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Abstract

Transformer-based models have revolutionized001
various fields with remarkable performance,002
but challenges in deploying these models per-003
sist due to high computational/memory costs.004
Post-training quantization (PTQ), as a practical005
compression technique, has been extensively006
studied in convolutional architectures, but lim-007
ited research has focused on PTQ for trans-008
formers. Existing PTQ solutions are primarily009
integer-based and struggle with bit widths be-010
low 8 bits. Compared to integer quantization,011
floating-point (FP) quantization is more flexible012
and can better handle long-tail or bell-shaped013
distributions, and it has emerged as a default014
choice in many hardware platforms. One char-015
acteristic of FP quantization is that its perfor-016
mance largely depends on the choice of expo-017
nent bits and scale parameters. In this regard,018
we construct a strong FP-PTQ baseline by inte-019
grating hessian-based loss into quantization pa-020
rameter search. Furthermore, we observe a con-021
sistent pattern of activation distributions across022
transformer models, with high inter-channel023
variance and low intra-channel variance. To024
tackle this, we propose per-channel activation025
quantization and show that these additional026
scaling factors can be reparameterized as expo-027
nential biases of weights, incurring a negligible028
cost. Our method, for the first time, can quan-029
tize both weights and activations in the Bert030
model to only 4-bit and achieves an average031
GLUE score of 80.1, which is only 3.6 lower032
than the full-precision model, significantly out-033
performing the previous state-of-the-art method034
that had a gap of 11.4. The source code will035
be made available once the paper has been ac-036
cepted.037

1 Introduction038

Since the introduction of transformer architec-039

ture (Vaswani et al., 2017), transformers have040

superseded recursive neural networks, emerging041

as the dominant architecture in numerous natu-042

ral language processing (NLP) tasks (Kenton and043

Toutanova, 2019; Lewis et al., 2020). The trans- 044

formative impact of the transformer has been fur- 045

ther propelled by the emergence of models like 046

GPT (Brown et al., 2020; OpenAI, 2023), cata- 047

pulting the popularity of this architecture to new 048

heights. Meanwhile, the versatility of transformers 049

extends beyond NLP, encompassing diverse do- 050

mains such as vision (Dosovitskiy et al.; Touvron 051

et al., 2021), audio (Akbari et al., 2021), etc. This 052

trend towards a unified architecture for different 053

modalities represents a groundbreaking develop- 054

ment within the realm of deep learning. 055

However, the advancements in transformer per- 056

formance are accompanied by a corresponding in- 057

crease in model size and computational costs (Ka- 058

plan et al., 2020). This poses significant challenges 059

when attempting to leverage the full potential of 060

transformer models in on-device use cases. Despite 061

the extensive research and widespread adoption of 062

transformers, the field of transformer compression 063

remains relatively underexplored. To address this 064

gap, our study focuses on transformer compres- 065

sion, especially through floating-point post-training 066

quantization techniques. 067

Post-training quantization (PTQ) offers the ad- 068

vantages of simplicity in use and minimal fine- 069

tuning requirements (Nagel et al., 2020; Cai et al., 070

2020). Existing PTQ solutions for transformers 071

primarily focus on integer (INT) quantization (Liu 072

et al., 2021; Yuan et al., 2022), which can be ef- 073

fective in certain scenarios but often break down 074

when bit widths are below 8 bit. On the other hand, 075

floating-point (FP) quantization has gained signifi- 076

cant traction as a more flexible alternative, capable 077

of better accommodating various activation and 078

weight distributions. In fact, FP8 has emerged as 079

the default choice in various hardware platforms, 080

including the NVIDIA H100. 081

Different from integer (INT) quantization, a par- 082

ticular challenge in floating-point (FP) quantiza- 083

tion is how to select appropriate exponent bits and 084
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scale parameters. Improper parameter choices can085

