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ABSTRACT

Recent advancements in 3D content generation from text or a single image strug-
gle with limited high-quality 3D datasets and inconsistency from 2D multi-view
generation. We introduce DIFFGS, a novel 3D generative framework that natively
generates 3D Gaussians by taming large-scale text-to-image diffusion models. It
differs from previous 3D generative models by effectively utilizing web-scale 2D
priors while maintaining 3D consistency in a unified model. To bootstrap the train-
ing, a lightweight reconstruction model is proposed to instantly produce multi-
view Gaussian grids for scalable dataset curation. In conjunction with the regular
diffusion loss on these grids, a 3D rendering loss is introduced to facilitate 3D
coherence across arbitrary views. The compatibility with image diffusion models
enables seamless adaptions of numerous techniques for image generation to the
3D realm. Extensive experiments reveal the superiority of DIFFGS in text- and
image-conditioned generation tasks and downstream applications. Thorough abla-
tion studies validate the efficacy of each critical design choice and provide insights
into the underlying mechanism. Code and models will be publicly available.

1 INTRODUCTION

Generating 3D content from a single image or text is a long-standing challenge with a wide range
of applications, such as game design, digital arts, human avatars, and virtual reality. It is a highly
ill-posed problem that requires reasoning the unseen parts of any object in the 3D space only from a
single view or textual descriptions, posing a great challenge to both fidelity and generalizability.

Early studies (Choy et al., 2016; Xu et al., 2019) regard the single-view reconstruction problem as
a regression task, resulting in poor quality, and lack of uncertainty and diversity. With the develop-
ment of diffusion generative models (Sohl-Dickstein et al., 2015; Ho et al., 2020), recent works train
conditional 3D generative networks directly on datasets of various 3D representations (Nichol et al.,
2022; Jun & Nichol, 2023; Cao et al., 2024; He et al., 2024; Zhang et al., 2024b), as demonstrated in
Figure 1 (1), or only using 2D supervision with the help of differentiable rendering techniques (An-
ciukevičius et al., 2023; Karnewar et al., 2023b; Szymanowicz et al., 2023; Xu et al., 2024d) as in
Figure 1 (2). Despite 3D consistency, they are limited by the supervision scale and can’t utilize 2D
priors from abundant pre-trained models. Current advanced generalizable 3D content creation meth-
ods (Li et al., 2024a; Wang et al., 2024; Tang et al., 2024) reconstruct implicit 3D representations
from generated multi-view images using pretrained 2D diffusion models (Wang & Shi, 2023; Shi
et al., 2023; Voleti et al., 2024), as illustrated in Figure 1 (3). Although these two-stage methods
can reconstruct high-quality 3D content from multi-view posed images, the synthesis pipeline col-
lapses and fails to produce faithful results when generated images from upstreamed 2D multi-view
diffusion models are of poor quality or inconsistency.

To overcome the drawbacks of previous works, we present DIFFGS, a novel 3D generative frame-
work that exhibits multi-view consistency and effectively leverages generative priors from large-
scale image datasets. We adopt 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) as the 3D content
representation for its efficient rendering and quality balance. Instead of relying on time-consuming
per-instance optimization to obtain 3D datasets for training (He et al., 2024; Zhang et al., 2024b),
we represent a 3D object by a set of well-structured Gaussian 2D grids. During the training stage,
these grids can be instantly regressed from multi-view images in less than 0.1 seconds, facilitating
scalable and high-quality 3D dataset curation. Each Gaussian in 2D grids holds properties that imply
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Figure 1: Comparison with Previous 3D Diffusion Generative Models. (1) Native 3D methods
and (2) rendering-based methods encounter challenges in training 3D diffusion models from scratch
with limited 3D data. (3) Reconstruction-based methods struggle with inconsistencies in generated
multi-view images. In contrast, (4) DIFFGS leverages pretrained image diffusion models for the
direct 3DGS generation, effectively utilizing 2D diffusion priors and maintaining 3D consistency.
“GT” refers to ground-truth samples in a 3D representation used for diffusion loss computation.

object texture and structure. Noting that image diffusion models trained on web-scale datasets are
capable of 3D geometry estimation (Li et al., 2024b; Ke et al., 2024; Fu et al., 2024), we find that
by treating reconstructed Gaussian 2D grids as images in a special style, we can harness the power
of pretrained 2D image diffusion models for direct 3DGS generation.

Specifically, open-sourced latent diffusion models (Rombach et al., 2022; Podell et al., 2024; Chen
et al., 2024c;b; Esser et al., 2024) trained on web-scale image datasets are repurposed to directly
generate Gaussian properties for 3D content creation. To ensure that reconstructed Gaussian grids
have the same shape as the input latents of image diffusion models, we also fine-tune their VAEs
to compress Gaussian properties into a similar latent space, which are coined as Gaussian latents.
During the training of DIFFGS, as shown in Figure 1 (4), in addition to a standard diffusion loss
on Gaussian latents, which resembles regular image diffusion models, we propose to incorporate a
rendering loss to enable the generative model to function in 3D space and facilitate 3D consistency,
since Gaussian properties are processed in the network and can be differentially rendered in arbitrary
views. Furthermore, thanks to the minimal modifications on 2D denoising network architectures,
various pretrained text-to-image diffusion models can serve as the base model for DIFFGS, and
techniques proposed for them can be seamlessly adapted to the realm of 3D generation within our
framework, establishing a bridge between 3D content creation and the image generation community.

