V-A.
Since LLM outputs are non-deterministic, all the experiments
were run three times, and the results were averaged.

VII. RESULTS AND ANALYSIS

The results for the different architectures are presented in
Table II. Accuracy is determined by Pass@1, meaning the

system only has one attempt, on the HumanEval dataset. The
closed-source model, GPT-4.1-mini, outperformed the open-
source models for each of the different architectures by over
65%. Importantly, the accuracy does not decrease when either
the single or the continuous attack is introduced. This results
in the code injection attacks being more difficult to detect. C,
CT, and CTR showed no significant differences in accuracy for
any of the LLM models. This is likely due to the large margin
of error resulting from a small number of trials. In Table II,
the effectiveness of the attack when the attack is none is not
shown.

The effectiveness of the attack determines how successful
the code injection attack was, on average. The single attack
was not as effective as the continued attack. For the coder (C),
the single and continued attack was 100% successful. Since
the attack happens after the coder has written the code, the
coding agent by itself cannot stop the attack. For the coder-
tester, the single attack was 92.48% successful, even with the
best performing LLM GPT-4.1-mini. For the single attack to be
successful in this architecture, the code must not pass the tester
on the first round. The continued attack against the coder-tester
is 100% successful, since the code is injected after the coder
writes, and the tester cannot stop the code from being output
by the system. The coder-tester-reviewer (CRT) architecture
performed the best against the attacks. For GPT-4.1-mini, the
single attack was only 1.42% successful and the continued
attack was 6.71% effective, outperforming the other models,
at roughly 95% for both. Considering the review agent is not
prompted to look for security issues but only to evaluate the
code for correctness, GPT-4.1-mini performed strongly. This
is likely due to alignment techniques being used on GPT-
4.1-mini and exposure to common attack patterns and safety
evaluation.

The number of LLM calls is a measure of the efficiency
of the different architectures. The coder does the best, using
only 164 calls, one call per question. The coder-tester is less
efficient, with GPT-4.1-mini using about 350 LLM calls, while
Mistral used around 570. This is likely due to GPT-4.1-mini’s
high coder accuracy, meaning it is more likely to create a
correct solution on its first try. The number of calls increases
again with the CRT. The increase in the number of calls,
especially in GPT-4.1-mini, suggests the reviewer is detecting
the injected code and disapproving, leading to another round.

From these experiments, several conclusions can be drawn.
One, increasing the number of agents, especially when adding
a review agent, does not increase the accuracy of the system
significantly and leads to more LLM calls. However, the
models with the highest accuracy are completely vulnerable to
single and continuous attacks. In contrast, the CRT performs
the best against the attacks, but increases the number of LLM
calls by hundreds while not improving the accuracy. Detecting
the malicious function should be trivial, considering the obvi-
ous malicious nature of the injected function, combined with
the simplicity of the generated code. With these considerations,
the continued attack of 6.71% by GPT-4.1-mini is high, as
0% was expected. To address this issue, we added security

1134

Architecture Attack Code Llama Mistral GPT-4.1-mini

Acc Eff Calls Acc Eff Calls Acc Eff Calls

C
No Attack 22.15±3.81 - 383.33±24.88 30.69±2.31 - 164.00±0.00 94.72±0.87 - 164.00±0.00
Single 21.34±4.01 100.00±0.00 390.00±62.70 31.30±3.50 100.00±0.00 164.00±0.00 94.31±2.31 100.00±0.00 164.00±0.00
Continued 20.33±3.81 100.00±0.00 403.33±23.87 31.30±4.63 100.00±0.00 164.00±0.00 94.31±1.75 100.00±0.00 164.00±0.00

CT
No Attack 22.97±4.87 - 1334.00±248.30 30.08±3.81 - 572.00±20.33 95.93±2.31 - 346.67±1.43
Single 24.19±3.81 24.39±6.06 1327.00±41.04 30.28±10.09 27.44±6.94 570.00±19.40 95.93±1.75 92.48±3.15 350.00±8.96
Continued 24.80±4.37 100.00±0.00 1245.00±41.34 29.27±2.62 100.00±0.00 583.00±11.38 97.15±2.31 100.00±0.00 350.00±4.30

