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ABSTRACT

In human-centric settings like education or healthcare, model accuracy and model
explainability are key factors for user adoption. Towards these two goals, intrin-
sically interpretable deep learning models have gained popularity, focusing on
accurate predictions alongside faithful explanations. However, there exists a gap
in the human-centeredness of these approaches, which often produce nuanced
and complex explanations that are not easily actionable for downstream users.
We present InterpretCC (interpretable conditional computation), a family of
intrinsically interpretable neural networks at a unique point in the design space
that optimizes for ease of human understanding and explanation faithfulness, while
maintaining comparable performance to state-of-the-art models. InterpretCC
achieves this through adaptive sparse activation of features before prediction, al-
lowing the model to use a different, minimal set of features for each instance. We
extend this idea into an interpretable, global mixture-of-experts (MoE) model that
allows users to specify topics of interest, discretely separates the feature space
for each data point into topical subnetworks, and adaptively and sparsely acti-
vates these topical subnetworks for prediction. We apply InterpretCC for
text, time series and tabular data across several real-world datasets, demonstrat-
ing comparable performance with non-interpretable baselines and outperforming
intrinsically interpretable baselines. Through a user study involving 56 teachers,
InterpretCC explanations are found to have higher actionability and usefulness
over other intrinsically interpretable approaches.

1 INTRODUCTION

The rise in popularity of neural networks over traditionally interpretable models has come with a
severe weakness: the lack of transparency of their predictions. Neural networks are considered as
black-box models due to their high number of parameters and complex operations (Molnar, 2020).
Humans cannot understand how neural network decisions are made under the hood; this is a crucial
limitation in sensitive applications such as education or healthcare, where models’ predictions might
impact humans (Conati et al., 2018; Vellido, 2020).

Towards transparency for neural networks, a range of explainable AI methods have emerged across
two main axes: global vs. local explanations, and post-hoc vs. intrinsic explanations (Du et al., 2019).
Global interpretability allows users to understand how the entire model operates by examining its
structure and parameters, while local interpretability focuses on understanding the rationale behind a
individual prediction (Molnar, 2020). Most methods are post-hoc, where the explanation is extracted
from a model that has already been trained. In contrast, intrinsic methods directly incorporate
interpretability into the model’s structure.

Popular post-hoc methods include attribution methods like LIME (Ribeiro et al., 2016) or SHAP
(Lundberg and Lee, 2017), counterfactual methods like CEM (Dhurandhar et al., 2018), or pattern-
based methods like PREMISE (Hedderich et al., 2022). Post-hoc methods require users to trust
the explainer’s approximation of the ground truth explanation (the underlying model’s decision
process), although they have been shown to be systematically biased and inconsistent (Krishna et al.,
2022; Swamy et al., 2022b). In-hoc explanations are a subset of post-hoc methods that require
access to model weights instead of treating the model as a black box (Molnar, 2020). For instance,
Grad-CAM (Selvaraju et al., 2019) assesses the contribution of a component to the model’s output,
and TCAV/DTCAV (Kim et al., 2018; Ghorbani et al., 2019a) use user-defined concepts to interpret
neural network embeddings.
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Feature Gating
InterpretCC InterpretCC

Figure 1: InterpretCC Architectures: Feature Gating (left, individual features): (i) All features
are input into a discriminator network that outputs a sparse feature activation mask; (ii) Only the
features selected via the mask are passed to a predictive network for the final prediction. Group
Routing (right, pre-defined feature groups): (i) Features are statically assigned to distinct groups, with
each feature routed to only one group; (ii) Features are input to a discriminator network, generating a
sparse group activation mask; (iii) Predictions from activated sub-networks (selected via mask) are
aggregated by a weighted sum to produce the final output.

Recent intrinsically explainable model literature has focused on example-based approaches, over-
whelmingly for the image modality (e.g. B-cos networks (Böhle et al., 2022), PIP-Net (Nauta et al.,
2023), ProtoPNet (Chen et al., 2019)) and less commonly in time-series, tabular, or text modalities
(Sawada and Nakamura, 2022). Other approaches like NAM (Agarwal et al., 2021) and EBM (Nori
et al., 2019) train a model for each input feature or combination of features and output predictions
using scores from these models, requiring a lot of subnetworks when the feature space is large.
Research towards interpretable mixture-of-experts models has highlighted a hierarchical neural
network structure with subnetworks, combining interpretable experts (i.e. decision trees) with NNs
for partially interpretable points (Ismail et al., 2023), selectively activating experts (Li et al., 2022),
or extracting automated concepts over the input space for routing (You et al., 2023; Alvarez Melis
and Jaakkola, 2018). All of these approaches, while expressive, are burdened with overly detailed
explanations which limit human understandability and actionability.

In this paper, we therefore present a user-centric intrinsically interpretable framework that achieves
faithful local interpretability and provides sparse and actionable human-centric explanations, while
maintaining comparable predictive performance to its black-box counterparts. To achieve these
goals, we use conditional computation to craft interpretable neural pathways using two different
architectures (see Figure 1) based on routing through individual features or entire feature groups.

Our models enable statements like the following: “The student’s regularity and video watching
behavior were the only two aspects selected as important for the student’s prediction of passing
the course, and the model did not use any other aspects to make this prediction". We refer to
interpretability from the users’ perspective, focusing on the model’s local reasoning for a decision on
a specific data point, as opposed to a global understanding of the model’s internals. Our models are
characterized by sparse explicit routing, truncated feature spaces, and adaptivity per data point. These
traits are important for human-centric trustworthiness as they provide clear and concise instance-level
explanations (Miller, 2019; Swamy et al., 2023b).