Our contributions can be summarized as follows:

• A novel 3D generative framework that directly generates 3D Gaussians by fine-tuning image
diffusion models, effectively utilizing 2D priors and maintaining 3D consistency.

• Abundant pretrained image diffusion models and associated techniques can be adapted for
the proposed model, seamlessly connecting 3D generation and the image community.

• Extensive experiments demonstrate the superior performance of the proposed method, and
ablation studies are conducted to analyze the effectiveness of each design choice. Our code
and models will be made publicly available.

2 RELATED WORK

Native 3D Generative Models Diffusion-based models (Ho et al., 2020; Liu et al., 2023) have
emerged as the de facto approach for generative models. The most straightforward solution for
3D content creation is to train a 3D denoising network on 3D datasets as shown in Figure 1 (1),
termed as “native 3D generative models”. Numerous native 3D methods are proposed for explicit
3D representations, such as voxel (Sanghi et al., 2023; Ren et al., 2024) and point cloud (Nichol
et al., 2022; Mo et al., 2023), which are readily available but often result in poor visual quality. On
the other hand, implicit representations like implicit functions (Jun & Nichol, 2023; Liu et al., 2024a;
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Zhang et al., 2024d; Li et al., 2024c; Chen et al., 2024d), triplanes (Cao et al., 2024; Liu et al., 2024b;
Zhang et al., 2024a; Wu et al., 2024) and 3DGS (Henderson et al., 2024; He et al., 2024; Zhang
et al., 2024b) offer more faithful appearances but are usually inaccessible and require extra time-
intensive preprocessing, making it impractical to maintain a large-scale dataset. Moreover, native
3D generative models face limitations in leveraging pretrained 2D models, posing great challenges
to the quality and scale of 3D datasets, as well as the efficiency of 3D network training from scratch.

Rendering-based 3D Generative Models Instead of relying on time-consuming 3D dataset cura-
tion, with differentiable rendering techniques (Mildenhall et al., 2020), some works propose to train
3D generative models with only 2D supervision, which are called “rendering-based generative mod-
els” and shown in Figure 1 (2). These methods aim to denoise images rendered from a corrupted
implicit 3D representation in the absence of ground-truth clean 3D data. HoloDiffusion (Karnewar
et al., 2023b) and HoloFusion (Karnewar et al., 2023a) propose bootstrapped latent diffusion strat-
egy, in which feature volumes are denoised twice to solve the problem that there is no ground-truth
rendering volume for radiance fields. Compared to RenderDiffusion (Anciukevičius et al., 2023) that
reconstructs clean triplane features from single-view noised images, Viewset Diffusion (Szymanow-
icz et al., 2023) and GIBR (Anciukevicius et al., 2024) denoise multi-view images simultaneously,
ensuring coherent and plausible appearance and geometry for the intermedia rendering volume from
sufficient viewpoints. DMV3D (Xu et al., 2024d) further scales up to highly diverse datasets con-
taining nearly 1 million objects. However, it is extremely computationally intensive and costs 128
A100 GPUs for 7 days to train a unified model for 2D denoising and 3D reconstruction without any
2D generative prior, suffering from the same drawback of native 3D methods.

Reconstruction-based 3D Generative Models By scaling up network parameters and training
datasets, Large Reconstruction Model (LRM) (Hong et al., 2024b; Tochilkin et al., 2024), a feed-
forward Transformer encoder (Vaswani et al., 2017), can reconstruct a triplane field (Chan et al.,
2022) from a single image. It only needs multi-view images for supervision akin to rendering-
based methods, but operates deterministically rather than for denoising. As presented in Figure 1
(3), reconstruction-based methods leverage 2D priors by utilizing frozen image diffusion models to
generate multiview images (Shi et al., 2024; Wang & Shi, 2023; Shi et al., 2023; Voleti et al., 2024;
Han et al., 2024) with generalizable 3D reconstruction models. Instant3D (Li et al., 2024a) follows
LRM and produces triplane features from posed images in 2×2 grids generated by a fine-tuned large
image diffusion model (Podell et al., 2024). Some methods (Wang et al., 2024; Wei et al., 2024; Xu
et al., 2024b; Siddiqui et al., 2024; Boss et al., 2024) replace the rendering representation from
triplane to FlexiCubes (Shen et al., 2021; 2023) or VolSDF (Yariv et al., 2021) to directly extract
meshes. Other methods (Tang et al., 2024; Xu et al., 2024c; Zhang et al., 2024c; Chen et al., 2024a)
produce Gaussian attributes from input pixels or learnable tokens for better visual quality and fast
rendering. However, all these methods regard the multi-view diffusion model as an independent
plug-and-play module, so 3D generation is conducted as a two-stage proceeding, which requires
extra network parameters and may collapse due to the 3D inconsistency in generated images.