lead to subpar or divergent quantization results. To086

tackle this challenge, we introduce a robust recipe087

for FP quantization, which leverages an approxi-088

mated Hessian matrix to guide the joint search for089

optimal exponent bits and maximum values. Com-090

pared to previous approaches that utilize gradient091

updates for exponent bits (Kuzmin et al., 2022), our092

search-based method proves to be more stable and093

consistently delivers desirable quantization results,094

which establishes a strong baseline for FP-PTQ.095

Furthermore, our investigation uncovers an in-096

triguing pattern of activation distributions in trans-097

formers, characterized by high inter-channel vari-098

ance and low intra-channel variance. Similar pat-099

terns are also observed in large language mod-100

els (Xiao et al., 2022; Dettmers et al., 2022), while101

we argue that this pattern is inherent to transformer102

architectures and not limited to specific tasks, as we103

have observed consistent patterns in vision trans-104

formers as well as NLP models. Motivated by105

these findings, we introduce a novel pre-shifted106

exponential bias for FP quantization of transform-107

ers. Concretely, we leverage the per-channel activa-108

tion variance computed from calibration data and109

reparameterize these scales as the exponential bias110

of the corresponding FP quantized weight vectors.111

This approach effectively addresses the challenge112

posed by high inter-channel variance while incur-113

ring negligible computational cost.114

In summary, we study floating-point post-115

training quantization (PTQ) for transformer archi-116

tectures, and the contribution of this paper includes:117

• We propose a hessian-base joint search for de-118

termining the optimal exponent bias and maximal119

quantization value. This method outperforms ex-120

isting techniques in terms of stability and perfor-121

mance, establishing a strong baseline for floating-122

point post-training quantization.123

• We propose a novel technique, per-shifted expo-124

nent bias, which effectively addresses the challenge125

of high inter-channel variance in the transformer126

while incurring negligible computation cost.127

• Experimental results demonstrate that the pro-128

posed method yields the first usable FP4 quantized129

Bert model with only a marginal degradation of130

3.66 GLUE score from the full precision model,131

surpassing the previous SoTA by 7.82 points.132

• We further extend our method to vision trans-133

formers, and it achieves 31.49% higher accuracy134

on 4-bit quantized DeiT-S compared to the previous135

state-of-the-art ViT quantization method. 136

2 Related Works 137

2.1 Post-Training Quantization 138

Model quantization can be mainly categorized 139

into quantization-aware training (QAT) and post- 140

training quantization (PTQ), depending on whether 141

it involves additional training for weight fine- 142

tuning or not. Most PTQ studies are primarily 143

focused on convolutional neural networks (CNNs) 144

(Nagel et al., 2020; Li et al., 2021; Wu et al., 2020; 145

Cai et al., 2020; Nagel et al., 2019). However, with 146

the growing popularity of transformer-based mod- 147

els, only a limited number of works (Bondarenko 148

et al., 2021; Yuan et al., 2022; Ding et al., 2022) 149

have been conducted to realize PTQ on transform- 150

ers. Moreover, the existing works primarily focus 151

on visual transformer models and exhibit inferior 152

performance when the bit width is below 8. There- 153

fore, in this work, we delve into studying the chal- 154

lenges of the low-bit language transformer model 155

PTQ. 156

2.2 Floating-Point Quantization 157

Floating-point (FP) quantization has emerged as a 158

promising alternative to integer quantization due 159

to its ability to handle long-tail distributions, and 160

offers increased flexibility (Kuzmin et al., 2022). 161

Additionally, modern GPUs such as H100 (Micike- 162

vicius et al., 2022) now support FP quantization. 163

Nonetheless, minimal research has been conducted 164

on FP quantization. Only (Kuzmin et al., 2022) pro- 165

poses a general FP8 quantization scheme primarily 166

for vision tasks, and (Zhang et al., 2023) adopts 167

a mixture of FP and INT formats quantization for 168

LLMs. In this work, we propose FPT baseline as 169

a general guideline for low-bit floating-point PTQ 170

to compress language transformer models. 171

3 Preliminaries 172

3.1 Formulation of Floating-Point Variables 173

A standard floating-point number is represented as: 174

XFP = (−1)s2p−b(1+
d1
2

+
d2
22

+ ...+
dm
2m

) (1) 175

where s ∈ {0, 1} is the sign bit. di ∈ {0, 1} is ith 176

mantissa bit, m denoted number of mantissa bits. p 177

is an integer ∈ {0, 2e − 1}, and e denotes number 178

of exponent bits. b is an integer exponent bias. A 179

floating point with j number exponent bits and k 180

mantissa bits is denoted as FP format EjMk. 181
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3.2 Floating-Point Quantization Process182

In integer quantization, the real-valued variable XR183

is quantized to an integer XINT with the following184

formula:185

XINT = α

⌊
Clip

(
XR

α
,Qmin, Qmax

)⌉
(2)186

where ⌊·⌉ is the rounding function. XR is the187

real-valued variable, α represents the full-precision188

scaling factor, and Qmin, Qmax are the min/max189

value of the quantization range. Similarly, a real-190

valued variable XR can be converted to floating-191

point XFP in two steps.192

(1) Scale and clip. In FP quantization, we also193

scale and clip the real-valued variable before quan-194

tization as:195

X ′
R = Clip

(
XR

α
,Qmin, Qmax

)
(3)196

where the min/max value in signed floating-point197

quantization calculated from Eq. 1 as:198

Qmax = −Qmin = (2− 2−m)22
e−b−1 (4)199

Here the integer exponent bias b is another ad-200

justable hyperparameter controlling Qmax and201

Qmin, which has similar functionality as α. There-202

fore, for simplicity, we reformulate Eq. 3 as:203

X ′′
R = Clip

(
XR, Q̃min, Q̃max

)
, (5)204

where205

Q̃max = αQmax = α · (2− 2−m)22
e−b−1

= α · 2−b · (2− 2−m)22
e−0−1

= 2−b̃ · (2− 2−m)22
e−0−1

(6)206

Note that we combine the tensor-wise real-valued207

scaling factor α with integer exponent bias b to208

form a new scaling factor α̃ = 2−b̃ = 2−b · α.209

Here b̃ denotes a relaxed tensor-wise real-valued210

exponent, and we can derive b̃ from the desired211

clipping value Q̃max following Eq. 4 as:212

b̃ = 2e − log2Q̃max + log2(2− 2−m)− 1 (7)213

(2) Compare and quantize. Different from inte-214

ger quantization, which simply utilizes the round-215

ing function to convert the real-valued variables216

to quantized ones, in floating-point quantization,217

there is an additional step of comparing X ′′
R with218

quantization levels and then quantize:219

XFP = α̃ · v ·
⌊
X ′′

R

α̃ · v

⌉
(8)220

where X ′′
R is clipped real-valued variable (Eq. 5), 221

α̃ is the tensor-wise floating-point scaling factor, 222

and v is an integer power of 2. 223

v =

{
2⌊log2|X

′
R|⌋−m if |X ′

R| ≥ 2α̃
21−m if |X ′

R| < 2α̃
(9) 224

Here we select the quantization level v according 225

to the magnitude of X ′′
R. Then the floating-point 226

quantized variables can be derived with Eq.8. 227

3.3 Floating-Point Matrix Multiplication 228

With the floating-point quantized variables, the ma- 229

trix multiplication is formulated as: 230

Oi,j
out = Xi,:

