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Abstract
Increasing experimental evidence suggests that
the human hippocampus, evolutionarily shaped
by spatial navigation tasks, also plays an impor-
tant role in language comprehension, indicating a
shared computational mechanism for both func-
tions. However, the specific relationship between
the hippocampal formation’s computational mech-
anism in spatial navigation and its role in language
processing remains elusive. To investigate this
question, we develop a prefrontal-hippocampal-
entorhinal model (which called PHE-trinity) that
features two key aspects: 1) the use of a modu-
lar continuous attractor neural network to repre-
sent syntactic structure, akin to the grid network
in the entorhinal cortex; 2) the creation of two
separate input streams, mirroring the factorized
structure-content representation found in the hip-
pocampal formation. We evaluate our model on
language command parsing tasks, specifically us-
ing the SCAN dataset. Our findings include: 1)
attractor dynamics can facilitate systematic gener-
alization and efficient learning from limited data;
2) through visualization and reverse engineering,
we unravel a potential dynamic mechanism for
grid network representing syntactic structure. Our
research takes an initial step in uncovering the
dynamic mechanism shared by spatial navigation
and language information processing.

1. Introduction
Despite millions of years of human brain evolution, the
hippocampal-entorhinal system has remained remarkably
conservative (Krubitzer et al., 2011). For instance, sim-
ilar anatomical structures are observed across various
species (Strange et al., 2014) from rodents to humans,
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mostly exhibiting periodic grid cell representation in the
entorhinal cortex during spatial navigation tasks (Krubitzer
et al., 2011). This indicates that this system, which emerged
early in mammalian evolution and was shaped by spatial nav-
igation tasks, has become an integral, pre-existing structure
in the human brain. However, extended evolution has also
introduced notable differences to the human hippocampal-
entorhinal system. A significant change is the enlargement
of the anterior part of the human hippocampus, which has
developed extensive bidirectional connections with the pre-
frontal cortex (Buzsáki & Tingley, 2018). As a result, in
humans, the function of this system extends beyond physi-
cal space navigation to include various high-level cognitive
tasks, such as encoding abstract conceptual spaces (Behrens
et al., 2018). An intriguing concept is that the hippocampal-
entorhinal system may serve as a cognitive scaffold which
can be adapted for a range of advanced functions (Ler-
ousseau & Summerfield, 2024).

Experimental studies increasingly indicate that the hip-
pocampal formation plays a crucial role in language in-
formation processing (Blank et al., 2016; Piai et al., 2016;
Solomon et al., 2019; Hahamy et al., 2023). For instance,
Blank et al. discovered that specific regions of the hip-
pocampus are actively involved in language comprehension
tasks (Blank et al., 2016). Additionally, through direct brain
recordings, Piai et al. observed that the human hippocam-
pus generates sustained theta oscillations during real-time
language processing (Piai et al., 2016), with the oscillation
power correlating with semantic distance. Furthermore, the
recent identification of semantic boundary cells in the hu-
man hippocampus suggests its potential function in segment-
ing and abstracting natural narratives, thereby enhancing
language comprehension (Zheng et al., 2022). These collec-
tive findings imply the existence of a shared computational
mechanism for spatial navigation and language information
processing (Kazanina & Poeppel, 2023; O’keefe & Nadel,
1978; Whittington et al., 2022b). Investigating this shared
mechanism is vital for understanding how the brain rep-
resents and processes language and inspiring innovative
language intelligence algorithms. However, the shared com-
putational mechanism remains largely unknown.

A key function of the hippocampal-entorhinal system in
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Figure 1. Shared computational mechanism and model architecture for spatial navigation and language information processing. (A)
Extensive brain research indicates that the circuit involving the prefrontal cortex, hippocampus, and entorhinal cortex is a critical shared
region for both spatial navigation and language information processing. (B) The modular grid representation in the entorhinal cortex is
not only capable of representing 2D physical spatial structures but may also be reused to represent language syntactic structures. (C)
We developed a neural dynamic model called PHE-trinity that simulates the PFC-HC-EC circuit of the human brain. In this model, the
entorhinal cortex is implemented by a continuous attractor network driven by velocity; the prefrontal cortex model is characterized by a
recurrent network, and the hippocampus is represented by a relational memory module. The model processes language command inputs
by decoupling them into syntactic structure and semantic content representations first. These representations are then directed to the
entorhinal cortex network and the hippocampus network, respectively. The interaction between these modules enables the model to
effectively parse language commands in the SCAN dataset, such as ”run twice → RUN RUN”. For more model details, see Fig. S1.

processing information is the use of a grid network for spa-
tial structure representation (Behrens et al., 2018; Giocomo
et al., 2011). Grid cells in the entorhinal cortex display
a periodic hexagonal firing pattern with different spatial
periods and orientations (Giocomo et al., 2011). Cells
with identical period and orientation group together into
a grid module, forming a toroidal manifold (Gardner et al.,
2022), thereby creating a modular representation of physical
space. Modeling studies have shown that each grid module
can be conceptualized as a continuous attractor neural net-
work (Giocomo et al., 2011), with its attractors constituting
a low-dimensional manifold. Afferent velocity inputs are
capable of driving network activities across this attractor
manifold, facilitating path integration and the representation
of abstract spatial structures (Burak & Fiete, 2009). In the
context of language tasks, velocity vectors might correspond
to specific grammatical roles within sentences. These vec-
tors drive the grid network to integrate syntactic structures,
analogous to path integration in physical space (Whitting-
ton et al., 2022b). Moreover, the grid network have several
beneficial encoding features, such as exponential capacity
and error-correcting abilities (Sreenivasan & Fiete, 2011),
which may considerably enhance the efficient representation
of syntactic structures.

In the hippocampal-entorhinal circuit, another crucial mech-
anism is the factorized representation of structure and con-
tent (Whittington et al., 2020; Behrens et al., 2018). Ex-
tensive experimental and modeling research suggests that

the entorhinal cortex represents abstract spatial structures,
while the hippocampus functions as a relational memory
system that concurrently stores both structures and con-
tents (Behrens et al., 2018; Whittington et al., 2020). This
parallels language representation, which is suggested to be
similarly divided into abstract syntactic structure and seman-
tic content (Dehaene et al., 2015; Grodzinsky, 2000). Noam
Chomsky’s Minimalist Program theorizes that the brain’s
ability to generate a vast array of ideas stems from the recur-
sive binding and merging of a limited number of primitive
syntactic and semantic units (Chomsky, 2014). Therefore,
the factorized mechanism observed in the hippocampal-
entorhinal circuit could potentially enhance systematic gen-
eralization in language-related tasks, extending learned syn-
tactic rules to novel, unseen ones.

In summary, despite extensive research on the hippocampus-
entorhinal cortex system’s computational mechanism in
spatial navigation, its role in language processing remains
elusive. To investigate this problem, we construct a con-
crete model called PHE-trinity, which mimics the prefrontal-
hippocampal-entorhinal (PFC-HC-EC) loop in the biolog-
ical brain. PHE-trinity has two key features: separating
streams for structure and content representation, and us-
ing a velocity-driven grid system to represent the syntactic
structure of language. We demonstrate that 1) in the SCAN
dataset, the attractor dynamics within PHE-trinity contribute
to systematic generalization, achieve competitive perfor-
mance across various language parsing tasks (here, language
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parsing refers to transforming sentences into another for-
mat based on underlying syntactic structures or rules), and
enhance learning efficiency, particularly in data-limited sce-
narios; 2) through visualization and reverse engineering,
the grammatical roles of words can emerge from training,
serving as velocity inputs to leverage the grid-like system to
represent syntactic structure. Overall, our research provides
initial insights into the shared computational mechanism
behind spatial navigation and language information process-
ing, and offers a method to incorporate attractor dynamics
prior into deep networks to enhance efficient learning and
generalization.