3 METHOD

Motivated by the effectiveness of web-scale pretrained image diffusion models in estimating 3D
geometry attributes, such as depth (Stan et al., 2023; Ke et al., 2024), coordinates (Li et al., 2024b;
Xu et al., 2024a) and normal (Long et al., 2024; Fu et al., 2024), our goal in this work is taming
image diffusion models to directly generate 3D content. As illustrated in Figure 2, the proposed
method consists of three parts: (1) scalable 3D data curation by structured Gaussian reconstruction
(Sec. 3.1), (2) Gaussian latents (Sec. 3.2), and (3) the generative model DIFFGS (Sec. 3.3).

3.1 DATA CURATION: STRUCTURED GAUSSIAN RECONSTRUCTION

Inspired by generalizable 3DGS reconstruction techniques (Szymanowicz et al., 2024; Charatan
et al., 2024), we utilize a set of structured multi-view Gaussian grids to represent a 3D object.
Specifically, given Vin posed images in R3×H×W , a small network Fθ can regress per-pixel Gaussian
from these contextualized images in under 0.1 seconds, and is trained by the rendering loss Lrender:

Lrender(G) :=
1

V

V∑
v=1

LMSE(Iv, I
GT
v ) + λp · LLPIPS(Iv, I

GT
v ) + λα · LMSE(Mv,M

GT
v ), (1)
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Figure 2: Method Overview. (1) A lightweight reconstruction model provides high-quality struc-
tured Gaussian representation for “pseudo” 3D dataset curation. (2) Image VAE is fine-tuned to
encode Gaussian properties into a shared latent space. (3) DIFFGS is natively capable of generating
3D contents by image and text conditions utilizing 2D priors from text-to-image diffusion models.

where Iv and Mv are respectively RGB images and silhouette masks differentially rendered from
predicted 3D Gaussian primitives G := {gi}Ni=1 via efficient rasterization technique (Kerbl et al.,
2023) across random V viewpoints, and N = Vin × H × W due to the pixel-aligned prediction.
LMSE and LLPIPS stands for mean squared error loss and VGG-based perceptual loss (Zhang et al.,
2018). “GT” denotes ground-truth data for supervision, and λp, λα ∈ R+ are hyper-parameters to
adjust the relative importance of three different losses.

Each Gaussian primitive gi ∈ R12 is parameterized by its RGB color c ∈ R3, location x ∈ R3,
scale s ∈ R3, rotation quaternion r ∈ R4 and opacity o ∈ R. To simplify the parameterization and
regulate the distribution of primitives, location x is determined by depth d ∈ R, camera intrinsic K ∈
R3×3 and extrinsic matrices (rotation R ∈ SO(3) and translation t ∈ R3), x := R⊤K−1[u|d] − t.
[u|d] is homogeneous pixel coordinates u ∈ R2 with depth. For numerical values of Gaussian
properties to be confined within [0, 1] in preparation of diffusion-based generation, outputs of Fθ
are all activated by the sigmoid function σ(·), except for r, which is L2-normalized to yield unit
quaternions. RGB color c and opacity o are already supposed to be in [0, 1]. Raw scale ŝ is linearly
interpolated with predefined values smin and smax (Xu et al., 2024c):

s := smin · σ(ŝ) + smax · (1− σ(ŝ)). (2)
Raw depth d̂ is defined to be relative to the image plane, and objects in our datasets can be normalized
into a [−1, 1]3 cube, allowing its value to be restricted in [0, 1] by the sigmoid function:

d := 2 · σ(d̂)− 1 + ∥t∥2. (3)

Different from previous reconstruction-based methods (Tang et al., 2024; Xu et al., 2024c; Zhang
et al., 2024c), besides multi-view posed RGB images, we also incorporate corresponding coordinate
maps (Shotton et al., 2013) and normal maps as additional inputs for auxiliary geometric guidance.
Note that these extra inputs are only employed to enhance the reconstruction quality of Gaussian
grids and are not required during the generation stage. Ablation study is conducted to assess the
efficacy of geometric guidance alongside RGB images in Sec. 4.5.1.

3.2 GAUSSIAN LATENTS

Aforementioned designs allow for a high-quality representation of 3D objects using multi-view
Gaussian grids G := {Gi}Vin

i=1, which are structured for image-like processing, obtained efficiently,
and confined within a suitable numerical range. To encode Gaussian grids to image diffusion latent
space, the most straightforward idea is to split them into multiple feature groups with 3 channels
to analog RGB images, and process them separately. However, this results in poor auto-encoding
quality, as encoded latents display notable deviations from natural images, as shown in Sec. 4.5.1.

Instead, we duplicate the columns and rows of pretrained input and output convolution weights 4
times respectively to match the feature dimensions of Gaussian grids Gi ∈ R12×H×W . VAEs for
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latent image diffusion models (Rombach et al., 2022; Podell et al., 2024; Esser et al., 2024) are
then fine-tuned to auto-encode each Gaussian grid independently with both reconstruction loss and
rendering loss:

LVAE :=
1

Vin
LMSE(G̃i,Gi) + λr · Lrender(G̃), (4)

where G̃i := Dϕd
(Eϕe

(Gi)) is auto-encoded Gi by the VAE’s encoder Eϕe
and decoder Dϕd

, and
Lrender is computed across V random views as presented in Equation 1. λr is the weighting term for
the rendering loss. Encoded Gaussian grids from Vin input views z := {zi}Vin

i=1 = {Eϕe
(Gi)}Vin

i=1
are referred to as Gaussian latents, which undergoes diffusion and denoising process in DIFFGS.
Rendering loss Lrender is significant for high-quality Gaussian latent auto-encoding, and quantitative
evaluations are provided in Sec. 4.5.1.

