
GNNXEMPLAR: Exemplars to Explanations - Natural
Language Rules for Global GNN Interpretability

Burouj Armgaan
Dept. of CSE, IIT Delhi
csz228001@iitd.ac.in

Eshan Jain
Dept. of CSE, IIT Delhi
eshan292@gmail.com

Harsh Pandey
Fujitsu Research of India, Bangalore

Harsh.p@fujitsu.com

Mahesh Chandran
Fujitsu Research of India, Bangalore
Mahesh.Chandran@fujitsu.com

Sayan Ranu
Dept. of CSE and Yardi ScAI, IIT Delhi

sayanranu@iitd.ac.in

Abstract

Graph Neural Networks (GNNs) are widely used for node classification, yet their
opaque decision-making limits trust and adoption. While local explanations offer
insights into individual predictions, global explanation methods, those that char-
acterize an entire class, remain underdeveloped. Existing global explainers rely on
motif discovery in small graphs, an approach that breaks down in large, real-world
settings where subgraph repetition is rare, node attributes are high-dimensional,
and predictions arise from complex structure-attribute interactions. We propose
GNNXEMPLAR, a novel global explainer inspired from Exemplar Theory from
cognitive science. GNNXEMPLAR identifies representative nodes in the GNN em-
bedding space, exemplars, and explains predictions using natural language rules
derived from their neighborhoods. Exemplar selection is framed as a coverage
maximization problem over reverse k-nearest neighbors, for which we provide
an efficient greedy approximation. To derive interpretable rules, we employ a
self-refining prompt strategy using large language models (LLMs). Experiments
across diverse benchmarks show that GNNXEMPLAR significantly outperforms
existing methods in fidelity, scalability, and human interpretability, as validated
by a user study with 60 participants.

1 Introduction and Related Works
Node classification using Graph Neural Networks (GNNs) has found wide-ranging applications
across diverse domains, including protein function prediction [13, 30], user profiling [47, 11], and
fraud detection [22]. Despite their success, GNNs, like other deep learning models, are often re-
garded as black boxes: they achieve high performance, but the reasoning behind their predictions
remains largely opaque. To address this, GNN explainers aim to illuminate the decision-making
process by identifying the substructures and features in the input graph that the model relies on for
its predictions [1, 2, 48, 24, 39, 18, 42, 16, 17].

1.1 Existing Works and Open Challenges
Existing methods for GNN explanation can be broadly categorized into two types: local and global.
Fig. 4 in the Appendix provides the detailed taxonomy.
1. Local explanations focus on individual predictions. They aim to explain why a specific in-

put graph (or node) received a particular label. While informative, these explanations are often
instance-specific and do not generalize beyond the particular case being analyzed.

2. Global explanations, in contrast, seek to uncover general patterns that apply across multiple
instances. They aim to explain the conditions under which a GNN assigns any input to a particular
class, producing a single, interpretable explanation per class.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

While local explanation techniques are relatively mature, global GNN explainers remain an emerging
area of research, as evident from Fig. 4. In this work, we advance this direction by proposing a global
explanation framework for node classification based on exemplar theory [28].

Exemplar theory, rooted in cognitive psychology, explains how humans categorize objects and ideas.
It posits that individuals make category judgments by comparing new stimuli with previously en-
countered instances, called exemplars, stored in memory. These exemplars are not arbitrary; they
tend to represent typical members of a category [28]. A new stimulus is assigned to a category based
on the number and degree of similarities it shares with exemplars from that category.

We adapt this idea to GNN-based node classification by treating certain representative nodes in the
embedding space as exemplars: nodes that encapsulate the characteristics of many others in the
same class. For each exemplar, we extract an interpretable signature describing the distribution of
features and/or structural patterns that characterizes the exemplar and the population of nodes it
represents in the embedding space. Then, for any unseen node, we explain the GNN ’s prediction by
referencing the signature of the exemplar it most closely resembles. This approach enables global
yet instance-relevant explanations grounded in learned graph structure and semantics.

Open Challenges: Existing global GNN explainers [50, 42, 51, 45, 1, 2, 25] have primarily targeted
graph classification tasks on small-scale datasets such as molecular graphs. These methods typically
aim to identify recurring substructures, commonly referred to as motifs or concepts, that the GNN
being explained detects to classify graphs [50, 42, 51, 45, 25] Some explainers [1, 2] go further by
constructing the Boolean logic rules over motifs that aligns with the model’s predictions. However,
these motif-based explanation strategies face significant challenges when extended to node classi-
fication in large, real-world graphs with rich node attributes (Ex. citation and linked documents,
financial networks, etc.)

• Attribute-Topology Interaction: In large graphs, GNN predictions are typically a complex func-
tion of both the graph structure and high-dimensional node attributes. This makes motif discovery
difficult because the classical definition of a motif, grounded in graph isomorphism, handles only
discrete node labels. Moreover, in real-world graphs, the repetition of the exact same subgraph
with identical node attributes is rare, making the very notion of a motif ambiguous. This calls
for a shift from exact, symbolic subgraph matching to an approximate space where repetitions of
structurally and semantically similar patterns can be meaningfully observed. We address this by
identifying recurring combinations of structure and attributes not in the raw input graph but in the
GNN embedding space by locating dense neighborhoods.

• Computational Complexity: Motif discovery involves solving the subgraph isomorphism prob-
lem, which is NP-hard, making them prohibitively expensive on large graphs. The problem is
further exacerbated when accounting for both topology and node attributes. Consequently, as we
will show later in § 4, existing global GNN explainers often fail to scale on large graphs.

• Cognitive and Visual Overload: In small graphs, like molecules, motifs (e.g., functional groups)
are compact and human-interpretable. However, in large real-world graphs, even the 2-hop neigh-
borhood of a node can include hundreds or thousands of nodes. Visualizing or interpreting such
patterns quickly becomes unwieldy and exceeds human cognitive limits.

1.2 Contributions

In this work, we present GNNXEMPLAR, which addresses the limitations outlined above.
• Problem formulation: Effective explanations of GNN predictions must satisfy two key criteria:

(1) they should be faithful, meaning they accurately reflect the model’s decision-making process,
and (2) they should be interpretable, allowing humans to understand the reasoning behind predic-
tions despite the underlying complexity of the graph modality. To address these dual objectives,
we take inspiration from Exemplar Theory [28]. Exemplar theory posits that humans categorize
new instances by comparing them to representative examples (exemplars) previously encountered.
By adapting this principle, we explain the GNN ’s prediction for a node by referencing similar,
representative nodes in the embedding space — its exemplars. Furthermore, to enhance inter-
pretability, we move beyond subgraph visualizations which are inherently ineffective in large,
dense graphs due to their complexity and scale. Instead, we distill the defining characteristics
of each exemplar and its associated population into textual explanations. This shift to natural
language enables more accessible and cognitively manageable insights into the GNN ’s decision-
making process. We validate this claim through a user survey (§ 4.7).

2

• Novel methodology: We develop GNNXEMPLAR, which integrates several innovative compo-
nents. First, exemplar identification is cast as a coverage maximization problem over reverse
k-nearest neighbor relationships. We prove that this problem is NP-hard and submodular, and
accordingly propose a greedy algorithm with a (1 − 1

e) approximation guarantee to the optimal
solution. To uncover the signature characteristics of each exemplar and the population it rep-
resents, we leverage LLMs to iteratively propose and refine interpretable logical rules that are
consistent with the GNN’s predictions.

• Empirical analysis: We conduct extensive experiments on a diverse suite of homophilous and
heterophilous graphs. Our analysis reveals that: (1) existing GNN explainers are inadequate for
node classification on large graphs with complex node attributes; (2) GNNXEMPLAR provides
high-fidelity explanations of GNN predictions; and (3) the text-based explanations are preferred
over subgraph visualization, as validated through a user study involving 60 participants.

2 Preliminaries and Problem Formulation
Definition 1 (Graph). A graph is defined as G = (V, E ,X) over a node set V , edge set E =
{(u, v) | u, v ∈ V} and node attributes X = {xv | v ∈ V} where xv ∈ Rd is the set of features
characterizing each node.

Definition 2 (Node Classification). In node classification, we are given a single input graph G =
(V, E ,X), where a subset of nodes Vtr ⊂ V is associated with known class labels from the set
{y1, · · · , yc}. The objective is to train a GNN model Φ such that, for any node v ∈ V \ Vtr, the
prediction error of its class label is minimized.

Error may be measured using known metrics such as cross-entropy loss, negative log-likelihood, etc.

Definition 3 (Exemplars). Exemplars refer to representative nodes within the graph that embody
prototypical structural and attribute characteristics shared by many other nodes in the same class.
In the context of node classification, these exemplars serve as anchors for human-understandable
explanations. Each exemplar, e, is associated with a subset of training nodes, Re ⊆ Vtr, which
represents the population that e exemplifies. A node e ∈ Vtr is called an exemplar for the class
c ∈ Y if |Re| ≥ τ , where

Re =

v ∈ Vtr

∣∣∣∣∣∣
Φ(e) = c,

Φ(v) = c,

d(ze, zv) ≤ δ


where zv ∈ Rd is the GNN-learned embedding of node v, d(ze, zv) is some distance function, δ ∈ R
is a distance threshold, and τ ∈ N is a minimum population size hyperparameter.

As we will see later, the thresholds will automatically be discovered from the data by exploiting the
k-nearest neighbor relationship along with a greedy selection algorithm.

Definition 4 (Exemplar Signature). The signature of exemplar e, denoted as σe, is a boolean for-
mula composed of interpretable conditions over the structural and attribute properties of the local
neighborhood of e. This formula is constructed such that its truth value approximates Φ’s predic-
tions over Re, i.e., with high probability ∀v ∈ Re, : σe(v) = Φ(v). The signature σe of exemplar
e from class c is a boolean function f(π1(v), π2(v), . . . , πk(v)) ∈ {0, 1}, such that, with a high
probability, ∀v ∈ Re, σe(v) = 1, iff Φ(v) = c. Here, πi are the predicates that evaluate to Boolean
conditions over interpretable properties such as:

• Node features (e.g., xv[age] > 30)
• Local structure (e.g., degree(v) ≥ 3)
• Neighborhood composition (e.g., fractionClass(v, hop = 1, c′) > 0.6)

For instance, an exemplar of fraudulent nodes in a transaction graph, might be an account that
makes frequent, low-value transfers to many recently created accounts that show no further activity.
Assuming each node has attributes indicating the average transaction value and average frequency of
transactions per week, its signature could be a rule like: “Has an average transaction amount below
$100, performs more than 10 transactions per week, and is dissimilar in transaction frequency from
the majority of its neighbors”

Problem 1 (Global GNN Explanation through Exemplar Signatures). Let Φ be a trained GNN that
assigns to each node v ∈ V a class label from {y1, · · · , yc}. For each class yi, let Ei ⊆ V denote a

3

Figure 1: The pipeline of GNNXEMPLAR.

selected set of exemplar nodes that are representative of class yi, and let σe be the boolean signature
associated with exemplar e ∈ Ei.
The goal is to construct a global explanation in the form of a Boolean formula fi for each class yi,
such that:

fi(v) =
∨
e∈Ei

σe(v)

where, ∀v ∈ Vtr, Φ(v) = yi ⇔ fi(v) = TRUE. Each fi serves as the global explanation for class
yi, built by aggregating exemplar-level signatures via logical OR. Each exemplar signature is free
to use all Boolean operators.