2. Method
As shown in Fig. 1A, we build a dynamic model called PHE-
trinity that simulates the structural and functional attributes
of corresponding cortical regions. The model is characteris-
tic of two features: first, the employment of a grid network
that encodes spatial or syntactical structures, as illustrated
in Figure 1B; second, the adoption of separate structure-
content streams. Accordingly, the model is divided into
three core modules: (1) the MEC (medial entorhinal cortex)
network, implemented as a modular continuous attractor
network driven by velocity inputs; (2) the HC network,
functioning as an associative relational memory system; (3)
the PFC network, configured as a recurrent neural network
to encode language parsing rules. The whole model here
can be understood as an encoder-decoder architecture from
a machine learning perspective, more details seen in Fig. S1.

2.1. Model Architecture

The described model processes an command sequence rep-
resented as x(1), . . . ,x(Tx) ∈ RDx , where Tx denotes the
input sequence length. The objective is to map this input to a
target action sequence, denoted as ŷ(1), . . . , ŷ(Ty) ∈ RDy ,
with Ty representing the target sequence length. In this
setup, x corresponds to trainable word vectors, randomly
initialized using a Gaussian distribution, whereas ŷ de-
notes the output symbols, encoded as one-hot vectors. The
model employs a decoupled structure-content architecture
akin to the HC-MEC system (Behrens et al., 2018). Thus,
each input word vector x(t) is bifurcated into two compo-
nents: a structure representation vector ms(t) = Wsx(t),
where Ws ∈ RNs×Dx , and a content representation vector
mc(t) = Wcx(t), with Wc ∈ RNc×Dx . This architecture
prior enhances the model’s proficiency in learning syntactic
rule-based transformations from input commands to target
actions.

The MEC Network Drawing inspiration from the grid
network in the entorhinal cortex (Giocomo et al., 2011),
the MEC network is implemented as a modular continuous
attractor neural network, with the activity of each module

driven by an velocity input (Burak & Fiete, 2009). For
simplicity, we assume that the dynamic behavior of each
attractor network module is described by the following equa-
tion:

τ
dr(t)

dt
= −r(t) +Wrg(t) +Winv(t), (1)

where τ represents the time constant of the network, r(t)
is the input vector received by neural population at time
t, g(t) = σ(r(t)) represents the activity vector with σ(·)
being the ReLU activation function. The matrices Wr ∈
RNg×Ng and Win ∈ RNg×2 correspond to the recurrent
and feedforward connections of the network, respectively.

The activity within the attractor manifold is driven by a 2D
velocity vector input, expressed as v(t) = [vx(t), vy(t)]

T .
In spatial navigation tasks, vx and vy denote the velocity
magnitudes in the spatial domain. For language tasks, vx
and vy are derived from the structure representation vector
ms through a ReLU non-linear activation function and a
subsequent linear transformation. In the context of language
processing, the ”velocity” vector input can be interpreted
as a grammatical role, steering neural activity through a
low-dimensional attractor manifold to integrate syntactic
structures. This process bears some resemblance to the path
integration observed in spatial tasks, as depicted in Fig. 1B.

To achieve a continuous attractor network structure resem-
bling the grid network in the biological brain, we employ
two alternative methods to determine the connection ma-
trices Win and Wr in the MEC network. One approach
involves obtaining these matrices through auxiliary train-
ing in a spatial path integration task (Sorscher et al., 2023)
(Appendix A.2), while the other utilizes predefined weight
values (Burak & Fiete, 2009) (Appendix A.8).

During training, the 2D velocity vector input is processed by
the MEC network, linearly transformed and passed through
a softmax function to predict position coordinates at time
t, labeled p(t). Assuming the true position coordinates at
time t are p̂, the loss function for the path integration task
is defined as:

Lpath = −
Bpath∑
b=1

Tpath∑
t=1

p̂b(t) log(pb(t)) + β∥Wr∥22. (2)

Here, Bpath is the batch size for the path integration task,
and Tpath is the length of input sequence. The loss func-
tion comprises two terms: the first is the cross-entropy loss,
quantifying the discrepancy between predicted and true po-
sition coordinates; the second is an L2 regularization term
applied to the connection weights, which promotes the emer-
gence of continuous attractor dynamics during training. The
regularization strength is modulated by the coefficient β.
For details, see Appendix A.3.
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The MEC network, consisting of N modules, produces
an output represented by the concatenated vector ĝ(t) =
[g1(t), . . . ,gN (t)]T . ĝ(t) is then transformed via two lay-
ers of a multilayer perceptron (MLP). The hidden layer ac-
tivity, denoted as k(t) = f1(ĝ(t)), is sent to the HC network
as ”position” encoding. The second layer activity at the last
encoding time t = Tx, denoted as u(Tx) = f2(f1(ĝ(Tx))),
represents the integrated result of the structural information
for the command sequence and is forwarded to the PFC
network, as illustrated in Fig. 1C and Fig. S1. Functions
f1(·) and f2(·) each include a linear mapping followed by a
ReLU non-linear activation function.

The HC Network Experimental and theoretical studies
suggest that the HC functions as a relational associative
memory system (Whittington et al., 2020), responsible for
binding and storing structural and sensory representations
together. To simplify, we model the HC network as an
external relational memory module (Graves et al., 2014;
Kumaran et al., 2016). At each time t, it binds the semantic
representation vector mc(t) from the external input with
the ”position” representation vector k(t) from the MEC net-
work, forming a memory vector pair [k(t),mc(t)], which
is then stored in an external memory module, as depicted in
Fig. 1C and Fig. S1. Thus, the HC network functions akin to
a query table, facilitating the retrieval of stored content rep-
resentation based on a query of the ”position” representation
vector k(t), and vice versa.

The PFC Network The PFC in the biological brain is
known to encode abstract rules via a recurrently connected
network (Mansouri et al., 2020). In PHE-trinity, the PFC net-
work is represented as a Long Short-Term Memory (LSTM)
model designed to encode language parsing rules (Hochre-
iter & Schmidhuber, 1997; O’Reilly & Frank, 2006; Wang
et al., 2018). It interacts with the HC network to realize
the translation from command sequences to target actions,
acting as a sequence decoder. Assuming that the dynam-
ics update rule for the PFC network is represented by the
function fpfc(·):

a(t′ + 1), c(t′ + 1) = fpfc(s(t
′), c(t′)). (3)

Here, c(t′) is the hidden state vector of the PFC network
at time t′, and c(0) = u(Tx). Note that time t′ describes
the decoding process, unlike t in the encoding process. The
output vector at time t′ is a(t′), while s(t′) denotes the input
received from the HC network.

Here, we assume the PFC network performs a selective atten-
tion on the positional component of memory vectors stored
in the HC network, using techniques adapted from (Russin
et al., 2019; Whittington et al., 2021). The attention weight
for the i-th memory vector is given by:

bi(t
′) =

ed(a(t
′),k(i))∑

j e
d(a(t′),k(j))

, (4)

where d(a(t′),k(i)) = a(t′)Tk(i) measures the similar-
ity between the output vector a(t′) and the position vector
k(i), using a dot product. Based on the attention weight
vector b(t′), the position representation in the HC net-
work is summarized and fed back to the PFC network
as input s(t′) =

∑
i bi(t

′)k(i). Additionally, a sum-
mary of the stored semantic representation is obtained as
o(t′) =

∑
i bi(t

′)mc(i). After a linear transformation and
a softmax non-linear function, o(t′) yields the prediction
for the t′-th output action, denoted as y(t′). Consequently,
PHE-trinity iteratively generates the target action sequence
[y(1), . . . ,y(Ty)].

