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ABSTRACT

Current diffusion models based on implicit neural representations (INRs) typically
adopt a two-stage framework: an encoder is first trained to map signals into a la-
tent INR space, followed by a diffusion model that generates latent codes from
noise. This design requires training and maintaining two separate models, intro-
ducing compounded reconstruction errors through the latent-to-data mapping and
often leading to increased system complexity. In this work, we propose INRCT, a
unified and end-to-end training generative framework for modality-agnostic INR
modeling. Instead of operating in the latent space, INRCT performs diffusion
directly in the data space by training a single INR hyper-network as a denoiser.
Given noisy observations at different noise levels, INRCT predicts the INR for the
corresponding clean signal, which is then rendered into data space for supervision.
Our training objective coherently integrates a generation loss and a reconstruc-
tion loss to jointly support INR generation from noise and INR encoding from
real signals within a single model. Extensive experiments on multiple benchmark
datasets demonstrate that INRCT achieves superior generation and reconstruction
performance compared to existing two-stage generative INR methods, while sig-
nificantly improving the model efficiency and simplifying model design.

1 INTRODUCTION

Implicit Neural Representations (INRs) have recently emerged as a powerful framework for mod-
eling continuous signals across various domains, such as images Sitzmann et al. (2020b); Liu et al.
(2023a), 3D shapes Park et al. (2019); Sitzmann et al. (2019), and videos Chen et al. (2021); Guo
et al. (2025). By representing signals as continuous functions parameterized by a neural network
whose inputs are the continuous coordinates and outputs are corresponding values at the coordinates,
INRs bypass the limitations of discrete grid-based representations and offer a compact, resolution-
independent encoding of complex and high-dimensional data. These modality-agnostic properties
make INRs a promising tool for both reconstruction and generative modeling tasks, enabling their
deployment in diverse applications such as 3D object synthesis Hong et al. (2024), image super-
resolution Zhang et al. (2022), flexible-resolution image generation Chen et al. (2024), and neural
radiance field (NeRF) Mildenhall et al. (2021).

Among various generative paradigms built upon INRs, diffusion-based models have recently
emerged as the dominant approach, owing to their strong capacity in modeling complex data dis-
tributions Ho et al. (2020); Song et al. (2021). Leveraging the ability of INRs to parameterize
signals from diverse modalities as continuous functions, recent works Dupont et al. (2022a); You
et al. (2023); Park et al. (2024) typically encode each signal into a set of INR parameters and then
employ a diffusion model to generate these parameters from noise. This approach inherently sup-
ports modality-agnostic signal generation, as it decouples signal representation from data modality.
Based on this formulation, adaptations have been applied to different domains, achieving promis-
ing results in tasks such as high-resolution image generation Chen et al. (2024) and 3D content
generation Erkoç et al. (2023).

However, existing INR-based diffusion models Dupont et al. (2022a); Park et al. (2024); You et al.
(2023) rely on a two-stage training process, which often results in inefficiencies and suboptimal per-
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Figure 1: (a) Existing INR-based generative models use a
two-stage training strategy, where errors in the encoding
stage reduce the performance of the generation stage that
diffuses on the latent space. (b) Our model supports few-
step, and even one-step, denoising, which provides a unified
INR encoding and generation framework and enables eval-
uation in the data space, leading to better generation quality
and faster generation process.

formance. As illustrated in Fig-
ure 1(a), these models first encode
signals into a latent INR space, and
then use a separate diffusion pro-
cess, typically based on DDPM Ho
et al. (2020), to generate signals from
this latent representation. In this
setup, the two stages are trained in-
dependently, requiring the mainte-
nance and optimization of two sepa-
rate neural networks. More critically,
the encoder and the denoiser are op-
timized using fundamentally differ-
ent loss functions, i.e., reconstruc-
tion loss for the encoder and denois-
ing loss for the denoiser, and there is
no shared learning objective or gra-
dient flow between them. This de-
sign not only increases the overall
model complexity but also introduces
the potential for compounded recon-
struction errors. The latent space, be-
ing an approximation of the data space, can never be a perfect match, making it challenging for the
diffusion process to generate samples that faithfully align with the data distribution.

To address the above two drawbacks of existing methods, a straightforward solution would be to
bypass the latent INR space and perform diffusion directly in the data space, using INR as an in-
termediate representation that is rendered into the data space and then supervised. However, this
approach is computationally prohibitive during inference, where DDPM requires hundreds of itera-
tive denoising steps, and rendering the INR at each step introduces substantial overhead. Motivated
by recent advances in the few-step diffusion methods, we find that consistency training Song et al.
(2023) becomes a rescue. Consistency training Song et al. (2023) learns to map any noisy samples
in the diffusion forward process directly to the corresponding clean sample, which enables few-step
diffusion. Building on this insight, this paper proposes INRCT (Implicit Neural Representation
Consistency Training), a novel framework that integrates INR encoding and generation within a sin-
gle unified model trained in an end-to-end manner, as shown in Figure 1(b). Specifically, INRCT
directly maps any noisy data to the INR latent representation of the clean data. The predicted INR
latent representation is then differentially rendered into the original data, enabling supervision di-
rectly in the data space. We design a cross-modal consistency training objective mapping between
the data space and the modality-agnostic INR latent space by coherently integrating a generation
loss and a reconstruction loss, enabling INRCT to support both INR generation from noise and INR
encoding from real signals within a single model. We further introduce an auxiliary loss term and
an efficient training scheduler to improve the convergence.

We summarize the contributions of this work as follows:

• To the best of our knowledge, INRCT is the first end-to-end training framework that unifies
INR encoding and INR generation, capable of performing both INR encoding (signal-to-
INR) and few-step INR generation (noise-to-INR) within a single model.

• By integrating cross-modal consistency training, INRCT enables end-to-end training, dif-
fusion on data, and few-step INR generation. This not only accelerates signal generation
but also eliminates errors associated with two-stage approaches that rely on diffusion in the
latent representation, thereby improving generation accuracy.

• The introduction of modality-agnostic INRs into consistency models enables us to extend
consistency models to various modalities, allowing few-step diffusion to generate INR for
images or 3D NeRF objects.