With our family of InterpretCC models, we provide the following contributions:

[1] InterpretCC Feature Gating: A simple, interpretable NN architecture using a gating
mechanism to sparsely activate specific features.

[2] InterpretCC Group Routing: An interpretable mixture-of-experts architecture that uses
human-specified group routing to separate the feature space and sparsely activate specific experts.

[3] An extension of intrinsic interpretability to multiple human-centric modalities and domains,
focusing on time-series (education), tabular (health, synthetic data), and text (sentiment, news).1

[4] A novel XAI user study comparing teachers’ preferences of interpretable-by-design model
explanations towards designing educational interventions for struggling students.

Across experiments on eight diverse datasets, we show that InterpretCC models perform com-
paratively to non-interpretable baselines (matching or exceeding 95% CIs in 15 of 16 comparisons)

1We do not focus on vision datasets since extracting concepts from vision has been well-studied by existing,
modality-specific interpretability approaches, e.g. Böhle et al. (2022); You et al. (2023); Donnelly et al. (2022);
Thomas et al. (2023).
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and outperform intrinsically interpretable baselines (ICC Feature Gating is 9.05% better on average
than SENN Features and 3.27% better on average than NAM, while ICC Group Routing is on
average 5.63% better than SENN Concepts). Moreover, participants of the user study preferred ICC
explanations over baselines in terms of actionability, usefulness, conciseness and trustworthiness. We
provide our code open source: https://anonymous.4open.science/r/interpretcc.

2 BACKGROUND

Explanation

Method Granularity Basis Faithfulness Sparsity Coverage

LIME, SHAP

(Post-Hoc)
Feature Use all input features Approximation Sparse Partial

TCAV

(In-Hoc)
Concept User defines concepts

through examples
Aligned
with concepts Sparse Partial

Feature Use all input features Guaranteed Not sparse Full

SENN Concept Automated concept
selection

Aligned
with concepts Not sparse Partial

NAM Feature Use all input features Guaranteed Not sparse Full

Feature Use all input features Guaranteed Sparse FullInterpretCC
(Feature Gating,

Group Routing) Concept User (or LLM) defines
groups of features Guaranteed Sparse Full

Table 1: Method Comparison: InterpretCC
models are at the unique intersection of flexible ex-
planation granularity (either features or concepts),
guaranteed explanation faithfulness to the model’s
decision process, optimal sparsity in the explana-
tion, and full input space coverage. Basis describes
the foundation of the explanation (e.g. user-defined
concepts or raw features). A full taxonomy of
terms can be found in Appendix A.

Architecture Foundations. Conditional Com-
putation (CC) has become widely used to im-
prove the computationally expensive training
and inference of large neural networks by acti-
vating only parts of the network (Bengio et al.,
2013; 2016; Davis and Arel, 2013). Inspired
by the foundations laid out by CC, mixture-of-
expert models have rapidly gained popularity
for improving the efficiency of neural networks
through activating different expert subnetworks
at different layers. BASE layers (Lewis et al.,
2021) direct each token to a designated expert
and Switch Transformers (Fedus et al., 2022b)
use CC to select one out of 4 feedforward net-
works across each transformer layer, optimizing
computational resources. Mixtral (Jiang et al.,
2024) is a recent LLM using a mixture of experts
to select 2 out of 8 expert networks at each layer,
reducing the numbers of active parameters by a
factor of 4 compared to training, while allowing each token to have access to all the parameters. With
InterpretCC models, we extend a similar routing idea with instance-dependent gating decisions
towards an interpretability objective as opposed to only an efficiency or performance objective.

Interpretability Foundations. Explainability can be integrated into different stages of the modeling
pipeline: post-hoc (after model training), in-hoc (requiring model weights), and intrinsic (interpretable
by design) (Swamy et al., 2023b; Molnar, 2020). Our positioning of InterpretCC in comparison
to the most popular approaches is described in Table 1. Specifically, we categorize the approaches
using their basis and the stage they are applied to in the pipeline as well as four key aspects for human-
centric explanations: faithfulness, the explanation reflects the model behavior with certainty (Lyu
et al., 2024; Dasgupta et al., 2022); sparsity, the model uses a minimal amount of features, optimizing
for user understandability and actionability (Sun et al., 2024; Ayoobi et al., 2023); coverage, the
explanation covers the entirety of what the model uses for prediction (Ali et al., 2023); and granularity,
the explanation is conveyed in terms of features or concepts (Miller, 2019; Jain et al., 2020).

Post-hoc methods such as LIME (Ribeiro et al., 2016) or SHAP (Lundberg and Lee, 2017) approx-
imate what the model finds important, and therefore cannot be faithful or indicate full coverage
(cross-feature actions are often not described in the explanation). LIME and SHAP use the full input
feature space and can be configured for sparseness, although they have been shown to choose a broad
amount of features (Swamy et al., 2022b) using default settings. In-hoc interpretability approaches
often require users to specify examples to define human-understandable concepts (e.g. TCAV (Kim
et al., 2018), DTCAV (Ghorbani et al., 2019a)), or use hybrid methods with both human-defined
and automated concepts (Sawada and Nakamura, 2022). In-hoc approaches provide only partial
coverage and limited faithfulness due to the (lack of) completeness of the concepts. Inspired by these
approaches, InterpretCC allows users to specify interpretable concepts that are directly useful
to them. However, we do not use examples, but instead allow users to specify a grouping over the
feature space, achieving both sparsity and full coverage.