The formulation of explanation through exemplars presents two central challenges:
1. How do we identify an optimal set of exemplars? Exemplar selection is a combinatorial op-

timization problem over the space of all nodes in the graph. Choosing too many exemplars
compromises both interpretability and computational efficiency. A small, well-chosen exemplar
set enables concise global explanations, as the final explanation takes the form of a disjunction
over exemplar-specific rules.

2. How do we derive boolean logic signatures for each exemplar? The space of candidate logical
expressions, composed of node attributes and structural features, is exponentially large, rendering
exhaustive search intractable. Additionally, these rules must strike a balance between fidelity to
the GNN’s predictions and human interpretability. A further challenge arises from the need to
express these logical rules as natural language descriptions requiring semantic precision.

3 Methodology
Fig. 1 presents the pipeline of GNNXEMPLAR. There are two distinct components: first, we identify
a budget-constrained set of exemplars, and next, we extract boolean rules, expressed in natural
language, through iterative self-refining using LLM. We next detail each of these steps.

3.1 Exemplar Identification.
GNNXEMPLAR aims to identify a set of b exemplar nodes that optimally represent the full training
set; b is a tunable hyper-parameter balancing complexity of the explanation with higher expressivity.
This selection process is guided by two critical criteria:

• Representativeness: Each exemplar node should be close to a large number of other nodes shar-
ing the same GNN-predicted class label in the embedding space, thereby capturing common struc-
tural and attribute patterns learned by the model. We quantify representativeness using the notion
of reverse k-nearest neighbors (§ 3.2) in the GNN embedding space. Specifically, if node v ap-
pears frequently in the k-NN sets of other nodes with the same predicted label, it is considered
representative of those nodes’ learned semantics. Such nodes are prioritized for inclusion in the
exemplar set, as they enable coverage of large regions of the embedding space and are likely to
approximate the model’s behavior over similar instances.

4

• Diversity: The selected exemplars should be well spread out in the GNN embedding space to
ensure a wide range of model behaviors are covered (§ 3.3).

By jointly optimizing for representativeness and diversity, GNNXEMPLAR ensures that the selected
exemplars collectively span a broad range of the model’s learned representations.

3.2 Quantifying Representativeness through Reverse k-NN

The representative power of a node is defined as follows.
Definition 5 (Reverse k-NN and Representative Power). Let hv denote the GNN embedding of node
v. The k nearest neighbors of node v, denoted as k-NN(v), are the k nodes from the train set with
embeddings closest to hv and sharing the same GNN predicted class label (we use L2 distance,
but other distances may also be used). The reverse k-NN of node v is the set of nodes for which v
appears in their k-NN set. Formally,

Rev-k-NN(v) = {u ∈ Vtr | v ∈ k-NN(u),Φ(v) = Φ(u)}
The representative power of node v is then defined as

Π(v) =
|Rev-k-NN(v)|

| {u ∈ Vtr | Φ(v) = Φ(u)} |

A high value of Π(v) indicates that node v frequently appears in the k-NN sets of many other nodes,
implying it resides in a dense region of the embedding space and captures shared representational
characteristics. Thus, it is a strong candidate for inclusion in the exemplar set.

3.2.1 Sampling for Scalable Computation of Reverse k-NN

Computing the k nearest neighbors for each node consumes O(n log k) ≈ O(n) time, since k ≪ n
and n = |Vtr| is the number of nodes. Thus, computing k-NN for all nodes and then constructing
the Rev-k-NN requires O(n2) time, which becomes prohibitively expensive on large-scale graphs.

To address this, we adopt a sampling-based strategy that enables scalable approximation of reverse
k-NN with theoretical [12]. Let S ⊂ Vtr be a uniformly sampled subset of z ≪ n nodes. We
compute the k-NN only for nodes in S, which reduces the computational cost to O(zn).

We then define the approximate reverse k-NN of a node v ∈ Vtr as ˜Rev-k-NN(v) =
{u ∈ S | v ∈ k-NN(u),Φ(v) = Φ(u)}. Hence, the approximate representative power of v is

Π̃(v) =
| ˜Rev-k-NN(v)|

| {u ∈ S | Φ(v) = Φ(u)} |

Here, Π̃(v) estimates how broadly node v is retrieved as a nearest neighbor across the sample set.
The sample size z controls the trade-off between accuracy and efficiency. Leveraging Chernoff
bounds, we establish that even a small z yields high-confidence approximations:
Lemma 1. Given an error threshold θ and confidence level 1 − δ, it suffices to sample z ≥
ln (2

δ)(2+θ)

θ2 nodes to ensure that for any v ∈ Vtr, P
(∣∣∣Π̃(v)−Π(v)

∣∣∣ ≤ θ
)
≥ 1− δ.

PROOF. See App. A.3.

This result has two key implications:

• The required number of samples is independent of the number of nodes in the train set, i.e., |Vtr|.
• Since z scales logarithmically with ln(1/δ), even a small sample ensures high-probability bounds.

Thus, the overall computation cost for reverse k-NN be comes O(n) instead of O(n2).

While we use the notations Rev-k-NN (v) and Π(v) in the subsequent discussion, approximate vari-
ants via sampling may be used in practice. We evaluate the quality-efficiency trade-off in App. §A.7.

3.3 Coverage Maximization

We aim to identify a subset of b exemplar nodes that collectively offer the broadest coverage over
the training set in the GNN embedding space.

5

Algorithm 1 Greedy Node Selection
Require: Graph G, budget b, Rev-k-NN sets of nodes
Ensure: exemplar set A of size b
1: A← ∅
2: while |A| < b do
3: v∗ ← argmaxv∈Vtr\A Π(A ∪ {v})− Π(A)
4: A← A ∪ {v∗}
5: Return A

Definition 6 (Exemplar Set). Let the representative power of a set of exemplar nodes A ⊆ V be
defined as:

Π(A) =

∣∣∣∣∣⋃
v∈A

Rev-k-NN(v)

∣∣∣∣∣
/

|Vtr| (1)

Here, Rev-k-NN(v) denotes the reverse k nearest neighbors of node v in the GNN embedding space.

Given a node set V and budget b, we seek a subset of train nodes A∗ ⊆ Vtr of size b that maximizes:

A∗ = arg max
A⊆Vtr,|A|=b

Π(A) (2)

Theorem 1. Maximizing the representative power in Eq. 2 is NP-hard.

PROOF. See App. A.4 for a reduction from the classic Set Cover Problem [5]. □

Fortunately, the objective Π(A) is monotone and submodular, making it amenable to greedy approx-
imation.

Theorem 2. The greedy algorithm (Alg. 1) guarantees Π(Agreedy) ≥
(
1− 1

e

)
Π(A∗).

PROOF. App. A.5 shows the monotonicity and submodularity of Π(A). An analogous proof for the
case using the approximate Rev-kNN is provided in App. A.6. □

Alg. 1 iteratively selects nodes that maximize marginal gain in coverage. By exploiting the transi-
tivity of proximity in the embedding space, this greedy strategy avoids redundancy: if two nodes
share most of their reverse k-NN sets, selecting one reduces the marginal utility of the other. Thus,
the algorithm promotes both coverage and diversity within the budget.

3.4 Discovery of Exemplar Signatures
Our goal is to analyze the embeddings of an exemplar node and its Rev-k-NN set, and derive a sym-
bolic Boolean rule, expressed in natural language, that closely matches the GNN’s predictions on this
population (see Prob.1). To this end, we leverage the reasoning capabilities of large language models
(LLMs), motivated by two key factors. (1) LLMs have demonstrated strong mathematical and causal
reasoning abilities, including over graph-structured data[55, 6, 26, 49]. (2) Given our aim to express
logical rules in natural language, LLMs are particularly well suited due to their well-established
strengths in linguistic articulation. Self-refinement paradigm: Fig. 2 presents the pipeline of the
signature discovery process of an exemplar, which leverages the self-refine platform [26]. We select
an initial sample of positive and negative nodes. The positive sample contains nodes from the Rev-
k-NN set, and the negative sample contains those not in the Rev-k-NN. Both samples are drawn
uniformly at random. The sample size is a hyperparameter. These node sets are further divided into
training and validation sets. Instead of asking the LLM to directly output the boolean rule in natural
language, we decouple it into two steps. The LLM is first asked to generate a python code, that
takes as input a node and its associated information, passes it through a boolean logic, and returns
a True/False answer. The ideal rule returns True for all positive nodes and False for negative
nodes. The rule encoded in the Python code is then translated to natural language by the LLM.
Initially, the Python code is a trivial solution, such as returning True for any input node, which
is iteratively improved through feedback. The iterations stop when either the accuracy of the code
(rule) exceeds a certain accuracy threshold on the validation set or the number of iterations reaches
an upper limit.

Prompt specification: The prompt includes the following components; a visual overview is pro-
vided in Fig. 10 (query), Fig. 11 (feedback), and Fig. 12 (refinement) in the Appendix.

6

Figure 2: Pipeline of signature discovery through iterative self-refinement of LLM output.

• Training and validation nodes: As discussed above, we provide a set of positive and negative
nodes. If the GNN being explained is ℓ layers deep, then the embedding of a node is a function
of its ℓ-hop neighborhood only [44]. Hence, we provide a summary of the ℓ-hop neighborhoods
of each node in the positive and negative samples. The summary of a node includes: (1) the
attributes of the node, (2) the normalized frequency distribution of GNN predicted class labels for
all nodes in each hop from 1 to ℓ, (3) the average L1 distance per attribute between the exemplar
and all nodes at each hop level from 1 to ℓ. While GNN class distribution signals the degree of
homophily-bias learned by the GNN, the average attribute-wise distance offers insight into feature
relevance in the embedding space. Specifically, if the average distances to positive and negative
nodes are similar for a given attribute, it suggests that the feature contributes little to the embedding
representation. Note that, since we only provide distribution-level information, the context size
remains independent of the graph’s density. This property is crucial for ensuring that large graphs
do not exceed the LLM’s context window capacity.