• Extensive experiments on CIFAR-10, CelebA-HQ, and SRN Cars datasets demonstrate the
effectiveness and efficiency of INRCT on INR encoding and generation.
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2 RELATED WORK

Implicit neural representations. By utilizing a neural network (e.g., MLP) to map a coordinate to
its corresponding value, INRs have shown great potential in capturing complex continuous functions
across various signals, including time-series Fons et al. (2022); Li et al. (2024), images Sitzmann
et al. (2020b); Liu et al. (2023a), and 3D scenes Park et al. (2019); Sitzmann et al. (2020a); Liu
et al. (2023b); Cardace et al.; Ramirez et al. (2024). Numerous approaches have been proposed
to accelerate the process of encoding a given signal into its INR, such as meta-learning Sitzmann
et al. (2020a); Tancik et al. (2021); Liu et al. (2023a); Finn et al. (2017) and hyper-networks Chen
& Wang (2022); Kim et al. (2023); Zhang et al. (2024); Lee et al. (2023).

Consistency models. Diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020); Song & Er-
mon (2019) have gained great attention in generative models. These models typically train a genera-
tor to reverse the noise corruption in data, thereby estimating the score of the data distribution. They
iteratively refine data points sampled from the noise distribution to generate new samples. Many
efforts have been made to enhance the inference speed of diffusion models, including faster ODE
solvers Song et al. (2021); Lu et al. (2022a;b), predictor-corrector approaches Song et al. (2020)
and distillation techniques Salimans & Ho (2022); Meng et al. (2023). Consistency models Song
et al. (2023); Song & Dhariwal (2023); Geng et al. (2024); Lu & Song (2024) are a novel class of
diffusion models designed for few-step sampling while preserving high-quality generation. They
establish a consistency mapping that directly associates any point along the ODE trajectory with
its original point, allowing for rapid one-step generation. However, they are only applied to array
representations of images and have not shown more application on the more complex signals.

Generative models based on INRs. Recent advancements in INR-based generative models have
led to various approaches for generating signals across different modalities. Ha (2016) trained
GANs and VAEs using functional representations of the MNIST dataset. Works like INR-GAN Sko-
rokhodov et al. (2021) and CIPS Anokhin et al. (2021) use GANs to generate high-quality contin-
uous image functions. Some works focus on shape generation with GAN Kleineberg et al. (2020);
Chen & Zhang (2019), VAEs Mescheder et al. (2019), score-based models Cai et al. (2020) and auto
decoders Park et al. (2019); Atzmon & Lipman (2020). Additionally, GAN-based methods Schwarz
et al. (2020); Niemeyer & Geiger (2021); Chan et al. (2021); DeVries et al. (2021) have been em-
ployed to generate NeRF signals, enabling photorealistic 3D-aware image synthesis. Two-stage
methods for NeRF generation Karnewar et al. (2023); Erkoç et al. (2023) and high-resolution image
synthesis Chen et al. (2024) have also been explored. Modality-agnostic methods like GEM Du
et al. (2021) and GASP Dupont et al. (2022b) utilize latent interpolation and GANs to model INR
weight distributions, enabling generation across various domains.

The most closely related works to ours are the two-stage modality-agnostic INR generation meth-
ods with diffusion models, including Functa Dupont et al. (2022a), DDMI Park et al. (2024), and
mNIF You et al. (2023). They first encode the signals into the latent space parameterized by the mod-
ulated weights Dupont et al. (2022a), context vectors You et al. (2023), or grid feature Park et al.
(2024). Then an extra diffusion model, i.e., DDPM, is applied to the latent space for new sample
generation. However, these two-stage approaches lead to error accumulation, with the performance
of the generation stage being highly dependent on the reconstruction accuracy of the encoding stage.
Additionally, generation with DDPM requires multiple inference steps, which reduces efficiency.

3 PRELIMINARIES FOR DIFFUSION MODELS AND CONSISTENCY TRAINING

We firstly present the preliminaries for diffusion models Ho et al. (2020) and consistency train-
ing Song et al. (2023) before we present our INRCT. Introduced in consistency models Song et al.
(2023), consistency training is a new family of diffusion models that enables training from scratch
and supports few-step, even one-step, generation. The core concept underlying consistency models
is the probability flow ODE (PF-ODE).

Diffusion models. Let pdata(x0) denote the data distribution. Diffusion models (DMs) perturb data
distributions by progressively adding independent and identically distributed (i.i.d.) Gaussian noise
with a time-dependent standard deviation σ(t), where σ(0) = σmin and σ(T ) = σmax. This noise
addition is performed over the interval t ∈ [0, T ] and can be described by a stochastic differential
equation (SDE). The reverse-time sampling process corresponds to solving the reverse SDE, and
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prior work Song et al. (2020) has shown that this SDE has an equivalent ordinary differential equa-
tion (ODE), known as PF-ODE. The PF-ODE shares the same marginal probability densities as the
SDE, providing a deterministic way to model the noise perturbation process. Prior works Karras
et al. (2022) set σ(t) = t and describe the PF-ODE as:

dxt

dt
= −t∇xt

log pt(xt) =
xt − f(xt, t)

t
, (1)

where ∇xt log pt(xt) is the score function, and f(xt, t) is a denoising function that predicts the
clean image x0 from the noisy input xt. We treat time as interchangeable with the noise level. And
data x can also be replaced with latent z, allowing diffusion directly in the latent space.

Consistency training. Consistency models are defined based on the PF-ODE in Eq. 1, and defines a
bijective mapping between data distribution and noise distribution. They aim to learn a consistency
function f(xt, t) that maps a noisy image xt back to the original clean image x0, such that:

f(xt, t) = x0. (2)

Importantly, the consistency function must adhere to a boundary condition at t = 0. Previous
works Song et al. (2023) enforce this condition by parameterizing the consistency model as:

fθ(xt, t) = cskip(t)xt + cout(t)Fθ(xt, t), (3)

where θ represents the model parameters, Fθ denotes the trainable denoising network, and cskip(t)
and cout(t) are time-dependent scaling factors satisfying cskip(0) = 1 and cout(0) = 0. This specific
parameterization ensures compliance with the boundary condition by design.