Initial approaches have explored expert models for intrinsic interpretability. The Interpretable Mixture
of Experts (IME) framework (Ismail et al., 2023) uses linear models alongside deep models to provide
partially faithful explanations. LIMoE (Mustafa et al., 2022) focuses on visual experts to identify
concepts like textures and faces, enhancing interpretability in vision tasks. Similarly, the Sum-of-Parts
(SOP) model (You et al., 2023) uses sparse feature groups to emphasize the model’s reliance on
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subsets of features for predictions. Approaches in extractive rationale methods and explain-then-
predict methods (Jain et al., 2020; Bastings et al., 2019; Yu et al., 2019) produce intuitive text
explanation guarantees with explanation selection before prediction, but are often not generalizable
beyond that modality (see Appendix I.4). Few intrinsic approaches use expert knowledge to define
concepts directly, instead using prototype examples (Koh et al., 2020) or rules (Konstantinov and
Utkin, 2024). The most relevant models to our work are Self-Explaining Neural Networks (SENN)
(Alvarez Melis and Jaakkola, 2018) and Neural Additive Models (NAM) (Agarwal et al., 2021), both
neural models similar to ICC as opposed to Explainable Boosted Machines (EBM) which uses trees
(Nori et al., 2019). SENN extracts concepts with prototypical examples and their relevances, but it
lacks faithfulness (it cannot explain what is not in a concept), sparsity (it explains all concepts), and
coverage (concepts do not cover the entire feature space). NAM assigns a model to each feature and
combines the outputs linearly, achieving full coverage and faithfulness but not sparsity, as all features
contribute. ICC differs by filtering the feature space instead of using all features (sparsity), using
user-defined concepts instead of automated concepts (basis), and assigning each feature to a single
group, making feature use explicit (coverage).

3 METHODOLOGY

Given an input x, the objective of our approach is to select a sparse subset of x that will be used to
predict the output to solve the classification task. We propose two architectures:

Feature Gating: The approach only processes a subset of the features by applying a sparse mask M
on the input x before processing it by a model f . The output is given by: f(M(x)).

Group Routing: A sparse mixture of models (Fedus et al., 2022a) applied on human-interpretable
groups of features where each expert is assigned to a group of features:

∑K
i=1 G(x)i · fi(MG(x)i)

where MG(.)i is a sparse mask selecting only the features of group i, fi is the expert model associated
with the i-th group, and G(x)i is the output of the gating network for group i. If G(x)i = 0, the
entire group of features is ignored.

3.1 FEATURE GATING

InterpretCC Feature Gating, shown in Fig. 1, is the first step towards using CC paths for
interpretability. The features are first passed through a discriminator network D to select which ones
to use for computing the output. The Gumbel Softmax trick (Jang et al., 2017) is applied on each
dimension of D(x) to select features in a differentiable way (see Appendix G for more details). A
feature j is activated (the associated value in the mask is non-zero) if the Gumbel Softmax output
exceeds a threshold ω , a hyperparameter. This allows the model to adaptively select the number of
features based on each instance, using fewer features for simpler cases and more for complex ones.

The output is computed using a model f on the masked input M(x). Since the explainability is at
the feature level, using a black box model for f does not detract from the interpretability. Notably,
ICC FG does not require human specification.

3.2 GROUP ROUTING

We build upon the instance-dependent gating architecture with feature groups. As displayed in
Figure 1, instead of selecting features individually, the mask is applied to human interpretable groups
of features. Doing so encourages cross-feature interactions while maintaining a meaningful grouping
for human users. To select the features belonging to group i, we use a binary mask MG(x)i that is
computed using human-specified rules. In section 4, we detail our approach to compute MG(x)i for
each dataset used in our experiments.

InterpretCC Group Routing is a sparse mixture of experts utilizing a gating network to assign a
weight G(x)i to each group. This process mirrors that of Feature Gating, starting with a discriminator
network DG with an input of all features and output of K dimensions (K is the number of groups). It
then applies the Gumbel Softmax and a threshold ωG to each group. The model output is a weighted
sum of the output of each expert fi that only uses the features from the i-th group as input. Using
our sparsity criteria, we ensure that few groups are used to compute the output, making the Group
Routing intrinsically interpretable at the group level, regardless of the types of models used as experts.
Group Routing enables efficient inference without reducing the number of parameters available
during training. During the training phase, we employ soft masking, allowing all weights G(x)i to
remain non-zero, thus granting the model access to every expert. This approach allows the model to

4
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Feature-Based Interpretability Concept-Based Interpretability

Dataset Non-interpretable
Base Module NAM SENN

Features FRESH InterpretCC

Feature Gating
SENN

Concepts
InterpretCC

Top K Routing
InterpretCC

Group Routing

DSP 82.81 ± 2.61 85.20 ± 0.64 71.70 ± 0.95 90.75 ± 0.01 81.50 ± 2.26 83.08 ± 1.10 84.90 ± 7.59
Geo 72.96 ± 1.59 65.12 ± 4.07 57.90 ± 2.69 Not 71.92 ± 0.01 70.90 ± 2.45 80.44 ± 3.19 81.58 ± 0.57
HWTS 73.93 ± 3.76 73.11 ± 2.13 68.63 ± 3.78 Supported 82.89 ± 0.04 75.10 ± 11.67 72.59 ± 2.84 78.34 ± 0.95Education

VA 74.90 ± 5.28 71.39 ± 3.38 74.37 ± 1.11 77.80 ± 0.01 69.99 ± 8.83 71.43 ± 1.11 72.08 ± 3.71

Health B. Cancer 89.70 ± 1.05 88.77 ± 7.31 80.52 ± 6.21 Not Supp. 78.19 ± 3.54 85.26 ± 1.03 84.66 ± 3.02 94.85 ± 1.25

AG News 89.93 ± 3.32 88.73 ± 0.69 85.72 ± 5.31 87.25 ± 2.48 90.35 ± 1.07
Text SST 91.12 ± 2.03