3.3 DIFFGS GENERATIVE MODEL

3.3.1 MODEL ARCHITECTURE

Given a set of multi-view Gaussian latents z = {zi}Vin
i=1 structured as 2D grids, two widely adopted

manners for multi-view image generation are explored in this work to simultaneously generate z as
a whole from text prompts or single-view images, coined as view-concat and spatial-concat.

In the view-concat manner, Vin Gaussian latents of an objects, shaped as Rd×h×w, are treated like
video frames and concatenated along the view dimension into RVin×d×h×w and processed individ-
ually by the denoising network, except in the self-attention module, where they are reshaped into
R(Vin·h·w)×d and treated as an integral sequence (Long et al., 2024; Shi et al., 2024; Kant et al.,
2024; Gao et al., 2024b). While for the spatial-concat manner, Gaussian latents are organized
into an r × c grid along the height and width dimensions, resulting in a shape of Rd×(r·h)×(c·w),
where Vin ≡ r × c (Shi et al., 2023; Li et al., 2024a; Gao et al., 2024a). In both manners, Plücker
embeddings (Sitzmann et al., 2021) are concatenated along the feature dimension with respective
Gaussian latents, enabling a dense encoding of relative camera poses. It facilitates better flexibility
in viewpoint selection and reduces requirements for multi-view datasets. The only new parameters
introduced to pretrained models are zero-initialized new columns in the input convolution weights
for Plücker embeddings. These model designs result in minimal modifications and generalizability
across various popular text-to-image diffusion models (Rombach et al., 2022; Podell et al., 2024;
Chen et al., 2024c;b; Esser et al., 2024).

Unlike multi-view image diffusion models (Li et al., 2024a; Kant et al., 2024), it’s not feasible for
text-conditioned DIFFGS to simply denoise other views except for the input image view for image-
conditioned generation, as the input condition (pixels) and generated outputs (Gaussian properties)
are in different domains. For view-concat, the original VAE-encoded input image is concatenated
along the view dimension, with additional dense binary masks concatenated along the feature di-
mension to distinguish between image and Gaussian latents. For spatial-concat, the input image
is padded with a blank background to form an r × c grid, and then concatenated along the feature
dimension after the image VAE encoding. Ablation study on the multi-view manners for both text-
and image-conditioned 3DGS generation tasks is conducted in Sec. 4.5.2.

3.3.2 TRAINING OBJECTIVES

DIFFGS Fψ can be trained with the regular diffusion loss Ldiff, which aims to denoise corrupted
Gaussian latents z̃ := AddNoise(z, ϵ, t) from a randomly sampled noise level t:

Ldiff := ω(t) · ∥Fψ(z̃, t)− z∥22. (5)

Here, AddNoise(·) corrupts the sample z with random Gaussian noises ϵ ∼ N (0,1) at the noise
level t (Ho et al., 2020; Nichol & Dhariwal, 2021; Karras et al., 2022; Liu et al., 2023), and ω(t) is
the weighting term of diffusion loss at different noise levels (Song et al., 2021; Salimans & Ho, 2022;
Hang et al., 2023; Kingma & Gao, 2023). Text and image conditions are omitted for concision.

However, optimizing solely with Ldiff, similar to multi-view image diffusion models (Shi et al., 2024;
2023; Li et al., 2024a), does not guarantee 3D consistency. This limitation stems from the model
essentially operating in the 2D space of Gaussian grids, and the stereo correspondences among
Vin viewpoints are learned implicitly during the fine-tuning of image diffusion models, which are
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originally trained on single-view natural images. Therefore, it makes the fine-tuning process less
straightforward for achieving consistent learning in a 3D context. Moreover, treating Gaussian la-
tents as ground-truth samples, which are compressed after a lightweight reconstruction model, also
limits the upper bound of the generative model, as real multi-view datasets are not involved in the
training process, relying completely on the results from reconstruction and auto-encoding models.

Recognizing that Gaussian latents are processed during the diffusion process, not as pixels but as
a natural 3D representation that can be efficiently rendered from arbitrary views, we propose to
incorporate an additional rendering loss Lrender, as defined in Equation 1, alongside Ldiff, where
denoised Gaussian latents are decoded back into Gaussian properties and rendered from random V
viewpoints, with supervision from ground-truth multi-view images. The final training objective is:

LDIFFGS := λdiff · Ldiff + λrender · ωr(t) · Lrender(Dϕd
(Fψ(z̃, t))), (6)

where ωr(t) is the weighting term of the rendering loss at different noise levels, and λdiff, λrender are
used to adjust the importance of two types of losses.