Consistency models are trained by minimizing a metric between adjacent points on the sampling
trajectory. Specifically, we follow ECT Geng et al. (2024) and consider overlapping intervals under
the continuous-time schedule, enabling a probabilistic decomposition p(t, r) = p(t)p(r|t). The time
variable t is continuously sampled from a predefined noise distribution p(t), and r is drawn from the
distribution p(r|t) with 0 < r < t. The model is trained to minimize the consistency objective:

argmin
θ

E [w(t)d (fθ(xt, t), fθ−(x̃r, r))] , (4)

where w(t) is a weighting function that adjusts the importance of different time intervals, d(·, ·) is
a distance metric (e.g., L2 norm), fθ− is an exponential moving average (EMA) of the past values
of consistency function fθ and x̃r = x + rz can be approximated with the same x ∼ pdata (x) and
z ∼ N (0, I) to calculate xt = x+ tz. Therefore, the consistency training objective LCT is:

LCT = E [d (fθ (x+ tz, t) , fθ− (x+ rz, r))] . (5)

4 ENCODING AND GENERATING INRS WITH CONSISTENCY TRAINING

We present a disucssion about the error accumulation of the two-stage training process in Ap-
pendix A. To address such a problem, we introduce INRCT, a unified and end-to-end training gen-
erative framework for modality-agnostic INR modeling. We first present the overall framework
in section 4.1, including how to use a single model to simultaneously support INR encoding and
INR generation. Then we present how to train INRCT in an end-to-end manner in section 4.2.

4.1 OVERALL FRAMEWORK

Let I : c → s be a continuous signal defined over a bounded domain, where c ∈ RC denotes the
coordinate space and s ∈ RS the signal value space. For example, an image can be viewed as a
function mapping 2D coordinates to RGB values, while a 3D object or scene can be represented
as NeRF Mildenhall et al. (2021) that maps 3D spatial coordinates and view directions v ∈ R3

to densities and emitted RGB colors. INRs Liu et al. (2023a) approximate the signal I using a
coordinate-based neural network Mβ , with parameters β. Once the neural network satisfies Mβ ≈ I ,
the parameter set β serves as a compact implicit representation or latent code of the signal.

We denote the observation set O as a collection of partial measurements from the signal, defined as
O = {Ti(I)}|O|−1

i=0 , where each transformation Ti depends on the signal modality. In the case of a
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Figure 2: (a) Given a PF-ODE that smoothly converts data to noise, INRCT learn a hyper-network
G as the denoiser to map any points on the ODE trajectory to the INR representation of the data. It
unifies INR encoding and generation, providing INR encoding as G(x0, 0) and the INR generation
process as G(xT , T ). (b) Data flow of INRCT. It accepts the support observations and the noise
level as the input and predicts latent vectors for the INR function for the target signals, which then
would be transformed to query observation for supervision.

continuous image, each observation corresponds to the evaluation of I at a 2D coordinate ci, i.e.,
Ti(I) = I(ci), which yields the RGB value at pixel i. For 3D NeRFs, the observation is acquired
via a rendering function R, such that Ti(I) = R(I, ri), where ri is a camera ray and R integrates
radiance along the ray based on the field I . This abstraction allows different signal modalities (e.g.,
images and neural fields) to be handled within a unified mathematical framework.

As presented in Figure 2(a), we inject i.i.d. Gaussian noise with standard deviation σ(t) into the
observation set O and form a PF-ODE that smoothly converts data into noise. This process yields a
noisy observation set Ot corresponding to each time step t. The hyper-network Gθ with learnable
parameters θ is trained to denoise the observations at any noise level t, and to predict the INR
parameters β corresponding to the clean signal:

Gθ(Ot, t) = β. (6)

Under this formulation, INR encoding corresponds to the special case where t = 0, i.e.,

βpred = Gθ(O, 0), (7)

where the network encodes clean observations into the INR latent code. Similarly, INR generation
corresponds to the case where the input is pure noise with the noise level is maximal:

βgen = Gθ(Tz, T ), (8)

where the network acts as a one-step denoiser and generates an INR representation for clean new
data from noise. This formulation enables a single model to unify both INR encoding and generation
via consistency training over the PF-ODE.

4.2 INR-BASED CONSISTENCY TRAINING

In this part, we present how to train a few-step INR denoiser by introducing a cross-modal con-
sistency training objective, where the key idea is to map noisy data into a modality-agnostic INR
representation using an INR hyper-network, and then render it back to the clean data for supervision.

As presented in Figure 2(b), to train the hyper-network Gθ, we randomly choose two subsets from
the full observation set O and form a support set Os and a query set Qq , where Os is the input of
the hyper-network and Oq provides the supervised signals to train the hyper-network. For image,
Os and Oq are both the target images. For 3D NeRF, Os and Oq are projections of the 3D object
from views with different poses. We then introduce an i.i.d. Gaussian noise with noise σ(t) to both
the support observation set and the query observation set to form a noisy support set Os

t and a noisy
query set Oq

t . The hyper-network Gθ is required to denoise Os
t conditioned on noise level t and

predict β corresponding to the clean observations:

Gθ(O
s
t , t) = β. (9)
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To evaluate the predicted β, the transformation from the query observation set, named Tq , is used
on the predicted β to obtain the predicted query observation set:

Ôq = Tq(Mβ) = Tq(MGθ(Os
t ,t)

). (10)

Generation objective. We establish an INR-based consistency function to map a noisy observation
set Ot to the clean observation set O with Oq

t as the supervised signal:

f(Ot, t) = f(Os
t , O

q
t , t) = Oq, (11)

with the boundary condition defined as:

fθ(O
s
t , O

q
t , t) = cskip(t)O

q
t + cout(t)Ôq,

= cskip(t)O
q
t + cout(t)Tq(MGθ(Os

t ,t)
).

(12)

To learn such a INR-based consistency function, we define a generation objective to enforce the
denoising results for any two adjacent noisy points in the PF-ODE to be the same:

Lgene = E [d (fθ (O
s + tz, Oq + tz, t) , fθ− (Os + rz, Oq + rz, r))] . (13)

We use Lgene to train the hyper-network Gθ so that it can denoise a randomly sampled noise from
noise level T and generate meaningful INR, achieving new INR generation as defined in Equation 8.