• Code skeleton: The skeleton of the python code that the LLM is supposed to fill in. The skeleton
contains the function definition that takes as input the summary of a node and the output specifi-
cation, which should return a boolean value.

• Feedback: This includes the Python code and the associated natural language rule from the last
iteration and the summary of all nodes where the latest rule failed to match the GNN prediction.

4 Experiments
In this section, we benchmark GNNXEMPLAR and establish:
• Limitations of Existing Explainers: Current explainers, primarily designed for graph classifica-

tion on small graphs, fail to generalize effectively to node classification in large-scale graphs.
• High-Fidelity explanations: GNNXEMPLAR bridges this gap by consistently achieving high fi-

delity across both homophilic and heterophilic graph benchmarks.
• User Preference for Textual Explanations: Our user survey involving 60 participants shows a

statistically significant preference for textual explanations over graph-based visualizations.

4.1 Experimental Setup
The details of our hardware and software platform, hyper-parameters, LLM engine, training details
of the black-box GNN and their accuracies are discussed in App. A.1 and App. A.2. Our codebase
is shared at https://github.com/idea-iitd/GnnXemplar.git.

Datasets: Table 1 presents the 8 benchmark datasets we use. Wherever available, we adopt the
standard train/validation/test splits from PyTorch Geometric or the original data releases, preserving
class balance. We train a GAT for TAGCora and GCN for the rest.

Baselines: As discussed in § 1, there are no existing explainers designed to handle node classifi-
cation on large graphs. Hence, we adapt state-of-the-art explainers originally developed for graph
classification. To enable a fair comparison, we reframe the node classification task as a graph classi-
fication problem by extracting the ℓ-hop subgraph around each target node and assigning the node’s
label to the entire subgraph; ℓ denotes the number of layers in the GNN. We compare against the
following baselines:

7

https://github.com/idea-iitd/GnnXemplar.git

Table 1: Dataset statistics. Detailed descriptions of each dataset are in App.A.9
Homophilous Heterophilous

Name #nodes #edges #features #classes Name #nodes #edges #features #classes

TAGCora [21] 2, 708 10, 556 1433 7 Amazon-ratings [32] 24, 492 93, 050 300 5
Citeseer [10] 3, 327 9, 104 3703 6 Minesweeper [32] 10, 000 39, 402 7 2
WikiCS [29] 11, 701 216, 123 300 10 Questions [32] 48, 921 153, 540 301 2
ogbn-arxiv [14] 169, 343 1, 166, 243 128 40 BA-Shapes [48] 300 4110 0 4

• GNNInterpreter [42]: A generative model trained to synthesize class-representative graphs using
reinforcement learning.

• GCNeuron [45]: A neuron-level explainer that identifies high-level subgraph concepts that acti-
vate neurons within a GNN.

• GLGExplainer [2]: The only prior global logical explainer that fits a Boolean formula to GNN
outputs by clustering local explanation subgraphs (e.g., PGExplainer [24]) around prototypes and
learning a formula over those prototypes using ELEN [4].

Since both GNNInterpreter and GCNeuron identify representative subgraphs without generating
explicit Boolean rules, we construct a rule by taking a logical OR over all identified subgraphs for
each class label. We do not compare with GraphTrail [1] since it only considers graphs with discrete
node labels. MAGE [50] is also omitted since it is specific to molecular graphs.

Metrics: We evaluate each explainer by applying its generated Boolean formula to the test set of
each dataset. The alignment between the formula and the GNN’s predictions is quantified using the
following metrics: Fidelity (the proportion of test nodes where the formula’s output matches the
GNN’s prediction), Precision, Recall, and F1-score.

4.2 Fidelity
Table 2 reports the fidelity of each explainer on node classification tasks. Precision, recall and F-
score for the same experiments are reported in Tables 6, 7 and 8 in the Appendix. Several key
observations emerge. (1) GNNXEMPLAR consistently achieves the highest fidelity, establishing a
new benchmark for global explanation in node classification. (2) Explainers for graph classification
demonstrate brittle performance when adapted to node classification, confirming that exact subgraph
repetition is rare in real-world graphs. (3) motif-based explainers reliant on subgraph isomorphism
fails to scale on large graphs. We elaborate below.

NAs: The NA cases occur when an explanation is generated but cannot be applied or evaluated
on any specific node (or neighborhood subgraph) instance. This limitation arises from the reliance
of GNNInterpreter on subgraph-based rules. Its only mode of application is through subgraph iso-
morphism, which severely constrains its generalizability. Subgraph isomorphism can only function
when node features are either absent or purely discrete (e.g., scalars). With continuous or high-
dimensional node features, determining whether two nodes, or their neighborhoods, are “identical”
becomes ill-defined, rendering the explanation unusable in most real-world settings.

NFs: NF stands for “No Formula Generated,” which is encountered in GLGExplainer. GLGEx-
plainer first trains a surrogate model to mimic the black-box GNN and then attempts to distill this
surrogate into interpretable boolean logic. However, we find that in several datasets, either the sur-
rogate model fails to approximate the GNN, or the boolean distillation step breaks down. In both
scenarios, GLGExplainer outputs an empty string. This failure indicates that GLGExplainer is brittle
when faced with noisy, irregular, or highly entangled graph patterns.

Inferior Baseline Performance. Even when the baselines produce actionable rules, all three yield
significantly lower fidelity. This is primarily because they rely on identifying common subgraph
patterns per class, an assumption that rarely holds in complex, real-world graphs. In contrast, GN-
NXEMPLAR is grounded in exemplar theory and computes distributional distances to strategically
selected exemplars in the GNN embedding space. This approach avoids subgraph isomorphism
while remaining faithfully aligned with the GNN’s predictive behavior. Scalability: Both GLGEX-
PLAINER and GCNEURON frequently encounter out-of-memory (OOM) errors on large or dense
graphs, with GLGEXPLAINER failing because of its reliance on subgraph-isomorphism and GC-
NEURON due to exhaustive neuron-activation pattern enumeration. In contrast, GNNXEMPLAR is
explicitly designed to avoid subgraph isomorphism and scales gracefully.

8

Table 2: Fidelity of the GNNXEMPLAR and the various baselines. OOM indicates out-of-memory.
NA indicates “Not Applicable”, and NF indicates the case where the algorithm failed to generate a
formula. GNNInterpreter assumes discrete node attributes only, and hence, for datasets with contin-
uous attributed notes, it is not applicable.

Homophilous Heterophilous

TAGCora Citeseer WikiCS arxiv Amazon-R Questions Minesweeper BA-Shapes

GNNInterpreter NA 0.50± 0.0 NA NA NA NA 0.50± 0.0 0.47± 0.0

GCNeuron 0.51± 0.0 0.50± 0.0 OOM OOM 0.56± 0.0 OOM 0.54± 0.0 0.50± 0.0

GLGExplainer NF NF OOM OOM NF OOM 0.22± 0.07 0.30± 0.09

GNNXEMPLAR 0.83± 0.01 0.92± 0.03 0.78± 0.01 0.84± 0.01 0.82± 0.01 0.92± 0.01 0.86± 0.02 0.93± 0.00

4.3 Ablation Study
To quantify the contributions of our two key innovations, exemplar selection through Rev-k-NN and
iterative self-refinement using LLM, we conduct two controlled ablations.

Rev-k-NN vs. Random Exemplar Selection: Here, we replace our Rev-k-NN based exemplar se-
lection with an equal-sized set of randomly sampled nodes (exemplars) per class. This change yields
a noticeable fidelity decrease, as random prototypes fail to capture the dense, semantically coherent
neighborhoods that Rev-k-NN provides (see Fig. 3-Left subplot).
Self-Refinement vs. Zero-Shot: In the zero-shot variant, we bypass the structure self-refining
pipeline discussed in § 3.4 and directly ask the LLM to predict the rule (signature) in one go.
Ablation results in Fig. 3 (Right subplot) demonstrate that this zero-shot approach yields notice-
ably lower fidelity and higher variance on every dataset. This reveals that the full self-refinement
pipeline systematically identifies misclassified instances and adjusts the rules accordingly, produc-
ing significantly more accurate and robust explanations with reduced variance across runs.

4.4 Impact of Parameters and GNN architectures
App. A.7 studies the impact of parameters k in Rev-k-NN, sample size in Rev-k-NN approximation,
and the training-set sample size in self-refine. App. A.8 evaluates robustness to GNN architectures.

4.5 Case Study: Visual Analysis of Rules
To demonstrate the interpretability and domain-alignment of our global explanations, we show rep-
resentative rule sets from TAGCora (homophilous) (Fig. 14) and BAShapes (heterphilous) (Fig. 15).

TAGCora (Fig. 14) In the TAGCora citation network, topic (class) assignments are driven by both
textual features and neighborhood context. For instance, Neural Networks papers are identified by
the presence of domain-specific terms like “backpropagation” and “activation functions”. Further-
more, the rule also discovers homophillic associations with other “Neural Network” papers among
1 and 2-hop neighbors. The rule further comments that the presence of ICA and HMM words in the
abstracts of the neighbors further reinforces the class assignment.

BAShapes (Fig. 15) On the synthetic BAShapes graph, membership in each geometric role is de-
termined solely by local connectivity patterns. GNNXEMPLAR is successfully able to identify these
purely structural and heterophilic associations, such as nodes belonging to the class “not in a house”
have at least six “non-house” neighbors and minimal ties to other roles.

Citeseer WikiCS ogbn
arxiv

Amazon
ratings

Mine
sweeper

0.0

0.2

0.4

0.6

0.8

1.0

Fi
de

li
ty

Rev-k-NN Random

Citeseer WikiCS ogbn
arxiv

Amazon
ratings

Mine
sweeper

0.0

0.2

0.4

0.6

0.8

1.0

Fi
de

li
ty

Self Refine Zero Shot

Figure 3: Ablation study on GNNXEMPLAR. Left: Impact of Rev-k-NN based exemplar selection.
Right: Impact of self-refinement strategy vs. zero-shot rule discovery.

9

Table 3: Results of one-sided binomial tests assessing user preference for text-based explanations
over subgraph-based explanations across five A/B test questions. Bolded p-values indicate a statis-
tically significant preference for the text modality (p < 0.05).

Q1 Q2 Q3 Q4 Q5 Total

Dataset TAGCora Questions Questions BAShapes BAShapes –

Prefer text 43 41 36 42 38 200

Prefer subgraph 17 19 24 18 22 100

p-value 0.0005 0.0031 0.0775 0.0013 0.0259 < 0.0001

4.6 Application: Diagnostic Power in Failure Cases
In Questions, active users exhibit homophilous behavior–they tend to connect to other active users.
Inactive users, in contrast, behave heterophilously by connecting primarily to active users. Interest-
ingly, our explanation rule for the inactive class does not reflect this expected heterophily. Instead,
it points toward a homophilous pattern even for inactive users. At first glance, this seems contradic-
tory: how can an explanation be so seemingly incorrect and still achieve high fidelity (see Table 2)?