2.2. Objective Function and Training

To reflect the evolutionary development of the hippocampal-
entorhinal circuit, which is influenced by spatial navigation
tasks, PHE-trinity undergoes two distinct phases, including
a pretraining phase and a co-training phase.

In the pretraining phase, the MEC network in PHE-trinity
is pretrained in a spatial path integration task to estabilish
modular attractor dynamics, resembling the grid cell net-
work in the brain. We use the Adam optimizer to optimize
the loss function Lpath.

In the co-training phase, PHE-trinity is trained on both lan-
guage parsing tasks and path integration tasks to solve lan-
guage parsing tasks. The objective function contains three
parts: 1) a cross-entropy loss function to ensure the accurate
prediction of target actions by the model; 2) an auxiliary loss
function for path integration to maintain attractor dynamics;
3) a L2 regularization on the neural activity representing
structure and content to facilitate disentangled representa-
tions from the input command (Whittington et al., 2022a).
Therefore, the overall objective loss function is formulated
as:

L = − 1

BTy

B∑
b=1

Ty∑
t=1

ŷb(t) log(yb(t)) + αLpath

+ α1
1

BTx

B∑
b=1

Tx∑
t=1

∥ms(t)∥22

+ α2
1

BTx

B∑
b=1

Tx∑
t=1

∥mc(t)∥22.

(5)

The parameters α, α1, α2 control the corresponding loss
items respectively. For other detailed model parameters and
training settings, please refer to Appendix A.3.

2.3. SCAN Dataset

Here, we employ the SCAN dataset for model evalua-
tion (Lake, 2019). SCAN is a collection of simple language-
driven navigation tasks designed for studying compositional
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Command sequence Action Sequence
jump JUMP
jump left LTURN JUMP
jump around right RTURN JUMP RTURN JUMP RTURN JUMP RTURN JUMP RTURN JUMP
turn left twice LTURN LTURN
jump opposite left and walk thrice LTURN LTURN JUMP WALK WALK WALK
jump opposite left after walk around left LTURN WALK LTURN WALK LTURN WALK LTURN WALK LTURN LTURN JUMP

Table 1. Examples of the SCAN tasks which are utilized to evaluate the combinatorial generalization learning capability. On the left are
the language command inputs, and on the right are the output action sequences.

learning. As depicted in Tab.1, SCAN comprises a set of
commands and their corresponding action sequences. The
dataset encompasses 20,910 records, and depending on the
split between training and testing data, various SCAN tasks
can be created:

1) Simple task: The dataset is randomly divided into the
training set and the testing set, with both sets sharing the
same distribution.
2) Add primitive task: The training set includes only some
basic forms. For instance, in the ”Add Jump” task, the train-
ing set contains only ”jump → JUMP”, while the testing set
incorporates combinations of ”jump” with various words.
3) Length task: The training set comprises shorter language
commands, while the testing set includes longer commands.

Despite their simplicity, SCAN tasks encapsulate key as-
pects of human language, such as compositionality and
recursive construction. The tasks enable the construction
of novel commands through established rules, and different
rules can be recursively combined to create longer language
sequences. For more details about SCAN dataset, see Ap-
pendix A.1.

3. Results
3.1. Attractor Dynamics Facilitate Systematic

Generalization

Mimicking the early evolution of the hippocampal-
entorhinal circuit, PHE-trinity is first pretrained on a spatial
path integration task to establish continuous attractor dy-
namics (see Fig. S2), then simultaneously trained on both
language and spatial tasks.

Firstly, as shown in Tab. 2, PHE-trinity excels at learn-
ing compositional skills, outperforming Syntactic Atten-
tion (Russin et al., 2019) and MLC (Lake & Baroni, 2023),
two brain-inspired methods, across different tasks in the
SCAN dataset, particularly in the ”Add Jump” and ”Length”
tasks. In the ”Add Jump” task, PHE-trinity achieved
100% accuracy across 8 runs, while the Syntactic Attention
method with similar structure-content separation achieves
only 78.4%. These findings suggest that PHE-trinity with
pretrained attractor dynamics exhibits competitive system-
atic generalization capabilities.

To further assess the role of pre-established attractor dy-
namics on systematic generalization within SCAN tasks,
we conduct two control experiments. Both experiments uti-
lizes the same model structure as that in PHE-trinity but
with different training approaches. In Control Model 1, the
model is trained exclusively on SCAN tasks, resulting in a
MEC network with no attractor dynamics. Control Model
2 undergoes concurrent training on both SCAN tasks and
path integration tasks, but without any pre-training phase.
This approach may lead to delayed formation of attractor
dynamics, potentially impeding their reuse for SCAN tasks.
Both control models are subjected to the identical hyperpa-
rameter settings as PHE-trinity (refer to Section 2.1). As
shown in Tab. 2, PHE-trinity outperforms the control mod-
els across various SCAN tasks. While all three models
demonstrate the same structure-content separation structure,
the control models exhibit erratic training behavior in prac-
tice and a notably higher variance in performance in the
”Add Jump” task. This variance is likely due to the absence
of an attractor-based prior. These findings suggest an im-
portant role of preformed attractor dynamics in facilitating
systematic generalization in language command parsing.

The implementation of separate structure-content streams
in the model does not necessarily guarantee the successful
acquisition of factorized representations from the data. To
assess this in PHE-trinity, we visualise the learned velocity
inputs, which are assumed to represent abstract grammatical
roles. Our observations, as depicted in Fig. 2, reveal sev-
eral key points: 1) input words are converted into velocity
vectors with different magnitudes and directions; 2) Verbs
such as ”walk,” ”jump,” ”look,” and ”run,” tend to aggre-
gate at a single point, similar to the clustering observed
with directional terms like ”left” and ”right”; 3) notably,
certain patterns consistently emerge in the learned veloc-
ity inputs across different runs. For instance, ”and” and
”after” consistently occupy opposite directions, which may
reflect their contrasting logical roles in language parsing (ex-
tended results seen in the Fig. S3). These findings suggest
that PHE-trinity is capable of extracting abstract structure
representations from raw data, successfully achieving a de-
coupling of structure and content at the representational
level.
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Table 2. Test accuracies on different SCAN tasks across different models and training paradigms. All reported accuracies are averages
over eight runs. For detailed parameters, refer to the Appedix A.3. Results marked with a star (⋆) indicate our implementation utilizing
the code provided in (Lake & Baroni, 2023), averaged across 8 runs.

Model/Task Simple Add Jump Add turn left Length
Syntactic Attention (Russin et al., 2019) 100.0± 0.0 78.4± 27.4 99.9± 0.16 15.2± 0.7
MLC (Lake & Baroni, 2023) 99.98 99.78 99.97± 3.7 ⋆ 0.0± 0.0 ⋆

Control model 1 98.92± 2.8 74.96± 42.92 100.0± 0.0 17.0± 2.5
Control model 2 99.88± 0.25 75.24± 42.86 100.0± 0.0 19.4± 1.1
PHE-trinity 100.0± 0.0 100.0± 0.0 100.0± 0.0 21.48± 3.4

Figure 2. PHE-trinity learns abstract velocity representations through data training. After training on the ”Add Jump” task, the 2D velocity
vectors corresponding to all command words received by the MEC network are plotted in the center panel, while the left and right panels
display zoomed-in results.