Reconstruction objective. Due to the boundary condition, the consistency function at t = 0 has
cskip = 1 and cout = 0, which prevents the output from being derived from Gθ:

fθ(Ot, t|t = 0) = 1×Oq
t + 0× Tq(MGθ(Os

t ,t|t=0)). (14)

In other words, Lgene does not provide a supervisory signal for Gθ at t = 0. This approach is well-
suited for the original consistency models, as the scenario of inputting t = 0 into G does not occur
during the generation of new samples. However, we require Gθ to encode the signal at the noise
level t = 0 . To achieve this, we introduce a reconstruction objective Lrecon to provide a supervisory
signal for the hyper-network Gθ for INR encoding when t is very small (t < tϵ1 = tmin + ϵ):

Lrecon = E
[
d
(
Tq(MGθ(Os

t ,t|t<tmin+ϵ)), Oq

)]
. (15)

Diffusion loss at small time-steps. We notice that for small noise levels t, the target of fθ(Os
t , O

q
t , t)

can be well approximated by the ground truth Oq instead of approximating by the EMA estimator
fθ−(Os

r , O
q
r , r), as the prediction errors may accumulate as integrating t Geng et al. (2024). To

address this, we propose a diffusion loss:

Ldiff = E
[
d
(
fθ(O

t
s, O

t
q, t < tϵ2), Oq

)]
, (16)

for small noise levels (t < tϵ2) to stabilize training. This method avoids applying diffusion loss to
large t, preventing optimization errors for consistency training. We validate this diffusion loss via
experiments in ablation studies.

The total training objective of INRCT is the weighted summation of Lgene, Lrecon and Ldiff :

LINRCT = λ1Lgene + λ2Lrecon + λ3Ldiff , (17)

which provides a unified INR encoding and generation framework and a stable training process.

An efficient training scheduler. We observe that directly optimizing the hyper-network G to pre-
dict the INR from a noisy signal slows down consistency training in the early stage and negatively
impacts final generation performance. This is because, although Lrecon is included, it is only applied
during consistency training for cases where t < tϵ1 = tmin + ϵ, which occupies a very small portion
of the domain of t. Consequently, the hyper-network learns the INR encoding process at a slower
rate. To address this issue, we introduce an efficient training scheduler to improve the convergence
and stability of the training process. Specifically, in the early phase of training, we uniformly sample
t with restriction to 0 < t < tϵ1 , and set the weights λ1 and λ3 to zero so that only the reconstruc-
tion loss Lrecon is optimized. This enables the hyper-network to quickly develop proficiency in INR
encoding. In the ablation study, we show that a hyper-network with a well-initialized INR encod-
ing capability achieves better INR generation performance. We present the training algorithm in
Algorithm 1.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Table for image generation perfor-
mance of different generative models on the
CIFAR-10 dataset with 322 resolution.

CIFAR-10-322 NFE ↓ FID ↓ IS ↑
Discrete Image Generation Methods

PixelIQN 1 49.46 5.29
NCSNv2 - 31.75 -

StyleGAN2 1 3.26 9.74
DDPM 1000 3.17 9.46
DDIM 10 8.23 -

CT 1 8.70 8.49
CT 2 5.83 8.85

Continuous INR Generation Methods
DPF 1000 15.10 8.43
GEM - 23.83 8.36

INRCT (Ours) 1 15.14 8.29
INRCT (Ours) 2 12.25 8.46

Table 2: Table for the image generation per-
formance of the INR-based diffusion models
and other generative models on the CelebA-HQ
dataset with 642 resolution.

CelebA-HQ-642 NFE ↓ FID ↓ P ↑ F1 ↑
Non Diffusion-Based Generative Methods

GEM - 30.4 0.642 0.562
GASP - 13.5 0.836 0.620
CIPS - 15.4 - -
Diffusion-based Generative Methods
DPF 1000 13.2 0.866 0.634

Functa 1000 40.4 0.577 0.536
mNIF(S) 1000 21.0 0.787 0.609
DDMI 1000 9.74 - -

INRCT(Ours) 1 12.7 0.799 0.613
INRCT(Ours) 2 7.88 0.868 0.635

5 EXPERIMENTS

5.1 SETTING

Datasets. We evaluate our model with the mainstream generative models on the image dataset
CIFAR-10 dataset Krizhevsky et al. (2009), and then we follow Functa Dupont et al. (2022a),
DDMI Park et al. (2024) and mNIF You et al. (2023) to compare our models with the INR-based
generative models on the image datasets CelebA-HQ dataset Karras (2017) for image encoding and
generation, and on SRN Cars dataset Sitzmann et al. (2019) for 3D NeRF encoding and generation.
Each object in SRN Cars dataset contains several projections from different views, where NeRF will
learn its 3D appearance so that it can be projected into any continuous views.

Implementations. We configure the hyper-network Gθ with a Transformer-based architecture. The
INR function Mβ is an attention-based INR function Zhang et al. (2024) for image modality with
β as the instance-specific representation vector, and is the MLP-based INR function Chen & Wang
(2022) for NeRF modality with β as the instance-specific weights. More detailed configurations,
including the schedule for consistency training, the optimization procedures, and detailed network
architectures, are in Appendix B.

Evaluation metrics. The quantitative generation performance is evaluated using Frechet Incep-
tion Distance (FID) Heusel et al. (2017), Inception Score (IS) Salimans et al. (2016), Precision
(P) Kynkäänniemi et al. (2019), and F1 score (F1) Kynkäänniemi et al. (2019). Following Song
et al. (2023) and Dhariwal & Nichol (2021), we generate 50,000 images to ensure reliable evalu-
ation metrics. The efficiency of generation is evaluated with the number of function evaluations
(NFEs). We use the PSNR to evaluate the INR encoding and reconstruction performance.

5.2 RESULTS

INR generation performance. For image generation, we present the quantitative comparison of
CIFAR-10 dataset in Table 1 and comparison of CelebA-HQ dataset in Table 2. On the CIFAR-
10 dataset, with only a two-step evaluation, INRCT achieves better FID and IS compared to all
other domain-agnostic INR-based generation models with more steps. We also include the results
of the models focusing on discrete image generation on CIFAR-10 dataset in Table 1, and the results
show that INRCT substantially closes the performance gap between diffusion models operating on
continuous functions (e.g., DPF) and those on discrete grids (e.g., DDPM/CT). We notice that there
is a little performance gap between INRCT and CT Song et al. (2023), which is primarily due to the
cross-modality transformation in INRCT, where the input and output of the network are different,
while the original CT maintains consistent input-output modalities throughout its U-Net, making its
optimization simpler and more straightforward. However, the cross-modal transformation is also an
advantage of INRCT, which extends CT to different signal modalities.