To investigate, we visualized 2-hop neighborhoods of inactive nodes: once with ground-truth labels,
and once with GNN predictions (see example in Fig. 5). The results were revealing: the GNN
predicts even the neighbors of inactive nodes as inactive, indicating that it has learned an incorrect
homophilous pattern for the inactive class as well. This behavior is likely driven by the dataset’s class
imbalance — most nodes are active, so homophily becomes a statistically advantageous shortcut for
the model.

Far from being flawed, the explanation is insightful–it does not mimic the ground truth, but rather
points to the root cause of why the inactive class is often misclassified with a low precision of 0.68:
the GNN has failed to capture the intended heterophilous behavior.

4.7 Human Evaluation: User Survey
In this work, we advocate a shift from conventional subgraph-based visualizations to natural lan-
guage explanations. Our motivation stems from the hypothesis that presenting dense graph neigh-
borhoods with high-dimensional node attributes in full detail can overwhelm human cognitive ca-
pacity. To test this, we conducted a user study with 60 participants, each responding to 5 A/B test
questions, resulting in 300 total comparisons. Each question presented the same explanation for a
model prediction in both textual and subgraph form, and participants were asked to indicate their
preferred modality. See App. B for survey design details and example screenshots.

We analyzed the results using the Binomial test [37] and McNemar’s test [27]. The Binomial test,
applied to the aggregate responses (200/300), evaluates whether one modality was preferred signif-
icantly more often overall. This yielded a highly significant result (p-value < 0.0001), indicating
that text-based explanations were favored by participants at the population level. Table 3 presents
the per-question binomial test results, showing that this preference was consistent and statistically
significant in all except Q3. While Q3 does not reach statistical significance, this was by design:
we deliberately selected an explanation where the subgraph visualization was small and simple. The
goal was to verify that participants were not blindly preferring the text modality due to any prior bias.

To assess within-participant consistency, we additionally conducted McNemar’s test using the ‘exact
Binomial’ method. Out of 60 participants, 45 chose text more often, while only 15 preferred sub-
graph more often. This difference was also statistically significant (p-value = 0.0001), confirming
that the preference for text was not only strong but consistent across individuals.

5 Conclusions, Limitations and Future Works
In this work, we presented GNNXEMPLAR, a novel framework for global explanation of node classi-
fication in GNNs. Unlike prior explainers that rely on brittle motif discovery and struggle with scale,
GNNXEMPLAR explains through exemplar nodes, which serve as semantic anchors for model behav-
ior. To generate human-understandable explanations, we leveraged LLMs to distill the defining char-
acteristics of each exemplar and its neighborhood into concise natural language rules. Our empirical
evaluations demonstrate that GNNXEMPLAR outperforms existing methods in fidelity, scalability,
and user interpretability, with a user study confirming strong preference for textual explanations.

Limitations and Future Works: GNNXEMPLAR operates in a setting with access only to the
GNN’s embedding space, limiting visibility into how feature-topology interactions influence internal
activations. As a result, fine-grained mechanistic understanding of the model’s decision process
remains out of reach. We plan to study this aspect through the lens of mechanistic interpretability.

10

Acknowledgements

The collaborative research with IIT Delhi was supported by Fujitsu Research of India. Burouj
Armgaan also acknowledges support from Prime Minister’s Research fellowship during this research
and the generous travel grant received from ACM/IARCS to support his participation in NeurIPS
2025.

References
[1] Burouj Armgaan, Manthan Dalmia, Sourav Medya, and Sayan Ranu. Graphtrail: Translat-

ing gnn predictions into human-interpretable logical rules. Advances in Neural Information
Processing Systems, 37:123443–123470, 2024. (Cited on pp. 1, 2, 8, and 21←↩)

[2] Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Lio, and Andrea Passerini. Global ex-
plainability of GNNs via logic combination of learned concepts. In The Eleventh International
Conference on Learning Representations, 2023. (Cited on pp. 1, 2, 8, and 21←↩)

[3] Federico Baldassarre and Hossein Azizpour. Explainability techniques for graph convolutional
networks. arXiv preprint arXiv:1905.13686, 2019. (Cited on p. 21←↩)

[4] Pietro Barbiero, Gabriele Ciravegna, Francesco Giannini, Pietro Lió, Marco Gori, and Stefano
Melacci. Entropy-based logic explanations of neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2022. (Cited on p. 8←↩)

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. (Cited on pp. 6 and 24←↩)

[6] Xinnan Dai, Haohao Qu, Yifei Shen, Bohang Zhang, Qihao Wen, Wenqi Fan, Dongsheng Li,
Jiliang Tang, and Caihua Shan. How do large language models understand graph patterns? a
benchmark for graph pattern comprehension. In The Thirteenth International Conference on
Learning Representations, 2025. (Cited on p. 6←↩)

[7] Alexandre Duval and Fragkiskos D Malliaros. Graphsvx: Shapley value explanations for graph
neural networks. In Machine Learning and Knowledge Discovery in Databases. Research
Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021,
Proceedings, Part II 21, pages 302–318. Springer, 2021. (Cited on p. 21←↩)

[8] Qizhang Feng, Ninghao Liu, Fan Yang, Ruixiang Tang, Mengnan Du, and Xia Hu. Degree:
Decomposition based explanation for graph neural networks. In International Conference on
Learning Representations, 2022. (Cited on p. 21←↩)

[9] Thorben Funke, Megha Khosla, Mandeep Rathee, and Avishek Anand. Z orro: Valid, sparse,
and stable explanations in graph neural networks. IEEE Transactions on Knowledge and Data
Engineering, 2022. (Cited on p. 21←↩)

[10] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing
system. In Proceedings of the third ACM conference on Digital libraries, pages 89–98, 1998.
(Cited on p. 8←↩)

[11] Anjali Gupta, Prashant Kumar, Aniket Mishra, Abhishek Singh, Surender Kumar, Muthusamy
Chelliah, Abhijnan Chakraborty, and Sayan Ranu. Persona identification in e-commerce with
scarce labels and in-context graph learning. In Proceedings of the 31st ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining V. 2, pages 778–789, 2025. (Cited on p. 1
←↩)

[12] Mridul Gupta, Samyak Jain, Vansh Ramani, Hariprasad Kodamana, and Sayan Ranu. Bonsai:
Gradient-free graph condensation for node classification. In ICLR, 2025. (Cited on p. 5←↩)

[13] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, page 1025–1035, Red Hook, NY, USA, 2017. Curran Associates Inc. (Cited
on p. 1←↩)

11

[14] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020. (Cited on p. 8
←↩)

[15] Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. Graphlime: Local
interpretable model explanations for graph neural networks. IEEE Transactions on Knowledge
and Data Engineering, 2022. (Cited on p. 21←↩)

[16] Zexi Huang, Mert Kosan, Sourav Medya, Sayan Ranu, and Ambuj Singh. Global counterfac-
tual explainer for graph neural networks. In Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining, pages 141–149, 2023. (Cited on p. 1←↩)

[17] Mert Kosan, Zexi Huang, Sourav Medya, Sayan Ranu, and Ambuj Singh. Gcfexplainer: Global
counterfactual explainer for graph neural networks. ACM Trans. Intell. Syst. Technol., 16(5),
August 2025. (Cited on p. 1←↩)

[18] Mert Kosan, Samidha Verma, Burouj Armgaan, Khushbu Pahwa, Ambuj Singh, Sourav Me-
dya, and Sayan Ranu. GNNX-BENCH: Unravelling the utility of perturbation-based GNN ex-
plainers through in-depth benchmarking. In The Twelfth International Conference on Learning
Representations, 2024. (Cited on p. 1←↩)

[19] Wenqian Li, Yinchuan Li, Zhigang Li, Jianye Hao, and Yan Pang. Dag matters! gflownets
enhanced explainer for graph neural networks. In The Eleventh International Conference on
Learning Representations, 2023. (Cited on p. 21←↩)

[20] Wanyu Lin, Hao Lan, and Baochun Li. Generative causal explanations for graph neural net-
works. In International Conference on Machine Learning, pages 6666–6679. PMLR, 2021.
(Cited on p. 21←↩)

[21] Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. In The
Twelfth International Conference on Learning Representations, 2024. (Cited on pp. 8 and 21
←↩)

[22] Yajing Liu, Zhengya Sun, and Wensheng Zhang. Improving fraud detection via hierarchical
attention-based graph neural network. arXiv preprint arXiv:2202.06096, 2022. (Cited on p. 1
←↩)

[23] Shengyao Lu, Keith G Mills, Jiao He, Bang Liu, and Di Niu. GOAt: Explaining graph neural
networks via graph output attribution. In The Twelfth International Conference on Learning
Representations, 2024. (Cited on p. 21←↩)

[24] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized explainer for graph neural network. Advances in neural information
processing systems, 33:19620–19631, 2020. (Cited on pp. 1, 8, and 21←↩)

[25] Ge Lv and Lei Chen. On data-aware global explainability of graph neural networks. Proceed-
ings of the VLDB Endowment, 16(11):3447–3460, 2023. (Cited on pp. 2 and 21←↩)

[26] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter
Clark. Self-refine: Iterative refinement with self-feedback. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. (Cited on p. 6←↩)

[27] Quinn McNemar. Note on the sampling error of the difference between correlated proportions
or percentages. Psychometrika, 12(2):153–157, 1947. (Cited on p. 10←↩)

[28] Douglas L Medin and Michael M Schaffer. Context theory of classification learning. Psycho-
logical Review, 85(3):207–238, 1978. (Cited on p. 2←↩)

12

[29] Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. In The Thirty-Seventh International Conference on Machine Learning, 2020. (Cited
on pp. 8 and 21←↩)

[30] Sunil Nishad, Shubhangi Agarwal, Arnab Bhattacharya, and Sayan Ranu. Graphreach:
Position-aware graph neural network using reachability estimations. IJCAI, 2021. (Cited on
p. 1←↩)

[31] Tamara Pereira, Erik Nascimento, Lucas E Resck, Diego Mesquita, and Amauri Souza. Distill
n’explain: explaining graph neural networks using simple surrogates. In International Confer-
ence on Artificial Intelligence and Statistics, pages 6199–6214. PMLR, 2023. (Cited on p. 21
←↩)

[32] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of gnns under heterophily: Are we really
making progress? In The Eleventh International Conference on Learning Representations,
2023. (Cited on p. 8←↩)

[33] Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Hoff-
mann. Explainability methods for graph convolutional neural networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 10772–10781,
2019. (Cited on p. 21←↩)