CRT
No Attack 24.80±4.63 - 1726.33±167.20 32.11±5.32 - 740.67±17.62 95.33±2.31 - 529.33±5.17
Single 22.56±1.51 19.72±9.26 1701.00±49.62 29.88±4.01 21.54±2.31 789.00±30.12 95.73±1.51 1.42±3.50 847.33±21.42
Continued 20.73±12.12 95.73±3.03 1659.00±128.53 27.44±9.21 95.12±1.51 813.00±54.82 95.53±2.31 6.71±2.62 1153.00±12.91

TABLE II: The different architectures, shown in Figure 1: Coder (C), Coder-Tester (CT), and Coder-Reviewer-Tester (CRT)
are evaluated on three different attack methods: No Attack, Single, and Continued. The accuracy (Acc) of the system on
HumaEval, determined by Pass@1, the effectiveness (Eff) of the attack (higher % shows successful attack), and the number
of calls (Calls) made to the underlying LLM are all evaluated. Each architecture is also evaluated with three separate LLM
models, GPT-4.1-mini, Mistral, and CodeLLama.

analysis agent to the coder-tester. It reduced the effectiveness
of the attack to 0% while still maintaining the overall accuracy
and only adding one additional call per question. The attack
effectiveness for the CT with security agent is shown in
Table III.

Attack CodeLlama Mistral GPT4.1-mini

Baseline 73.17±4.01 99.39±0.00 99.19±0.87
Attack 1 63.21±7.16 0.00±0.00 0.00±0.00
Attack 2 - - 0.00±0.00
Attack 3 69.31±7.77 0.00±0.00 2.44±1.51
Attack 4 88.01±4.87 4.67±3.81 43.09±4.37
Attack 5 77.64±13.23 3.05±1.51 15.85±6.60
Attack 6 48.37±9.74 86.59±5.46 71.95±1.51

TABLE III: Coder-tester with security analysis agent tested on
a baseline and six different attacks. The effectiveness (success
rate) of each attack is shown.

The baseline establishes the true negative rate (i.e., the agent
correctly identified that no attack is present), which is 99.19%
for GPT-4.1-mini. Mistral performs similarly to GPT-4.1-mini
at 99.39%, while Code Llama is behind at 73.17%. The true
negative rate is acceptable for GPT-4.1-mini and Mistral.

Our best results are when we exploit the natural language
understanding of the model, proving more successful than
simply obfuscating or manipulating the code.

The rows labeled Attack in Table III determine the true
positive rate, meaning the security analysis agent correctly
marked the code containing the injected function as malicious.
We found that GPT-4.1-mini performed well at detecting
malicious code injections. Obfuscating the code, separating
malicious code, dynamically changing the injected code, and
others were all caught by GPT-4.1-mini. For example, Attack
2, which obfuscated the exfiltration function, resulted in a 0%
attack success rate. The open-source models struggled with
the obfuscated code, believing a base64 string to be an image,
leading to undefined behavior. Their results for Attack 2 are
omitted from the table.

In the row labeled Attack 1, the effectiveness of the
exfiltration function with an added request library import and
function call is shown. This attack is directly comparable to
the attacks used on the coder-reviewer-tester, which had an

attack effectiveness of 6.71% for GPT-4.1-mini. The added
security analysis agent was able to bring that down to 0%.
Likewise, Mistral also had an attack effectiveness rate of 0%
for Attack 1, a decrease of 95.73% compared to the coder-
reviewer-tester. Code Llama performed worse, with a 63.21%
attack effectiveness, but still better than the coder-reviewer-
tester.

Attack 3 involved a comment stating that the exfiltration
function is commented out code, when in fact it is not. While
the security analysis agent believed that the uncommented
code was actually commented out, it still decided to disapprove
97.56% of the time, resulting in an attack success rate of
2.44% for GPT-4.1-mini. Mistral outperformed GPT-4.1-mini,
with an attack success rate of 0%. However, in Attack 4, if the
import statement for the requests library also has a comment
above it claiming to be commented, the attack effectiveness
increases greatly to 43.09% for GPT-4.1-mini, but only 4.67%
for Mistral. Code Llama struggles with both attacks.