In addition, we present more comparisons of INRCT with the INR-based generative models on the
CelebA-HQ dataset in Table 2. Thanks to the end-to-end training strategy and diffusion on the
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Figure 3: (a) Visual performance of INRCT on the CIFAR-10. We observe that INRCT can generate
realistic and diverse images for each class in the CIFAR-10 dataset. (b) Comparison of the visual
performance of INRCT and mNIF on the CelebA-HQ. The results from INRCT are more diverse and
more realistic. (c) Comparison of the visual performance of INRCT, mNIF, and Functa on the SRN-
Cars for NeRF generation. The noise is still remaining in the results from Functa, and the colors in
the results from mNIF are chaotic, showing the errors introduced by those two-stage methods.
Table 3: Table for 3D NeRF generation per-
formance comparison on the SRN Cars dataset
with 1282 resolution.

SRN Cars-1282 NFE ↓ FID ↓
Functa 1000 80.3
mNIF 1000 79.5

INRCT(Ours) 1 51.3

Table 4: Table for signals reconstruction perfor-
mance on CelebA-HQ dataset with resolution
642 and SRN Cars dataset with resolution 1282.

Reconstruction (PSNR) ↑ CelebA-HQ SRN Cars

Functa 26.6 24.2
mNIF(S) 31.5 25.9

INRCT(Ours) 40.9 26.8

Table 5: Table for the ablation study on the
CelebA-HQ 642 dataset. The effectiveness of
each component of the designed cross-modal
training objective and the proposed efficient
training scheduler (ETS) is discussed. We report
the two-step generation FID and one-step recon-
struction PSNR to reflect the generation and re-
construction performance separately.

Setting FID↓ PSNR↑
Lgene Lrecon Ldiff ETS

✗ ✓ ✗ ✗ 389 49.2
✓ ✗ ✗ ✗ 15.93 10.7
✓ ✓ ✗ ✗ 19.31 45.1
✓ ✓ ✓ ✗ 9.30 37.4
✓ ✓ ✓ ✓ 7.88 40.9

data space, INRCT outperforms those two-stage diffusion methods and non-diffusion-based INR
generative models. We also present some visual results of the CIFAR-10 dataset in Figure 3(a) and
the CelebA-HQ dataset in Figure 3(b). These visual results prove that INRCT can generate realistic
and diverse signals that match the distribution of training samples. More results are in Appendix C.

For 3D NeRF generation, we present the quantitative comparison of the SRN Cars dataset in Table 3.
We observe a significant improvement in the 3D NeRF generation quality with INRCT compared to
other two-stage methods. As shown in Figure 3(c), Functa’s generated images still contain residual
noise, while mNIF’s generated images have chaotic colors and deviate considerably from the training
samples. In contrast, generated 3D NeRF from INRCT images closely match the training samples in
both color and appearance, offering better visual quality and diversity. These results further demon-
strate the superior accuracy of our end-to-end training strategy for INR generation. More results
about the diverse samples and the consistent projective views are presented in the Appendix C.

INR encoding performance. We present quantitative results of our method’s INR encoding in Ta-
ble 4, including image INR encoding on CelebA-HQ and 3D NeRF encoding on SRN-Cars. The
existing two-stage INR generative models require encoding signals into relatively small represen-
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(c) Novel View Synthesis From a Single View

(b) Consistent Across All Sampling Resolutions

(a) Visual Performance of INR Encoding
Figure 4: (a) Comparison of the visual performance of INR encoding for INRCT and mNIF on the
CelebA-HQ and SRN-Cars dataset. We find that INRCT achieves better reconstruction performance
for INR encoding than mNIF. (b)INRCT can sample any-resolution images without artifacts (c)
INRCT can generate 3D contents which contains consistent views from a single view.

tation vectors to enable an efficient diffusion process on the second generation stage, limiting their
encoding ability and leading to poor reconstruction accuracy. In contrast, our model combines
encoding and generation within a single model. This avoids the restriction on the size of the repre-
sentation vector. Furthermore, our method benefits from a Transformer-based hyper-network with a
large number of parameters, which significantly enhances the model’s expressiveness and capacity
to encode high-fidelity INR representations. The results in Figure 4(a) also support this conclusion,
where the reconstructed results from INRCT are clearer and realistic than mNIF You et al. (2023).

5.3 DISCUSSION

Ablation study. In Table 5, we present our ablation study. We observe that using the generation
objective alone does not yield good reconstruction PSNR, while using the reconstruction objective
alone doesn’t achieve good generation FID. This result shows that the generation objective is the key
to enabling few-step generation, while the reconstruction objective ensures effective INR encoding.
Furthermore, by progressively adding the diffusion loss at small time steps and the efficient training
scheduler, the few-step generation and encoding performance of INRCT are further improved.

Flexible image generation. INRCT inherits the ability of INR and can generate images at any
resolution. It can generate a continuous image which is parameterized as a continuous function
defined in a bounded range, rather than directly generating discrete samples. With the continuous
functions for the images, we can sample at any resolution by specifying specific coordinates within
the range and produce artifact-free images at any resolution. We show this capability in Figure 4(b).

Encoding as single-image-to-3D. We observe that Functa and mNIF are based on meta-learning
or auto-decoder for INR encoding. They need to use all observations as supervision to encode
the signal, which requires multiple views. In contrast, our method achieves INR encoding with
prediction by a hyper-network. We directly predict the entire NeRF signal from just a few support
views (could be as minimum as one support view). This means that our INR encoding for NeRF
objects is actually a single-image-to-3D process, enabling novel view synthesis from a single view.
We demonstrate the capability of our model in Figure 4(c).

6 CONCLUSION

In this paper, we address the error and speed issues in current INR-based diffusion models. They
rely on a two-stage process, encoding followed by generation. Due to the need for many iterations
in DDPM, it is impractical to perform evaluation in the data space. Therefore, we introduce INRCT,
the first end-to-end training generative framework for modality-agnostic INR modeling. We design
a cross-modal consistency training objective to enable few-step generation, giving our model the
efficiency to perform diffusion directly in the data space. This eliminates the error accumulation
from diffusion in the latent space. One limitation of INRCT lies in its scalability. When applied
to high-dimensional data, consistency training in the data space demands substantial computational
resources, which constrains its applicability to large-scale scenarios. In future work, we plan to inte-
grate modality-specific INR functions to improve efficiency and expressiveness, thereby enhancing
encoding and generation quality and enabling SOTA performance on complex signals.
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REPRODUCIBILITY STATEMENT
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A FORMAL DISCUSSION FOR THE LIMITATIONS OF THE TWO-STAGE
TRAINING PROCESS

In the second stage of the two-stage training framework, a denoising diffusion probabilistic model
(DDPM) is trained in the latent space. Let x denote the input data, E denote the encoder, and R
denote the renderer (e.g., an implicit neural representation decoder), such that the latent variable is
z0 = E(x) and the reconstructed data is x̂ = R(z0). The encoder E is trained in the first encoding
stage using a reconstruction loss:

Lrecon = ∥R(E(x))− x∥2. (18)

In the second stage, the diffusion model Fθ learns to denoise latent variables via the standard noise
prediction objective:

Ldenoise = Ez0=E(x),ϵ,t

[
∥ϵ− Fθ(zt, t)∥2

]
, (19)

where zt =
√
αtz0 +

√
1− αtϵ and α ∈ (0, 1) is the cumulative product of noise factors up to

timestep t.