Notably, by setting λdiff = 0, DIFFGS effectively becomes a rendering-based model, but denoising
Gaussian latents instead of pixels. On the other hand, by setting λrender = 0, DIFFGS transforms into
a “pseudo” native 3D model by treating Gaussian latents as a pseudo ground-truth 3D representation.
The effectiveness of the two types of losses is evaluated in Sec. 4.5.2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

All our models in this work are trained on G-Objaverse (Qiu et al., 2024), a high-quality subset of
Objaverse (Deitke et al., 2023) and comprising images from 38 different views of around 265K 3D
objects. Captions of these 3D objects are provided by Cap3D (Luo et al., 2023; 2024). To quantita-
tively evaluate the performance of text-conditioned generation, 300 text prompts from T3Bench (He
et al., 2023), describing a single object, a single object with surroundings and multiple objects, are
employed as conditions. CLIP similarity score (Radford et al., 2021) and CLIP R-Precision (Park
et al., 2021) based on ViT-B/32 are used to measure the alignment of input prompts and rendered
images, and ImageReward (Xu et al., 2023) is used to reflect human aesthetic preference. For both
reconstruction and image-conditioned generation task, 300 objects from the unseen GSO (Downs
et al., 2022) dataset are randomly selected and rendered to serve as ground-truth images, which are
then compared with rendered images from reconstructed or generated 3D contents in terms of PSNR,
SSIM and LPIPS (Zhang et al., 2018) metrics. All metrics are averaged across different viewpoints
for 3D-aware evaluation. Implementation details are provided in Appendix A.

4.2 TEXT-CONDITIONED GENERATION

Baselines Four state-of-the-art open-sourced methods that support native text-to-3D generation
are evaluated, where GVGEN (He et al., 2024) uses Gaussian volume to represent 3D objects, while
triplane-based NeRF is used in LN3Diff (Lan et al., 2024), DIRECT-3D (Liu et al., 2024b) and
3DTopia (Hong et al., 2024a). Two reconstruction-based methods LGM (Tang et al., 2024) and
GRM (Xu et al., 2024c) can support text-to-3D generation by associating with an open-source text-
conditioned multi-view diffusion model (Shi et al., 2024).

Results and Comparisions As demonstrated in Table 1 and Figure 3, DIFFGS exhibits the best
prompt alignment and visual quality among cutting-edge text-conditioned 3D generation methods,
especially for complex prompts. In contrast, 3D native methods struggle to match text prompts due
to limited text-3D pairs for training from scratch, while reconstruction-based methods suffer from
multi-view diffusion inconsistency, particularly for objects with surroundings or other objects. More
visualization results are provided in Appendix Figure 9, 10 and 11.

4.3 IMAGE-CONDITIONED GENERATION

Baselines Two up-to-date native 3D models that support image-conditioned generation are com-
pared here: the concurrent work 3DTopia-XL (Chen et al., 2024d) and LN3Diff (Lan et al., 2024).
Six advanced reconstruction-based methods for single image-conditioned generation are also eval-
uated, including three Gaussian Splatting-based (Kerbl et al., 2023) methods: LGM (Tang et al.,
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Figure 3: Qualitative Results and Comparisons on Text-conditioned 3D Generation. More
visualizations of DIFFGS results are provided in Appendix Figure 9, 10 and 11.

Table 1: Quantitive evaluations on T3Bench prompts for text-conditioned generation. † indicates
reconstruction-based methods that require additional text-conditioned multi-view generative models.

DIFFGS GVGEN LN3Diff DIRECT-3D 3DTopia LGM† GRM†

Single
Object

↑ CLIP Sim.% 30.95 23.66 24.36 24.80 25.55 29.96 28.19

↑ CLIP R-Prec.% 81.00 23.25 27.25 30.75 34.50 78.00 64.75

↑ ImageReward -0.491 -2.156 -2.008 -2.005 -1.998 -0.720 -1.337

Single
Object
w/ Sur.

↑ CLIP Sim.% 30.20 22.65 22.75 23.05 24.31 27.79 26.24

↑ CLIP R-Prec.% 80.75 26.75 22.00 25.75 39.00 55.00 51.25

↑ ImageReward -0.674 -2.251 -2.244 -2.191 -2.230 -1.772 -1.869

Multiple
Objects

↑ CLIP Sim.% 29.46 21.48 21.65 21.89 22.88 27.07 24.33

↑ CLIP R-Prec.% 69.50 8.00 8.75 7.75 16.50 51.00 26.50

↑ ImageReward -0.849 -2.272 -2.267 -2.249 -2.225 -1.731 -2.116

2024), GRM (Xu et al., 2024c) and LaRa (Chen et al., 2024a), and two FlexiCube-based (Shen
et al., 2023) methods: CRM (Wang et al., 2024) and InstantMesh (Xu et al., 2024b). Image genera-
tive models for these reconstruction methods are selected following their original implementations.

Results and Comparisions Single image-conditioned generation performance on the GSO dataset
is assessed in Table 2, and qualitative results on in-the-wild images are presented in Figure 4 and
Appendix Figure 12, 13 and 14. DIFFGS delivers accurate 3D content aligned with input images
while maintaining strong geometric fidelity compared to other state-of-the-art methods.

