Right for the Right Reasons: Avoiding Reasoning
Shortcuts via Prototypical Neurosymbolic Al

Luca Andolfi Eleonora Giunchiglia
Imperial College London, Sapienza University of Rome Imperial College London
1.andolfi24@imperial.ac.uk e.giunchiglia@imperial.ac.uk
Abstract

Neurosymbolic Al is growing in popularity thanks to its ability to combine neural
perception and symbolic reasoning in end-to-end trainable models. However, recent
findings reveal these are prone to shortcut reasoning, i.e., to learning unindented
concepts—or neural predicates—which exploit spurious correlations to satisfy the
symbolic constraints. In this paper, we address reasoning shortcuts at their root
cause and we introduce Prototypical Neurosymbolic architectures. These models
are able to satisfy the symbolic constraints (be right) because they have learnt the
correct basic concepts (for the right reasons) and not because of spurious correla-
tions, even in extremely low data regimes. Leveraging the theory of prototypical
learning, we demonstrate that we can effectively avoid reasoning shortcuts by train-
ing the models to satisfy the background knowledge while taking into account the
similarity of the input with respect to the handful of labelled datapoints. We exten-
sively validate our approach on the recently proposed rsbench benchmark suite in
a variety of settings and tasks with very scarce supervision: we show significant im-
provements in learning the right concepts both in synthetic tasks (MNIST-Even0Odd
and Kand-Logic) and real-world, high-stake ones (BDD-0IA). Our findings pave
the way to prototype grounding as an effective, annotation-efficient strategy for
safe and reliable neurosymbolic learning. '

1 Introduction

Neurosymbolic Al [36, 12] (NeSy) holds the promise of being able to combine the high adaptability
of neural networks with the reasoning abilities of more traditional Al. This results in methods that
are more interpretable [1, 4, 8], able to learn from fewer labelled datapoints [2, 49, 35] and are
compliant by-design with the given constraints [1, 18]. However, recent studies [28, 29] have shown
that even state-of-the-art NeSy methods can fall prey of reasoning shortcuts, i.e., (intuitively) spurious
associations among the learnt concepts—a.k.a. the neural predicates [26]-that satisfy the given
symbolic constraints and yet violate the intended semantics.

Some attempts have already been made to address the problem, however existing mitigation strategies
carry practical trade-offs. For example, the solution proposed in [29] involves dense annotation of
a high number of datapoints which can be costly. On the other hand, unsupervised solutions like
training jointly with a reconstruction loss [29] or the Shannon entropy [27] work only in limited
settings, but fail when applied in more challenging scenarios like those in rs-bench [5].

In this paper, we address reasoning shortcuts at their root cause and we introduce Prototypical
Neurosymbolic architectures. Thanks to the prototypes, our mitigation strategy requires minimal an-
notations and delivers extremely positive results even in challenging scenarios like those in rs-bench.
The work is based on the simple intuition that whenever we are updating the weights of our neural

'The code is available on our rrr Github page

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Giotto-maker/r4rr

network, we need to take into account two possibly orthogonal factors: (i) the satisfaction of the
background knowledge and adherence to the available ground truth labels, which NeSy methods
naturally do, and (ii) the similarity of the input with respect to the handful of labelled datapoints. We
show that if prototypical networks are used in conjunction with NeSy methods, then both factors
are taken into account at each weights update step. On the contrary, when using NeSy methods
in conjunction with standard neural networks, this cannot happen. We also show that under the
assumption of clusterability in the embedding space, the number of deterministic shortcuts gets
significantly reduced.

We extensively validate our approach on the recently proposed rsbench [5] benchmark suite in a
variety of settings and tasks with very scarce supervision: we show significant improvements in
learning the right concepts both in synthetic tasks (MNIST-EvenOdd and Kand-Logic) and real-
world, high-stake ones (BDD-0IA). As an example, with just one labelled datapoint for each concept,
we are able to increase the F1-score macro over the concepts for the standard DeepProbLog [26]
from 4% to 96% in the MNIST-Even0dd task and from 25% to 94% on the Kand-Logic task.

2 Problem Statement

Notation. As customary, we denote scalar constants in lower-case x, random variables X in upper
case, and ordered sets of constants x and random variables X in bold typeface. We also will denote
the set [1, ... n] as [n] and the prior knowledge as K.

Setting. In line with previous work [28, 29] we consider an underlying ground-truth
data generation process p* (X, Y; K) having form as illustrated in Figure 1,

where (i) X is the ordered set of random variables with domain X’ representing

the datapoints in our learning problem, (ii) Y is the ordered set of r discrete

random variables with domain) representing the ground truth labels in our

learning problem, (iii) G is the ordered set of k discrete random variables @
ranging in G = [h1] X ... X [hg], which influence the observed datapoint and

determine the ground truth label, and (iv) S is a finite ordered set of random

variables which influence the observed data but not the ground truth labels.

A NeSy predictor is a model that infers the labels Y by reasoning over the
background knowledge K and a set of k discrete concepts C (taking values
in C with the assumption that C = G) extracted from the sub-symbolic input
X. The background knowledge is assumed to be given beforehand.

Figure 1: Ground
truth generation pro-
cess (in black).

Example 1 (MNIST-Addition [26]) In this classic problem, the pair of MNIST images x = (E], @)
and their ground truth label 5 is determined by the ground truth concepts g = (3, 2). The writing
style s only influences the appearance of those digits. The ground truth concepts and the labels are
compliant with the background knowledge K = (Y = G1 + G2).

Goal. Our goal is to learn the parameters 6 of a NeSy predictor py (Y | X; K) such that py(C | x) =
p*(G | x), forall x € X.

The reasoning shortcut problem. The reasoning shortcut problem arises because we do not have
access to the ground truth G but only to a proxy of it, i.e., Y.

Let D = {(x;,¥y:)}, be a finite dataset, the we say that a NeSy predictor py takes a reasoning
shortcut (RS) if pg achieves maximal log-likelihood £ on the training data but it does not match the
ground truth distribution, i.e.,

L(py, D,K) = glggﬁ(pgx,i), K) and py(C|X) #p"(G|X),)

where L(pgy, D,K) = ﬁ > (x.y)ep 108 Pa(y | x; K). Observe every RS corresponds to a determin-
istic optimum for L.

Example 2 (Ex. /, Cont’d.) Consider a restriction of the dataset where the ground truth for all
datapoints is either g = (0,6) or g’ = (2,8). Assume po(C | G) is a deterministic distribution
so that pg((5,5) | (2,8)) = 1.0 and py((3,3) | (0,6)) ~ 1.0. A NeSy predictor py whose (i)
distribution pg(C | G) is as shown before and (ii) likelihood L(pe, D, K) is maximal, takes a RS.

3 Prototypical Neurosymbolic Al

Our goal is to learn the parameters 6 of a NeSy predictor pg(Y | X;K) such that pg(C | x) =
p*(G | x) for all x € X. However, in absence of any labelled datapoints, the network might take
reasoning shortcuts as there is nothing more than the loss over the labels Y to guide the network.