However, the training objective Ldenoise is decoupled from the final data-space generation goal:

Ldata = ∥R(Fθ(zT ))− x∥2. (20)

Since the renderer R is fixed and not involved in backpropagation during the diffusion training, the
latent diffusion model is not explicitly encouraged to produce latents that yield faithful reconstruc-
tions after rendering. This mismatch can lead to error accumulation and unpredictable degradation
in the final output quality.

B DETAILED EXPERIMENT SETTINGS

B.1 CONSISTENCY TRAINING SCHEDULE

Following Karras et al. (2022); Song et al. (2023), we define cskip(t) =
σ2

data
t2+σ2

data
and cout(t) =

t·σdata√
t2+σ2

data

, where σ2
data represents the variance of the (normalized) data. We set σ2

data = 0.5 for

all datasets. We follow ECT Geng et al. (2024) to use a continuous-time training schedule for
consistency training. Specifically, we utilize overlapping intervals in consistency models, enabling
the factorization p(t, r) = p(t)p(r|t) and continuous sampling of infinite t values from a noise
distribution p(t), i.e., LogNormal(Pmean, Pstd), with Pmean = −1.1, Pstd = 2.0 and r ∼ p(r|t).
The mapping function p(r|t) adjusts over training iterations to reduce ∆t = (t − r) → dt. We
parameterize p(r|t, iters) as

r

t
= 1− 1

qa
n(t) = 1− 1

q⌊iters/d⌋n(t),

where n(t) = 1 + kσ(−bt), σ(·) is the sigmoid function, ”iters” represents training steps and d is a
hyperparameter controlling how quickly ∆t→ dt. By default, we set q = 2, k = 8, and b = 1. To
ensure r ≥ 0, r is clamped appropriately. Initially, r/t = 0, which aligns with diffusion pretraining.
To simplifying the models, we use L2 norm as the distance metric d(·, ·). We follow CMs Song et al.
(2023) and ECT Geng et al. (2024) to set tmin = 0.003 and tmax = T = 80. The reconstruction
loss time threshold tϵ1 is then set to 0.007, which is about 2 × tmin, and the diffusion loss time
threshold tϵ2 is set to 0.0865 so that diffusion loss is applied to the first 25% interval.

B.2 DETAILED NETWORK ARCHITECTURES

In this part, we introduce the detailed architecture of our hyper-network generator Gθ. The full
architecture of Gθ is presented in Figure 5. Specifically, Gθ contains signal encoder blocks to
extract features from the support observation set conditioned with noise level t, INR decoder blocks
to predict the INR Tokens (the representation vector for the signals), and the INR functions that
generate the query observation set with given INR Tokens and query transformations.

Signal encoder blocks. These blocks are responsible for extracting features from noisy images
conditioned with the noise level and producing data tokens that guide the generation of the image
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Algorithm 1 Implicit Neural Representation Consistency Training (INRCT)

Input: Dataset I, Generator Gθ with parameter θ, INR function M , noise distribution p(t, Iters),
mapping function p(r | t, Iters), weighting function w(·), EMA decay rate schedule µ(·), recon-
struction loss threshold tϵ1 , diffusion loss threshold tϵ2 , lr η, weights λ1, λ2, λ3.
Init: θ− ← θ, Iters = 0.
repeat
Sample O ∼ I, Os ∼ O, Oq ∼ O, z ∼ p(z), t ∼ p(t), r ∼ p(r | t, Iters)
Compute Os

t = Os + t · z, Os
r = Os + r · z, Oq

t = Oq + t · z, Oq
r = Oq + r · z, ∆t = t− r

Lgene ← d (fθ (O
s
t , O

q
t , t) , fθ− (Os

r , O
q
r , r)),

Lrecon ← d
(
Tq(MGθ(Os

t ,t|t<tϵ1 )
), Oq

)
Ldiff ← d (fθ(O

t
s, Oq, t < tϵ2), Oq)

LINRCT = ω (t) (λ1Lgene + λ2Lrecon + λ3Ldiff)
θ ← θ − η∇θL, θ− ← stopgrad (µ(Iters)θ− + (1− µ(Iters))θ), Iters← Iters + 1

until convergence return θ

function for denoised images. We primarily follow the DiT framework Peebles & Xie (2023) and
employ adaLN-Zero Transformer blocks to build the encoder blocks for feature extraction. As de-
picted in Figure 5 (b), we use a linear layer to regress the dimension-wise scale and shift parameters
α, γ, and τ from noise level embeddings.

INR decoder blocks. These blocks generate the INR tokens β for the INR function based on
the features extracted by the signal encoder blocks. Prior to training, we randomly initialize the
learnable INR tokens according to the shape of the required INR tokens β. As shown in Figure 5
(c), we design an INR decoder block that uses multi-head cross attention to merge the data feature
with INR tokens and predict the INR tokens for the INR function corresponding to the denoised
images. We mainly follow ANR Zhang et al. (2024) to design the architecture for INR decoder.

INR functions. As shown in Figure 5 (d), we choose ANR Zhang et al. (2024) as the INR func-
tions for image modality as it has presented superior representation ability for image, and the basic
MLP Chen & Wang (2022) as the INR functions for 3D NeRF modality as it is more stable than
ANR on 3D NeRF. After obtaining the INR Tokens β from the INR decoder blocks, we render the
images or query projections differentially to ensure the entire pipeline is differentiable.

For image modality, we define the INR function as an ANR with instance-agnostic parameters opti-
mized during the training. This ANR-based INR function accepts the instance-specific INR Tokens
and the queried coordinates and output the RGB corresponding to the queried coordinates. Given
a resolution of H ×W , we follow the approach in Zhang et al. (2024) to sample a variational co-
ordinate list {( i

H , j
W )}i,j with small deviations, where i ∈ [0, H) and j ∈ [0,W ). We then query

the RGB value at each coordinate, which can be reshaped to form the complete image. Thanks to
the variational coordinates, our pipeline supports realistic any-resolution image generation without
artifacts.