FPW
:,j
FP = α̃Xα̃

j
W
X̃i,:

FPW̃
:,j
FP (10) 231

Here in per-tensor activation quantization and per- 232

channel weight quantization, Xi,:
FP denotes ith row 233

in the activation matrix and W:,j
FP denotes jth col- 234

umn in the weight matrix, such that each element 235

Oi,j
out in the output matrix is computed by the prod- 236

uct of two real-valued scalars α̃X and α̃j
W

times 237

the corresponding quantized activation and weight 238

vectors. We depict all the possible quantization 239

granularity options that support such efficient ma- 240

trix multiplication in appendix C. 241

4 Method 242

In this section, we begin by introducing the hessian- 243

based joint format and max value search, which es- 244

tablishes our strong baseline and already achieves 245

state-of-the-art results at 8-bit and 6-bit quantiza- 246

tion. Then we present an efficient pre-shifted ex- 247

ponent bias to tackle the catastrophic high inter- 248

channel activation variance in transformer models 249

and push the quantization limit to 4-bit. 250

4.1 Hessian-Based Loss Metric 251

The objective of post-training quantization is to 252

minimize the perturbation (δX = XFP − XR) 253

introduced by quantization to the pre-trained real- 254

valued network: 255

min E[L(XR + δX)− L(XR)] (11) 256

Following the Taylor series expansion, we have 257

E[L(XR + δX)− L(XR)]

≈ δXT ḡ(X) +
1

2
δXT H̄(X)δX

≈ 1

2
δXT H̄(X)δX

(12) 258
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Here, ḡ(X) is the gradients and H̄(X) is the Hes-259

sian matrix. Since the pre-trained model is well-260

converged, we can assume that ḡ(X) has near zero261

value in every element, and thus term δXT ḡ(X)262

can be neglected.263

The Hessian matrix H̄(X) is computed as:264

H̄(X) = JT
O(X)H̄(O)JO(X) (13)265

where JO(X) denotes the Jacobian matrix of the266

layer output O w.r.t X, and H̄(O) is the Hessian267

matrix w.r.t O. We then substitute the above equa-268

tion back to equation 12 :269

δXT H̄(X)δX

= (JO(X)δX)T H̄(O)(JO(W)δX)

≈ (Ô−O)T H̄(O)(Ô−O)

(14)270

Here Ô is the intermediate output of the quantized271

layer and O is the original layer output. Note that272

under the assumption that δX is relatively small(Li273

et al., 2021), we can approximate (Ô − O) as274

JO(X)δX using first-order Taylor expansion.275

Nevertheless, the calculation of H̄(O) is still bur-276

densome, therefore, we use the diagonal entries of277

the Fisher Information Matrix of O to substitute278

H̄(O) following (Li et al., 2021; Yuan et al., 2022),279

and the new Hessian-based metric becomes:280

E[(Ô−O)Tdiag((
∂L

∂O1
)2, ..., (

∂L

∂On
)2(Ô−O)]