For ease of presentation, we first assume we have at least one labelled datapoint for each concept,
and then we drop such assumption.

Given a finite dataset D and a concept c, let

Sc={x|(x,y) €D,cey} 2

s

be support set for concept c. This is the available set of datapoints which we can use to “anchor’
the representation of each concept, hence avoiding the RS problem. For every concept ¢ we create
a centroid or prototype c. € R™ starting from S, i.e., a representative vector where all datapoints
belonging to concept ¢ should be mapped to. To this end, we use k prototype extractors (one for
each set of mutually exclusive concepts in C). Each prototype extractor is an embedding function

f&:R? — R™: fori € [k] with learnable parameters ¢ which allows us to compute the centroids:
1 i _
Cc= —— fo(x), fori € [k], 3)

it

where S, C S, isa randomly sampled subset of S..

For every prototype extractor f;(x), we define a distance p : R™ x R™i — [0, +00), and, for every
new input x, we decide to which concepts it belongs to by measuring its distance to each of the
prototypes. In [42], it was shown that for a particular class of distance functions, called the regular
Bregman divergences family [3], the prototypical networks algorithm is equivalent to performing
mixture density estimation on the support set with an exponential family density. In this work we
choose as distance the squared Euclidean distance—itself belonging to the Bregman divergences
family—as it will allow us to meaningfully initialize the centroids of the unspecified classes. It is
now possible to produce a distribution over the concepts based on a softmax over distances between
z; = f}(x) and the prototypes of each class:

exp(—||zi — cc[[3)
Zc’G[hi] exp(—||z; — c3)

polc| x,c € [hy]) = for i = [k]. ()

We train the prototype extractors to perform two tasks: (i) correctly classify the datapoints in the
query set for class c¢: Q. = S¢ \ S, if available (i.e., Q. # () and (i1) make predictions that are
coherent with the background knowledge K for all the datapoints in the training set D which are not
labelled with a concept. An overview of the training procedure can be seen in Algorithm 1.

We now relax the previous assumption that each concept must have at least one labelled datapoint,
hence we can have a concept ¢ such that S. = (). Instead, we require only that, within each set of
mutually exclusive concepts (i.e., for every [h;] with ¢ € [k]), there exist at least two datapoints
labelled with two distinct concepts. This condition ensures that we can express the centroids of
concepts without labelled examples as functions of the centroids of concepts with at least one labelled
instance.

Let ¢ € [h;] for some i € [k] be a concept for which there are no labelled datapoints in the training
dataset D. Let H; C [h;] be the set of concepts for which there exists a labelled datapoint in D. Then
the centroid for ¢ can be computed as

)

2

LEITRLLE
Xm,p m |

Cc = My, + €, with e~/\f<0,

where pi3,, = ﬁ > e, Cer Tepresents the mean of the known centroids in [h;], and X7, ,, is the

p-th lower-tail quantile of a x? distribution with m degrees of freedom. Unless explicitly stated, the
parameter p is set to 0.99 in our experiments. This ensures that, for each class c, the newly initialized
centroid c, has probability 0.99 (over the random draw of ¢) of lying within the hyperball whose
radius is given by the distance from g4, to the farthest known centroid. This encourages separation

Algorithm 1 Training episode loss computation. /; is the number of classes sampled per set H; and
training episode. s. (resp. q.) is the number of support (resp. query) examples per concept c.

Require: (i) Dataset D, (ii) support set S, for every concept c.
Ensure: Output the loss £ for a randomly generated training episode.

1: L+0
2: forie {1,...,k} do
3: & < RANDOMSAMPLE(H;, ;) > Select classes per episode and prototype extractor
4 for cin £ do
5 S. < RANDOMSAMPLE(S,, s.) > Select support examples
6: Q. + RANDOMSAMPLE(S, \ S, ;) > Select query examples
7: Cc 5—17 > xcd. fa(x) > Compute centroids for labelled classes
8 for x in Q. do
o Lo Lt llm el 1o Y exp(~la — eul)
ligi
c’'€lhi]
10. forc € [h;] \ H; do
11: Cc ¢ Mgy, +€ > Compute centroids for unlabelled classes
12: for (x,y) € D do
13: L+ L+ LNSY(y, K) > If necessary for NeSy model, compute NeSy loss

among mutually exclusive classes, while reducing the risk that a zero-shot prototype is placed far
from the region spanned by the known embeddings, which could otherwise lead to prototype collapse,
where multiple concepts are mapped to a single, constraint-satisfying centroid.

In the remainder, we will call a NeSy predictor that uses prototype extractors as outlined above a
prototypical NeSy predictor.

4 Reasoning over Distances

Thanks to the prototypes, given an input x, for every ¢ € [k] the embedding z; is updated taking into
consideration not only the degree of constraints violation but its similarity to each centroid.

Theorem 4.1 Let 'y be the output of a prototypical NeSy predictor reasoning over the knowledge K
and the set of concepts C = [h1] X ... X [hy]. If the predictor is trained using LN (y, K), then for
every i € [k] the error calculated with respect to the embedding z; is equal to:

8£NeSy
VZiﬁNeSy (y, K) =2 Z 9 Ye (Cc - Z yc’cc’> . (6)
celhi] Ye c’€lhy]

Proof in Appendix A. Let us call the term ZC,E[M c. Y the centre of belief for datapoint x and set

of classes [h;] of the model, as it is the average over all the prototypes representing the classes in [h;]
weighted by the probability assigned to each class by the model. The embedding z; is thus updated in
a way that ensures that—in the next learning iteration—the centre of belief for the datapoint x is closer
to the weighted average over the distances of the prototype of each class to the centre of belief. The
weights take into account both: (i) the degree of constraint violation, as captured by the magnitude of
the gradient |0LNSY /9y.| and (ii) how close the embedding is to a prototype, as captured by the .
term. The embedding update thus allows us at each step to try to satisfy the constraints while also
taking into account the similarity between each class prototype and the embedding of the datapoint.

Notice that the same does not happen when training standard neural networks with a NeSy loss. In
that case, even if we have some labelled datapoints, for the unlabelled datapoints the update will
obviously only depend on the error done with respect to the NeSy loss, thus creating a fertile ground
for reasoning shortcuts (especially as the number of unlabelled datapoints grows).

We now show what the embedding update looks like in the specific case of the semantic loss [49].
Given an input x and its corresponding output y we can write NeSy semantic loss as:

Ly, K)=—log > J[@)1 —ye)), 7
VK cel, [hi]

where each v : | J; [h;] — {0, 1} represents (with a slight abuse of notation) a boolean assignment
of the concepts in | J, [h;]. We say that an assignment v satisfies the knowledge K expressed as a
propositional logic formula, denoted by v |= K, if and only if the recursive evaluation of formula
K under assignment v yields 1. For every ¢ € | J; [h;] we define an independent Bernoulli random
variable Y, ~ Bernoulli(y.). This induces a distribution over full truth assignments v : |, [h;] —

{0,1}. Then, we can rewrite the semantic loss as: LN (y, K) = — log >k P | y).