For the 3D NeRF modality, we define the INR functions as an MLP with all parameters are generated
from the INR Tokens. The queried 3D coordinates are sampled given the query transformation and
the MLP would output the RGB and the density σ at the corresponding coordinates. A differential
volume rendering is applied based on the projection rays to obtain the projections from the query
transformation.

To enable the hyper-network generator with sufficient capacity to generate realistic objects, we set
the number of signal encoder blocks N = 8 and the number of INR decoder blocks M = 6. For both
signal encoder blocks and INR decoder blocks, the attention dimensions are set to 768 and the feed-
forward dimensions are set to 3072. We adopt ANR Zhang et al. (2024) with a Localized Attention
Layer with 512 hidden dim and 256 token length, followed by a 5-layer MLP with 512 width and
ReLU activation for image modality. We adopt MLP with a depth of 6 and width of 256, with ReLU
activation and positional embedding for the 3D NeRF modality.
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Figure 5: (a) The detailed architecture of our proposed hyper-network generator. The learnable
parameters are in the signal encoder blocks and INR decoder blocks. (b)&(c) The detailed imple-
mentation of the signal encoder block and INR decoder block. (d) The INR functions to represent a
continuous image (ANR Zhang et al. (2024)) and 3D NeRF object (MLP Chen & Wang (2022)).

B.3 OPTIMIZATION PROCEDURES

We follow Peebles & Xie (2023) and Chen & Wang (2022) to split the 32× 32 and 64× 64 images
with patch size 4, and the 128×128 images with patch size 8. All models are optimized with a batch
size of 128 on 4 V100 GPUs with 32 GB. For the efficient training scheduler, the weight of the three
loss terms is set to λ1 = 0, λ2 = 1, λ3 = 0 to focus on the reconstruction task in the early training
phase, and is set to λ1 = 1, λ2 = 1, λ3 = 1 for the full training. Our experiments demonstrate that
the three loss terms maintain comparable magnitudes, and the framework exhibits robustness to the
values of λ, which indicates that varying λ coefficients by an order of magnitude (e.g., setting to 0.1
or 10) shows minimal impact on model performance.

We optimize all models using the Rectified Adam optimizer with the learning rate=1e− 4 and early
stopping to prevent divergence when ∆t becomes too small. The complete training process employs
an efficient scheduler that first focuses exclusively on the reconstruction objective before transition-
ing to full training. Specifically, CIFAR-10 undergoes 1,725 total epochs (initial 125 epochs for
reconstruction), CelebA-HQ completes 2,125 epochs (first 125 epochs for reconstruction), and SRN
Cars trains for 6,000 epochs (initial 1,000 epochs for reconstruction). The total training times are
48, 55, and 74 hours for CIFAR-10, CelebA-HQ, and SRN Cars, respectively. Note that we do not
apply the EMA strategy on the initial training for reconstruction because we find that the training
for INR encoding is quite stable and EMA would slow down the convergence of the optimization
process. Our implementation is based on PyTorch with CUDA 11.8.

C ADDITIONAL EXPERIMENT DETAILS AND RESULTS

C.1 IMAGES

We use the CIFAR-10 dataset Krizhevsky et al. (2009) and the CelebA-HQ dataset Karras (2017)
for our work. For the CIFAR-10 dataset, we use the original train-test split categories, i.e., 50000
images for the training set and 10000 images for the testing set. For the CelebA-HQ dataset, we fol-
low Functa Dupont et al. (2022a) and mNIF You et al. (2023) to divide the entire dataset into 27,000
images for training and 3,000 images for the test split. To measure the quality of generated images,
we compute Fréchet inception distance (FID) score Heusel et al. (2017), precision, recall, and F1
scores Kynkäänniemi et al. (2019) between sampled images and images in a train split. For evalua-
tion of the INR encoding, we use the PSNR to measure image similarity between reconstructed data
and the ground truth data in the testing set.

We present more visualization performance of CIFAR-10 dataset and CelebA-HQ dataset in Figure 6
and Figure 7. The results show that INRCT can generate realistic and diverse results that closely
match the distribution of the training data.
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Table 6: Time efficiency to generate 50,000 samples.

NFE Time to generate 50,000 samples ↓
mNIF You et al. (2023) 1000 90 mins

INRCT(Ours) 1 5 mins
INRCT(Ours) 2 10 mins

Table 7: Training cost analysis of INRCT with the baseline methods in CelebA-HQ 642 dataset.

Training Parameter (M) Training images (kilo imgs) Batch size
Encoding Generation Total Encoding Generation Total per GPU

Functa 3.3 158 161.3 128,000 128,000 256,000 1
mNIF 4.6 276 280.6 21,600 27,000 48,600 8

INRCT - - 145 - - 57,375 32

We also show the time efficiency to generate 50,000 samples for the CelebA-HQ dataset with a
single 48 GB A6000 GPU in Table 6. We find that INRCT requires about 10 minutes to generate
50,000 two-step inference results and about 5 minutes for 50,000 one-step inference results. How-
ever, mNIF relying on DDPM requires 1000 steps to generate samples, taking about 90 minutes to
generate 50,000 samples. Our INRCT generates better samples in about one-tenth of the time.

C.2 NERF OBJECTS

Following Functa Dupont et al. (2022a) and mNIF You et al. (2023), we adopt the SRN Cars
dataset Sitzmann et al. (2019) for NeRF modeling. The SRN cars dataset is divided into train-
ing, validation, and test sets. The training set contains 2,458 scenes, each with 128×128 resolution
images captured from 50 random views. The test set consists of 704 scenes, with 128×128 resolution
images taken from 251 fixed views in the upper hemisphere. During training, we randomly choose 1
view as the support observation set and 1 view as the query observation set. Therefore, our generator
would predict the NeRF given only 1 view and is supervised with another view, acting as a single-
image-to-3D process. For evaluation, we follow the NeRF scene setting used in Functa Dupont
et al. (2022a) and mNIF You et al. (2023), which employs the 251 fixed views from the test split.
As a result, we can calculate the FID score by comparing rendered images with those in the test set,
ensuring the view statistics are consistent. To evaluate INR encoding, we still use PSNR to measure
image similarity between reconstructed NeRF views and the ground truth views in testing set.