(15)281

Here, each entry of O is assumed to be indepen-282

dent and n denoted the total number of elements283

in O. This hessian-based metric is used as the re-284

construction metric to search for the optimal FP285

quantization function for both the weight and acti-286

vation when performing layer-wise reconstruction,287

which we detail in the next section.288

4.2 Joint Format and Max Value Search289

The challenges in FP quantization arise from its290

sensitivity to the quantization format and clipping291

range; see appendix A. In addition, we observe that292

the optimal clipping range varies depending on the293

format used. Previous work (Kuzmin et al., 2022)294

on floating-point (FP) quantization-aware training295

(QAT) proposed to learn both the FP format and296

maximum value with gradients. However, we find297

this method suffers from over-fitting in PTQ, with298

accuracy even worse than the standard MinMax299

method, and we provide further discussion of it in300

appendix D. We propose a search-based algorithm301

that jointly determines the optimal format and its 302

associated clipping range to address this. 303

The searching process is conducted layer by 304

layer with the metrics of minimizing Eq. 15. We 305

quantize all the weight and activation tensors in 306

fully-connected layers and the activation tensors 307

in activation-activation multiplications in the self- 308

attention modules. The output of matrix multiplica- 309

tion is denoted as O = XY, where Y can be either 310

a weight tensor W or another activation tensor. 311

The search space of q-bit FP format includes 312

all formats except for the format with an exponent 313

bit equal to 0, as the quantization of the format 314

with an exponent bit equal to 1 already degenerates 315

to INT quantization. The initialization values of 316

b̃X and b̃Y are calculated from Eq. 7 with Qmax 317

equals the maximum value of |XR| and |YR|, re- 318

spectively. We then define the search space of b̃X 319

and b̃Y by linearly dividing [γ1 b̃
init
X

, γ2 b̃
init
X

] and 320

[γ1 b̃
init
Y

, γ2 b̃
init
Y

] into k intervals, where γ1 and γ2 321

are empirically set to 0.01 and 1.2, and k = 100. 322

The search process is outlined in Alg.1. We 323

adopt a parallel quantization scheme (Yuan et al., 324

2022; Bai et al., 2022) for searching all the matrix 325

multiplication layers in parallel. The algorithm can 326

be divided into two parts. (1) Do forward propa- 327

gation to store the intermediate raw output of each 328

layer l, and do backward propagation to obtain 329

the gradients w.r.t each layer’s output. (2) Iter- 330

atively update the optimal format and biases for 331

each layer for three rounds by minimizing the re- 332

construction metric (Eq. 15). We name this hessian- 333

based joint search framework as Floating Point 334

Transformer Baseline (FPT baseline), and it can 335

already achieve state-of-the-art results on both 8-bit 336

and 6-bit settings. 337

4.3 Pre-Shifted Exponent Bias 338

In transformer architectures, we observed an in- 339

triguing phenomenon of high inter-channel vari- 340

ance. As shown in Fig.1, the magnitudes of values 341

within the same channel are close to each other 342

but exhibit significant differences across different 343

channels. This phenomenon is not only observed 344

in language models (i.e., Bert) but also significant 345

in vision transformer models, as shown in Ap- 346

pendix. B. Since outlier channels are often orders 347

of magnitude bigger than the rest, they will dom- 348

inate the quantization precision of the quantized 349

tensor, resulting in less representation capacity for 350

those channels with smaller magnitudes (Xiao et al., 351

2022). This makes tensor-wise or token-wise scal- 352
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Algorithm 1 FPT baseline

1: Input: Calibration dataset, Full-precision Model M ,
Quantization format search space RX (e.g., RX =
{E2M1, E1M2} for FP4), number of round n = 3,

2: Output: FP q Quantized model
3: for l in 1st to Lth layer in M do
4: Forward & collect raw output Ol = XlY l of layer l;
5: end for
6: for l in 1st to Lth layer in M do
7: Backward & get gradient ∂L

∂Ol w.r.t Ol;
8: end for
9: for l in 1st to Lth layer in M do

10: Initialize the FP format search space w.r.t Xl and Y l

as RX = {r1
X
, r2

X
, ..., rt

X
} and RY = {r1

Y
, r2

Y
, ....rt

Y
}.

11: Initialize bias b̃i
X
, b̃i

Y
with Eq.7 for each format can-

didate riX ∈ RX and ri
Y

∈ RY .
12: Generate search space of b̃X in t formats to be

[γ1 b̃
init
X

, γ2 b̃
init
X

] and b̃Y to be [γ1 b̃
init
Y

, γ2 b̃
init
Y

].
13: for 0 to n do
14: Search for b̃i

X
w.r.t each ri

X
that minimizes Eq.15

15: Search for ri
X

∈ RX that minimizes Eq.15
16: Search for b̃i

Y
w.r.t each ri

Y
that minimizes Eq.15

17: Search for ri
Y

∈ RY that minimizes Eq.15
18: end for
19: end for

ing factor for activations quantization insufficient.353

However, applying per-channel scaling factors354

for activations poses challenges to efficient matrix355

multiplication, because the scaling factor is not356

a shared constant along the multiplication direc-357

tion and cannot be extracted as Eq. 10. To address358

this challenge, we introduce pre-shifted exponent359

bias, which allows us to calculate per-channel scal-360

ing factors from activations. These scaling factors361

are then re-parameterized as the exponent biases362

of the corresponding weights. This method effec-363

tively handles high inter-channel variance while364

maintaining nearly identical efficiency to per-tensor365

quantization.366

Recalling in Eq. 7, we extracted the tensor-wise367

integer exponent bias b and times it with real-368

valued scaling factor α and becomes a new scaling369

factor α̃ = 2−b̃ = 2−b · α. Then, the floating-point370

quantization formula in Eq. 16 becomes:371

XFP=2−b̃·(−1)s2p−0(1+
d1
2
+
d2
22

+...+
dm
2m

) (16)372

We note that after the bias is absorbed in the scal-373

ing factor, the original bias term (bori) in the FP374

formula is always zero. In dealing with the inter-375

channel variance, we devise an innovative usage376

of this integer exponent bias: we set it to be a per-377

channel variant (bori ∈ Zc).378

Then the calculation of the channel-wise integer379

bias vector (bori) is very straightforward. We first380

Figure 1: Magnitude of the output activations of the 5th

and 11th Bert feed-forward network blocks.

calculate the initial per-channel real-valued scal- 381

ing factor (2−b̃j ) from the per-channel maximum 382

values: 383

b̃j=2e−log2(max(|X:,j
R |))+log2(2−2−m)−1 (17) 384

Here X:,j
R denotes the jth channel in the activation 385

matrix. Then we separate b̃ to a tensor-wise real- 386

valued scaling factor plus a channel-wise integer 387

scaling factor: 388

b̃ = ρ̃+ bori

= ρ̃+ clip(⌊b̃− ρ̃⌉, 0, 2e−1)
(18) 389

where ρ̃ ∈ R1, bori ∈ Zc. Then the formula for 390

one of the entries in the jth channel of X can be 391

rewrote as follows: 392

XFP=2−b̃j · (−1)s2p−0(1 +
d1
2

+ ...+
dm
2m

)