Corollary 4.2 Let y be the output of a prototypical NeSy predictor reasoning over the knowledge
K and the set of concepts C = [h1] X ... X [hg]. If the predictor is trained using semantic loss
LNeSY (y K) as defined in Equation 7, then for every i € [k the error calculated with respect to the
embedding z; is equal to:

c—EY.|y,vEK
VZiﬂNeSy(y’ K) =2 Z |:y [(1 Ly)):]}yc(cc - ch’yc’)~ (®)
c€[h;] Ye Ye c’

Proof in Appendix A. The above theorem shows that the embedding is moved closer to each centroid
c. by a value proportional to (i) the distance between z; and c. and (ii) to the difference between vy,
and the expected value of Y, conditioned on the satisfaction of the knowledge.

Example 3 Suppose C = [h1] X [ha] where [h1] represents
the concepts {Dog, Cat, Duck, Shark} and [hs] represents the
concepts {Mammal, Bird, Fish}. Let K = (Dog V Cat —
Mammal) N (Duck — Bird) N (Shark — Fish). Suppose we
have an image x of a dog, whose embedding z, is represented
by XK in Figure 2. z,’s squared distances from the centroids are
equal to the numbers next to the dotted lines. The centre of belief
for x and [h1] is represented as . Let zo have distance 2, 3,
4 from the prototypes of Mammal, Bird and Fish, respectively.

p~0.00

p~ 0.00

The magnitude of the error computed with semantic loss by our .
method wrt Dog, Cat, Duck and Shark is ~2.0, ~0.3, ~0.25 and Figure 2: Prototype configuration
~5 % 1074, thus mirroring the importance that each centroid ~for Example 3.

has to the class prediction. On the contrary, if we were to use a standard neural network with
semantic loss we would get that the errors for each of the above outputs all have magnitude of ~1.0.

5 Counting Deterministic Reasoning Shortcuts

We now analyse the number of possible deterministic RSs admitted by a prototypical NeSy predictor.
To isolate the structural sources of shortcuts, we work in an idealized setting where we assume
that [A1] the distribution p*(X | G, S) is induced by a map ¢: (g,s) — x, where ¢ is invertible
and smooth over s, [A2] the ground-truth process is consistent with the prior knowledge K: the
distribution p*(Y | G; K) is induced by a deterministic mapping Ok : g — y and p*(y | g; K) =0,
for all (g,y) violating K, and [A3] we have separability in the embedding space. This means that
given a bijective assignment o : G — G such that o(g); € [h;] with ¢ = [k], it holds that for every
datapoint x = ¢(g, s)

arg min || f3(x) — ¢;1[3 = o(g):- ©

J€lhi]

Intuitively, all datapoints associated to the same concept g € [h;], will have the embedding f}(x)
closest to a centroid c, but this centroid might be labelled with the wrong concept, i.e., it is not
necessary that g = o(g);.

Observe that, under [A1], each pg(C | G) is induces exactly one mapping « : g — ¢, such that
po(C | G) = 1{C = a(G)}. We denote as A the set of all mappings «. As shown in [29], the
cardinality of A can be reduced leveraging disentangled concept extractor architectures: when a

model is disentangled then py(C | G) factorizes as Hle po(C; | G;). In prototypical NeSy models
the conditional distribution ps(Y | X;K) is induced by k prototype extractors with embedding
function f§: R — R™i, for every i € [k]: under independence assumption, then our design enforces
disentanglement by construction.

Proposition 5.1 Consider a prototypical NeSy predictor inducing pg(Y|X; K). Assume G = [hq] X
... X [h] and let H; C [h;] be the set of concepts with at least one labelled datapoint from a dataset
D. Under [A1,2,3] the number of deterministic optima for pg(C | G) is pg(C | G) is

S A (A A @@i=gng=0))n((coa)e =5(@)).

acA gesupp(G) i€lk] g;€EH:

« being the mapping induced by po(C | G) and A being the set of all possible mappings o.

Remarkably, by leveraging [A3], we achieve the same number of RSs obtained by the dense data-
mitigation strategy proposed in [29]. This assumes that every supervised concept receives annotations
for every datapoint in which it occurs. Hence, thanks to the prototypes, the labelling effort can be
substantially reduced. Indeed, Proposition 5.1 implicitly assumes that for every i € [k] we have one
labelled datapoint per class g; € [h;].

6 Experimental Analysis

Metrics. We evaluate the models coherently with [28, 29, 5] and we distinguish between the classes
that are labelled as “final labels” and as “concepts”. We measure the accuracy and F1-score wrt. both,
denoted resp. as Acc(Y), F1(Y), Acc(C) and F1(C), and the concept collapse Cls(C).

Tasks. (i) MNIST-Even0dd [28, 30]: is a variant of MNIST-Addition with restricted support.
Each input is a pair of handwritten digits (concepts) labelled with their sum (final label). (ii)
Kand-Logic [34, 30]: features the shape (O, O, A) and color (red, , blue) of geometric
primitives (concepts), possibly defining a pattern to be predicted (final label). (iii) BDD-0IA [50]:
an autonomous driving task proposing frames labelled with the actions to be undertaken by the
ego-vehicle (final labels). The goal is to correctly classify the reasons (concepts) behind each action.

Models. For all tasks, we consider DeepProbLog [26] (DPL), Logic Tensor Networks [2] (LTN)
and Semantic Loss [49] (SL), as implemented in [5], and we integrate them with prototypes. For
MNIST-EvenOdd, we also consider Coherent by Construction Networks (CCNT) [18].

RQ1: Can Prototypical Neurosymbolic Al avoid Reasoning Shortcuts?

To answer RQ1, we randomly label just one image per concept class in MNIST-EvenOdd and
Kand-Logic. We then train each Prototypical NeSy model (SL+PNet, LTN+PNet, DPL+PNet) with
support sets of size 10 and 9 for MNIST-Even0dd and Kand-Logic, respectively. For BDD-0IA we
annotate 126 images—almost the size of

one training batch—with 21-dimensional l. I L I :.'. I
binary vectors. We compare our re- - | R il .I.
sults against: (i) the standard NeSy base- - l- v Im ™® = '- o
lines (SL, LTN, and DPL), and (ii) the - .| l pl PO Bl PR S o,
same models whose backbones are pre- (a) SL (b) SL+Pre* (c) SL+PNet

trained on annotated support sets en-
riched with over 150 additional data- Figure 3: MNIST-EvenOdd concept confusion matrices.
points obtained via data augmentation for

both MNIST-Even0Odd and Kand-Logic, as detailed in Appendix E (denoted as SL+Pre*, LTN+Pre*,
and DPL+Pre*). No data augmentations were used for BDD-0IA. This second baseline demonstrates
that, even on a simple dataset such as MNIST-Even0dd, the use of prototypical networks can substan-
tially outperform extensive data augmentation. Conversely, for Kand-Logic, the performance gap is
minimal, which can be attributed to the high homogeneity of the concepts in this dataset. The results
for MNIST-Even0Odd and Kand-Logic are shown in Tables | and 2. We observe that Prototypical
NeSy models greatly outperform the standard baselines in the MNIST-Even0dd task: for example
LTN’s Acc(C) jumps from 13% to 95% while Cls(C) drops from 80% to 0%. The enhanced concept
alignment is even more evident comparing the confusion matrices in Figure 3 for the SL model.
While on Kand-Logic the gain wrt. concept metrics may appear less stark due to their homogeneity,

Table 2: Concept scores on Kand-Logic.