[34] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. Interpreting graph neural networks
for nlp with differentiable edge masking. International Conference on Learning Representa-
tions, 2021. (Cited on p. 21←↩)

[35] Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T Schütt, Klaus-
Robert Müller, and Grégoire Montavon. Higher-order explanations of graph neural net-
works via relevant walks. IEEE transactions on pattern analysis and machine intelligence,
44(11):7581–7596, 2021. (Cited on p. 21←↩)

[36] Caihua Shan, Yifei Shen, Yao Zhang, Xiang Li, and Dongsheng Li. Reinforcement learning
enhanced explainer for graph neural networks. In NeurIPS 2021, December 2021. (Cited on
p. 21←↩)

[37] David J Sheskin. Handbook of parametric and nonparametric statistical procedures. Chapman
and hall/CRC, 2003. (Cited on p. 10←↩)

[38] Juntao Tan, Shijie Geng, Zuohui Fu, Yingqiang Ge, Shuyuan Xu, Yunqi Li, and Yongfeng
Zhang. Learning and evaluating graph neural network explanations based on counterfactual
and factual reasoning. In Proceedings of the ACM Web Conference 2022, WWW ’22, page
1018–1027, 2022. (Cited on p. 21←↩)

[39] Samidha Verma, Burouj Armgaan, Sourav Medya, and Sayan Ranu. InduCE: Inductive coun-
terfactual explanations for graph neural networks. Transactions on Machine Learning Re-
search, 2024. (Cited on p. 1←↩)

[40] Minh Vu and My T Thai. Pgm-explainer: Probabilistic graphical model explanations for graph
neural networks. Advances in neural information processing systems, 33:12225–12235, 2020.
(Cited on p. 21←↩)

[41] Xiang Wang, Yingxin Wu, An Zhang, Xiangnan He, and Tat-Seng Chua. Towards multi-
grained explainability for graph neural networks. Advances in Neural Information Processing
Systems, 34:18446–18458, 2021. (Cited on p. 21←↩)

[42] Xiaoqi Wang and Han Wei Shen. GNNInterpreter: A probabilistic generative model-level
explanation for graph neural networks. In The Eleventh International Conference on Learning
Representations, 2023. (Cited on pp. 1, 2, 8, and 21←↩)

[43] Yaochen Xie, Sumeet Katariya, Xianfeng Tang, Edward Huang, Nikhil Rao, Karthik Subbian,
and Shuiwang Ji. Task-agnostic graph explanations. NeurIPS, 2022. (Cited on p. 21←↩)

13

[44] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. (Cited on p. 7←↩)

[45] Han Xuanyuan, Pietro Barbiero, Dobrik Georgiev, Lucie Charlotte Magister, and Pietro Liò.
Global concept-based interpretability for graph neural networks via neuron analysis. In Pro-
ceedings of the AAAI conference on artificial intelligence, 37. (Cited on pp. 2 and 8←↩)

[46] Han Xuanyuan, Pietro Barbiero, Dobrik Georgiev, Lucie Charlotte Magister, and Pietro Lió.
Global concept-based interpretability for graph neural networks via neuron analysis. In AAAI,
2023. (Cited on p. 21←↩)

[47] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In KDD,
page 974–983, 2018. (Cited on p. 1←↩)

[48] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnex-
plainer: Generating explanations for graph neural networks. Advances in neural information
processing systems, 32, 2019. (Cited on pp. 1, 8, and 21←↩)

[49] Yuxin You, Zhen Liu, Xiangchao Wen, Yongtao Zhang, and Wei Ai. Large language models
meet graph neural networks: A perspective of graph mining. Mathematics, 13(7), 2025. (Cited
on p. 6←↩)

[50] Zhaoning Yu and Hongyang Gao. Mage: Model-level graph neural networks explanations
via motif-based graph generation. In The Thirteenth International Conference on Learning
Representations, 2025. (Cited on pp. 2, 8, and 21←↩)

[51] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations
of graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 430–438, 2020. (Cited on pp. 2 and 21←↩)

[52] Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. In ICML, pages 12241–12252. PMLR, 2021. (Cited on
p. 21←↩)

[53] Shichang Zhang, Yozen Liu, Neil Shah, and Yizhou Sun. Gstarx: Explaining graph neural net-
works with structure-aware cooperative games. In Advances in Neural Information Processing
Systems, 2022. (Cited on p. 21←↩)

[54] Yue Zhang, David Defazio, and Arti Ramesh. Relex: A model-agnostic relational model
explainer. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society,
pages 1042–1049, 2021. (Cited on p. 21←↩)

[55] Yuzhe Zhang, Yipeng Zhang, Yidong Gan, Lina Yao, and Chen Wang. Causal graph dis-
covery with retrieval-augmented generation based large language models. arXiv preprint
arXiv:2402.15301, 2024. (Cited on p. 6←↩)

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: Sec. 2, 3, 4
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contribu-

tions made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Sec. 5
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate “Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to viola-

tions of these assumptions (e.g., independence assumptions, noiseless settings, model well-
specification, asymptotic approximations only holding locally). The authors should reflect on
how these assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address prob-
lems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: App. 1, 1, 2
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

15

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main exper-
imental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: App. A.1
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: Sec. 4
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/

CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be possible,

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to repro-
duce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparame-
ters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: App. A.1
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Tab. 2, 3, 6, 7, 8. Fig. 3
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer “Yes” if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the exper-
iments?
Answer: [Yes]
Justification: App. A.1
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All sections.

17

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: Sec. 1
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strate-
gies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not re-
quire this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [NA]
Justification: [NA]
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

18

• For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some
datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the de-
rived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Sec. 4
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their submis-

sions via structured templates. This includes details about training, license, limitations, etc.
• The paper should discuss whether and how consent was obtained from people whose asset is

used.
• At submission time, remember to anonymize your assets (if applicable). You can either create

an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [Yes]
Justification: Fig. 6, 7, 8, 9
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: This study involved a minimal-risk user survey where participants were not asked
to provide any sensitive information. Participation was voluntary and anonymous. Based on
institutional policy, IRB approval was not required for this type of research.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may

be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and lo-
cations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if appli-
cable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only

19

paperswithcode.com/datasets

for writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Sec. 3
Guidelines:
• The answer NA means that the core method development in this research does not involve

LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or

should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Appendix

Figure 4: Taxonomy of factual GNN explainers. Generation: RGExplainer [36], GFlowExplainer
[19], GEM [20]; Gradient: SA [3], Guided-BP [3], Grad-CAM [33]; Decomposition: CAM [33],
Excitation-BP [33], DEGREE [8], GNN-LRP [35], GOAT [23]; Perturbation: GNNExplainer [48],
PGExplainer [24], CF2 [38], GraphMask [34], ReFine [41], Zorro [9], SubgraphX [52], GstarX [53],
TAGExplainer [43]; Surrogate: GraphLime [15], ReLex [54], PGM-Explainer [40], DnX [31],
GraphSVX [7]; Subgraph sets: XGNN [51], GCNeuron [46], GNNInterpreter [42], DAGExplainer
[25], MAGE [50]; Subgraph formulae: GLGExplainer [2], GraphTrail [1].

A.1 Experimental setup

Hardware details All experiments were performed on Intel(R) Xeon(R) Gold 6426Y: 64 cores,
126 GB RAM, 2 NVIDIA-L40S GPUs, 45 GiB each running on Ubuntu 20.04.6 LTS.

Hyper-parameters We provide the hyper-parameter values we choose for current pipeline. In
sec. 3.2 we fist picked k for k-NN and Reverse k-NN, for all the datasets in experiment we choose
k = 5. Next in sec. 3.3 for coverage maximization instead of selecting number of points we set the
stopping criterion based on coverage of points, when the coverage becomes ≥ 95%. Then for
sec. 3.4 we used ‘gemini-1.5-flash’ LLM from google’s generativeai package. Then for sampling
positive and negative points which will be used in self-refinement we set the sample size = 50 each.
We split these samples in training and validation set in the ratio of 6 : 4 respectively. Finally for
stopping criteria of self-refinement process we stop the iteration when either the accuracy ≥ 95
or if the number of iterations reaches 5.

A.2 Training Details of GNNs

We first write the details about the GNNs we use for all the datasets,

• For TAGCora, we pick the GAT model (with 2 layers and 64 hidden dimension) from paper [21]
where they officially use this dataset.

• For WikiCS dataset we pick the official implementation of GCN used in their paper [29]. And use
2 layer model with a hidden dimension of 64.

• For ogbn-arxiv, we pick the official GCN from ogb repository for node classification on arxiv, we
used a 3 layered version of it with hidden dimension as 256.

• For Citeseer, amazon-ratings, questions and minesweeper we use the same model as use in ogbn-
arxiv dataset and for all these datasets we use 3 layers with hidden dimension of 64.

• For BA-Shapes, we use the model use in the paper [48] with 3 layers, a hidden dimension of 20.

Since none of the above implementations provide trained model weights so we train the GNNs on
these datasets from scratch. For training all the GNNs we use the standard training pipeline of
pytorch which resembles closely to what all the above models use in their implementation. We train
all the models for 250 epochs and choose the learning rates from the set {0.005, 0.01} with Adam

21

https://github.com/snap-stanford/ogb

Figure 5: Subgraphs from the Questions dataset. Notice how active nodes 1, 2, and 3 surrounded by
inactive nodes are predicted as inactive. This misclassification pattern is the signal that GNNXEM-
PLAR picks up when learning the signature for the inactive class.

optimizer and a weight decay of 5e − 4. We report the best accuracies of trained GNNs in table 4.
Although we try to get as close as possible to the quoted numbers in the datasets official papers there
could still be some deviation because of random initialization of model weights.

Table 4: GNN performance

Homophilous Heterophilous

Name Accuracy Name Accuracy

TAGCora 73.84 Amazon-ratings 46.43

Citeseer 66.20 Minesweeper 80.36

WikiCS 78.40 Questions 97.07

ogbn-arxiv 62.58 BA-Shapes 95.71

22

A.3 Proof of Lemma 1

Let S ⊆ Vtr be a set of z nodes sampled uniformly at random from the full training node set Vtr.
For a fixed node v ∈ Vtr, define the indicator random variable Xv

u for each u ∈ S such that:

Xv
u =

{
1 if v ∈ k-NN(u)

0 otherwise
(3)

The total number of times v appears in the k-NN lists of sampled nodes is given by:

Xv =
∑
u∈S

Xv
u = z · Π̃(v) (4)

Since nodes are sampled independently and uniformly, we have E[Xv] = z · Π(v), where Π(v)
is the true representative power of node v. Thus, Xv follows a Binomial distribution: Xv ∼
Binomial(z,Π(v)).