=2−ρ̃(−1)s2p−bori
j (1 +

d1
2

+ ...+
dm
2m

)

(19) 393

Note that the bias bori is constrained to integers 394

within [0, 2e − 1], compatible with the standard 395

floating-point number calculation. Nevertheless, 396

adding different biases for each channel during 397

inference may still cause some extra hardware 398

operations. Thus, we re-parameterized the per- 399

channel activation bias into a weight tensor and 400

pre-computed the weights using the calibration set. 401

This way, the exponent biases shifting only hap- 402

pens in the calibration stage. Then, an element in 403

jth channel of activation tensors X becomes: 404

XFP=2−ρ̃(−1)s2p−0(1+
d1
2
+...+

dm
2m

) (20) 405

and the corresponding weight element in jth row 406

of the weight tensor W becomes: 407

WFP=2−b̃W(−1)s2p−bori
j (1+

d1
2
+...+

dm
2m

) (21) 408
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Figure 2: The general workflow of the pre-shifted exponent bias method. The dimensions that share the same
sacling factor (i.e., bias) are indicated by the red frames.

As result, efficient matrix multiplication in Eq.10409

is reformulated as:410

Oi,j
out=Xi,:

FPW
:,j
FP = α̃Xα

j
W
X̃i,:

FP(β⊙W̃:,j
FP) (22)411

where ⊙ is the element-wise multiplication, β =412

2−bori and (β ⊙ W̃:,j
FP) can be pre-calculated and413

stored in low-bit FP format. We depict the over-414

all pre-shifted exponent bias method in Fig.2, and415

this method applies to quantizing all the fully-416

connected layers, while the multiplication between417

activations still uses per-tensor quantization. Dur-418

ing the search process, we initialize ρ̃ as the419

minj(b̃j). Then, we fixed b̃X to be the bias calcu-420

lated from the Eq. 17 and search for the optimal421

ρ̃X from [γ1 ρ̃
init
X

, γ2 ρ̃
init
X

].422

Combining pre-shifted exponent bias with the423

hessian-based joint format and max-value search424

(FPT baseline), we name our method as Floating425

Point Transformer (FPT).426

5 Experiments427

To validate the effectiveness of the proposed428

method, we conduct experiments on Bert (Devlin429

et al., 2019) and LLaMA (Touvron et al., 2023)430

models in Sections 5.2.1 and 5.2.2. Further, in431

Section 5.2.3 we show that our method also gen-432

eralizes well to vision transformer architectures.433

We present ablation studies on the calibration size434

and search range in Section 5.3, and analyze the435

hardware costs of implementing FP operators in436

Section 5.4.437

5.1 Experiments Details438

We evaluate the proposed quantization techniques439

for the Bert model on GLUE downstream tasks440

(Wang et al., 2019). Our full-precision Bert-base441

model fine-tuned with GLUE is obtained from Hug- 442

gingface public repository1. We randomly sample 443

128 data from the training set as the calibration 444

set. We adopt per-tensor quantization for activation 445

and per-channel quantization for weight. We em- 446

ploy layer reconstruction following the settings of 447

(Yuan et al., 2022; Nagel et al., 2020), and parallel 448

quantization based on the approach outlined in (Bai 449

et al., 2022; Yuan et al., 2022). A more detailed 450

discussion regarding our implementation decisions 451

can be found in appendix E. 452

5.2 Main Results 453

5.2.1 Bert Model 454

In Table1, we compare FPT to the floating-point 455

PTQ baselines and the state-of-the-art integer- 456

based PTQ methods (Li et al., 2021; Wei et al., 457

2022; Bai et al., 2022) for Bert on the GLUE tasks. 458

We denote E/W/A as the bit-width of word embed- 459

dings, model weight, and activations. 460

We find that floating-point quantization naturally 461

has a strong capability in handling the distributions 462

in transformers. FPT baseline can already attain 463

almost loss-less results on 8/8/8 and 6/6/6, which 464

is still challenging for INT PTQ. However, simple 465

MinMax FP PTQ fails when we push the quan- 466

tization precision to ultra-low 4/4/4, with 49.9% 467

average accuracy degradation. In this extreme case, 468

the previous state-of-the-art PTQ methods, BrecQ 469

(Li et al., 2021) and QDrop (Wei et al., 2022) also 470

suffer severe accuracy downgrade. In comparison, 471

FPT demonstrates a strong capability of handling 472

extra-low bit settings and achieves only 3.66% av- 473

erage accuracy drop with 4/4/4 bit-width, outper- 474

1https://huggingface.co/textattack/bert-base-uncased-
{TASK_NAME}
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Quant Method #Bits (E/W/A) # Calib MNLI−m QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.
(Full-precision) 32-32-32 - 84.9 91.4 92.1 93.2 59.7 90.1 86.3 72.2 83.7