3.2. Attractor Dynamics Facilitate Learning in
Limited-Data Conditions

A B

Figure 3. Attractor dynamics pre-established through spatial path
integration tasks, can facilitate learning on SCAN tasks under data-
limited conditions. The Control model, represented by the green
curve, undergoes training solely on SCAN tasks. (A) The mean
training loss versus the count of training iterations, with only the
first 3 × 103 iterations shown. (B) Test accuracies for various
training sample sizes—100, 200, 300, and 2000—are shown, with
a logarithmic scale applied to the x-axis. Accuracies are obtained
by averaging over 14 runs. For specifics on the parameters, refer
to Appendix A.3

The human brain, with its evolved structures, leverages
these inherent configurations to efficiently learn from lim-
ited data, thus enabling flexible adaptation to new environ-

ments (Lake et al., 2017). Our study examines whether
pre-established attractor dynamics from spatial tasks could
accelerate the learning of SCAN tasks with limited train-
ing instances. We compare the performance of a Control
model lacking pre-established attractor dynamics, with PHE-
trinity in the ”Add Jump” task. Both models are identical
in architecture and hyperparameters (detailed in the cor-
responding sections). Fig. 3A illustrates that PHE-trinity
exhibits markedly faster convergence than the control model
during training. Further experiments involve training on
subsampled datasets to assess test performance. Results
consistently show PHE-trinity’s superior performance under
various limited-data conditions. Remarkably, PHE-trinity
attain an accuracy of 99.71±0.24% with only 2000 training
examples (Fig. 3B). These outcomes highlight the critical
role that pre-established attractor dynamics play in enhanc-
ing model performance with limited data.

3.3. Visualization of Neural Dynamics During
Command Parsing

We further conduct a visualization analysis of PHE-trinity to
elucidate the dynamic mechanism involved in language com-
mand parsing. Initially, as shown in Fig. 4A, dimensionality
reduction reveals that the MEC network displays a torus-like
attractor manifold in its neural activity space. This manifold
structure is consistent with the dynamical mechanism ob-
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Figure 4. Visualization of Neural dynamics in the MEC and PFC network. PHE-trinity is trained on ”Add Jump” task. (A) A toroidal
manifold of stable attractor patterns in MEC’s neural activity space, visualized via dimensionality reduction (Sorscher et al., 2023). Here,
the red curve represents a neural trajectory during spatial path integration tasks, while the green curve illustrates a trajectory during the
encoding of an command sequence projected onto the attractor manifolds. For details about the visualisation method, see Appendix A.9.
(B) Dimensionality of neural dynamics in the MEC network. Cumulative percentage of explained variance is shown as a function of
the number of principal components. (C) The top 6D subspace of MEC activity during navigation captures as much variance in MEC
activity during text tasks as the top 6 PCs. Note the torus structure shaped by path integration tasks in (A) mainly lies in this top 6D
subspace. (D) PCA visualization of neural dynamics in the MEC network. The starting state of neural trajectories is marked by a red circle.
Blue trajectories correspond to command sequences containing the word ”and”, while green trajectories relate to command sequences
containing the word ”after”. (E) PCA visualization of the neural dynamics in the PFC network. The blue and green curves correspond
to those in (D). The triangles indicate the starting states of neural trajectories. (F) PCA visualization of the starting states of neural
trajectories in (E). Color intensity denotes the length of output action sequences, with darker colors indicating longer sequence lengths.
The length of output action sequence is significantly correlated with PC1 and PC2 (R2 = 0.432, p = 6.7× 10−25) as determined by
multiple linear regression method. For more details, see Fig. S5 and Appendix A.7.

served in the biological brain’s grid cell network (Gardner
et al., 2022). The projected neural trajectories are shown to
travel close to the manifold. By employing principal compo-
nent analysis (PCA) of neural activities in the MEC network,
it is demonstrated that the syntactic information of command
sequences lies in a low-dimensional space (Fig. 4B). The
6D subspace where the torus manifold exists can explain
nearly as much variance as the top 6 PCs of language com-
mand trajectories (Fig. 4C). This suggests that the torus-like
continuous attractor dynamics lie in a shared subspace with
language command trajectories and can be leveraged to
encode both spatial and syntactic structures. And neural
trajectories form two distinct trajectory clusters, as shown
in Fig. 4D. One cluster corresponds to sequences containing
”and,” while the other is associated with sequences featuring
”after.” These clusters represent divergent parsing logics:
sequences with ”and” are processed sequentially around the
word, whereas ”after” requires reverse-order parsing.

Furthermore, trajectories in the PFC network reflect the
sequence decoding process, as shown in Fig. 4E. These tra-
jectories are generated via the interaction between PFC and
HC. Each trajectory in PFC network corresponds to an ab-
stract parsing rule for sequences with one specific syntactic
structure (more details seen in Fig. S5). And the starting
states of neural trajectories in the PFC network cluster into
linearly separable groups, showing a linear correlation with
the lengths of the target action sequences (Fig. 4F).

In summary, both the MEC and PFC networks organize
sequence representation according to syntactic rules. During
parsing, commands with varying syntactic structures are
integrated into specific network states in the MEC network
by leveraging its attractor dynamics. These states are then
transmitted to the PFC network, initiating the corresponding
decoding trajectories.
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3.4. Parsing Commands Based on Predefined Attractor
Dynamics

BA

Figure 5. Predefined modular continuous attractor dynamics for
language commands parsing. All models are trained on the ”Add
Jump” task. (A) The visualization of the neural dynamics in the
MEC network with two attractor modules. A torus-like manifold
of stable attractor patterns in the neural activity space is shown
for one attractor module. It is visualized through dimensionality
reduction, with two neural trajectories projected onto this low-
dimensional space traversing the manifold. The red star marks
the final state of a neural trajectory, while the red circle indicates
its start. For details about visualisation, see Appendix A.9. (B)
Testing accuracy versus the number of attractor modules in the
MEC network. The accuracy is averaged over 8 runs.

To further explore the use of velocity vector-driven at-
tractor dynamics for representing syntactic structure, we
established attractor dynamics using a predefined weight
method (Burak & Fiete, 2009). In this approach, the
recurrent connection weight of each attractor module in
the MEC network is composed of two parts: Wr =
Wattractor + Wlowrank. Here, Wattractor defines the connec-
tion structure of the attractor dynamics, remaining fixed
and non-learnable. In contrast, Wlowrank is a low-rank con-
nection matrix that simulates the potential functional role
of the numerous non-grid cells in the biological entorhinal
cortex (Hardcastle et al., 2017; Mosheiff & Burak, 2019).
This component is adaptable and enhances the flexibility of
the attractor dynamics. For simplicity, the HC and MEC
networks directly receive structure-content factorized input
representations, as depicted in Fig. S6. For model details,
refer to Appendix A.8.

As shown in Fig. 5A, dimensionality reduction and visual-
ization demonstrate that the abstract velocity inputs drive
the neural activity in the MEC network through the toroidal
attractor manifold, representing syntactic structures of com-
mand sequences as trajectories, consistent with the findings
in Fig. 4. Furthermore, as illustrated in Fig. 5B, the model
exhibits enhanced performance with an increasing number
of attractor modules in the MEC network, suggesting that
modular attractor networks are particularly effective in rep-
resenting structures of language command sequences.