Not
Supported

Not
Supported 82.05 ± 0.56 88.21 ± 3.41

Not
Supported 92.98 ± 0.88 91.75 ± 1.86

Synthetic OpenXAI 86.67 ± 0.31 87.85 ± 1.31 83.67 ± 1.86 Not Supp. 89.51 ± 0.51 84.67 ± 4.04 90.83 ± 1.93 89.47 ± 2.89

Table 2: InterpretCC Performance (avg ± std) on EDU (balanced accuracy), Text, Health,
and Synthetic (accuracy) datasets compared to a non-interpretable baseline and four intrinsically
interpretable baselines. All 95% CI overlap with the non-interpretable base module for values in
black. Colored values indicate significantly higher (green) or lower (red) performance than the base
module. The reported Group Routing results are the best performing ICC variations from Table 3.

leverage the full set of parameters during training, enhancing the training efficiency. At inference
time we switch to using a hard mask, making the weights sparse and allowing for interpretability.

4 EXPERIMENTAL SETTINGS

We apply InterpretCC to five domains: education, news classification, sentiment classification,
healthcare, and synthetic data covering Time Series, Text, and Tabular inputs; all for classification
tasks. For Tabular features, the input is a vector x → Rn. The mask in the Feature Gating is a sparse
vector indicating which tabular feature to use and how important they are (if the weight is non-0) and
the groups form a partition over the features. For Text features, the input is a sequence of N tokens:
x = [t1, t2, · · · , tN ]. The mask is a sparse vector that indicates which token to use and each group
consists of a subset of the tokens. Finally, we consider Time Series of n features across T timesteps:
x → Rn→T . We apply the same mask across all time steps for InterpretCC FG and GR.

EDU (time series, education domain). We predict student success in the early weeks of four massive
open online courses (MOOCs), using students’ clickstream data (see Table 5 in Appendix B for
details about the courses). The raw clickstream input is transformed into weekly time-series features
that have proven useful for student success prediction in previous literature (e.g. total video clicks,
forum interactions). We select 45 input features used in multiple studies (Lallé and Conati, 2020;
Boroujeni et al., 2016; Chen and Cui, 2020; Marras et al., 2021). For early prediction, we only use
the first 40% of time steps as input.

Grouping: To derive human-interpretable concepts from these features, we turn to learning science
literature. In routing by paper, we create 10 distinct feature subsets based on handcrafted initial
input features from 10 papers, directing each to a specific expert subnetwork. For routing by pattern,
we organize features according to five learning dimensions identified by (Asadi et al., 2023; Mejia
et al., 2022): effort, consistency, regularity, proactivity, control, and assessment-based (see Table 6
for a detailed feature classification). Thirdly, routing by Large Language Model (LLM), uses
GPT-4’s capabilities to aid humans in feature grouping (Achiam et al., 2023). GPT-4 is prompted
as an ‘expert learning scientist’ to group the features into self-regulated behavior categories that are
easy to understand, which are then used to separate the features for InterpretCC. More details
are included in Appendix C.1.

AG News and SST (text, news and review domains). For news categorization (AG News), we classify
news into four categories (‘World’, ‘Sports’, ‘Business’, ‘Sci/Tech’) given a title and description of a
real-world article (Zhang et al., 2015). We use 36,000 training samples and 3,000 test samples evenly
distributed across categories. For sentiment prediction (Stanford Sentiment Treebank, SST), we use
11,855 sentences from movie reviews labeled by three annotators (Socher et al., 2013) and predict a
binary sentiment from a sentence fragment.

Grouping: The ICC routing model assigns words to subnetworks using the Dewey Decimal Code
(DDC) hierarchy of topics for book classification to create 10 subnetworks (see Table 7, Appendix C.2
for more details) (Satija, 2013). Each word is encoded using SentenceBERT (Reimers and Gurevych,
2019) and assigned to a subcategory (i.e. the word ‘school’ is assigned to the subcategory ‘education’
under category 300 for ‘social sciences’) and routed to the appropriate parent network.

5
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Breast Cancer (tabular, healthcare domain). The Wisconsin Breast Cancer dataset identifies
cancerous tissue from fine needle aspirate (FNA) images, with 30 features (10 per cell nucleus)
and diagnoses (Malignant: 1, Benign: 0) for 569 patients (Wolberg et al., 1995).

Grouping: For the grouping logic, we group each cell nucleus in a separate subnetwork, enabling
features representing the same part of the tissue sample to be considered together.

Synthetic Dataset (tabular) We use OpenXAI’s synthetic dataset (Agarwal et al., 2022), which
includes ground truth labels and explanations, indicating the subset of features influencing each label.
This dataset comprises of 5000 samples, 20 continuous features, and two classes. It was created using
the SynthGauss mechanism from five cluster neighborhoods (1000 points for each cluster), ensuring
three desirable properties for assessing explanations: (1) feature independence, (2) unambiguous,
well-separated local neighborhoods, and (3) an explanation for each instance.

Grouping: We group the feature space by assigning each feature to a cluster neighborhood based
solely on the distribution of the training data. The average absolute value of each feature for each
cluster is calculated, and the highest feature-cluster value determines the assignment.

5 EXPERIMENTAL RESULTS

Through the following three experiments, we demonstrate that our InterpretCC models do not
compromise performance compared to black-box models and provide explanations that are faithful
as well as human-centered. InterpretCC is designed for data that has meaning for humans (i.e.
interpretable features or meaningful raw data like text or lab measurements); however, we demonstrate
it is also performant on a synthetic dataset with no interpretable features.