MinMax INT Quant 8/8/8 128 77.0 89.9 88.9 92.9 51.8 88.2 83.8 71.5 80.5
MinMax FP Quant (E2M5) 8/8/8 128 78.9 90.8 88.6 92.9 52.7 88.4 84.3 69.0 80.7
MinMax FP Quant (E3M4) 8/8/8 128 84.5 90.9 91.5 93.2 58.3 89.3 87.7 71.8 83.4
MinMax FP Quant (E4M3) 8/8/8 128 84.7 90.9 91.7 93.0 58.6 89.3 86.5 72.2 83.4
MinMax FP Quant (E5M2) 8/8/8 128 84.1 90.9 91.4 93.6 58.1 89.2 87.5 71.8 83.3

FPT baseline 8/8/8 128 84.6 90.9 91.7 93.1 58.6 89.3 88.0 72.2 83.5
FPT 8/8/8 128 84.6 91.0 91.6 93.3 58.8 89.3 88.0 72.2 83.6

MinMax INT Quant 6/6/6 128 31.9 62.0 52.8 58.8 0.0 12.7 32.1 52.7 37.9
MinMax FP Quant (E2M3) 6/6/6 128 43.5 85.4 79.4 90.5 45.2 86.0 66.9 59.9 69.6
MinMax FP Quant (E3M2) 6/6/6 128 83.9 90.8 90.8 92.2 58.2 88.6 87.0 72.2 83.0
MinMax FP Quant (E4M1) 6/6/6 128 84.4 90.2 90.1 92.2 58.2 89.2 85.3 69.7 82.4

FPT baseline 6/6/6 128 84.6 90.9 91.2 93.2 58.8 88.7 87.5 70.8 83.2
FPT 6/6/6 128 84.5 90.8 91.6 93.1 57.3 89.3 88.7 71.8 83.2

MREM-S (Bai et al., 2022) 4/4/8 4096 83.5 90.2 91.2 91.4 55.1 89.1 84.8 71.8 82.1
MREM-P (Bai et al., 2022) 4/4/8 4096 83.4 90.2 91.0 91.5 54.7 89.1 86.3 71.1 82.2

FPT 4/4/8 128 84.5 90.6 91.1 92.7 58.8 89.3 88.7 73.3 83.6
MinMax FP Quant (E2M1) 4/4/4 128 33.6 54.0 50.6 50.8 0.0 0.0 31.6 52.0 34.1

BrecQ (Li et al., 2021) 8/4/4 4096 31.9 62.3 50.7 50.9 0.9 6.4 31.7 52.3 35.8
QDrop (Wei et al., 2022) 8/4/4 4096 71.4 79.0 76.8 88.1 40.9 81.9 79.2 60.7 72.3

FPT 4/4/4 128 82.3 89.2 86.6 91.5 52.6 85.5 83.8 69.0 80.1

Table 1: Main Results on the GLUE development set with BERT (Bai et al., 2022) model.

Quant Method #Bits (E/W/A) # Calib BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c Avg.
Full-precision 16/16/16 - 75.1 78.7 56.9 69.9 75.3 41.9 66.3

MinMax FP Quant (E3M2) 4/4/16 32 73.0 77.9 55.2 69.1 73.6 40.9 64.9
GPTQ (Frantar et al., 2023) 4/4/16 128 73.3 77.9 54.9 67.9 72.7 37.4 64.0

FPT 4/4/16 32 74.2 77.8 55.8 69.9 74.9 40.4 65.5
MinMax FP Quant (E2M1) 4/4/4 32 47.3 53.1 25.7 50.7 25.1 22.4 37.4

SmoothQuant (Xiao et al., 2022) 16/4/4 512 54.1 62.8 41.5 52.6 50.6 32.9 49.1
FPT 4/4/4 32 64.2 73.5 47.8 63.7 65.9 33.6 58.1

Table 2: Main Results on the zero-shot reasoning tasks with of LLaMa-7B (Touvron et al., 2023) model.