4. Discussion
In this research, we introduce a dynamic model called PHE-
trinity, which integrates two key aspects of information
processing within the HC-MEC system: a grid network
for structure representation and separate structure-content
pathways. Our hypothesis is that preformed, velocity vector-
driven modular attractor dynamics, shaped through spa-
tial path integration tasks, are adaptable for facilitating
language information processing. Experimental findings
from SCAN tasks validate this hypothesis, indicating that
these preformed attractor dynamics aid in systematic gen-
eralization, yield competitive results across various SCAN
tasks, and improve learning efficiency, especially in lim-
ited data conditions. Moreover, we utilized visualization
and reverse engineering methods to uncover a potential dy-
namic mechanism underlying command sequence parsing:
utilizing grammar roles as velocity vectors and leveraging
attractor dynamics in the grid system to integrate the syn-
tactic structure information. Hopefully, this study could
enhance our understanding of the computational dynamics
shared by both spatial navigation and language information
processing.

Related Works Our research is primarily inspired by the
Tolman-Eichenbaum Machine (TEM) (Whittington et al.,
2020), which suggests that the MEC forms a basis for de-
scribing structural knowledge, with the HC linking this basis
to sensory content. Nevertheless, PHE-trinity diverges sig-
nificantly from the TEM in several respects: 1) the TEM
model is a structured memory model, focusing on spatial
tasks and non-spatial tasks with similar statistical structure.
In contrast, PHE-trinity is oriented towards more complex
language command parsing tasks, incorporating a PFC net-
work; 2) the TEM model presupposes the provision of de-
coupled structure-content representation a priori, whereas
PHE-trinity is capable of directly learning and acquiring
this representation from data, enabling the application of
structure-content decoupling to more complex tasks. Addi-
tionally, PHE-trinity benefits from and bears some similari-
ties to the Syntactic Attention method (Russin et al., 2019),
inspired by the information processing mechanism in the
Wernicke and Broca cortical areas. However, PHE-trinity
concentrates on the hippocampal-entorhinal circuit, particu-
larly its use of a velocity-driven modular attractor network
for syntactic structure representation. Recently, a model
called Vector-HaSH also adopts a similar idea (Chandra
et al., 2023), where sequential inputs are also transformed
into continuous velocity vectors. Thus Vector-HaSH model
enables episodic memory sequences to stimulate grid net-
work activities, thereby manifesting as spatiotemporal trajec-
tories on low-dimensional attractor manifolds. PHE-trinity
differs from Vector-HaSH model in two major ways: 1)
PHE-trinity emphasizes that velocity vector representation
is an abstract structure input that can be directly learned

8



Leveraging Attractor Dynamics in Spatial Navigation for Better Language Parsing

from data; 2) PHE-trinity is applied to more complex lan-
guage command parsing tasks, beyond simply memorizing
sequences.

Shared Mechanism The question that “what is the shared
computational mechanism for both navigation and language
understanding?” is deeply rooted in hippocampal cognitive
map theory (O’keefe & Nadel, 1978) and was originally and
explicitly proposed by the distinguished researcher John
O’Keefe, known for his Nobel Prize-winning discovery of
place cells. In his famous book (O’keefe & Nadel, 1978),
O’Keefe suggested that in the hippocampal formation, “the
cognitive-mapping system could function as a deep structure
for language”, where “deep structure” mainly refers to the
syntactic structure of language. Recent advances in experi-
mental studies and theoretical understanding of hippocam-
pal functions have brought this important question into more
discussion (Frankland & Greene, 2020; Whittington et al.,
2022b; Kazanina & Poeppel, 2023). For instance, Whit-
tington et al. proposed that a velocity-driven grid system
may be used to represent syntactic structure via path integra-
tion (Whittington et al., 2022b), akin to spatial navigation.
Kazanina and Poeppel also argued that cell representations
in the hippocampal formation could already constitute essen-
tial elements for a language of thought (Kazanina & Poep-
pel, 2023). Nevertheless, all these proposals and discussions
have mainly remained at the conceptual stage, lacking an
empirical model to test the hypothesis. Our present study
is an initial attempt to construct a concrete computational
model to validate this hypothesis.

Relating the Model to Neuroscience Some key aspects
of PHE-trinity can be related to experimental studies in sys-
tem neuroscience and contribute to our understanding of the
brain. Firstly, in the biological brain, grid-like code can be
reused to represent both spatial and non-spatial space (Con-
stantinescu et al., 2016; Behrens et al., 2018; Bellmund
et al., 2018). For spatial space, grid-like system is driven
by self-motion signals, guiding the network state along a
manifold and encoding relative spatial locations. However,
the mechanism with which our brain efficiently repurposes
this grid-like system for non-spatial tasks remains a ques-
tion: what computational processes underlie this adaptation?
PHE-trinity model suggests that the brain might infer ab-
stract feature vectors underlying the map structure in the
non-spatial domain, such as the length of a bird’s neck (Con-
stantinescu et al., 2016). Subsequently, the brain can reuse
grid-like attractors by binding the inferred vectors with low-
dimensional velocity vectors, rather than learning direct
connections to high-dimensional grid population vectors.

Additionally, our model may provide insights into the com-
putational mechanism underlying how the brain represents
abstract rules and facilitates compositional generalization.
In the PHE-trinity model, abstract rules can be encoded

as stable neural trajectories in the PFC network. Through
interaction with the structural components of codes in the
HC network, the model can achieve rule-based decoding
for better compositional generalization. This computational
mechanism is supported by recent experimental studies to
some extent. For instance, a recent experiment suggests
that rats’ PFC can encode abstract navigation rules as stable
neural trajectories (Tang et al., 2023). Interestingly, when
rats navigate different environments sharing the same nav-
igation rule, the same neural trajectory can be activated in
the rats’ PFC, resembling the dynamic process in the PHE-
trinity model. Moreover, recent studies on the human brain
suggest that the interplay between the PFC and HC regions
may be responsible for compositional inference (Schwarten-
beck et al., 2023), a phenomenon that could be modeled and
elucidated by the PHE-trinity model.

Limitations and Future Works More future works are
needed to explore the shared computational mechanisms
in spatial navigation and language understanding further.
Firstly, PHE-trinity has only been demonstrated in a sim-
plified dataset - the SCAN dataset - which captures limited
aspects of human language processing. In future work,
we need to test the effectiveness of the PHE-trinity model
in more diverse language tasks and with different model
variations. Secondly, the modular grid system provides
many computational advantages such as exponentially high
coding capacity (Chandra et al., 2023), error correction
ability (Sreenivasan & Fiete, 2011), and algebraic computa-
tion (Whittington et al., 2022b; Gao et al., 2021). However,
the current PHE-trinity model mainly focuses on informa-
tion integration through continuous attractor dynamics in
the grid system. Exploring how to leverage the diverse
computational advantages of the grid system for various
language processing tasks is a future study avenue.