Table 1: Concept scores on MNIST-EvenOdd. Acc(O)(1) F1(O)(T) CIs(O)({)
Acc(C)(1) F1(C)(D) CIs(C)() LTN 0.36+0.06 0.22+0.06 0.64+0.16
LTN+Pre* 0.90+0.01 0.90+0.01 0.00+0.00
LTN 0.13+0.07 0.05£0.04 0.79£0.08 [TN4+PNet 0.91+0.01 0.90+0.01 0.00+0.00
LTN+Pre* 0.51+0.22 0.39+0.25 0.45+0.23
LTN+PNet 0.95+0.03 0.95+0.03 0.00+0.00 SL 0.35+0.05 0.20+0.04 0.73+0.12
SL+Pre* 0.91+0.00 0.90+0.01 0.00+0.00
SL 0.08+0.12 0.04+0.04 0.68+£0.04 QI 4PNet 0.92:0.02 0.92+0.02 0.00+0.00
SL+Pre* 0.52+0.25 0.42+0.28 0.40+0.24
SL+PNet 0981001 0.98+001 0.004000 PPl 0.39+0.05 0.25+0.06 0.66+0.18
DPL+Pre* 0.92+0.04 0.914+0.04 0.00+0.00
DPL 0.08+0.10 0.04x005 0.674005 pPL4+PNet 0.94+0.00 0.94+0.00 0.00-£0.00
DPL+Pre* 0.64+0.22 0.55+0.28 0.32+0.24
DPL+PNet 0.97+0.03 0.96+0.04 0.00+0.00 Table 3: Concept scores on BDD-0TIA.
CCN™ 0.03+0.07 0.01+0.03 0.73+0.05 F1(C)(1) CIs(C)())
CCN*t+Pre* 0.33+0.11 0.22+0.10 0.57+0.09
CCN*+PNet 0.96:0.04 0.95+0.05 0.00-0.00 DPL 0.08+0.13 0.8240.06
DPLA+Pre* 0.05+0.13 0.85+0.04

DPL+PNet 0.16+0.15

0.35+0.11

it carries significant improvements for the right prediction of the final label as shown in Table 10
in Appendix F, thus indicating a strong synergy between the symbolic and the neural components.
Lastly, the superior ability of prototypical models to mitigate reasoning shortcuts (RSs) is also evident
on BDD-0IA. As shown in Table 3, our PNet model reduces Cls(C) by more than half compared to
both baselines, while achieving an F1(C) score that is more than twice as high as the best performing
baseline. A more detailed analysis of RQ1 is provided in Appendix F.

RQ2: How does Prototypical NeSy compare with other mitigation strategies?

We consider the three mitigation strategies, and combinations thereof, as proposed in [27] and [29].
These are: (i) Shannon-entropy regularization (H): regularizing the models using the Shannon-
entropy, (i) partial loss concept supervision (C): taking a subset of the concepts and labelling all
the corresponding datapoints in

the dataset—following [29], we :
label the concepts “4” and “9”, 0.9 -~
(iii) reconstruction loss (R): in- go.a C e
troducing an encoder-decoder ar- = %7 StpNet - IN
chitecture and training the model 06 R >
to jointly minimise £N°SY and

the reconstruction loss wrt the in-
put. We carry out 'the COMPArSON pioyre 4: F1(C) on MNIST-Even0dd across unlabelled data ratios.
with our Prototypical NeSy mod-

els on the MNIST-Even0dd task under the same settings for RQ1. The results obtained with each
of these strategies and their combination are shown in Table 4. Crucially, each of the mitigation
strategies in isolation does not manage to curb the RS problem, even with a costly solution like
labelling all the datapoints where concepts “4” and “9” appear through C. Only by using them all
together we get comparable results for DPL and LTN, while only F1(C)= 0.35 for SL.

1.0 1.0

0.8

.06
@) [Standard NN
N\ .
FaRR /i SL+Pre*+C(S)*
W/ — = LTN+Pre*+C(S)*
DPL+Pre*+C(S)*

0.0

0.5
0.1 02 03 014 05 0.6 0.7 0.8 09 1
Unsupervised Data Percentage

0.1 02 03 04 05 0.6 0.7 08 09 1
Unsupervised Data Percentage

RQ3: Are Prototypical NeSy models robust wrt. the number of unlabelled datapoints?

In Section 4 we show how Prototypical NeSy models update their parameters accounting at the same
time both for the background knowledge and the proximity to each class centroid. With this RQ
we validate the extent to which this update makes them less sensitive than traditional NNs to the
amount of weakly supervised datapoints used at training time. To this end, we create 10 training
subsets of MNIST-Even0dd containing the original support sets together with a varying percentage
of unlabelled examples (from 10% to 100% with a step increase of 10%). Then we train on these

Table 4: F1(C) and Cls(C) of different mitigations on MNIST-EvenOdd. Best results in bold.

F1(C)(1) Cls(C)({)

DPL SL LTN DPL SL LTN
+R 0.07+0.00 0.01+0.00 0.05+0.02 0.70+0.00 0.70+0.00 0.70+0.00
+ H 0.01+0.00 0.01+0.00 0.554+0.14 0.70+0.00 0.704+0.00 0.08+0.02
+C 0.01+0.00 0.22+0.01 0.12+0.00 0.70+0.00 0.60+0.01 0.71+0.00

+ R+H 0.09+0.02 0.01+0.00 0.61+0.10 0.63+0.00 0.70+0.00 0.21+0.16
+ R+C 0.01+0.00 0.46+0.07 0.10+0.00 0.70+0.00 0.47+0.00 0.70+0.00
+ H+C 0.96+0.06 0.31+0.07 0.98+0.00 0.03+0.05 0.50+0.00 0.01+0.00
+ R+H+C 0.98+0.00 0.35+0.10 0.95+0.00 0.02+0.00 0.50+0.01 0.04+0.00

+ PNet 0.96+0.04 0.98+0.01 0.95+0.03 0.00+0.00 0.00+0.00 0.00+0.00

subsets (i) our prototypical models and (ii) baseline models whose backbone is pretrained using the
support sets (Pre*, c.f. RQ1) and receiving additional supervision from them during training (C(S)*).
We report the comparison in

. . 0.8
Figure 4 wrt. F1(C). The Fig- 0350y [DPL+C(S) 07 DPL+C(S)
9-30 DPL+PNets 0.6 DPL+PNets
ures show that models employ- 5025 Gos
ing traditional concept extractors 5 0-201. T 0.4
. . . I .15/ Oo3
struggle in effectively exploit the 0.10 el
knowledge at hand. Moreover, 0.05 8.1 g
they are particularly unstable and %085 02 04 06 08 1.0 '800 02 04 06 08 10
o, . . i nsupervise ata Percentage
sensitive to both the network ini- Unsupervised Data Percentage P 9

tialization and the number of un- Figure 5: F1(C) and Cls(C) on BDD-0IA across different percent-
labelled datapoints. On the flip ;064 of ynlabelled datapoints. The green dotted line represents

side, prototypical ones use the {he paseline non-supervised DPL.
background knowledge to refine

their concept understanding and converge to stable solutions as more unlabelled data become avail-
able. We run a similar experiment for BDD-0IA as well, where we consider a standard DPL model
employing on extractor per concept that replicates the same disentanglement granularity of the
prototypical counterpart. This model is also supervised through the support set. Figure 5 left (resp.
right) shows that, as the number of unlabelled datapoints grows, the F1(C) (resp. Cls(C)) for standard
DPL greatly decreases (resp. increases). On the contrary, the prototypical model is robust wrt. to this
percentage and it consistently outperforms in both metrics the standard model.