4.4 APPLICATION: CONTROLLABLE GENERATION

Thanks to the compatibility of DIFFGS with image diffusion models, numerous techniques initially
developed for image generation can be easily adapted for 3D applications. Here, we explore Con-
trolNet (Zhang et al., 2023) to facilitate controllable generation guided by flexible formats alongside
text prompts in Figure 5. DIFFGS can generate diverse and high-quality 3D assets that accurately re-
spond to different control inputs, such as normal and depth maps, and Canny edges, while faithfully
reflecting the text conditions. Moreover, while most previous reconstruction methods cannot incor-
porate text understanding, the flexible conditioning design allows DIFFGS to perform text-guided
reconstruction from single-view ambiguous images, as shown in Appendix Figure 8.

4.5 ABLATION AND ANALYSIS

We carefully investigate each design choice for Gaussian latent reconstruction and DIFFGS 3D
generation in this subsection. Ablation studies are conducted based on Stable Diffusion V1.5
(SD1.5) (Rombach et al., 2022) unless otherwise specified.
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Input Image InstantMeshLGMDiffGS (Ours) LN3Diff3DTopia-XL

Figure 4: Qualitative Results and Comparisons on Image-conditioned 3D Generation. More
visualizations of DIFFGS results are provided in Appendix Figure 12, 13 and 14.

Table 2: Quantitative evaluations on GSO for image-conditioned generation. † indicates reconstruc-
tion methods that require additional image generation models for single image-to-3D generation.

DIFFGS 3DTopia-XL LN3Diff LGM† GRM† LaRa† CRM† InstantMesh†

↑ PSNR 22.91 17.27 16.67 18.25 19.65 18.87 18.56 19.14

↑ SSIM 0.892 0.840 0.831 0.841 0.869 0.852 0.855 0.876

↓ LPIPS 0.107 0.175 0.177 0.166 0.141 0.202 0.149 0.128

4.5.1 GAUSSIAN LATENT RECONSTRUCTION

Reconstruction Inputs Effectiveness of geometric guidance for the reconstruction model is vali-
dated in Table 3. Gaussian-based large reconstruction model LGM (Tang et al., 2024) and GRM (Xu
et al., 2024c) are also evaluated with sparse-view RGB images for comparison. Although with
much fewer parameters, with the help of coordination and normal maps, the proposed lightweight
reconstruction model can instantly provide high-quality Gaussian grids as “pseudo” ground-truth
representation for 3D generation. Coordination maps explicitly indicate the positions of Gaussian
primitives, thus providing more effective geometric guidance than normal maps.

Auto-encoding Stragegies We investigate different training strategies for Gaussian property auto-
encoding in Table 4. Freezing the original image VAE or its encoder results in poor performance, as
Gaussian properties differ significantly from natural images. Rendering loss plays a crucial role in
auto-encoding by ensuring that the VAE is supervised by real datasets rather than being limited by
the lightweight reconstruction model, thus enabling the auto-encoded Gaussians to perform slightly
better than the reconstructed ones. VAEs from SD1.5 and SDXL (Podell et al., 2024) have a similar
performance with the same dimension (d = 4) of latent space, while SD3 (Esser et al., 2024) shows
improved performance with d = 16.

4.5.2 DIFFGS 3D GENERATION

Multi-view Manners Two popular multi-view manners are explored in this work, yielding sim-
ilar results in text-conditioned 3D generation, as shown in Table 5. View-concat manner performs
better in single image-conditioned generation due to the dense attention among conditional image
latents and Gaussian latents. Although the spatial-concat method can also achieve dense attention
by concatenating image latents along the spatial dimension, it requires additional padding, lead-
ing to increased computational costs. Thus, we prefer the view-concat manner in this work for its
flexibility in accommodating varying numbers of viewpoints and conditioning.

Training Objectives DIFFGS can perform well with merely the regular diffusion loss by setting
λrender = 0 given high-quality Gaussian latents. However, as shown in Table 5 and Figure 6, the pro-
posed 3D rendering loss Lrender can further boost both the aesthetic quality and geometric structure
of generated content. Aesthetic appeal and textured details may contributed by the perceptual loss,
and fewer translucent artifacts are achieved through the mask loss described in Equation 1. DIFFGS
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Original

Object

Input

Control

A steampunk robot with
brass gears and steam pipes

A cute cartoon robot
with oversized eyes

A Santa festive plush bear toy An adorable baby panda

An ancient, leather-bound magic book
with shimmering gold leaf pages

A slice of freshly baked bread with
a golden crusty exterior and a soft interior

Figure 5: Controllable Generation. ControlNet can seamlessly adapt to DIFFGS for controllable
text-to-3D generation in various formats, such as normal and depth maps, and Canny edges.

Table 3: Ablation study of inputs for structured
Gaussian reconstruction.

↑ PSNR ↑ SSIM ↓ LPIPS #Param.

LGM 26.48 0.892 0.077 415M
GRM 28.04 0.959 0.031 179M

RGB 27.43 0.956 0.041 42M
+Normal 28.89 0.957 0.033 42M
+Coord. 29.87 0.961 0.028 42M

Ours 30.09 0.963 0.027 42M

Table 4: Ablation study for Gaussian property
auto-encoding strategies.