Currently, PHE-trinity only provides a rough simulation of
the PFC, HC and MEC and lacks several critical features: 1)
the model does not include the feedback connections from
HC to MEC, which are essential for correcting path inte-
gration errors (Whittington et al., 2020); 2) the biological
HC has the capability to group and organize memory se-
quences based on their underlying structures (Eichenbaum,
2017), rather than simply serving as a storage unit; 3) the
PFC is able to abstract schemas from various similar expe-
riences, thereby enhancing the reuse of learned knowledge
and generalization (Gilboa & Marlatte, 2017). Therefore,
it is important to integrate these features in future work
to improve the model’s capability in language information
processing.
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Impact Statement
This paper aims to enhance our understanding of the com-
mon computational processes involved in spatial navigation
and language processing. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Appendix
A.1. Details about SCAN dataset

Train
jump JUMP
run after look left LTURN LOOK RUN
run twice and turn opposite left RUN RUN LTURN LTURN
Test
jump thrice and look JUMP JUMP JUMP LOOK
turn left after jump twice JUMP JUMP LTURN
jump opposite left and run left LTURN LTURN JUMP LTURN RUN

Table S1. Examples of training and testing splits of ”Add Jump” task in SCAN Dataset.

The SCAN dataset comprises numerous ”command-action sequence” pairs (Lake, 2019). The input commands consist of
sentences formed using primitives (e.g., jump, walk, turn left) and modifiers (e.g., twice, around, and, after) according to
specific grammatical rules. The output is sequences of predefined actions corresponding to these primitives.

The ”Add Primitive” task in the SCAN dataset evaluates the model’s ability to generalize learned parsing rules to new words
or phrases (Tab. S1). Now consider the ”Add Jump” task as an example. In the training set, ”jump” appears only as an
isolated word in parsing tasks, not combined with any other words, as illustrated by the example: ”jump→JUMP”. However,
in the test set, ”jump” can be combined with various words just like other primitives, for instance, ”jump thrice”, ”jump
opposite and run”. If a model only learns one-to-one mapping between inputs-outputs pairs through memorization during
training, it may neglect all lengthy sentences incorporating ”jump” during the test, resulting in random outputs. On the other
hand, if the model learns the corresponding relationships between ”jump” and other primitive words, as well as the rules of
command parsing, it can successfully complete the task shown in Tab. S1, e.g., ”turn left after jump twice→JUMP JUMP
LTURN”. The ”Add Turn Left” task is similar to the ”Add Jump” task, except ”jump” is replaced with ”turn left”.

The ”Length” task in the SCAN dataset requires the model to better learn the rules for constructing longer sentences through
command loops. In this task, 80% of the training set data comprises shorter commands similar to the examples in Tab. S1. In
the test set, however, the output sequence length can exceed 20, for example: ”walk around left twice after turn around right
twice→RTURN RTURN RTURN RTURN RTURN RTURN RTURN RTURN LTURN WALK LTURN WALK LTURN
WALK LTURN WALK LTURN WALK LTURN WALK LTURN WALK LTURN WALK LTURN WALK”.

A.2. Model Details for Path Integration Task

In the path integration task, we assume an agent navigates within a 2.2m × 2.2m 2D spatial space, moving at an average
speed of 0.1m/sec. By randomly initializing the agent’s position within this space and sampling velocity directions, we
obtain precise coordinate trajectories of the agent’s movement and velocity samples at each moment. We set the temporal
length of trajectory samples to 20. For each gradient iteration, we randomly sample data trajectories from the space. Notably,
the representation of position coordinates is encoded using a vector representation of the place cell population, emulating
the spatial encoding relationship between the hippocampal-entorhinal circuit of a real biological brain, with the number of
place cells being 512. More details can be referenced in (Sorscher et al., 2023).

A.3. Model Structure and Training Parameters

As shown in Fig. S1, we provide a more detailed model architecture diagram here. The whole model structure can be seen
as an encoder-decoder architecture. The interaction between MEC and HC performs the text command sequence encoding,
while the interaction in PFC-HC loop decodes the input into action command sequence. The principal variables mentioned
in the methodology have been annotated in the figure.

The dimensions of the input command embedding vector x, the structure representation vector ms and the semantic
representation vector mc in PHE-trinity are Dx = 256, Ns = 100, Nc = 256, respectively. When training the model using
auxiliary spatial path tasks, the number of modules in the MEC network is N = 1, with Ng = 256 neurons. Between
the MEC network and the PFC network is a 2-layer MLP network, each with 256 neurons. All models are trained using
Pytorch 2.0 (Paszke et al., 2019). Dropout is applied to all the feedforward connections of the model with p = 0.5, except
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Figure S1. Detailed model structure.

for the connections from the velocity input to the MEC network. When the model is trained solely on SCAN taks, the
recurrent connections in the MEC network are randomly initialized using the torch.nn.init.xavier uniform
method. We also experimented with torch.nn.init.orthogonal but found no significant difference in the results.
When training on SCAN tasks, the batch size is set to B = 1. The neural activity constraint coefficients for structure and
content representations are set to α1 = α2 = 0.2. When the control model is trained solely on the text task, we employ the
co-training loss function with α = 0; when the model is trained simultaneously on both text task and path integration task,
α = 1. These model structure and training parameters remain unchanged throughout the experiments, unless specifically
noted otherwise.

Parameters in Tab. 2 in the main text: In the pre-training phase, PHE-trinity undergoes pre-training on path integration tasks.
During this phase, we set the batch size Bpath to 200 and the regularization parameter β to 1× 10−4. The training involves
56,000 iterations using the Adam optimizer with an initial learning rate of 0.001. Subsequently, in the co-training phase, the
model is trained concurrently on both path integration tasks and the SCAN task for a duration of 10 training epochs. Here,
we maintain the initial learning rate at 0.001. To control the magnitudes of velocity vectors, we apply an L2 regularizer on
v in text parsing tasks, with the regularizer strength set to 0.1. In experiments with control model 1 and control model 2,
we find no qualitative difference between results with or without the regularizer, compared with PHE-trinity. The Adam
optimizer is consistently employed, and the learning rate is decreased by a factor of 0.1 every 4 epochs. Notably, Control
models 1 and 2 follow identical training settings as PHE-trinity during the co-training phase.

Parameters in Fig. 3 in the main text: the pre-training phase in PHE-trinity is the same as that in Tab. 2. In the co-training
phase, regardless of the number of training samples, PHE-trinity undergoes simultaneous training in both path integration
tasks and the SCAN task, spanning 60,000 training iterations. The learning rate is systematically reduced by a factor of 0.1
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at iteration milestones set at 9,000 and 24,000. Other parameters is the same as that in Tab. 2. Notably, the Control model
follow identical training settings as PHE-trinity during the co-training phase.

Parameters in Fig. 4 in the main text: without loss of generality, the number of neurons in the MEC is set to Ng = 1024 for
better visualizeing the torus-like attractor structure. Other settings remain the same as in Tab. 2. In Fig. 4C, 1000 sequence
trajectories in the MEC during spatial path integration tasks are randomly selected, these sequences have the same starting
points as that of command sequence trajectories. Similarly, 1000 sequence trajectories of command sequences are randomly
sampled. As the torus-like attractor manifold mainly lies in the 6D subspace, here we use the 6D subspace spanned by the 6
top PCs of navigation trajectories to explain the variance of that of command sequences.

A.4. Results of Models with Shuffled Grid Network Weights

We perform additional experiments to further validate whether the attractor dynamics in PHE-trinity is a critical component.
Results are shown in Tab. S2. “PHE-trinity + shuffle” refers to the condition where the recurrent weights in the MEC
network are shuffled after the pretraining phase. But their weight magnitudes and distribution are maintained. “Control
model 1 + shuffle” means that the recurrent weights in the MEC network in ”Control model 1” are initialized the same as in
“PHE-trinity + shuffle”, using shuffled grid network weights.