Attack 5 uses a comment stating the exfiltration function
will not be executed and therefore should not be considered for
review. This approach had limited success, 15.85% for GPT-
4.1-mini and 3.05% for Mistral. Code Llama performed the
worst at 77.64%.

Attack 6 injected a comment providing the model with
poisonous few-shot examples. We used 9 few-shot examples,
with 2 of them being correct and 7 of them being poisoned.
We found that the correct examples were necessary for the
attack to be successful. This attack achieved a success rate of
71.95% for GPT-4.1-mini, while Mistral performed even worse
at 86.59%. Surprisingly, Code Llama was most resilient with
an attack effectiveness of 48.37%.

Mistral outperformed or tied GPT-4.1-mini on the baseline
and 5 of the 6 attacks. Code Llama performed the worst,
likely due to it not being able to follow directions as well
as the other models. While this negatively impacts its results,
it may have helped on Attack 6, where it achieved the lowest
attack effectiveness. The attack results show that while the
security analysis agent is more effective at preventing attacks
than the coder, coder-tester, and coder-tester-reviewer, it still
is insecure if code is injected strategically.

1135

VIII. LIMITATIONS

Our experiments were conducted using Code Llama 7b and
Mistral 7b, along with GPT-4.1-mini, due to resource and
time considerations. Therefore, larger LLM models may have
higher accuracy and be better able to detect malicious code.
In addition, we only evaluated our data using one dataset, Hu-
manEval. Answers are contained within one function, which
is not a realistic industry coding practice. Generally, projects
contain many files and thousands of lines of code, making the
task of the reviewers and security agents much more difficult.
With more code and files, it is much easier to inject a function.
Another limitation was the number of trials. Due to time and
resource constraints, we were only able to run 3 trials for each
of our results. This resulted in a large margin of error. Another
limitation is the prompting of the LLMs; it is plausible that
our prompts could be improved or adjusted, leading to better
results.

IX. FUTURE DIRECTIONS

This section presents future directions for the project.
• Exploring the results of code injection on more realistic

coding projects.
• Rewording the prompts of the security agent or the

reviewer may lead to better performance.
• Researching new methods for tricking the reviewer into

being deceived by the injected code. It would also be
interesting to explore whether the comments could be
integrated directly into the code, through variable names
or string values.

X. CONCLUSIONS

Agentic AI and Multi-Agent Systems are increasingly being
used for code generation. While such systems can generate
code quite accurately, they are vulnerable to attacks, includ-
ing code injection. This paper analyzed the vulnerability of
multi-agent systems and found that the coder-reviewer-tester
architecture is more resilient to code injection attacks than
both the coder and coder-tester architectures, but is less
efficient at writing code. Following industry standards, we
added a specialized security analysis agent, which mitigates
the loss in efficiency and achieves lower attack success rates
compared to the coder-reviewer-tester architecture. Despite
this, we demonstrate that even with the security analysis agent,
this approach is still vulnerable to multiple types of code
injection attacks. Our experimental evaluation suggests that
additional approaches are needed to mitigate the effectiveness
of attacks for MAS to be deployed without supervision.

REFERENCES

[1] ISO/IEC/IEEE international standard - systems and software engineering
– software life cycle processes. ISO/IEC/IEEE 12207 First edition 2017-
11, pages 1–157, 2017.

[2] A. Almorsi, M. Ahmed, and W. Gomaa. Guided code generation with
LLMs: A multi-agent framework for complex code tasks. In 12th
International Japan-Africa Conference on Electronics, Communications,
and Computations (JAC-ECC), pages 215–218. IEEE, 2024.

[3] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374,
2021.

[4] T. Coshow, A. Gao, L. Pingree, A. Verma, D. Scheibenreif, H. Khand-
abattu, and G. Olliffe. Top strategic technology trends for 2025:
Agentic AI. https://www.gartner.com/doc/reprints?id=1-2K8Y7LEY&
ct=250212&st=sb, 2024. Accessed: 2025-07-09.

[5] Y. Dong, X. Jiang, Z. Jin, and G. Li. Self-collaboration code gener-
ation via ChatGPT. ACM Transactions on Software Engineering and
Methodology, 33(7):1–38, 2024.