↑ PSNR ↑ SSIM ↓ LPIPS

Frozen VAE 8.64 0.833 0.566
Frozen Eϕe

24.73 0.927 0.065
w/o Lrender 26.07 0.937 0.080
Ours (SD1.5) 30.33 0.966 0.033
Ours (SDXL) 30.30 0.964 0.031
Ours (SD3) 31.08 0.978 0.025

also produces reasonable results only with the rendering loss by setting λdiff = 0. However, the
training process becomes unstable and slow to converge, and gets over-saturated results.

Base Text-to-image Diffusion Models Various popular open-source large text-to-image diffusion
models are investigated in this work, including SD1.5 (Rombach et al., 2022), SDXL (Podell et al.,
2024), PixArt-α (Chen et al., 2024c), PixArt-Σ (Chen et al., 2024b) and SD3 (Esser et al., 2024),
featuring different model sizes, backbone networks, noise scheduling, and sampling strategies. With
the advancements in base models, DIFFGS consistently benefits in both text- and image-conditioned
tasks, indicating that the proposed method effectively leverages priors from pretrained models and
stands as a promising approach for scaling 3D generation within the thriving image community.

4.5.3 INTERPRETING GAUSSIAN LATENTS

Input Image

Decoded GS

GS Color GS Depth GS Opacity

GS Scale GS Rot. #1~#3 GS Rot. #4

Figure 7: Gaussian Latents Visual-
ization. Auto-encoded GS properties
are structured in grids. “Decoded GS”
shows the Gaussian latents decoded by
an image diffusion VAE.

To understand the feasibility of generating Gaussian
properties through fine-tuning image diffusion models,
we visualize Gaussian latents and their corresponding
properties to interpret the mechanisms behind DIFFGS.
As shown in Figure 7, auto-encoded Gaussian proper-
ties are presented as RGB or grayscale images. For ro-
tations r ∈ R4, the first three channels and the last one
are visualized individually. Gaussian latents encoded by
a fine-tuned VAE are decoded by the original image VAE.
Gaussian property grids are analogous to natural images,
reflecting the hue and edge properties of 3D objects. De-
coded Gaussian latents from the image VAE can be inter-
preted as the original objects in a “special style” or illu-
minated in a “special environment light”, featuring a cyan
light at a distance and a rufous light nearby. Image diffu-
sion models are essentially fine-tuned to learn this special style, indicating that the input latents are
Gaussian latents, which enables the repurposing of image diffusion models to generate 3DGS.
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Table 5: Ablation study of DIFFGS design choices.
T3Bench-300 GSO-300

↑ CLIP Sim.% ↑ CLIP R-Prec.% ↑ ImageReward ↑ PSNR ↑ SSIM ↓ LPIPS

Multi-view Manner
Spatial-concat 28.74±0.08 55.92±1.19 -1.224±0.023 21.61±6.36 0.875±0.086 0.121±0.092

View-concat 28.66±0.14 58.92±2.30 -1.201±0.031 22.58±6.05 0.885±0.082 0.117±0.085

Training Objective
w/o Ldiff 27.72±0.09 50.83±1.91 -1.436±0.033 17.16±3.20 0.794±0.073 0.267±0.132

w/o Lrender 28.54±0.22 56.42±2.27 -1.219±0.049 22.30±6.33 0.883±0.085 0.125±0.086

Lrender + Ldiff 28.66±0.14 58.92±2.30 -1.201±0.031 22.58±6.05 0.885±0.082 0.117±0.085

Base Model (#Param.)
SD1.5 (0.86B) 28.66±0.14 58.92±2.30 -1.201±0.031 22.58±6.05 0.885±0.082 0.117±0.085

SDXL (2.6B) 29.70±0.22 63.00±1.93 -0.804±0.038 22.65±5.84 0.887±0.084 0.115±0.089

PixArt-α (0.61B) 29.10±0.07 59.01±1.26 -1.052±0.028 22.81±5.90 0.884±0.078 0.108±0.080

PixArt-Σ (0.61B) 29.75±0.06 64.83±0.50 -0.834±0.017 22.85±5.75 0.890±0.077 0.105±0.082

SD3-medium (2.0B) 30.15±0.05 68.08±0.72 -0.685±0.043 22.91±5.54 0.892±0.094 0.107±0.093

A plush dragon toy

w/ ℒrender w/o ℒrender

an old car overgrown by vines and weeds

w/ ℒrender w/o ℒrender

w/ ℒrender w/o ℒrender w/ ℒrender w/o ℒrender

Figure 6: Ablation of Rendering Loss. Both text- (1st row) and image-conditioned (2nd row) DIF-
FGS with Lrender produces more aesthetic and textured 3D content with fewer translucent floaters.

5 CONCLUSION

In this work, we present a novel diffusion-based 3D generation framework, DIFFGS. It distinguishes
from previous 3D generative methods by effectively leveraging web-scale 2D priors while maintain-
ing 3D coherence in a unified model. Various large text-to-image diffusion models are fine-tuned
to directly generate 3D Gaussian properties with both diffusion loss and 3D rendering loss. Thus,
DIFFGS benefits from the rapid developments in the image community, facilitating the integration
of advanced techniques for image generation into the 3D realm. It positions DIFFGS a promising
3D generative method utilizing abundant 2D priors and merely multi-view supervision. We hope
this work can provide a new solution for 3D content creation.