Shuffling the recurrent weights in MEC destroys the formed attractor dynamics during the pretaining phase (obtained via
spatial path integration task). Therefore, despite the maintained weight distribution and magnitudes, both ”PHE-trinity +
shuffle” and ”Control model 1 + shuffle” still have poor performance compared with PHE-trinity across different SCAN
tasks. These results suggest that PHE-trinity’s good performance can not simply stem from a specific way of initialization
via pretraining, and support that the attractor dynamics is a critical factor.

Model/Task Add Jump Length Opposite Right
Control model 1 74.96± 42.92 17.0± 2.5 87.59± 32.83
Control model 1 + shuffle 74.08± 42.83 17.49± 4.7 96.26± 9.84
PHE-trinity + shuffle 74.85± 43.2 20.80± 5.04 98.14± 4.87
PHE-trinity 100.0± 0.0 21.48± 3.4 99.98± 0.02

Table S2. Test accuracies across different models and tasks are both obtained over 8 runs. Seeds and other parameters are the same as
PHE-trinity model (details described in Appendix A.3).

A.5. Grid Representation Formation Based on Path Integration Task Pre-training

A B
mean=0.59

Figure S2. Grid representation and statistical distribution formed by path integration pre-training. A) The spatial firing rate of a typical
neuron shows a regular hexagonal representation. B) This characteristic is observed in the majority of neurons, indicating the formation of
grid cells (grid score >0.3).

To visualize the formation of grid representations in the MEC network of the model, we randomly sampled 105 trajectories
on a 2D plane. We recorded the firing gi(x) of MEC neurons at different positions x during path integration. The trajectory
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sampling method and parameters are consistent with Appendix A.2. To improve the signal-to-noise ratio of neuronal activity
and reduce the computational burden for subsequent parameter statistics, we further discretized the 2D space into a 50×50
grid. Subsequently, for each neuron we averaged its firings at the same grid location across different trials to obtain the
averaged spatial firing rate ḡi(x) . We selected a representative neuron and plotted its spatial firing rate in Fig. S2A.

To evaluate the degree to which the spatial firing rate forms a periodic hexagonal grid pattern, we can calculate the grid
score using a method outlined in (Sorscher et al., 2023). Briefly, we first computed the autocorrelogram of ḡi(x) at rotations
of 0°, 30°, 60°, 90°, 120°, and 150°. Then, we calculate the average of the correlation values of the 0° autocorrelogram with
those at 60° and 120°, and subtract it from that of 0° with 30°, 90°, and 150°. We computed the grid scores for all neurons in
the MEC network. The results, as shown in Fig. S2B, indicate that most neurons display hexagonal grid characteristics, with
an average grid score of 0.59. This suggests the effective formation of grid representations within the MEC network.

A.6. Visualization of Abstract Velocity Corresponding to Text Commands

We train PHE-trinity under eight different random seed conditions. We visualize the velocity representations learned from
data in a 2D plane, as depicted in Fig. S3. Across all results, we observe that: 1) The velocity vectors corresponding to verbs
such as ”walk”, ”jump”, ”look”, ”run” and direction words like ”left”, ”right” are closely clustered together. 2) The pairs
”and” and ”after”, as well as ”around” and ”opposite”, are always positioned in opposite directions relative to the origin,
which may be related to their contrasting logical roles in text command parsing.

We further quantified and compared the “clustering” and “direction” properties of PHE-trinity and control models. Each
result is averaged over eight runs.

For quantification of “cluster” effect, we calculated the intra-cluster distance (average distance between all points pairwise
in a cluster). As shown in Tab. S3: 1) for ”left, right”, all models are able to cluster them effectively together. 2) as for
“walk, run, look, jump”, the control models exhibit worse clustering and higher variance, although they do cluster to a fairly
good extent.

Cluster of words Control model 1 Control model 2 PHE-trinity
walk, run, look, jump 0.12±0.27 0.12±0.17 0.02±0.03
left, right 0.00±0.00 0.01±0.01 0.01±0.01

Table S3. Comparison of ”cluster” effect of Control Model 1, Control Model 2, and PHE-trinity.

For quantification of “direction” (words on the opposite versus same directions), we calculated the angles between word
”velocity” vectors in degrees. As shown in Fig. S4, 1) In comparison to the control models, our model demonstrates the most
stable angles between ”velocity” vectors across various trials, with smaller variances observed among the respective terms;
2) to a certain extent, these angles corresponds with the model’s behavior of text parsing. For example, the angles of “and”
and “after” in PHE-trinity consistently occupy opposite directions with the angle 150± 21, compared to control models. The
opposite direction and their large velocity magnitudes may imply their distinct logical roles in language parsing, as depicted
in Fig. 4D, resulting in two distinct trajectory groups in the MEC. Note other words, such as ”twice” and ”thrice”, even
”twice” and ”and”, also exhibit stable vector angles in PHE-trinity. These consistent vector angles could reflect statistical
similarities and distinctions observed in the SCAN dataset. For instance, ”run twice” and ”run and run” yield the same target
command sequence ”RUN RUN,” whereas ”run and walk” is unique to ”and” but not to ”twice”.

Overall, as control models share the similar separate structure-content streams as that in PHE-trinity, they both learn
relatively stable syntactic representation of words. However, representation in PHE-trinity shows a significantly lower
variance and better clustering effect, indicating better syntactic representation. These results indicate that PHE-trinity can
learn abstract structure representations from the data, achieving a decoupling of structure and content at the representation
level.

A.7. Neural dynamics in the PFC network

We provide more details about PFC dynamics as shown in Fig. S5. PCA results show the neural dynamics in PFC is
low-dimensional like that in MEC (Fig. S5A).

Importantly, each trajectory in PFC network corresponds to an abstract parsing rule for sequences with a specific syntactic
structure (Fig. S5B). For example, sequences like ”jump and walk” and ”run and jump” would trigger the same trajectory in
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Figure S3. The ’velocity’ vectors of textual inputs from models trained with 8 different random numbers. The red circles mark the
positions where walk, jump, look, run and left, right are clustered.

16



Leveraging Attractor Dynamics in Spatial Navigation for Better Language Parsing

PHE-trinityBA CControl 2Control 1

Figure S4. The angles of ’velocity’ vectors of textual inputs from models trained with 8 different random seeds. Numerical values denote
the average angles(0-180) between corresponding words, while the color intensity represents the standard deviation. The green color
denotes standard derivations less than 30 degree.

the PFC network because they follow the same syntactic rule - ”verb and verb”. However, sequences such as ”jump and
walk” and ”run after walk” use different syntactic rules: ”verb and verb” versus ”verb before verb,” which would result in
two separate trajectories in the PFC network. Similarly, sequences like ”run around right twice after look right thrice” and
”jump around right twice after walk left thrice” share the same syntactic rule and trigger the same trajectory in the PFC. This
is in contrast to the sequence ”run around right twice and look right thrice”.
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run and jump

run after jump
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Figure S5. Neural dynamics in the PFC network, related to Fig. 4. (A) Dimensionality of neural dynamics in the PFC network. Cumulative
percentage of explained variance is shown as a function of the number of principal components. (B) PCA visualization of the neural
dynamics in the PFC network. Explanatory cases are delineated in the figure with red lines.