forming both Brecq and QDrop by 44.27% and475

7.82%, even with less bit-width and smaller cali-476

bration size. With 4-bit weight and 8-bit activation,477

MREM-S/MREM-P (Bai et al., 2022) present a478

1.6/1.57% accuracy gap to the full-precision model479

with 4096 calibration data, while FPT achieves al-480

most no accuracy loss with only 128 calibration481

data points.482

5.2.2 LLM Zero-Shot Reasoning483

We evaluate the effectiveness of FPT for Large Lan-484

guage Model (LLM) LLaMa-7B (Touvron et al.,485

2023) on common sense zero-shot reasoning tasks.486

These tasks include BoolQ (Clark et al., 2019),487

PIQA (Bisk et al., 2020), HellaSwag (Zellers et al.,488

2019), WinoGrande (Sakaguchi et al., 2021), and489

ARC-e (Clark et al., 2018). For the calibration490

data, we sample 32 random segments with 2048491

tokens length from the C4 (Raffel et al., 2020)492

dataset following the setting of GPTQ (Frantar493

et al., 2023). The data preprocessing and score494

calculation are based on EleutherAI evaluation har-495

ness2. The results are shown in Table 2. Compared496

with MinMax FP Quant baseline, the state-of-the-497

2https://github.com/EleutherAI/lm-evaluation-harness

art PTQ method SmoothQuant (Xiao et al., 2022), 498

and weight-only PTQ method GPTQ (Frantar et al., 499

2023), FPT demonstrates remarkable performance, 500

achieving absolute average accuracy improvements 501

of 12.7% and 0.6% in the 4/4/4 and 4/4/16 configu- 502

ration. 503

5.2.3 Generalizability on Vision Transformer 504

Based on our findings that vision transformers also 505

exhibit a consistent activation distribution pattern 506

as language transformers, characterized by high 507

inter-channel variance and low intra-channel vari- 508

ance, as detailed in Fig. 4, we extended our pro- 509

posed methods to ViT and compared FPT with 510

floating-point PTQ baseline and state-of-the-art 511

PTQ method for ViT on the ImageNet classifica- 512

tion task. Table 3 shows consistent findings on 513

ViT as on Bert models: previous state-of-the-art 514

integer-based methods struggled to maintain rea- 515

sonable accuracy when quantizing the transformer 516

to lower bits. In comparison, the proposed FPT out- 517

performed both PTQ4VIT and APQ-VIT on 6 bits, 518

and also achieved 40.96% and 31.49% absolute ac- 519

curacy improvement over PTQ4VIT and APQ-VIT 520

on DeiT-S in the 4-bit configuration. 521
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W/A Quant Method Deit-S Deit-B ViT-S
Full-prec - 79.9 81.8 81.4

6/6 PTQ4VIT(Yuan et al., 2022) 76.3 80.3 78.6
6/6 APQ-VIT(Ding et al., 2022) 77.8 80.4 79.2
6/6 MinMax FP Quant (E3M2) 79.3 81.7 80.7
6/6 FPT 79.5 81.8 81.1
4/4 PTQ4VIT(Yuan et al., 2022) 34.1 64.4 42.6
4/4 APQ-VIT (Ding et al., 2022) 43.6 67.5 48.0
4/4 MinMax FP Quant (E2M1) 0.4 0.1 0.1
4/4 FPT 75.0 79.4 73.2

Table 3: Comparison on the ImageNet dataset with
vision transformer structures.

W/E/A #Calib MNLI-M QQP CoLA
4/4/4 32 81.5 89.4 44.4
4/4/4 64 81.8 89.4 47.9
4/4/4 128 82.3 89.2 52.6
4/4/4 256 81.9 89.0 52.9
6/6/6 32 84.8 90.8 55.0
6/6/6 64 84.7 90.9 58.2
6/6/6 128 84.5 90.8 57.3
6/6/6 256 84.6 90.8 57.6

Table 4: Ablation studies of different calibration sizes.

5.3 Ablation Study522

In this section, we first compare the influence of dif-523

ferent calibration sizes on FPT. We vary the calibra-524

tion size in {32, 64, 128, 256} and test on MNLI,525

QQP, and CoLA. Table 4 shows that the evalua-526

tion on MNLI and QQP is more robust to different527

settings, and the variance is more significant on528

CoLA. We observe that FPT performs well with a529

calibration set size of 128 data points. However,530

we also find that it remains robust and maintains531

competitive accuracy even with limited access to532

calibration data, such as when using as few as 32533

data points.534

We investigate the robustness of FPT to dif-535

ferent search ranges (γ1, γ2). Table 5 presents536

the results of FPT using three sets of (γ1, γ2):537

(0.01, 1.2), (0.1, 1.2), (0.5, 1.5), on MNLI, QQP,538

and CoLA. It is observed that no single search539

range outperforms the others consistently across540

all tasks. For instance, the search range (0.01, 1.2)541

performs better than (0.5, 1.5) on MNLI and QQP,542

but slightly worse on CoLA in the 4-bit configu-543

ration. Overall, FPT exhibits robustness to various544

γ1 and γ2, as long as the search range is not overly545

aggressive.546

5.4 Hardware Cost547

We further examine the hardware utilization of low-548

bit INT, FP, and mixed-format FP multiplication549

operators, including adder, multiplier, and multiply-550

accumulate (MAC) units, in terms of hardware area.551

Mixed-format FP refers to the multiplication of552

W/E/A γ1 , γ2 MNLI-M QQP CoLA
4/4/4 0.01, 1.2 82.3 89.2 52.6
4/4/4 0.1, 1.2 82.2 89.1 53.6
4/4/4 0.5, 1.5 82.3 88.4 52.8

6/6/6 0.01, 1.2 84.5 90.8 57.3
6/6/6 0.1,1.2 84.7 90.8 57.5
6/6/6 0.5,1.5 84.7 90.8 57.8

Table 5: Ablation studies of different search range.

Format Adder(µm2) Multiplier(µm2) MAC(µm2)
INT4 93 182 410
INT6 132 340 529

E2M1 111 92 443
E3M2 223 138 498

E2M1 * E1M2 105 107 432

Table 6: Area differences of INT, FP and mixed Format
FP operators across different bit-widths.