RQ4: What is the impact of having totally unlabelled classes?
Ideally, one would like to have at least one labelled example for each class. In this RQ we test

our approach for cases in which such assumption does not hold and we initialize the centroids for

the unknown classes as in Equation 5. We Tuple 5. F1(C) when having different numbers of
also test our method with different numbers concepts left unspecified on Kand-Logic.

of totally unlabelled classes, running each ex-

periment 5 times and randomly sampling each 4 Unspec. DPL SL LTN
time the classes to leave unlabelled. In ad-

dition, for RQ4 and RQ5, we increase the 0 0.94x0.00 0.92+0.02 0.90=+0.01
support sets variety via standard augmenta- | 0.65+£0.03 0.73+£0.03 0.64+0.02
tion techniques, as we found our models to 2 0.42+0.02 0.55+0.04 0.41+0.02

perform slightly better in this case. The re- Baseline 0.25+0.06 0.22+0.04 0.22+0.06
sults obtained on MNIST-Even0dd in terms of

F1(C) and F1(Y) are shown in Figure 6 and those on Kand-Logic in terms of F1(C) in Table 5. As
expected, from Figure 6 and Table 5 we notice the more classes we are able to specify (i.e., provide
examples for) the better the results. Crucially, even with minimal labels provided (e.g. two/four
labelled images) Prototypical NeSy methods mitigate RSs.

RQS: How important is the centroid initialization for unlabelled classes?

As explained in Section 4, it is important to make sure that the centroids for the unlabelled

1.0

Iy
=)

0 SO e e e SR Y R Y B
g O8PPLFL g OB ——" g gg g
Sos6 506 O o alTNFL(Y)__
¢ K e
0.4 0.4 A gl
F1(C) | Y+ 0.2 F1(C) | %5 F1(C)
0.2 . ' .
DPL FI(C) F1(Y) 0.0 SLFLC) . F1(Y) 0.14FNFI(C) F1(Y)
7 6 5 4 3 2 ' 7 6 5 4 3 2 7 6 5 4 3 2
Number of hidden classes Number of hidden classes Number of hidden classes
(a) DPL+PNet (b) SL+PNet (c) LTN+PNet

Figure 6: F1(C) and F1(Y) obtained with Prototypical NeSy models trained on MNIST-Even0Odd
when varying the number of unlabelled classes. The red lines indicate the performance of the
corresponding baseline model.

1.0
classes lie among the labelled ones. In this ablation study,

we show what happens if this assumption is violated. We
run these experiments on the MNIST-Even0Odd dataset while =
picking different values of p, i.e., for the lower-tail quantiles 04)
of the 2 distributions. The F1(C) results obtained with SL for 0.2
p = 0.2, p=0.5and p = 0.99 are reported in Figure 7 and 0.0
those in terms of Acc(C) and Cls(C) in Appendix F. We clearly

see that as the value of p increases the network performs better

and better. Interestingly, we register the biggest difference in Figure 7: F1(C) with SL for p =
performance with 4 hidden classes, i.e., when the impact of 0.2,0.5 and 0.9.

the unlabelled centroids is high, and the known concepts provide enough information to allow for a
meaningful computation of the centroids of the unlabelled classes.

Gos6

8 7 6 5 4 3 2
Number of hidden classes

7 Related Work

NeSy encompasses a diverse set of approaches that integrate symbolic reasoning with neural net-
works [36, 16, 12, 17]. A central challenge in this field lies in reconciling discrete, non-differentiable
symbolic reasoning with the gradient-based optimization underlying neural networks. To enable
end-to-end training, many NeSy approaches soften the semantics of logical reasoning via probabilis-
tic [26, 51, 23, , 48, 9] or fuzzy logic frameworks [10, 11, 45, 2, 40]. A common
strategy involves complhng background knowledge into the loss function to encourage constraint
satisfaction during training [49, 13, 2], though this typically offers no guarantee that constraints will
hold at inference time. In contrast, methods that restructure the model’s output space can ensure con-
straint satisfaction by design [26, 14, 1,7,33, 18, 15, 19, 43, 44]. Despite the many advances [25, 47],
[28, 29] showed that most NeSy systems are prone to RSs. Some mitigation strategies have been
proposed [27, 29], but they can be either costly or they might fail in challenging settings like those
proposed in rs-bench. To obviate to such problems, an interesting alternative direction has been
taken by [30], where the authors do not try to avoid the RSs problem, but rather inform the user
of when the model is taking a shortcut and facilitates acquiring informative dense annotations for
mitigation purposes. For a comprehensive overview over the RSs problem in NeSy see [31].

8 Conclusion

In this paper, we introduce Prototypical NeSy models as a novel strategy for achieving more accurate
and robust NeSy learning under very limited supervision. In particular, we showed how to effectively
avoid reasoning shortcuts by anchoring neural embeddings to prototypes, which allows to exploit a
handful of labelled examples to train prototype-based concept representations, that then get continu-
ously refined via the symbolic knowledge. We show the precise dynamics of the embedding update
behind our models’ training and the difference with standard NeSy architectures. Moreover, we
provide a theoretical analysis on the number of shortcuts possibly affecting our models. We validate
them over a large set of experiments on the rsbench benchmark suite, where we show remark-
able improvements, both in the synthetic tasks (MNIST-Even0Odd and Kand-Logic) and real-world
high-stake ones (BDD-0IA).

References

[1] Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari.
Semantic probabilistic layers for neuro-symbolic learning. In Proceedings of NeurIPS, 2022.

[2] Samy Badreddine, Artur S. d’ Avila Garcez, Luciano Serafini, and Michael Spranger. Logic
tensor networks. Artificial Intelligence, 303, 2022.

[3] Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, and Joydeep Ghosh. Clustering with
bregman divergences. Journal of Machine Learning Research, 6(58), 2005.

[4] Pietro Barbiero, Gabriele Ciravegna, Francesco Giannini, Mateo Espinosa Zarlenga, Lucie Char-
lotte Magister, Alberto Tonda, Pietro Lio, Frédéric Precioso, Mateja Jamnik, and Giuseppe
Marra. Interpretable neural-symbolic concept reasoning. In Proceedings of ICML, 2023.