Experimental Setup. We run hyperparameter tuning and three different random seeds for each
reported model (reproducibility details in Appendix F). Since EDU MOOC courses have a low
passing rate (below 30%), and thus the dataset has a heavy class imbalance, we use balanced accuracy
for evaluation. The other datasets are more balanced (AG News, SST, Breast Cancer, Synthetic),
hence we use accuracy as our evaluation metric. We perform an 80-10-10 train-validation-test data
split stratified on the output label, to conserve the class imbalance in each subset. In addition to
InterpretCC Feature Gating and Group Routing, we also employ a InterpretCC Top-K expert
network solution with k=2 for group routing. This approach is similar to existing mixture-of-expert
approaches (Jiang et al., 2024; Li et al., 2022), except that their models make a layer-wise expert
choice, which significantly reduces interpretability, while we make a global expert choice.

Base Prediction Module. We choose simple yet performant predictive modules reported in previous
literature to isolate the difference in performance due to the interpretable architectures. For the
EDU data, previous works uses BiLSTMs on student behavioral data for best predictive performance
(Swamy et al., 2022b; Marras et al., 2021). Thus, for comparative benchmarking, the most performant
BiLSTM setting is used as a baseline model (Swamy et al., 2022a). For the AG News and SST
datasets, we use fine-tuned DistilBERT2 variations as baselines, also used in related works (Yang
et al., 2019; HF Canonical Model Maintainers, 2022). For the Breast Cancer dataset, we use a fully
connected network as reported in Agarap (2018).

Interpretable Baselines. In addition to non-interpretable baselines, we compare ICC to three
intrinsically interpretable methods: SENN (Alvarez Melis and Jaakkola, 2018), NAM (Agarwal et al.,
2021), and FRESH (Jain et al., 2020). SENN generates concept-based explanations and is designed
to learn "interpretable basis concepts" in parallel with the model optimization. Explanations consist
of the concepts most similar to the input. NAM, a General Additive Model (Hastie, 2017), uses
individual neural networks for each input feature to calculate feature weights. The model’s output is
the sum of these weights, and explanations are given by displaying the feature weights. The SENN
Features architecture has three models working together, NAM has one subnetwork for each feature,
and ICC FG has one model with two parts trained end-to-end. At inference, SENN and NAM also
assign a score to each feature, which are then aggregated; ICC leverages cross-feature interactions
with one score per model. FRESH is an extractive rationale architecture with three models: supp
generates importance scores, ext selects a contiguous text mask, and pred applies this mask on the
inputs to make predictions. Designed for text data, FRESH’s contiguous explanations are unsuitable
for modalities like tabular or time-series data, where feature proximity lacks relevance.

2
https://huggingface.co/distilbert/distilbert-base-uncased
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Dataset Baseline
InterpretCC Group Routing

Paper Pattern GPT-4

DSP 82.81 ± 2.61 82.37 ± 6.27 82.29 ± 3.72 84.90 ± 7.59

Geo 72.96 ± 1.59 69.64 ± 1.23 81.58 ± 0.57 81.19 ± 1.53
HWTS 73.93 ± 3.76 78.34 ± 0.95 72.34 ± 2.77 75.12 ± 4.17
VA 74.90 ± 5.28 69.88 ± 2.93 72.08 ± 3.71 70.98 ± 2.77

Average 76.65 ±3.31 75.56 ±2.85 77.57 ±2.69 78.05 ±4.01

Table 3: InterpretCC Group Routing Perfor-

mance: balanced accuracy (average ± std) on routing
strategies (paper, pattern, GPT-4) for the EDU datasets
in comparison to the non-interpretable baseline.

AG
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Figure 2: InterpretCC Feature Gat-

ing Sparsity: % of features activated
per data point across five representative
datasets.

5.1 EXP. 1: INTERPRETCC DOES NOT COMPROMISE ON PERFORMANCE

Table 2 shows the models’ metrics (average accuracy, standard deviations, and 95% confidence
intervals) across three iterations of model training for all eight datasets for InterpretCC Feature
Gating, Group Routing, and Top-K Routing, as well as baselines of NAM, SENN Features, SENN
Concepts, and a non-interpretable model (reflecting post-hoc explainer performance). We do not
report results for text features with NAM and SENN, since the architecture change required to do
so would no longer respect the original model design3; instead we report text results for FRESH.
Additional hyperparameter sensitivity experiments can be found in Appendix D. These experiments
show that while the performance of InterpretCC has overlapping 95% CIs while changing
parameters, certain parameter settings have higher variability than others. For both education and
health tasks, a ω of 10 and a Gumbel-Softmax threshold of around 0.7 to 0.8 are performant, sparse
in activated features, and relatively stable.

InterpretCC Feature Gating statistically significantly improves performance with respect to the
non-interpretable base prediction module for two EDU courses (DSP, HWTS) and the synthetic
dataset. It shows comparable performance on all other datasets (indicated by the overlapping CIs)
except the Breast Cancer dataset, suggesting that a higher number of the available features is necessary
for performant prediction. The intrinsically interpretable baselines SENN, NAM, and FRESH never
outperform the base model, and always under-perform or perform comparably to InterpretCC.

InterpretCC Group Routing outperforms (for the Geo course and Breast Cancer dataset) or
performs comparably (95% CI overlap) to the fine-tuned, non-interpretable base module. It also
consistently performs at least comparatively to SENN which, besides never outperforming the base
model, has a relatively high variance. We further observe that the selected grouping method impacts
performance (Table 3). We achieve a 10% increase in performance compared to the base model
when grouping using patterns or GPT-4 for the Geo course. On average, over the four EDU courses,
the automated LLM grouping and the pattern-based human-defined grouping perform comparably,
showing that using automated grouping methods does not mean compromising on performance.