Applying Chernoff bounds for any ϵ ≥ 0:

Upper tail: P (Xv ≥ (1 + ϵ)zΠ(v)) ≤ exp

(
− ϵ2

2 + ϵ
zΠ(v)

)
(5)

Lower tail: P (Xv ≤ (1− ϵ)zΠ(v)) ≤ exp

(
−ϵ2

2
zΠ(v)

)
(6)

Combining both bounds:

P (|Xv − zΠ(v)| ≥ ϵzΠ(v)) ≤ 2 exp

(
− ϵ2

2 + ϵ
zΠ(v)

)
(7)

⇒ P
(∣∣∣zΠ̃(v)− zΠ(v)

∣∣∣ ≥ ϵzΠ(v)
)
≤ 2 exp

(
− ϵ2

2 + ϵ
zΠ(v)

)
(8)

⇒ P
(∣∣∣Π̃(v)−Π(v)

∣∣∣ ≥ ϵΠ(v)
)
≤ 2 exp

(
− ϵ2

2 + ϵ
zΠ(v)

)
(9)

Substituting θ = ϵΠ(v) from Lemma 1 in Eq. 9, we rewrite Eq. 9 as:

P
(∣∣∣Π̃(v)−Π(v)

∣∣∣ ≥ θ
)
≤ 2 exp

−

(
θ

Π(v)

)2

2 + θ
Π(v)

zΠ(v)

 (10)

≤ 2 exp

(
− θ2

(2Π(v) + θ)
z

)
(11)

Since Π(v) ≤ 1, we obtain:

P
(∣∣∣Π̃(v)−Π(v)

∣∣∣ ≥ θ
)
≤ 2 exp

(
− θ2

2 + θ
z

)
(12)

To ensure this probability is at most δ, we solve:

2 exp

(
− θ2

2 + θ
z

)
≤ δ (13)

⇒ ln

(
2

δ

)
≤ θ2

2 + θ
z (14)

⇒z ≥
ln

(
2
δ

)
(2 + θ)

θ2
(15)

Hence, if we sample at least z ≥ ln(2
δ)(2+θ)

θ2 nodes in S, then for any v ∈ V:

Π̃(v) ∈ [Π(v)− θ, Π(v) + θ] with probability at least 1− δ. □ (16)

23

A.4 NP-hardness: Proof of Theorem 1

PROOF. We prove NP-hardness of the representative node selection problem by a reduction from
the classical Set Cover problem [5].
Definition 7 (Set Cover). Given a budget b and a collection of subsets S = {S1, . . . , Sm} of a
universe U = {u1, . . . , un} such that Si ⊆ U for all i, the Set Cover problem asks whether there
exists a subcollection S ′ ⊆ S of size |S ′| = b such that

⋃
Si∈S′ Si = U .

Given an instance of Set Cover ⟨S, U⟩, b, we construct a graph G = (V,E) and corresponding node
embeddings such that solving our representative selection problem on this graph is equivalent to
solving the Set Cover instance.

We create a training node set Vtr = VU ∪ VS , where:

• For each element uj ∈ U , we create a node vuj
∈ VU .

• For each subset Si ∈ S, we create a node vSi
∈ VS .

We define the k-NN relationship over the learned GNN embeddings such that for each uj ∈ Si,
node vSi

∈ k-NN(vuj
), i.e., vuj

∈ Rev−k−NN(vSi
). This means that vSi

represents all vuj
for

which uj ∈ Si.

Now, consider the exemplar selection problem: choose a set A ⊆ V of size b that maximizes the
representative power:

Π(A) =
|{v ∈ Vtr | ∃v′ ∈ A such that v ∈ Rev-k-NN(v′)}|

|Vtr|
(17)

Our construction ensures that Π(A) = |VU |
|Vtr| if and only if all nodes in VU are covered by the reverse

k-NNs of nodes in A. This is equivalent to finding b nodes from VS (i.e., subsets in the original
Set Cover instance) whose reverse k-NNs jointly cover all nodes in VU (i.e., elements in U). Thus,
there exists a set cover of size b if and only if there exists a node subset A ⊆ Vtr of size b such that
Π(A) = |VU |

|Vtr| . □

A.5 Proofs of Monotonicity and Submodularity

Theorem 3 (Monotonicity). Let A ⊆ A′ be two subsets of nodes in the graph. Then,
Π(A′)−Π(A) ≥ 0

Proof. Recall that Π(A) = |
⋃

v∈A Rev-k-NN(v)|
|Vtr| . The denominator |Vtr| is constant, so we only need

to show that the numerator is monotonic.

Since A′ ⊇ A, we have: ⋃
v∈A′

Rev-k-NN(v) ⊇
⋃
v∈A

Rev-k-NN(v)

because the union operator is monotonic under set inclusion. Therefore, the size of the covered set
cannot decrease as A grows. This implies:

Π(A′) ≥ Π(A)

Theorem 4 (Submodularity). Let A ⊆ A′ and v be any node in the graph not already in A′. Then,
Π(A′ ∪ {v})−Π(A′) ≤ Π(A ∪ {v})−Π(A)

PROOF BY CONTRADICTION. Assume instead that:
Π(A′ ∪ {v})−Π(A′) > Π(A ∪ {v})−Π(A) (18)

Let Rv = Rev-k-NN(v) denote the set of nodes that consider v among their k nearest neighbors.
The marginal gain of adding v to a set A is:∣∣∣∣∣Rv \

⋃
v′∈A

Rev-k-NN(v′)

∣∣∣∣∣
24

Inequality (18) implies:

|Rv \
⋃

v′∈A′

Rev-k-NN(v′)| > |Rv \
⋃
v′∈A

Rev-k-NN(v′)|

But since A′ ⊇ A, we have: ⋃
v′∈A

Rev-k-NN(v′) ⊆
⋃

v′∈A′

Rev-k-NN(v′)

which implies the reverse inequality:

|Rv \
⋃

v′∈A′

Rev-k-NN(v′)| ≤ |Rv \
⋃
v′∈A

Rev-k-NN(v′)|

This contradicts our assumption in Eq. (18), completing the proof. □

A.6 Proof of Monotonicity and Submodularity under Estimated Rev-k-NN

Let R̃ev-k-NN(v) denote the approximate reverse k-NN set of a node v, and Π̃(A) denote the ap-
proximate coverage function computed using these sets. The greedy algorithm in Theorem 2 pro-
vides a (1 − 1/e)-approximation to the maximization of Π̃(A), since the proof relies solely on
submodularity and monotonicity of the input function—both of which are preserved under the ap-
proximation (as the union of approximate sets still yields a valid set function).

To relate this back to the true optimum Π(A∗), we leverage the uniform error bound from Lemma 1
(Appendix A.3), which ensures that for any set A:

|Π̃(A)−Π(A)| ≤ θ with high probability(≥ 1− δ).

Let Ã be the set returned by greedy maximization over Π̃, and A∗ be the optimal set under the true
objective Π. The greedy guarantee gives:

Π̃(Ã) ≥
(
1− 1

e

)
Π̃(A∗).

By the uniform bound, we know Π̃(A∗) ≥ Π(A∗)− θ, so:

Π̃(Ã) ≥
(
1− 1

e

)
(Π(A∗)− θ) =

(
1− 1

e

)
Π(A∗)−

(
1− 1

e

)
θ.

Thus, even when using approximate Rev-k-NN sets, the greedy algorithm achieves the following
guarantee on estimated coverage:

Π̃(Ã) ≥
(
1− 1

e

)
Π(A∗)−

(
1− 1

e

)
θ

□

A.7 Impact of parameters

All experiments in this section are conducted on two large-scale benchmarks—WikiCS (ho-
mophilous) and Questions (heterophilous)—to evaluate three critical hyperparameters:

Rev-k-NN neighbourhood size (k). Fig. 17 shows that a moderate choice of k maximizes fidelity
for both WikiCS and Questions. On WikiCS, increasing k from 1 to 5 raises mean fidelity from 0.72
to 0.78, after which fidelity declines (0.72 at 20, 0.69 at 100). Likewise on Questions, fidelity peaks
at 0.92 for k = 5 and then falls to 0.86 at k = 100. These trends indicate that too small a prototype
set under-covers the class distribution, while too large a set introduces noisy, less representative
examples.

25

Table 5: Accuracy of the underlying GNN and fidelity of GNNXEMPLAR across different GNN
architectures on TAGCora

Architecture GNN Accuracy (%) Fidelity (%)

GraphSAGE 68.91 76.75

GCN 68.71 79.11

GAT 73.84 83.00

Training set sampling size. Fig. 18 evaluates the number of positive and negative nodes used to
generate feedback in each self-refinement iteration. Fidelity on both datasets peaks at a sampling
size of 20 (0.78 for WikiCS, 0.92 for Questions). Smaller sample sizes (1 or 5) under-represent mis-
classified patterns, yielding lower fidelity, whereas excessively large samples (100 or 200) introduce
so much data that the LLM struggles to distill the most salient corrective signals

Sampling rate for exemplar selection. Fig. 19 shows fidelity and runtime as a function of the
fraction of nodes used to compute Rev-k-NN prototypes. Fidelity rapidly saturates by 5–10 %
sampling—achieving 0.75–0.78 on WikiCS and 0.86–0.92 on Questions—while full sampling (100
%) incurs orders-of-magnitude higher runtimes (0.7 s → 690 s on WikiCS; 0.01 s → 41.6 s on
Questions) without significant fidelity gains. This demonstrates that a small fraction of the data
suffices to produce explanations of near–state-of-the-art fidelity at minimal computational cost.

Practical recommendations. In light of these results, we recommend setting k = 5, using a posi-
tive–negative sample size of 20 per iteration, and sampling 5–10 % of nodes for exemplar selection
to balance explanation quality and efficiency.

A.8 Robustness Across GNN Architectures

To assess the generalizability to GNN architectures, we apply it to three widely-used GNN back-
bones—GraphSAGE, GCN, and GAT—each trained on the same node-classification task for the
TAGCora dataset. Table 5 summarizes both the GNN’s accuracy and the fidelity of our extracted
rules.

Despite differences in representational power and message-passing mechanisms, GNNXEMPLAR
achieves consistently high fidelity ranging from 76.8 % for GraphSAGE to 83.0 % for GAT. These
results confirm that GNNXEMPLAR reliably translates diverse learned graph representations into
interpretable symbolic rules.

A.9 Dataset Descriptions

We evaluate our method on eight established node-classification benchmarks, chosen to span ho-
mophilous and heterophilous graphs, text-driven and purely structural domains:

• TAGCora A citation network of 2,708 computer-science papers connected by 10,556 directed
edges. Each node corresponds to a paper and is featurized by its title and abstract text. The task is
to predict one of seven topic categories at the node level.