[5] Samuele Bortolotti, Emanuele Marconato, Tommaso Carraro, Paolo Morettin, Emile van
Krieken, Antonio Vergari, Stefano Teso, and Andrea Passerini. A neuro-symbolic benchmark
suite for concept quality and reasoning shortcuts. In Proceedings of NeurIPS, 2024.

[6] Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging machine learning and
logical reasoning by abductive learning. In Proceedings of NeurIPS, 2019.

[7] Alessandro Daniele, Emile van Krieken, Luciano Serafini, and Frank van Harmelen. Refining
neural network predictions using background knowledge. Machine Learning Journal, 2023.

[8] David Debot, Pietro Barbiero, Francesco Giannini, Gabriele Ciravegna, Michelangelo Diligenti,
and Giuseppe Marra. Interpretable concept-based memory reasoning. In Proceedings of
NeurlPS, 2024.

[9] David Debot, Gabriele Venturato, Giuseppe Marra, and Luc De Raedt. Neurosymbolic rein-
forcement learning: Playing minihack with probabilistic logic shields. In Toby Walsh, Julie
Shah, and Zico Kolter, editors, Proceedings of AAAI, 2025.

[10] Michelangelo Diligenti, Marco Gori, Marco Maggini, and Leonardo Rigutini. Bridging logic
and kernel machines. Machine Learning, 2012.

[11] Ivan Donadello, Luciano Serafini, and Artur S. d’Avila Garcez. Logic tensor networks for
semantic image interpretation. In Proceedings of IJCAI, pages 1596-1602, 2017.

[12] Artur d’ Avila Garcez and Luis C. Lamb. Neurosymbolic Al: The 3rd wave. Artificial Intelligence
Review, 2023.

[13] Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang, and Martin
Vechev. DL2: Training and querying neural networks with logic. In Proceedings of ICML,
2019.

[14] Eleonora Giunchiglia and Thomas Lukasiewicz. Coherent hierarchical multi-label classification
networks. In Proceedings of NeurIPS, 2020.

[15] Eleonora Giunchiglia and Thomas Lukasiewicz. Multi-label classification neural networks with
hard logical constraints. Journal of Artificial Intelligence Research, 72, 2021.

[16] Eleonora Giunchiglia, Mihaela Catalina Stoian, and Thomas Lukasiewicz. Deep learning with
logical constraints. In Proceedings of IJCAI, 2022.

[17] Eleonora Giunchiglia, Fergus Imrie, Mihaela van der Schaar, and Thomas Lukasiewicz. Machine
Learning with Requirements: a Manifesto. Neurosymbolic Al Journal, 1,2024.

[18] Eleonora Giunchiglia, Alex Tatomir, Mihaela Catalina Stoian, and Thomas Lukasiewicz. CCN+:
A neuro-symbolic framework for deep learning with requirements. International Journal of
Approximate Reasoning, 171, 2024.

[19] Nicholas Hoernle, Rafael-Michael Karampatsis, Vaishak Belle, and Kobi Gal. MultiplexNet:
Towards fully satisfied logical constraints in neural networks. In Proceedings of Association for
the Advancement of Artificial Intelligence, 2022.

10

[20] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Francis Bach and David Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 448-456, Lille, France, 07-09 Jul 2015. PMLR.

[21] Rahima Khanam and Muhammad Hussain. Yolovl1l: An overview of the key architectural
enhancements, 2024. URL https://arxiv.org/abs/2410.17725.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of International Conference on Learning Representations, 2015.

[23] Luca Di Liello, Pierfrancesco Ardino, Jacopo Gobbi, Paolo Morettin, Stefano Teso, and Andrea
Passerini. Efficient generation of structured objects with constrained adversarial networks. In
Proceedings of NeurIPS, 2020.

[24] Jaron Maene, Vincent Derkinderen, and Luc De Raedt. On the hardness of probabilistic
neurosymbolic learning. In Forty-first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

[25] Jaron Maene, Vincent Derkinderen, and Pedro Zuidberg Dos Martires. Klay: Accelerating
arithmetic circuits for neurosymbolic Al. In The Thirteenth International Conference on
Learning Representations, ICLR 2025, Singapore, April 24-28, 2025, 2025.

[26] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. DeepProbLog: Neural probabilistic logic programming. In Proceedings of NeurIPS,
2018.

[27] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De
Raedt. Neural probabilistic logic programming in deepproblog. Artificial Intelligence, 2021.

[28] Emanuele Marconato, Gianpaolo Bontempo, Elisa Ficarra, Simone Calderara, Andrea Passerini,
and Stefano Teso. Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and
concept rehearsal. In Proceedings of ICML, 2023.

[29] Emanuele Marconato, Stefano Teso, Antonio Vergari, and Andrea Passerini. Not all neuro-
symbolic concepts are created equal: Analysis and mitigation of reasoning shortcuts. In
Proceedings of NeurIPS, 2023.

[30] Emanuele Marconato, Samuele Bortolotti, Emile van Krieken, Antonio Vergari, Andrea
Passerini, and Stefano Teso. BEARS make neuro-symbolic models aware of their reason-
ing shortcuts. In Proceedings of UAI, 2024.

[31] Emanuele Marconato, Samuele Bortolotti, Emile van Krieken, Paolo Morettin, Elena Umili,
Antonio Vergari, Efthymia Tsamoura, Andrea Passerini, and Stefano Teso. Symbol grounding in
neuro-symbolic ai: A gentle introduction to reasoning shortcuts, 2025. URL https://arxiv.
org/abs/2510.14538.

[32] Giuseppe Marra and Ondrej Kuzelka. Neural markov logic networks. In Proceedings of UAI,
2021.

[33] Eleonora Misino, Giuseppe Marra, and Emanuele Sansone. VAEL: Bridging Variational
Autoencoders and Probabilistic Logic Programming. In Proceedings of NeurlPS, 2022.

[34] Heimo Miiller and Andreas Holzinger. Kandinsky patterns. Artificial Intelligence, 300:103546,
2021. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2021.103546.

[35] Connor Pryor, Charles Dickens, Eriq Augustine, Alon Albalak, William Yang Wang, and Lise
Getoor. Neupsl: Neural probabilistic soft logic. In Proceedings of IJCAI, 2023.

[36] Luc De Raedt, Sebastijan Dumancic, Robin Manhaeve, and Giuseppe Marra. From statistical
relational to neuro-symbolic artificial intelligence. In Proceedings of IJCAI, 2020.

[37] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once unified,
real-time object detection. In Proceedings IEEE CVPR, 2016.

11

https://arxiv.org/abs/2410.17725
https://arxiv.org/abs/2510.14538
https://arxiv.org/abs/2510.14538

[38] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28. Curran
Associates, Inc., 2015.

[39] Yoshihide Sawada and Keigo Nakamura. Concept bottleneck model with additional unsuper-
vised concepts. [EEE Access, 10:1-1, 01 2022. doi: 10.1109/ACCESS.2022.3167702.