InterpretCC performs comparably to black-box models and outperforms intrinsically inter-
pretable baselines across diverse benchmarks.

5.2 EXP. 2: INTERPRETCC PROVIDES FAITHFUL AND USER-FRIENDLY EXPLANATIONS

Table 4 showcases the faithfulness of InterpretCC models in comparison to intrinsically inter-
pretable models SENN and NAM, as well as three post-hoc explainers on top of a non-interpretable
model (Integrated Gradients (IG) (Sundararajan et al., 2017), LIME (Ribeiro et al., 2016), and
SHAP (Lundberg and Lee, 2017)). We examine the relationship of the explanations to underlying
data patterns from the synthetic dataset as well as to the ground truth of the underlying model (see
Appendix I.2 for detailed descriptions of the metrics). All 95% CI overlap in Ground Truth Alignment
(how close the explanation is to the underlying synthetic data feature patterns, similarly to (Liu et al.,
2021)), Rank Agreement (RA) and Feature Agreement (FA) from Agarwal et al. (2022), except for

3For NAM, one network (LLM) would be required per word, as the words are distinct for each instance; it
does not support text grouping. For SENN, LMs would need to embed each word, then simultaneously be trained
to represent concepts and pick representative words, with new metrics for choosing prototypical examples.
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Figure 3: AG News and SST: # of
ICC subnetwork activations (left)
vs. avg. activation weights (right),
grouped by subnetworks based on
the Dewey Decimal Code.

Model
Relationship to Underlying Data Patterns Relationship to Model

Ground Truth
Alignment (GTA)

Rank
Agreement (RA)

Feature
Agreement (FA)

Ground Truth
Faithfulness (GTF)

ICC FG 94.84 ± 4.11 60.00 ± 12.65 87.99 ± 16.00 always 100

ICC GR 89.51 ± 0.56 44.00 ± 14.97 76.00 ± 23.32 always 100

SENN Features 85.83 ± 2.56 27.99 ± 9.80 88.01 ± 9.79 always 100

SENN Concepts 65.19 ± 9.23 52.00 ± 20.39 80.00 ± 21.90 always 100

NAM 87.39 ± 2.45 40.00 ± 17.89 76.00 ± 14.97 always 100

IG 87.28 ± 1.72 56.00 ± 14.97 91.99 ± 16.00 ↑ 100
LIME 84.75 ± 1.83 44.00 ± 23.32 64.00 ± 14.97 ↑ 100
SHAP 83.47 ± 1.03 36.00 ± 8.00 52.00 ± 20.39 ↑ 100

Table 4: Synthetic faithfulness evaluation across eight models
on explanations using metrics presented in OpenXAI Agarwal
et al. (2022). GTA, RA, and FA (K=5) refer to the explanations’
relationship to underlying patterns in the synthetic data, while
GTF refers to relationship to the model’s decision process. All
95% CIs overlap for each metric between the best performing
intrinsically interpretable and non-interpretable model.

SENN Concepts performing statistically significantly worse than InterpretCC Feature Gating in
GTA. This indicates that ICC’s identification of important features, and of their order of importance,
is close to the underlying data patterns and is either on par or better than both interpretable and
non-interpretable models. In terms of predictive performance on the synthetic dataset (last row of
Table 2), ICC holds the top three best performing models (89.47, 89.51, 90.83) and the ICC FG
variation is significantly more performant than the non-interpretable base model, demonstrating the
models’ ability to capture signal on this dataset.

Our models provide concise and hence user-friendly explanations through sparse feature (group)
activations Miller (2019). Figure 2 shows the percentage of activated features for ICC Feature Gating.
For EDU, only about 10% of the 45 features are activated with low variance. For Breast Cancer,
39.7% of the features are activated per data point. Unlike other datasets, text-based datasets have a
variable number of features (words). In AG News, with an average of 35 words per article, only a
small percentage is activated, while in SST, which has shorter sentences (7 words on average), 59.8%
of features are selected with high variance. This achieved sparsity, especially in EDU and AG News,
highlights the most important features. This contrasts with post-hoc explainers, which tend to select a
broader range of features (e.g., LIME and SHAP for EDU (Swamy et al., 2022b)).

ICC Group Routing activates different subnetworks with different weights for each data point. Figure
3 illustrates the number of activations and the average weight for each subnetwork for the text data
sets (see Appendix H for detailed analysis on the Breast Cancer and EDU datasets). For AG News

(Figure 3 top), the average activation weight is similar across all subnetworks (min 0.10, max 0.21).
However, some subnetworks are activated much more frequently (400 - Language: 18, 335 times).
This indicates that most data points will be routed through the same subset of subnetworks, while the
remaining subnetworks are important for specific data points only. SST (Figure 3 bottom) shows
similar subnetwork activation patterns. However, in contrast to AG News, the distribution of average
weights is not uniform: only three networks are activated with weights larger than 0.15. We suspect
the high weights for subnetwork 400 in Figure 3 reflect words that DDC has little relation to in the
SentenceBERT embedding space.

Examples of EDU domain explanations are in Appendix E, Figures 8 and 9, with additional AG News
examples in Figure 14. We also compare ICC behavior across three grouping strategies for the DSP
course (Appendix H.3.2) and analyze network sparsity at different prediction horizons (H.3.1). Lastly,
we show the variation in feature group selection across MOOCs, highlighting ICC’s adaptability
regardless of grouping method (Appendix H.3.3).

InterpretCC provides sparse and hence user-friendly explanations, while not compromising
on explanation faithfulness.