• CiteSeer A citation network of 3312 publications partitioned into six topic labels. Edges indicate
citation links. Each paper is represented by a 3703-dimensional binary bag-of-words vector.

• ogbn-arxiv A directed graph of all CS arXiv papers indexed by MAG, with 169343 nodes and
1166243 citation edges. Node features are 128-dimensional vectors formed by averaging skip-
gram embeddings over title and abstract text. The 40 subject-area labels (e.g. cs.AI, cs.LG) yield
a 40-way classification task.

• WikiCS A homogeneous hyperlink network of 11701 Wikipedia articles across ten computer-
science categories, connected by 216123 edges. Node features are 300-dimensional averages of
pretrained GloVe word embeddings over the article text.

26

• Amazon-ratings A product co-purchase graph (24492 nodes, 93050 edges) where edges link
frequently co-bought items. The goal is to predict discretized average review scores (five classes).
Each product is featurized by the mean of fastText embeddings over its description.

• Minesweeper A synthetic 100 × 100 grid (10000 nodes, ≈39402 edges) modeling the
Minesweeper game. Twenty percent of cells contain mines. Node features are one-hot encod-
ings of the true count of adjacent mines, with a binary “unknown” flag on 50% of nodes.

• Questions A user-interaction graph from Yandex Q (48921 nodes, 153540 edges), where an edge
indicates one user answered another’s question over one year. The binary classification task pre-
dicts which users remain active. Node features combine fastText averages over user-profile text
with a binary “no profile” indicator.

• BA-Shapes A synthetic heterophilous graph built by attaching 80 five-node “house” motifs to a
300-node Barabási–Albert backbone, then adding random edges (10% of number of nodes). Each
node is labeled as tip, middle, base, or background.

B Human Evaluation

We designed and executed a survey in the form of an A/B test to compare the interpretability of
text-based explanations versus traditional subgraph-based explanations.

Survey Setup Participants were shown global explanations for the same GNN model, one in the
form of a subgraph(s) and the other as a textual rule. Their task was to evaluate both independently
and indicate which modality better communicated the model’s reasoning for classifying a particular
class of nodes. We explicitly clarified the meaning of global explanations — those meant to summa-
rize common decision patterns across all nodes of a given class — in contrast to local explanations
that are tailored to individual nodes. To help participants make an informed judgment, we included
clear and detailed instructions at the beginning of the survey. These instructions emphasized that:

• Each explanation should be evaluated in isolation.
• Participants should not attempt to align the textual and subgraph formats.
• The goal is to judge which modality stands better on its own in helping them understand the

GNN’s reasoning.

Participant Demographics We recruited 60 participants with at least a basic proficiency in ma-
chine learning for 5 A/B tests amounting for 300 total comparisons. All respondents came from
a computer science or engineering background, and we deliberately sampled both experts, i.e., re-
searchers actively working on graphs, and non-experts, who may work in other ML domains but
are still familiar with model reasoning and classification tasks. This balance allowed us to assess
interpretability across varying levels of familiarity with graph-structured data.

Statistical Tests To evaluate user preferences between the two explanation modalities presented
across five A/B questions, we conducted both a Binomial test and McNemar’s test. The Binomial
test, applied to the aggregate responses (275 total comparisons), assesses whether one modality was
preferred significantly more often overall. While informative, this test treats each question response
as independent and does not account for within-subject consistency. To address this, we additionally
used McNemar’s test, which considers per-user paired choices across the five questions, capturing
whether individuals systematically favored one modality over the other. Together, these tests pro-
vide complementary insights: the binomial test reflects population-level preference strength, while
McNemar’s test confirms the consistency of that preference at the individual level.

Survey Materials and Transparency To ensure full transparency and reproducibility, we include
screenshots of key survey components in the Appendix. Fig. 6 shows the welcome page, which
introduced the task, explained the distinction between global and local explanations, and outlined
the survey objective. Fig. 7 presents the instructional page detailing how to interpret and evaluate
the two explanation modalities. Fig. 8 shows a representative A/B test question featuring a dataset
description and both types of explanations. Finally, Fig. 9 illustrates the evaluation criteria provided
before each A/B comparison to guide participants in making modality-specific judgments. These
materials demonstrate the care taken to ensure participants understood the task and the evaluation
criteria, lending credibility to the findings reported in Sec. 4.7.

27

Controlling for Content Differences Across Modalities The goal of this survey was to compare
the modalities of explanation—text versus subgraph—not their content richness. Since our textual
explanations are generated automatically, we needed to ensure that the subgraph explanations were
as close in content as possible to the text ones, so that the only difference being judged by participants
was the modality, not the information conveyed.

Our textual explanations include both structural and feature-based insights. For example, Fig.
14 shows the explanation for the Rule Learning class in TAGCora: Publications in “Rule Learn-
ing” contain keywords such as “inductive logic programming,” “meta-knowledge,” or “hypothesis
space,” and/or their immediate and 2-hop citation neighborhoods are predominantly Rule Learning
papers.

This explanation draws on both graph topology and node features (keywords). However, subgraph
visualizations cannot communicate high-dimensional features — how would one visually encode a
128-dimensional feature vector within a graph view?

To address this mismatch and ensure a fair comparison, we intentionally disabled feature informa-
tion while generating the text explanations used in the survey. This ensured that both explanation
types were grounded purely in structure, making the comparison about modality alone. Without this
control, the text-based explanations would have had an inherent informational advantage, introduc-
ing bias into the survey.

This content difference is illustrated in Fig. 14 and 8. The former shows a feature-rich explanation,
while the latter corresponds to the feature-neutral version used in the survey.

Table 6: Precision
Homophilous Heterophilous

TAGCora Citeseer WikiCS ogbn-arxiv Amazon-ratings Questions Minesweeper BA-Shapes

GNNInterpreter NA 0.50± 0.00 NA NA NA NA 0.50± 0.00 0.54± 0.10

GCNeuron 0.32± 0.00 0.16± 0.00 NA NA 0.75± 0.10 NA 0.58± 0.00 0.16± 0.00

GLGExplainer NF NF OOM OOM NF OOM 0.25± 0.01 0.37± 0.09

Ours 0.85± 0.03 0.95± 0.05 0.98± 0.00 0.99± 0.00 0.81± 0.05 0.96± 0.00 0.81± 0.02 0.95± 0.01

Table 7: Recall
Homophilous Heterophilous

TAGCora Citeseer WikiCS ogbn-arxiv Amazon-ratings Questions Minesweeper BA-Shapes

GNNInterpreter NA 1.00± 0.00 NA NA NA NA 1.00± 0.00 0.29± 0.10

GCNeuron 0.17± 0.00 0.33± 0.00 NA NA 0.27± 0.00 NA 0.53± 0.00 0.33± 0.00

GLGExplainer NF NF OOM OOM NF OOM 0.49± 0.01 0.22± 0.12

Ours 0.82± 0.02 0.89± 0.06 0.58± 0.03 0.67± 0.02 0.80± 0.02 0.81± 0.04 0.96± 0.00 0.91± 0.00

Table 8: F1 Score
Homophilous Heterophilous

TAGCora Citeseer WikiCS ogbn-arxiv Amazon-ratings Questions Minesweeper BA-Shapes

GNNInterpreter NA 0.67± 0.00 NA NA NA NA 0.67± 0.00 0.34± 0.10

GCNeuron 0.15± 0.00 0.22± 0.00 NA NA 0.26± 0.00 NA 0.45± 0.00 0.22± 0.00

GLGExplainer NF NF OOM OOM NF OOM 0.33± 0.01 0.24± 0.11

Ours 0.82± 0.01 0.92± 0.03 0.71± 0.03 0.77± 0.01 0.80± 0.02 0.86± 0.03 0.87± 0.01 0.93± 0.00

28

Figure 6: Welcome page of the user study. This page introduced participants to the study’s objec-
tive, explained the distinction between local and global explanations, described the two explanation
modalities, and clarified the task expectations. It also included details about the target audience,
estimated completion time, and participant incentives.

29

Figure 7: Instructions shown to participants prior to the survey. These guidelines clarified how to
interpret subgraph and text-based explanations, emphasized evaluating each modality independently,
and explained the concept of global explanations to ensure consistent and meaningful user responses.

Figure 8: Example survey question shown to participants. This page presents the task context for
a global explanation comparison—participants were shown a dataset description followed by two
explanation modalities (text-based and subgraph-based) for the same model prediction and asked to
select their preferred one.

30

Figure 9: Evaluation guidelines provided before each A/B comparison. Participants were instructed
to evaluate each explanation independently, avoid aligning the two modalities, and judge which
one more effectively communicates the model’s reasoning on its own. These instructions ensured
unbiased, modality-specific assessments.

31

You are given an exemplar node and a set of nodes that belong to its Rev-k-NN
set (from a GNN embedding). Also provided are some nodes that do NOT
belong to this Rev-k-NN set. Please propose an INITIAL symbolic
rule-based formula that outputs 1 for Rev-k-NN set nodes and 0 for
non-Rev-k-NN set nodes. Remember that your rules should not be generic
and should be specific to the exemplar node and its Rev-k-NN set. Rely
ONLY on node features and local adjacency information. Focus on finding
what features and structural neighborhood information makes the Rev-k-NN
set nodes similar and the non-Rev-k-NN set nodes dissimilar to the
exemplar node. Use them to form the rules.

Output your explanation in JSON with a top-level rules list and an
interpretation key. Also implement a Python function called
classify_node() that takes a node_description as input and returns 1 or
0. Ensure the code can run independently without external file
dependencies and without any errors. Avoid using regex, or importing any
more external libraries. Also ensure that all the code is inside the
classify_node function only, and nothing should be outside it.

Exemplar node: 11757
Exemplar node description:
{

'node_id': 11757,
'features': [0.06785757, 0.11838776, 3.94833946],
'1-hop': {'neighbor_class_freq': {1: 1.0}},
'2-hop': {'neighbor_class_freq': {1: 1.0}}

}
Rev-k-NN set nodes: [2593, 9375]
Non-Rev-k-NN set nodes: [32414, 14315]

Descriptions of Rev-k-NN set nodes:

Node 2593: {'node_id': 2593, 'features': [0.07221082, 0.11624873,
3.92639644], '1-hop': {'neighbor_class_freq': {1: 1.0}}, '2-hop':
{'neighbor_class_freq': {0: 0.4736842, 1: 0.5263158}}}

Node 9375: {'node_id': 9375, 'features': [0.13466489, 0.14399602,
0.05334831], '1-hop': {'neighbor_class_freq': {1: 1.0}}, '2-hop':
{'neighbor_class_freq': {0: 0.4736842, 1: 0.5263158}}}

Descriptions of non-Rev-k-NN set nodes:

Node 32414: {'node_id': 32414, 'features': [0.05580222, 0.08147032,
-0.06319338], '1-hop': {'neighbor_class_freq': {0: 1.0}}, '2-hop':
{'neighbor_class_freq': {0: 1.0}}}

Node 14315: {'node_id': 14315, 'features': [0.08261909, 0.50772273,
0.49023183], '1-hop': {'neighbor_class_freq': {0: 1.0}}, '2-hop':
{'neighbor_class_freq': {0: 1.0}}}

Figure 10: Query prompt given to the LLM on the questions dataset

32

Below is the CURRENT formula:
def classify_node(node_description):

try:
if node_description['features'][2] > 3.0 and
node_description['1-hop']['neighbor_class_freq'].get(1, 0) >= 0.5:

return 1
else:

return 0
except (KeyError, IndexError):

return 0

It was evaluated on Rev-k-NN set nodes (should be 1) and non-Rev-k-NN set
nodes (should be 0). It yielded 2 false negatives and 0 false positives.