Limitations and Future Work Although DIFFGS delivers decent results, the conversion of its
3DGS representation to high-quality mesh remains an unsolved problem. Simultaneously gener-
ating Gaussian latents from more viewpoints, increasing the supervision resolution, and integrating
physical-based material properties could further enhance the quality of generated 3D Gaussian prim-
itives. Numerous advanced techniques developed for image diffusion models can be adopted for 3D
generation within the proposed framework, which remains underexplored, such as personalization,
few-step distillation, and feedback learning to align with human preferences. Moreover, we only
utilize rendered multi-view datasets in this work, which does not fully exploit the scalability po-
tential of the proposed method. By leveraging its image compatibility and 2D supervision-only
characteristic, massive real video datasets could further unlock the capability of DIFFGS.
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A IMPLEMENTATION DETAILS

Reproducibility We provide comprehensive implementation details in this section to facilitate the
reproducibility of our work. Our code and models will be publicly available after the review period.

For Gaussian grid reconstruction, we train a lightweight 12-layer and 8-head Transformer en-
coder (Vaswani et al., 2017) with 512 attention dimensions and a patch size of 8, whose param-
eter size is only 42M and 9.9%∼23% of previous methods (Tang et al., 2024; Xu et al., 2024c;
Zhang et al., 2024c). smin and smax are set to 5e-4 and 2e-2 respectively to represent fine-grain
details. The input views Vin =4 are evenly distributed and rendering views V =8 include 4 other
random viewpoints. All weighting terms are set to 1. The probability of applying the rendering
loss gradually increases from 0 to 1 for training efficiency. All experiments are conducted at the
256 × 256 resolution in this work. Training batch size for reconstruction and auto-encoding is
64 in total across up to 16 A100 GPUs with gradient accumulation and the peak learning rate of
4e-4. For diffusion models, the batch size and peak learning rate are 128 and 1e-4 respectively.
AdamW optimizer (Loshchilov & Hutter, 2018) with weight decay and cosine learning rate sched-
uler (Loshchilov & Hutter, 2016) with linear warm-up are adopted for parameter optimization.

For diffusion-based models (SD1.5 (Rombach et al., 2022), SDXL (Podell et al., 2024), PixArt-
α (Chen et al., 2024c) and PixArt-Σ (Chen et al., 2024b)), the DPM-Solver++ (Lu et al., 2022a;b)
ODE solver with 20 inference steps is adopted following Chen et al. (2024c;b). The flow-based
model, i.e., SD3 (Esser et al., 2024) uses the original flow matching Euler ODE solver (Lipman
et al., 2023) with 28 steps, consistent with its original configuration. Classifier-free guidance (Ho
& Salimans, 2021) scales in the text-conditioned generation for each model are the same with their
default values: 7.5 for SD1.5, 5 for SDXL, 4.5 for PixArt-α and PixArt-Σ, and 5 for SD3.
Guidance scale is set to 2 for all models in the image-conditioned generation. Runtime for DIFFGS
to generate a single 3D object on an A100 GPU is only about 1∼2 seconds with half precision.

Notably, with 2D generative priors, DIFFGS only takes about 3 days on 8 A100 GPUs to generate
decent results with fp16 mixed precision, which is much more training-efficient than previous 3D
generative models, such as DMV3D (Xu et al., 2024d) (128 A100 × 7 days), CLAY (Zhang et al.,
2024d) (256 A800 × 15 days) and 3DTopia-XL (Hong et al., 2024a) (128 A100 × 14 days).

B MORE VISUALIZATION RESULTS

Input Image A sculpture A mask

A headwear A flat rock

Input Image A pencil box A small purse

A ball A flat badge

Figure 8: Controllable Generation with Multi-modal Conditions. DIFFGS can effectively utilize
both text and image conditions for single-view reconstruction with text understanding.
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Text Prompt Generated 3DGS

A silver 
teapot on a 
dining table

A candle 
burns beside 
an ancient, 

leather-bound 
book

A red 
cardinal on 

a snowy 
branch

A dog made 
out of salad

A pigeon 
reading a 

book

A beautiful 
rainbow fish

An ice 
cream 
sundae

Michelangelo 
style statue of 

dog reading 
news on a 
cellphone

Figure 9: More results of text-conditioned DIFFGS.
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Text Prompt Generated 3DGS

A white 
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bowl of 
soup

A bluebird 
perched on 

a tree 
branch

A red rose 
in a crystal 

vase

A colorful 
parrot on a 
jungle tree

A blue 
butterfly on 

a pink 
flower

A white 
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hanging on a 
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hanger

A delicate 
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resting on a 

lace doily

Figure 10: More results of text-conditioned DIFFGS.
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Text Prompt Generated 3DGS
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blue jeans

A gold 
glittery 
carnival 

mask

A fuzzy pink 
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lawn 
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A fragrant 
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A silver 
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ornate 
detailing

Figure 11: More results of text-conditioned DIFFGS.
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Input Image Generated 3DGS

Figure 12: More results of image-conditioned DIFFGS.
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Input Image Generated 3DGS

Figure 13: More results of image-conditioned DIFFGS.
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Input Image Generated 3DGS

Figure 14: More results of image-conditioned DIFFGS.
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