5.3 EXP. 3: INTERPRETCC EXPLANATIONS ARE PREFERRED BY HUMANS

Setting. To validate the user-centeredness of our approach, we conducted a user study comparing
InterpretCC’s explanations with the ones from other intrinsically interpretable methods, SENN
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and NAM. We focused on the education domain and time series input type, using the DSP course in
the EDU dataset. We trained InterpretCC Feature Gating and Group Routing (with pattern-based
feature grouping strategy, since it is heavily grounded on expert knowledge) as well as SENN and
NAM and randomly selected four test samples (i.e., four students) for prediction. In designing the
study, we conducted four sequential pilots with eight learning scientists who were unaware of which
method we presented in this paper. All explanations were simplified for a non-technical audience and
followed consistent templates.

We recruited 56 teachers using Prolific, (see Appendix E for detailed information about the
participants’ demographics and backgrounds (Figure 7) and the content of the study). We showed
them each model’s prediction of the student’s success or failure along with its explanation. The
explanations were given as a short text and a graph showing the features and concepts used by
the model. Note that the choices we made for the presentation of the explanations might have an
influence on the participants’ perception of the explanations. Examples of how the explanations
were presented and a discussion on this limitation can be found in Appendix E, Figures 8, 9, 11
and 10. With our study design, we aimed to highlight each framework’s strengths without excessive
post-processing. For instance, keeping only the top five features of NAM would be unfair, as other
features also contribute to its predictions. Instead, we emphasized the top five features that each
contribute positively, negatively, or not at all to the prediction, highlighting its advantage (distinct
insights into feature impact) over InterpretCC, while ensuring sparsity. We significantly post-
processed the explanations of SENN and NAM to provide them in a format understandable for a
non-technical audience and iterated on the visualizations using a human-centered design process
(Cooley, 2000). We asked participants to compare these explanations according to five criteria
(aligned with (Frej et al., 2024)), and to rank the criteria in terms of importance: Usefulness: This
explanation is useful to understand the prediction. Trustworthiness: This explanation lets me judge
if I should trust the model. Actionability: This explanation helps me know how to give feedback to
the student.Completeness: This explanation has sufficient detail to understand why the prediction
was made. Conciseness: Every detail of this explanation is necessary.

NAM SENN ICC GR ICC FG Weight

Usefulness 3.25 ±0.98 3.3 ±1.11 3.53 ±1.11 3.88 ±0.94 0.28
Trustworthiness 3.28 ±0.93 3.64 ±0.92 3.36 ±1.06 3.78 ±0.9 0.23
Actionability 3.08 ±0.96 3.25 ±1.06 3.37 ±1.04 3.77 ±0.95 0.21
Completeness 3.18 ±1.02 3.76 ±1.09 3.1 ±1.19 3.67 ±1.07 0.16
Conciseness 3.13 ±1.06 2.82 ±1.31 3.72 ±1.06 3.68 ±1.05 0.12

Global 3.2 ±0.81 3.38 ±0.85 3.41 ±0.88 3.78 ±0.77

Figure 4: Model score for each user study

criterion (average ± std) and criteria weight
according to users’ ranking. All scores range
from 1 (lowest) to 5 (highest).

Usefulness

M
od

el

Trustworthiness

Global Satisfaction

Actionability

Score Difference Score Difference

CompletenessConciseness

Score Difference

M
od

el

Figure 5: Tukey’s Honest Significant Difference

(HSD) Test for each user study criterion and overall
global satisfaction. ICC FG (with highest overall
satisfaction in Table 4) is in blue.

Results. Using Friedman’s Chi-Square test, we verify that the ranking of the criteria is consistent
among the participants (p < 0.05). We report normalized criteria importance in Table 4 (last column).
We observe that Usefulness, Trustworthiness and Actionability are consistently ranked the highest by
the participants. We compute the Global satisfaction score as a weighted average of the criteria as
a global satisfaction measure for each model (Table 4, last row). We additionally conduct pairwise
Tukey’s Honest Significant Difference (HSD) tests (Fig. 5) to determine the statistical significance of
the differences between the means of user preferences per criteria.

We observe that ICC FG ranks the highest in the top 3 most important criteria as well as in global
satisfaction. Furthermore, ICC GR ranks second in Usefulness and Actionability and first in Con-
ciseness. Overall, InterpretCC models are favored over interpretable baselines in 4 out of 5
criteria and in terms of global satisfaction. An ANOVA performed separately for each criterion
as well as the global satisfaction measure (Table 9, Appendix E.3), indicates that there is indeed a
significant difference between the models for each criterion. Tukey’s HSD tests confirm that ICC
FG significantly outperforms NAM and SENN on all criteria but completeness (Fig. 5).

Participants prefer InterpretCC explanations in terms of usefulness, trustworthiness, action-
ability, and conciseness over other intrinsically interpretable models.
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6 DISCUSSION AND CONCLUSION

We proposed InterpretCC, a family of intrinsically interpretable models that puts human under-
standing at the forefront of the design. Through our experiments on feature gating and group routing
(mixture-of-expert) models, we demonstrated that our modular architectures optimize for interpretabil-
ity but do not compromise on performance. In a real-world setting, we showed that InterpretCC
models are preferred over other intrinsically interpretable models in 4 of 5 explainability criteria.

InterpretCC is a locally intrinsic explanation framework that creates explanations that are specific
to the input point and guaranteed to be faithful to the model. In our architecture, the discriminator
network is a black-box model. This is by design, to minimize explanation complexity. We believe
the hierarchical prediction logic enabled by InterpretCC is the type of explanation that a user
wants: “which concepts/features were used to make the prediction, and how important are they to the
prediction (weighted sum)?” If the discriminator network was a glass-box model, it would answer the
question: “why were these concepts/features selected for the prediction?”. The first explanation is
directly actionable, while the second type of explanation is not. We therefore do not seek to answer
this second question with our architecture. However, it would be possible for InterpretCC to
have an interpretable discriminator network, as discussed further in Appendix I.3.