[40] Davide Scassola, Sebastiano Saccani, Ginevra Carbone, and Luca Bortolussi. Zero-shot
conditioning of score-based diffusion models by neuro-symbolic constraints, 2024. URL
https://arxiv.org/abs/2308.16534.

[41] Arseny Skryagin, Daniel Ochs, Devendra Singh Dhami, and Kristian Kersting. Scalable
neural-probabilistic answer set programming. Journal of Artificial Intelligence Research, 2023.

[42] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Proceedings of NeurIPS, 2017.

[43] Mihaela C. Stoian, Salijona Dyrmishi, Maxime Cordy, Thomas Lukasiewicz, and Eleonora
Giunchiglia. How Realistic Is Your Synthetic Data? Constraining Deep Generative Models for
Tabular Data. In Proceedings of International Conference on Learning Representations, 2024.

[44] Mihaela Catalina Stoian and Eleonora Giunchiglia. Beyond the convexity assumption: Realistic
tabular data generation under quantifier-free real linear constraints. In Proceedings of ICLR,
2025.

[45] Emile van Krieken, Erman Acar, and Frank van Harmelen. Analyzing differentiable fuzzy
implications. In Proceedings of KR, 2020.

[46] Emile van Krieken, Thiviyan Thanapalasingam, Jakub M. Tomczak, Frank Van Harmelen, and
Annette Ten Teije. A-neSI: A scalable approximate method for probabilistic neurosymbolic
inference. In Proceedings of NeurIPS, 2023.

[47] Emile van Krieken, Pasquale Minervini, Edoardo Ponti, and Antonio Vergari. Neurosymbolic
diffusion models, 2025. URL https://arxiv.org/abs/2505.13138.

[48] Victor Verreet, Lennert De Smet, Luc De Raedt, and Emanuele Sansone. Explain, agree,
LEARN: scaling learning for neural probabilistic logic. In Ulle Endriss, Francisco S. Melo,
Kerstin Bach, Alberto José Bugarin Diz, Jose Maria Alonso-Moral, Senén Barro, and Fredrik
Heintz, editors, ECAI 2024 - 27th European Conference on Artificial Intelligence, 19-24 October
2024, Santiago de Compostela, Spain - Including 13th Conference on Prestigious Applications
of Intelligent Systems (PAIS 2024), volume 392 of Frontiers in Artificial Intelligence and
Applications, pages 1349-1356. 10S Press, 2024. doi: 10.3233/FAIA240634.

[49] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss
function for deep learning with symbolic knowledge. In Proceedings of ICML, 2018.

[50] Yiran Xu, Xiaoyin Yang, Lihang Gong, Hsuan-Chu Lin, Tz-Ying Wu, Yunsheng Li, and Nuno
Vasconcelos. Explainable object-induced action decision for autonomous vehicles. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

[51] Zhun Yang, Adam Ishay, and Joohyung Lee. Neurasp: Embracing neural networks into answer
set programming. In Proceedings of IJCAI, 2020.

[52] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht
Madhavan, and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask
learning. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2633-2642, 2018.

12

https://arxiv.org/abs/2308.16534
https://arxiv.org/abs/2505.13138

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and/or introduction clearly state the claims made, including the
contributions made in the paper and important assumptions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have clearly shown what happens when more and more classes are unla-
belled in Section 6 and Figure 6.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

13

Answer: [Yes]

Justification: We have included the proofs of our Theorem 4.1, Corollary 4.2 and Proposi-
tion 5.1 in Appendix A, B and C respectively. We could not provide a sketch of the solution
in the main paper due to space constraints.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of our method in Section 3, the descrip-
tion of the metrics, baseline and datasets in Section 6 and all the remaining details (e.g.,
hyperparameters) in Appendix D, E and F.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

14

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is publicly available at the following Github repository including
detailed instructions for reproducing the experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the relevant details pertaining our experimental analysis are given in
Appendix E.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the error bars in all the tables and charts present in our paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

15

https://github.com/Giotto-maker/r4rr
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We included the details of the compute infrastructure we used in our experiment
in Appendix E.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We reviewed the NeurIPS Code of Ethics and comply with it.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper presents a mitigation strategy for the reasoning shortcut problem, as
such it does not have any immediate and direct societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

16

https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper propose a method that does not present any particular risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For our work we built upon the code and datasets taken from rs-bench [5].
The work has been properly credited, and the URL to the github repository together with the
name of the licence is given in Appendix D.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

17

13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We made the code publicly available and detailed all the necessary documenta-
tion relative to it.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

18

paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Proof Theorem 4.1

Statement. Let y be the output of a prototypical NeSy predictor reasoning over the knowledge K
and the set of concepts C = [hy] x ... x [hy]. If the predictor is trained using LN (y, K), then for
every i € [k] the error calculated with respect to the embedding z; is equal to:

V ENeSy(y K =2 Z aENeSy C(CC_ Z yc’cc’)- (10)

c€[h;]

Proof. Let us apply the chain rule. For every i € [k]:

aﬁNeSy(y K)
vzq‘, ‘CNesy(yv K) = —

exp(—||z; — c.[[3)
vzi/yc = vzi
(Zc’e[hi] exp(—||z; — Cc’H%)

In order to ease the calculations, we calculate the partial derivative of y. with respect to the jth
element of the embedding z;, which we will refer to as zzj

vzi yc

Letd, = —||z; — c.||3 then:
e Jy. Od.
i J
321- ' €lhi) adc (9ZZ
ad, ad,.
=Ye (1_yc)67;_ Z yc’a;
Zi c’€lh;],c’'#c Zi
Since % = —2(z] — eJ), eJ being the jth element of the vector c.., then
0Ye ‘ , S
87; =ye |(L=we)(=2(z] =€) = D we(=2(z] =€)
Zi c’€lh;],c’#c
=2 |—(2) —el) + Z Yo (2] —€l) since Z Yor =1
L ¢’ €lh;] c’€[h;]
= 2y, ei - Z ycfei,
C’G[hi]

‘We can hence conclude:

vz’icNeSy(y’ K) =2 Z 87

B Proof Corollary 4.2

Statement. Let y be the output of a prototypical NeSy predictor reasoning over the knowledge K and
the set of concepts C = [hy] X ... X [hy]. If the predictor is trained using semantic loss LN (y, K)
as defined in Equation 7, then for every ¢ € [k] the error calculated with respect to the embedding z;
is equal to:

ENeSy yv =2 Z {yc Y | ik ':]yc(cc - ch’yc’)' (11)

o ye(1 = ye)

20

Proof. Recall that the semantic loss is defined as:

£NeSy(_ —IOg Z H v(c) 1 _ yc)l v(e)
viEK cel; [h]

where each v : |, [h;] — {0, 1} represents a boolean assignment of the variables in | J, [h;]. Given

) oLN (y K)
Theorem 4.1, to prove our statement, we need to calculate the value of R T