A.8. Predefined Attractor Network

Since the continuous attractor dynamics mechanism of grid systems has been extensively studied, alternatively, we can
also introduce hand-designed continuous attractor structures in the recurrent network by presetting the parameters Wr and
Win of the MEC grid network (Fig. S6). Investigating predefined attractor network serves a dual purpose: firstly, it helps
further validate the feasibility of using a modular grid system to represent the structure of language command sequences;
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Figure S6. Model architecture using predefined attractor structure method

secondly, it also aids in understanding how these vital prior structures can be effectively applied to language parsing tasks.
Additionally, in the real biological entorhinal cortex, there exist many non-grid cells besides grid cells. These non-grid cells
might form low-rank connections, acting on attractor manifolds to assist the MEC network in integrating external velocity
inputs more effectively. Consequently, in the MEC cortex network, each attractor module’s reciprocal connections comprise
two parts: Wr = Wattractor + Wlowrank. Here, Wattractor determines the predefined continuous attractor structure, and
Wlowrank is a learnable part of the recurrent connections, simulating the connection structure of non-grid cells. The neural
dynamics of the attractor network are defined with the equation:

τ
dg(t)
dt

= −g(t) + σ(Wattractorg(t) + Wlowrankg(t) + F),

where g(t) is the neural population activity vector at time t, σ(·) is the ReLU non-linear activation function.The time constant
τ = 10, and the simulation step length dt = 0.5. For simplicity, all attractor modules use the same model parameters. The
number of neurons is Ng = 242, arranged on a 24×24 square plane. Furthermore, the plane’s neural clusters are divided into
2×2 blocks, with each block containing four neurons with distinct preferred directions (east, south, west, north), denoted as
θi ∈ {0, π/2, π, 3π/2}. Let êθ be the unit vector in direction θ, and li be the position coordinate of neuron i on the neural
plane. Then,

Wattractor(i, j) = Wbase(li − lj − zêθj ),

Wbase(l) = e−η∥l∥2

− e−ξ∥l∥2

,

where η = 1.2 × ξ, ξ = 3/λ2, λ = 13, and the offset value is z = 2. The values of η and ξ ensure that, the connection
matrix Wattractor between each neuron i and other neurons forms a specific center-surround shape on the neuron tile. All
connections are inhibitory, with the bump centered at li − zêθj . The value of λ determines the period of the hexagons
formed on the neuron tile.

Driven by the external velocity input v(t), the feedforward input received by each neuron i in the network at time t is given
by:

Fi(t) = 1 + α0êθi · v(t),

where α0 determines the magnitude of the modulation effect of the velocity input on network activity. It is crucial to ensure
α0|v| ≪ 1 to maintain the stability of the hexagonal representation under velocity drive. In this case, we set α0 = 0.103.
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When the rank is R, the low-rank connectivity matrix Wlowrank can be composed of R pairs of connecting vectors
m(r) = {m(r)}r=1,...,R and n(r) = {n(r)}r=1,...,R, where m(r),n(r) ∈ RNg . Hence,

Wlowrank =
1

Ng

R∑
r=1

m(r)T n(r),

where for an MEC network with a module count of 1, R = 2; for module counts of 2 and 3, R = 1.

As shown in Fig. S6, unlike when training on spatial path integration tasks, the model now receives predefined decoupled
inputs. For the MEC model, when command word inputs are ”run”, ”look”, ”walk”, ”jump”, the model receives the same
velocity vector input. Similarly, ”left”, ”right” correspond to the same abstract velocity. By contrast, for the HC model,
different words correspond to different semantic vector inputs. Both the velocity representation vector v(t) and the semantic
representation vector mc(t) are trainable, with initial values randomly sampled from a Gaussian distribution. For each word
input, we inject its velocity input vector v by repeating it for several time steps Ts, with Ts = 5, to match the network time
constant.

The target loss function for model training is:

L = − 1

BTy

B∑
b=1

Ty∑
t=1

ŷb(t) log(yb(t)) + α

N∑
n=1

∥Wlowrank∥22,

where the first term is the cross-entropy loss function between the predicted action sequence and the actual target action
sequence for PHE-trinity. The second term is an l2 regularization on the low-rank matrix, controlled by the parameter α,
which ensures the magnitude of the learnable weights is kept within a certain range to maintain the structural integrity of the
network’s attractor manifold.

Notably, Wattractor in the model is not learned but predefined and remains fixed during training; Win is implicitly included
in F and has no trainable parameters. Adam optimizer is used for training. The initial learning rate is 0.001, reduced by a
factor of 0.1 every four training cycles, with a total of 10 training epochs. During training, α = 0.0001 and B = 1.

A.9. Visualization Method

0°

60°

120°

Figure S7. The hexagonal grid representation can be decomposed into three 2D sine waves.

In this study, two distinct methods are employed to pre-construct attractor dynamics within the MEC network, as depicted in
Fig. 4A and Fig. 5A. For clarity, we utilize two visualization techniques to represent the attractor manifold embedded in the
MEC network’s neural activity space.

We visualised the continuous attractor manifold in Fig. 4 primarily following (Sorscher et al., 2023). The hexagonal
representation of grid cells in the MEC can be considered as the superposition of 2D sine waves along three evenly spaced
directions: 0°, 60°, and 120°, as illustrated in Fig. S7. In a 2D spatial coordinate system, the Ng-dimensional neural
population activity g(x) at location x can be projected onto three planes based on the neuron’s phases ϕ0,60,120 in these three
directions. Each direction corresponds to a pair of axes (cos(ϕ0,60,120), sin(ϕ0,60,120)). Identifying the attractor states of
the MEC network is equivalent to projecting the neural population activity onto the six-dimensional space. Briefly, the steps
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to visualize the continuous attractor manifold include: 1) calculating the neural activity gi(x); 2) identifying the neuronal
phases ϕ0,60,120; 3) computing the projection of the neural population activity.

1) Similar to Appendix A.5, we first obtain the state activities gi(x) of the MEC network under spatial path integration tasks.
Then, we discretize the space and average the neuronal firing at each location to calculate the averaged neural activities
ḡi(x) in a 2D discrete space.

2) After performing a Fourier transform on the ḡi(x), the power spectral density (PSD) will show energy peaks at frequencies
corresponding to the three directions. Hence, we can calculate the spatial phases ϕ0,60,120

i for each neuron:

ϕ0,60,120
i = arg

[∫
dx e−(k0,60,120·x)ḡi(x)

]

3) Then we can project the neural cluster activity at each spatial location onto six axes:(∑
i

ḡi(x) cos(ϕ
0,60,120
i ),

∑
i

ḡi(x) sin(ϕ
0,60,120
i )

)

Selecting three of these directions, we obtain the 3D torus structure shown in (Fig. 4A).

Finally, since the MEC input in the text parsing task is already a 2D velocity representation, we chose one trajectory each
for path integration and text parsing tasks, projecting them into the 3D space of the torus using the aforementioned process
and parameters. The original projected trajectories are translated and scaled for better visual presentation.

The visualization method for Fig. 5 can be referenced from (Gardner et al., 2022). The process is as follows: 1) We
randomly initialize the state of the MEC network and then use an optimized method (Sussillo & Barak, 2013) to find
stable points in the high-dimensional network dynamics, i.e., the attractor states of the MEC network; 2) We perform PCA
on the identified stable points, retaining the first six dimensions to exclude some noise; 3) We use the UMAP(Uniform
Manifold Approximation and Projection) method for further nonlinear dimensionality reduction to three dimensions, and
plot these stable points in the space. The UMAP parameters are set as follows: n dims=3, metric="cosine",
n neighbours=2000, min dist=0., init="spectral"

We selected two command sequences containing ”and” or ”after”. We took the neuronal activities from the MEC network
and projected them into 3D space using the aforementioned model and parameters. The visualization results show that the
command parsing trajectories are located on the attractor manifold.
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