ICC FG is best when individual features are important for actionable decisions based on the expla-
nation. However, it can lose sparseness if all features are equally important: consider the extreme
case where the prediction is a sum over the full feature space and all features are independent. ICC
GR requires more human effort than ICC FG and is, therefore, more suitable for scenarios with
cross-feature dependencies and where broader concepts are more actionable than individual features.

The theoretical intuition behind the ICC GR model’s global mixture-of-experts design is that spe-
cializing subnetworks on subsets of features allows them to learn granular patterns. Combining
these specialists enhances prediction compared to a monolithic network that might miss underlying
patterns. Expert-informed feature groupings help the model avoid overfitting to correlations that
do not generalize at inference time. For ICC FG, adaptive sparsity (a few features per instance)
improves prediction quality by reducing noise and optimizing the interpretability-accuracy tradeoff.

User-defined feature groups aim at deriving explanations useful to the user, but might compromise
performance if the user specifies a grouping that carries minimal signal. Regardless of the grouping,
InterpretCC optimizes for explanation actionability and understandability over performance. We
believe that an accurate prediction at the cost of explanation usefulness is not worthwhile in an applied
setting. It is possible that ICC explanations could be misleading, as concepts used in the explanation
could lead to a correlation that was not intended (Zheng et al., 2021; Jacovi and Goldberg, 2021). In
these cases, we view ICC explanations through the lens of auditing model behavior (Yadav et al.,
2022), and encourage human intervention. InterpretCC’s user-centric advantages are highlighted
when the input space is human-interpretable. However, for domains that are hard to obtain expert
knowledge, we envision ICC increasingly leveraging LLM-extracted features, reducing the necessity
of human effort for human-centric explanations (Malberg et al., 2024; Baddour et al., 2024).

We acknowledge that the presentation of explanations in our user study (Section 5.3) has influence
over our preliminary results on the user perception of InterpretCC. We conducted extensive
iteration with eight pilot participants to mitigate study design bias. We note that any imbalance in
wording is not necessarily in favor of our method; for instance, users found SENN’s explanations more
complete than InterpretCC (Fig. 5). The user study prioritizes diversity of study participants and
quality of responses over number of samples evaluated; the task is mentally intensive and we found a
longer study can cause a drop in participant attentiveness. An extensive study over many different
prediction tasks and domains of expertise is necessary for generalizable conclusions.

For our text experiments, we fine-tune twenty DistilBERT models as experts (ten for each task).
For more complex tasks, for example requiring long context size, multi-step reasoning ability, or
strong prior domain-specific knowledge, DistilBERT can be swapped with larger decoder models,
either through fine-tuning or in-context learning. Parameter-efficient fine-tuning such as LoRA (Hu
et al., 2021) would allow fine-tuning even large LMs with limited computational cost, while in-context
learning would use the same model instance for each feature and feature group.

Overall, we encourage the machine learning community to design models for interpretability at many
different granularities and user-specified requirements. InterpretCC provides one such family of
models as a tradeoff between human specification, explanation certainty, and performance.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Abien Fred M Agarap. On breast cancer detection: an application of machine learning algorithms on
the wisconsin diagnostic dataset. In Proceedings of the 2nd international conference on machine
learning and soft computing, 2018.

Chirag Agarwal, Satyapriya Krishna, Eshika Saxena, Martin Pawelczyk, Nari Johnson, Isha Puri,
Marinka Zitnik, and Himabindu Lakkaraju. Openxai: Towards a transparent evaluation of model
explanations. NeurIPS, 2022.

Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana,
and Geoffrey E Hinton. Neural additive models: Interpretable machine learning with neural nets.
NeurIPS, 2021.

Sajid Ali, Tamer Abuhmed, Shaker El-Sappagh, Khan Muhammad, Jose M Alonso-Moral, Roberto
Confalonieri, Riccardo Guidotti, Javier Del Ser, Natalia Díaz-Rodríguez, and Francisco Herrera.
Explainable artificial intelligence (xai): What we know and what is left to attain trustworthy
artificial intelligence. Information fusion, 99:101805, 2023.

David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining neural
networks. NeurIPS, 2018.

Mohammad Asadi, Vinitra Swamy, Jibril Frej, Julien Vignoud, Mirko Marras, and Tanja Käser.
Ripple: Concept-based interpretation for raw time series models in education. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2023.

Hamed Ayoobi, Nico Potyka, and Francesca Toni. Sparx: Sparse argumentative explanations for
neural networks. In ECAI 2023, pages 149–156. IOS Press, 2023.

Moussa Baddour, Stéphane Paquelet, Paul Rollier, Marie De Tayrac, Olivier Dameron, and Thomas
Labbé. Phenotypes extraction from text: Analysis and perspective in the llm era. In 2024 IEEE
12th International Conference on Intelligent Systems (IS), pages 1–8. IEEE, 2024.

Jasmijn Bastings, Wilker Aziz, and Ivan Titov. Interpretable neural predictions with differentiable
binary variables. arXiv preprint arXiv:1905.08160, 2019.

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation in
neural networks for faster models. In ICLR Workshop Track, 2016.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Moritz Böhle, Mario Fritz, and Bernt Schiele. B-cos networks: Alignment is all we need for
interpretability. In CVPR, 2022.

Mina Shirvani Boroujeni, Kshitij Sharma, !ukasz Kidziński, Lorenzo Lucignano, and Pierre Dil-
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