[6] Free Coding Tools. Python obfuscator. https://freecodingtools.org/tools/
obfuscator/python, 2025. Accessed: 2025-07-09.

[7] P. He, Y. Lin, S. Dong, H. Xu, Y. Xing, and H. Liu. Red-teaming
LLM multi-agent systems via communication attacks. arXiv preprint
arXiv:2502.14847, 2025.

[8] S. Hong, M. Zhuge, J. Chen, X. Zheng, Y. Cheng, C. Zhang, J. Wang,
Z. Wang, S. K. S. Yau, Z. Lin, et al. MetaGPT: Meta programming for
a multi-agent collaborative framework. In International Conference on
Learning Representations, ICLR, 2024.

[9] D. Huang, J. M. Zhang, M. Luck, Q. Bu, Y. Qing, and H. Cui.
Agentcoder: Multi-agent-based code generation with iterative testing and
optimisation. arXiv preprint arXiv:2312.13010, 2023.

[10] J.-t. Huang, J. Zhou, T. Jin, X. Zhou, Z. Chen, W. Wang, Y. Yuan,
M. R. Lyu, and M. Sap. On the resilience of LLM-based multi-agent
collaboration with faulty agents. arXiv preprint arXiv:2408.00989, 2024.

[11] M. A. Islam, M. E. Ali, and M. R. Parvez. Mapcoder: Multi-
agent code generation for competitive problem solving. arXiv preprint
arXiv:2405.11403, 2024.

[12] J. JIANG, F. WANG, J. SHEN, S. KIM, and S. KIM. A survey on large
language models for code generation. arXiv preprint arXiv:2406.00515,
2024.

[13] R. Kumar, S. Pandey, and S. Ahson. Security in coding phase of
SDLC. In Third International Conference on Wireless Communication
and Sensor Networks, pages 118–120. IEEE, 2007.

[14] MITRE Corporation. Mitre atlas matrix. https://atlas.mitre.org/matrices/
ATLAS, 2025. Accessed: 2025-06-26.

[15] S. Murugesan. The rise of agentic AI: implications, concerns, and the
path forward. IEEE Intelligent Systems, 40(2):8–14, 2025.

[16] V. S. Narajala and O. Narayan. Securing agentic AI: A comprehensive
threat model and mitigation framework for generative AI agents. arXiv
preprint arXiv:2504.19956, 2025.

[17] OpenAI. Openai agents SDK. https://openai.github.io/
openai-agents-python/, 2025. Accessed: 2025-09-16.

[18] OWASP GenAI Security Project. 2025 top 10 risk & mitigations
for LLMs and GenAI apps. https://genai.owasp.org/llm-top-10/, 2025.
Accessed: 2025-09-16.

[19] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, R. Sauvestre, T. Remez, et al. Code Llama: Open Foundation
Models for Code. arXiv preprint arXiv:2308.12950, 2023.

[20] Y. Shi, S. Wang, C. Wan, and X. Gu. From code to correctness: Closing
the last mile of code generation with hierarchical debugging. arXiv
preprint arXiv:2410.01215, 2024.

[21] P. Torr. Demystifying the threat modeling process. IEEE Security &
Privacy, 3(5):66–70, 2005.

[22] H. Triedman, R. Jha, and V. Shmatikov. Multi-agent systems execute
arbitrary malicious code. arXiv preprint arXiv:2503.12188, 2025.

[23] J. Wang and Y. Chen. A review on code generation with LLMs:
Application and evaluation. In IEEE International Conference on
Medical Artificial Intelligence (MedAI), pages 284–289. IEEE, 2023.

[24] L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen, J. Tang,
X. Chen, Y. Lin, and others. A survey on large language model based
autonomous agents. Frontiers of Computer Science, 18(6):186345, 2024.
Publisher: Springer.

[25] Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang, X. Zhang,
S. Zhang, J. Liu, et al. Autogen: Enabling next-gen LLM applications
via multi-agent conversation. arXiv preprint arXiv:2308.08155, 2023.

[26] J. Zhou, L. Wang, and X. Yang. Guardian: Safeguarding LLM multi-
agent collaborations with temporal graph modeling. arXiv preprint
arXiv:2505.19234, 2025.

1136