False Negatives (Rev-k-NN set nodes misclassified as non-Rev-k-NN set):
Node 1920: {'node_id': 1920, 'features': array([0.04922352, 0.19213917,
0.6143764]),

'1-hop': {'neighbor_class_freq': {0: 0.5714, 1: 0.4286}},
'2-hop': {'neighbor_class_freq': {0: 0.9715, 1: 0.0285}}}

Node 15365: {'node_id': 15365, 'features': array([0.0492574 , 0.19516333,
0.59393265]),

'1-hop': {'neighbor_class_freq': {1: 1.0}},
'2-hop': {'neighbor_class_freq': {0: 0.25, 1: 0.75}}}

False Positives (non-Rev-k-NN set nodes misclassified as Rev-k-NN set):
None.

Your goal is to improve the formula so that it does not make these errors
while preserving its correct predictions. Provide detailed feedback on which
condition to add, remove, or modify, and state the single most important
change to make. Do not supply the revised code yet.

Figure 11: Feedback prompt given to the LLM on the questions dataset

33

Below is the history of previous iterations:
Iteration 0:
Formula:

def classify_node(node_description):
try:

if node_description['features'][2] > 3.0 and
node_description['1-hop']['neighbor_class_freq'].get(1, 0) >= 0.5:

return 1
else:

return 0
except (KeyError, IndexError):

return 0

Positives Accuracy: 0.46031746031746035, Negatives Accuracy: 1.0
Actionable Feedback:
The single most important change to improve the formula is to increase the
threshold for node['1-hop']['neighbor_class_freq'].get(1, 0) from 0.5 to 0.7.
The current threshold is too lenient, allowing nodes with a significant
proportion of non-class 1 neighbors to be incorrectly classified as Rev-k-NN
set members. Raising the threshold will better discriminate between Rev-k-NN
set and non-Rev-k-NN set nodes based on 1-hop neighborhood information.
Further adjustments to the feature threshold might also be beneficial, but
addressing the neighbor frequency threshold is the most impactful initial
step.

Using the history above, and the last feedback, please produce a REVISED
formula in JSON format with a top-level 'rules' list and an 'interpretation'
key. Your goal is to improve the accuracy metrics by addressing the feedback
provided. You must achieve at least 95% positive and negative accuracy. Also,
implement a Python function called classify_node() that takes a
node_description as input and returns 1 or 0. Ensure the code can run
independently without external file dependencies and without any errors.
Avoid using regex, or importing any more external libraries. Also ensure that
all the code is inside the classify_node function only, and nothing should be
outside it.

Figure 12: Refine prompt given to the LLM on the questions dataset

34

def classify_class_0(node_description):
features = node_description.get('features ', '')
one_hop = node_description.get('1-hop', {}).get('

neighbor_class_freq ', {})
two_hop = node_description.get('2-hop', {}).get('

neighbor_class_freq ', {})

Exemplar #1 signature
score1 = 0.5 * int(any(k in features

for k in ['ILP','meta -knowledge ','
hypothesis space ']))

score1 += 0.3 * int(one_hop.get(0,0) > 0.8)
score1 += 0.2 * int(two_hop.get(0,0) > 0.8)
cond1 = (score1 >= 0.5)

Exemplar #2 signature
score2 = 0.5 * int(any(kw in features.lower ()

for kw in ['logic program ',
'inductive logic programming ',
'ilp']))

score2 += 0.3 * int(one_hop.get(0,0) > 0.7)
score2 += 0.2 * int(two_hop.get(0,0) > 0.5)
cond2 = (score2 >= 0.5)

return cond1 or cond2

Class 0 (Rule Learning)
A publication belongs to the Rule Learning class if its text mentions “inductive logic programming,”
“meta-knowledge,” or “hypothesis space,” or if a large majority of its 1-hop and 2-hop citation
neighbors also belong to Rule Learning.

Figure 13: Global explanation for TAGCora class 0 (Rule Learning): Top - the Python implementa-
tion as the OR of two exemplar signatures; Bottom - the human-readable description.

35

Global Explanations for TAGCORA

Class 0 (Rule Learning)
Publications in “Rule Learning” contain keywords such as “inductive logic programming,”
“meta-knowledge,” or “hypothesis space,” and/or their immediate and 2-hop citation neigh-
borhoods are predominantly Rule Learning papers.

Class 1 (Neural Networks)
Papers in “Neural Networks” mention terms like “neural network,” “backpropagation,” “neu-
rons,” or “activation functions,” and/or their 1- and 2-hop neighbors are largely in the Neural
Networks class; occasional focus on ICA or HMM further reinforces this label, while men-
tions of other paradigms reduce its likelihood.

Class 2 (Case-Based)
Case Based publications include phrases such as “case-based reasoning,” “adaptation,” or
“planning,” and frequently cite other Case Based works within one or two hops; secondary
indicators include words like “learning” and “explanation.”

Class 3 (Genetic Algorithms)
Genetic Algorithms papers feature keywords like “genetic algorithm,” “evolutionary algo-
rithm,” or “genetic programming,” and/or their 1-hop and 2-hop citation graphs are enriched
with other Genetic Algorithms publications.

Class 4 (Theory)
“Theory” articles discuss Bayesian methods, classifiers, or decision trees, and/or they are
frequently cited by, and cite, other Theory papers within one or two hops; a strong Theory
neighborhood further disambiguates this class.

Class 5 (Reinforcement Learning)
Reinforcement Learning papers mention “reinforcement learning,” “TD learning,” or related
terms such as “real-time,” “online,” or “neuro-evolution,” and/or their direct and extended
citations predominantly belong to the Reinforcement Learning class.

Class 6 (Probabilistic Methods)
Probabilistic Methods works include keywords like “Bayesian network,” “Markov chain,”
“density estimation,” “Gibbs sampling,” or “MCMC,” and/or at least 20–80% of their 1-hop
and 2-hop neighbors are also Probabilistic Methods publications.

Figure 14: High-level, human-readable rule summaries for each class in the TAGCora dataset gen-
erated by our global explanation pipeline (see Fig. 13 for the detailed Python implementation and
interpretation of the Rule Learning class).

36

Global Explanations for BAShapes

Class 0 (Not in House)
Nodes not belonging to a house are characterized by having many (at least 6, often more
than 8) neighbors that also don’t belong to a house, and only a few (at most 2) neighbors in
the house structure—reflecting their isolation from any house motifs.

Class 1 (Middle of House)
A “middle” node sits on the roof slope: it has exactly one tip neighbor, one base neighbor,
and the other middle node as motif-neighbors, and at most two additional connections to
non-house nodes.

Class 2 (Base of House)
A “base” node is directly connected to exactly one middle node and exactly one other base
node, with no links to any other classes.

Class 3 (Tip of House)
A “tip” node occupies the apex of the house motif: it connects exclusively to two class-1
(middle) nodes and has no edges to any other class, forming the roof’s peak.

Figure 15: High-level, human-readable rule summaries for each class in the BAShapes dataset gen-
erated by our global explanation pipeline.

Global Explanations for QUESTIONS

Class 0 (Active Users)
Active users on Yandex Q are those whose immediate neighbors and 2-hop neighbors are
also predominantly active, indicating engagement within a highly interactive community.

Class 1 (Inactive Users)
Inactive users exhibit feature profiles closely matching the exemplar node 11757 and have
at least 50% of their immediate neighbors inactive, reflecting their embedding within a low-
activity subnetwork.

Figure 16: High-level, human-readable rule summaries for each class in the Questions dataset gen-
erated by our global explanation pipeline.

1 5 20 100
k

0.70

0.72

0.74

0.76

0.78

Fi
de
li
ty

WikiCS

1 5 20 100
k

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Fi
de
li
ty

Questions

Figure 17: Effect of the Rev-k-NN k on explanation fidelity for WikiCS and Questions. Each subplot
plots mean fidelity over five runs as k varies.

37

15 20 100 200
Sampling size

0.625

0.650

0.675

0.700

0.725

0.750

0.775

Fi
de
li
ty

WikiCS

15 20 100 200
Sampling size

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

Fi
de
li
ty

Questions

Figure 18: Impact of the training set sampling size on the explanation fidelity for WikiCS and
Questions.

1 510 100
Sampling rate (%)

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

Fi
de
li
ty

WikiCS

1 510 100
Sampling rate (%)

0.80

0.82

0.84

0.86

0.88

0.90

0.92
Questions

(a) Fidelity vs. sampling rate

1 5 10 100
Sampling rate (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ru
nt
im
e
(s
)

WikiCS

1 5 10 100
Sampling rate (%)

0

10

20

30

40

Questions

(b) Runtime vs. sampling rate

Figure 19: Trade-off between runtime and fidelity as a function of sampling rate for WikiCS and
Questions: (a) Fidelity as a function of sampling rate; (b) Exemplar selection runtime versus sam-
pling rate.

38

	Introduction and Related Works
	Existing Works and Open Challenges
	Contributions

	Preliminaries and Problem Formulation
	Methodology
	Exemplar Identification.
	Quantifying Representativeness through Reverse k-NN
	Sampling for Scalable Computation of Reverse k-NN

	Coverage Maximization
	Discovery of Exemplar Signatures

	Experiments
	Experimental Setup
	Fidelity
	Ablation Study
	Impact of Parameters and Gnn architectures
	Case Study: Visual Analysis of Rules
	Application: Diagnostic Power in Failure Cases
	Human Evaluation: User Survey

	Conclusions, Limitations and Future Works
	Appendix
	Experimental setup
	Training Details of GNNs
	Proof of Lemma 1
	NP-hardness: Proof of Theorem 1
	Proofs of Monotonicity and Submodularity
	Proof of Monotonicity and Submodularity under Estimated Rev-k-NN
	Impact of parameters
	Robustness Across Gnn Architectures
	Dataset Descriptions

	Human Evaluation