floating-point numbers with different formats, e.g., 553

E2M1 multiplies with E1M2. We implemented 554

the MAC operator by Verilog HDL and utilized 555

Cadence Genus to obtain the synthesized area un- 556

der TSMC 40nm technology and 0.5GHz clock 557

frequency. 558

Table 6 illustrates the hardware cost of the INT 559

and FP operators, with the multiplier being the pri- 560

mary cost for INT and the adder for FP. Notably, the 561

disparity between FP4 and INT4 adders is small, 562

while INT has twice the hardware cost for the mul- 563

tiplier. Moreover, the mixed-format FP4 operator 564

has comparable hardware area as the standard FP4 565

operator. These findings indicate that the proposed 566

FPT approach imposes negligible overhead in terms 567

of hardware implementation when compared to the 568

standard FP operators and the hardware cost for FP 569

is comparable with INT. 570

6 Conclusion 571

This paper presents the first successful demonstra- 572

tion of 4-bit floating-point post-training quantiza- 573

tion for weights, activations, and embeddings in 574

natural language transformer architectures, includ- 575

ing both Bert model and large language model. 576

We also extend our method to vision transformers 577

and observe its robust generalization ability. Our 578

approach involves a practical search-based tech- 579

nique that combines the hessian-matrix guidance, 580

which establishes a strong baseline and achieves 581

state-of-the-art results for 6-bit and 8-bit quantiza- 582

tion. Furthermore, we address the challenge of high 583

inter-channel variance in transformers by propos- 584

ing pre-shifted exponent bias, which proves highly 585

effective in achieving accurate 4-bit quantization. 586
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Limitations587

Our experiments were conducted on publicly avail-588

able datasets with finite sentence lengths and the589

generalizability of our method to extremely long590

sequences or streaming data has not been verified591

and may require further investigation. In addition,592

it remains to be seen how our proposed method can593

generalize to other domains beyond language and594

vision, such as audio. It would also be interesting595

to see the applicability of our method to generative596

tasks and other applications.597
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A Quantization Error of Different776

Formats777

Figure 3 compares the quantization error of differ-778

ent formats in 8-bit quantization, including INT8,779

E2M5, E3M4, E4M3, and E5M2. We apply these780

formats to different Bert modules in the first, fifth,781

and last layers. The figures demonstrate that the op-782

timal FP formats differs depending on the specific783

module that we are quantizing.784

B Inter-Channel Variance Visualization785

Figure 4 depicts the output of different fully-786

connected layers in Bert for the MNLI task and787

in DeiT-S for the ImageNet-1K task. The visual-788

izations reveal a noticeable inter-channel variance789

presented in both language and vision transformers.790

C Efficient Matrix Multiplication 791

Figure 5 displays a comprehensive list of all the 792

granularity options that allow for efficient ma- 793

trix multiplication. While per-token quantization 794

theoretically provides greater precision in terms 795

of quantization granularity, the accuracy gains 796

achieved through this method are minimal and do 797

not justify the additional computational overhead 798

required. As a result, we have opted to use per- 799

tensor quantization when quantizing activations. 800

D Learning Format and Maximum Value 801

We compare the previous gradient-based 802

method (Kuzmin et al., 2022) with the proposed 803

search-based method for finding the optimal 804

format and maximum value. On DeiT-S, the 805

learnable method only achieves 74.38% accuracy 806

Figure 3: Quantization error of different formats for Bert layers.

Bert DeiT-S

Bert DeiT-SBert DeiT-S

Bert DeiT-SBert DeiT-S

Bert DeiT-S

(a)

(c)

(b)

(d)

(e) (f)

Bert DeiT-S

Figure 4: Magnitude of the output activations of different modules in Bert (left column), and DeiT-S (right column).
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Figure 5: Quantization granularity options that support
efficient matrix multiplication. The dimensions that
share the same scaling factor are indicated with red
dotted frames

for an 8-bit quantized model on ImageNet, in807

contrast, FPT can attain an almost loss-less result of808

79.88%. We analyze the gradients for the number809

of exponent bits e derived in (Kuzmin et al.,810

2022) and observe that each time the exponent811

bits change, the gradients experience exponential812

variations, leading to high instability. Based813

on this observation, we assert that employing a814

search-based method to determine the optimal815

formats is crucial in post-training quantization816

(PTQ).817

E Reconstruction Choices818

The previous works on integer post-training quanti-819

zation involves breaking down the target model into820

sub-modules and reconstructing them separately821

(Nagel et al., 2020; Li et al., 2021; Bai et al., 2022;822

Yuan et al., 2022). This addresses the problem of823

over-fitting, given that only a limited amount of824

unlabeled calibration data is available. In this study825

we find the layer-wise reconstruction and parallel826

quantization works best for floating-point PTQ:827

Layer Reconstruction: Recent research (Li828

et al., 2021; Bai et al., 2022) suggests increasing the829

reconstruction granularity from layer reconstruc-830

tion (Nagel et al., 2020) to block reconstruction (Li831

et al., 2021) or even larger granularity (Lee et al.,832

2023). This is achieved by jointly optimizing all the833

linear layers or matrix multiplication components834

within each module to prevent the propagation of835

reconstruction errors among the layers. Despite836

this, we have observed that increasing the recon-837

struction granularity does not improve the accuracy 838

of FPT baseline or sometimes even lead to worse 839

results. Therefore, we choose layer reconstruction. 840

Parallel Quantization: Sequential quantization 841

is the most commonly used approach (Wu et al., 842

2020; Nagel et al., 2020; Li et al., 2021) where 843

modules are quantized consecutively based on their 844

sequential order, and the input for the current cali- 845

brating module is generated using all the previously 846

quantized modules. However, some recent works 847

(Yuan et al., 2022; Bai et al., 2022) proposed a new 848

parallel quantization framework. This framework 849

uses the raw output of the full-precision modules 850

as input and makes the calibration of each module 851

independent from one another. In this work, we 852

use parallel quantization, as it yields better results 853

than its sequential counterparts. 854
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