In Figure 8, we show the full 251 views of 2 examples generated by INRCT. We observe that INRCT
can generate consistent images across all views from all different projection poses. In Figure 9, we
present all generated samples from INRCT with random projection views and the ground truth from
SRN cars datasets. Results show that INRCT can generate realistic and diverse NeRF objects.

C.3 MORE COMPARISON TO THE BASELINE METHODS

We present the total training parameters and the training cost of INRCT with two existing base-
line methods in Table 7. We find that INRCT has fewer parameters (145M) than both Functa
(161M) Dupont et al. (2022a) and mNIF (281M) You et al. (2023), which construct the denoiser
with U-Net-based generators. This result indicates that the performance improvements in both en-
coding and generation tasks come from the end-to-end training framework rather than increased
model capacity.

Due to variations in training mechanisms, hardware configurations, and batch sizes across different
methods, we follow ECT Geng et al. (2024) to use the total number of images processed (calculated
as batch size × training iterations, measured in kilo imgs) as a quantitative metric for training cost
analysis. The results demonstrate that INRCT achieves better model performance than mNIF You
et al. (2023) while using a similar total number of training images, which is significantly fewer than
required by Functa Dupont et al. (2022a).

For training hardware requirements, the meta-learning-based encoding process of Functa Dupont
et al. (2022a) is highly memory and computation-intensive, requiring first-order gradient computa-
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Table 8: Comparison of models on CelebA-HQ dataset.

Models # Params (M) ↓ NFE ↓ Latency (s) ↓ FID on CelebA-HQ ↓
Non Diffusion-Based Generative Methods

GEM - - - 30.4
GASP 34.23 1 0.0109 13.5
CIPS - 1 - 15.4

Diffusion-Based Generative Methods
DPF 62.4 1000 - 13.2

Functa 161.3 1000 - 40.4
mNIF(S) 280.6 1000 0.108 21.0
DDMI 2335.4 1000 0.822 9.74

INRCT (1-step) 145.5 1 0.006 12.7
INRCT (2-step) 145.5 2 0.012 7.88

tion and limiting its batch size to just 1 on a 48GB GPU. While the auto-decoding approach from
mNIF You et al. (2023) shows better efficiency with batch size=8 on a 48GB GPU, INRCT shows
best memory efficiency by supporting batch size=32 on a 32GB GPU.

These comparisons clearly show that INRCT matches or even surpasses the baseline methods in
terms of total training parameters, total training cost, and GPU memory efficiency, making it a more
practical and scalable solution for INR-based generation tasks.

In addition, we extend Table 2 to include more efficiency metrics, including the learnable parameters
and the generation latency. The latency is defined as the average time (in seconds) required to gener-
ate a single image, measured over 1,000 samples. As shown in Table 8, INRCT demonstrates a clear
performance advantage over previous non-diffusion-based generative methods, while also achieving
improvements in both performance and efficiency compared to diffusion-based approaches.

D LIMITATIONS AND FUTURE WORKS

In this section, we discuss the limitations and future works of the current INRCT framework. One
limitation of our work is that we have only tested on relatively simple data, such as low-resolution
images and simple NeRF objects, due to hardware restriction. We will explore the challenges and
potential solutions for scaling this method to more complex signals.

First, for larger resolution images, the existing consistency training in the data space faces complex-
ity issues. Directly applying consistency training on the higher-dimensional noise space requires
larger network capacities and more computational resources, including more GPU memory and
longer training times Geng et al. (2024); Song & Dhariwal (2023). Current consistency training
methods Luo et al. (2023) often follow the approach of latent diffusion models, where a VAE is
used to reduce the dimensionality of images, and then consistency training is performed in the latent
space. This approach contradicts the primary motivation of our work, which aims to train directly
in the data space to provide more precise supervision signals. In fact, INRCT can avoid training
in the latent space. By introducing the INR intermediate, INRCT decouples the input and output
of the consistency function and supports any-resolution image sampling. Specifically, the input Os

to the network and the output Oq as the supervision signal can now be in different resolutions. Oq

can be a high-resolution image, providing a higher-quality supervision signal, while Os can be a
lower-resolution image, making consistency training and model processing more efficient. By em-
ploying this strategy, it is possible to efficiently scale INRCT to high-quality, high-resolution image
generation.

Then, for complex NeRF generation, the INR function in the current INRCT lacks sufficient rep-
resentation and generalization capability for complex NeRF signals. This is primarily because we
have only used a simple MLP-based INR function to represent NeRF and employed basic volume
rendering techniques to obtain projections from different angles. In the future, we will explore more
advanced NeRF techniques, such as tri-plane representations Hong et al. (2024) and anti-aliasing
techniques by Mip-NeRF Barron et al. (2021), which can enhance the performance of INRCT for
NeRF signals.
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Ground Truth in CIFAR-10 Dataset

Generated Samples By INRCT

Figure 6: Generated samples from our INRCT trained on the CIFAR-10 dataset and the training
samples from the CIFAR-10 dataset. We can observe that the generated samples by INRCT are very
close to the training ground truth.

In conclusion, INRCT provides a more efficient, accurate, and unified training and inference frame-
work for INR-based encoding and generation models. We believe there are still many aspects that
can be further explored, and it has significant potential to drive further advancements in the field of
generative models.

E BROADER IMPACTS

Generation is a widely discussed problem. Deep learning generative models can greatly impact
society. Positively, they can enhance creative industries, healthcare, and education by generating
art, improving medical imaging, and personalizing learning. However, they also pose risks, such as
creating deepfakes, spreading misinformation, and raising ethical concerns about data privacy and
bias. Balancing these benefits and risks is essential for their responsible use.
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Generated Samples from mNIF 

Generated Samples from INRCT 

Figure 7: The generated samples from mNIF (top) and INRCT (bottom) on the CelebA-HQ dataset.
We find that mNIF sometimes generates repeated images (see the images at index [1,1],[9,1] and
[7,14]). In contrast, INRCT can generate realistic and diverse samples.
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Figure 8: The full 251 views of 2 examples generated by INRCT. The results show that INRCT can
generate consistent images across all views from different projection poses.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Ground Truth in SRN Cars

Generated Samples From INRCT

Figure 9: The generated samples from INRCT (top) and the ground truth (bottom) from SRN cars
datasets. We generate NeRF objects with random views. The results show that INRCT can generate
realistic and diverse NeRF objects.
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