Z H (yC')V(C/)(l - yc’)l_U(CI)i (yc)V(C)(l - yc)l—u(C)
DSy K) ke s %)
9. > I (o)1 —ye)t—v©
V':K CEUi [hz]
where 5 . .
1—v(c
v(c) 1— 1-v(e)| _ 1— 1—v(c) viey(Vic) 1—-v(c)
Y. ((yc) (1—ye)) (1—-9e) (Ye) (m =)
- — Y
=(1— Ye 1—v(c) v(c) (())
() () yc(l - yc)
Substituting we obtain:
I () (1 — o)) (e
OLNN(y, K) _ vEKeeUihd (H=)
9% > IT (we) @1 —ye)t—v
vEK ce U;[hi]

Since each concept ¢ € | J,[h;] corresponds to an independent random event whose truth assignment
is modelled by a Bernoulli random variable Y, ~ Bernoulli(y,), the joint probability distribution
over assignments v : | J,[h;] — {0, 1} factorizes as:

v(c 1—v(c
pvly)= [@)@ —y) .
cel, [hi]
This allows us to compute the expected value of each Y, conditioned on the satisfaction of K as:
2ok PV y) - v(c)

Bl |y,v FK == —xp(v [y)

We can rewrite the error calculated with respect to the output for the class c as:
LN (y,K) _ ye —E[Ye |v EK,y]
ayc yc(l - yc) .

The statement thus follows. U

C Proof of Proposition 5.1

Statement Consider a prototypical NeSy predictor inducing pg(Y|X; K). Assume G = [h;] X
... X [hg] and let H; C [h;] be the set of concepts with at least one labelled datapoint from a dataset
D. Under [A1,2,3] the number of deterministic optima for py(C | G) is

A (A A @ =ans=o)n (ko0 =)

acA gesupp(G) i€lk] g;€H:

« being the mapping induced by pg(C | G) and A being the set of all possible mappings a.

Proof. We assume that:

[A1] the distribution p*(X | G, S) is induced by a map ¢: (g, s) — x, where ¢ is invertible and
smooth over s;

21

[A2] the distribution p*(Y | G;K) is induced by a deterministic mapping Sx: g — y and
p*(y | g;K) = 0, for all (g, y) not compliant with K;

[A3] given a bijective assignment 0 : G — G such that o(g); € [h;] withi = 1,... k, it holds
that for every datapoint x = ¢(g, s), argmin; ¢, [/ f3(x) — c;ll3 =o(g)i

Under [A1], the data distribution is induced by a smooth, invertible map ¢ : (g,s) — X, so every
datapoint can be written as x = ¢(g, s).

Under [A1] and [A3], any deterministic predictor py(C | X) that is constant over the support of
p(X | g) corresponds uniquely to a deterministic mapping « : G — G, defined by a(g) = o(g).
Conversely, each « induces a deterministic distribution py(C | X); thus, it suffices to characterize
the possible assignments o € A given the available supervisions in D.

We now proceed to characterise the number of deterministic optima. For any ¢ € [k] and supervised
label g; € H,; the cross-entropy loss wrt. the concepts is maximised if and only if pg(C; = g; |
g) = 1, which corresponds to a deterministic mapping «(g); = g;. Hence, given i € [k] for all the
deterministic optima it must hold:

Ng;en, (@i(8) = gi A gi = g5)-

When accounting for all the H; and ¢ € [k], we obtain:
/\gESupp(G) /\ie[k] /\gjeyi (i(g) =gi Ngi = 9j)~

Under [A2], a NeSy predictor achieves zero NeSy loss wrt. the final label if and only if it is compliant
with K, then it must hold:
(Bk o @)(g) = Bk(g)

Hence, under [A1,2,3] the number of deterministic optima for pg(C | G) is

1A (A A @@i=gns =) A ((Bcoa(e) = fe))-

acA gesupp(G) i€[k] g;€H:

D Tasks Details

The tasks belong to the rs-bench’ benchmark suite. In this benchmark, all ready-made data
sets and generated datasets are distributed under the CC-BY-SA 4.0 license, with the exception of
Kand-Logic, which is derived from Kandinsky-patterns [34] and as such is distributed under
the GPL-3.0 license. Regarding the code, most of the code in the repo is distributed under the BSD
3 license, with the exception of Kand-Logic, which is derived from Kandinsky-patterns and as
such is distributed under the GPL-3.0 license.

MNIST-EvenOdd [28, 30] The dataset presents a more complex version of the standard
MNIST-Addition task. Each input is a pair of handwritten 28 x 28 digits labelled with their
sum (background knowledge). The goal is to correctly classify the digits (concepts) while predicting
their sum (final label). Notably, the restricted support is designed to stir up shortcut reasoning, with a
total of 49 distinct RSs a model may take. Since the training support is incomplete, thus shortcuts
cannot be avoided by simply processing each digit in isolation. During training only 16 possible pairs
of digits out of 100 are given - 8 comprising only even digits and 8 only odd digits - while at test time
the model is presented with out-of-distribution pairs. The list of all possible training combinations
and their labels are given in Table 6. Overall, the training set contains 6720 data, the validation set
1920, and the test set 960.

Kand-Logic [34, 30] Inspired by the artworks of Wass- . ® .

ily Kandinsky, this task involves non-trivial perception to ™

classify shapes and colours, and logical reasoning to infer - A
2Link: https:/github.com/unitn-sml/rsbench-code Figure 8: Datapoint from Kand-Logic.

22

Table 6: Pairs of digits and their label available in MNIST-Even0dd.
Example Pair Label Example Pair Label

(03 ¢) 6 (AE 6
(23 7) 10 (ElED 10
(49 ¢) 10 (i) 10
(487 12 ER 12

patterns among them. Each datapoint (x1,x2,x3) consists of three 64 x 64 images, representing
three geometric primitives each. An example is depicted in Figure 8. Every sample is labelled as
1 whether all images either include the same number of primitives with the same shape or with the
same colour, and 0 otherwise. In order to formally specify the background knowledge K, we define
six binary classes, deterministically determined from the concept classes:

* SameS; (resp. SameC;) capturing whether all the primitives in x; have the same shape (resp.
color) or not,

* DiffS; (resp. DiffC;) capturing whether all primitives in x; have different shape (resp.
color) or not, and

* TwoS; (resp. TwoC;) capturing whether exactly two of the three primitives in x; have the
same shape (resp. color) or not.

The background knowledge is given by

K <= ((DiffS; ADiffSy ADiffSs) V (TwoS; A TwoSy A TwoS3)V
(SameS; A SameS, A SameS3) V (Dif£C; A DiffCy A DiffCs)V
(TwoCy A TwoCo A TwoCs) V (SameC; A SameCy A SameCy)).

Thus specifying that all images either include the same number of primitives with the same shape
or with the same colour. For example, Figure 8 shows an image whose label is 1 because all the
primitives appearing in each image have different shapes and different colours. Overall, the training
set consists of 4000 datapoints, while the validation and test sets of 1000. Each image in turn shows
three shapes, for a total of 9 primitives per datapoint.

BDD-0IA [50] This real-world and high-stake autonomous driving dataset was originally proposed
as an extension of BDD-100k [52] and contains a total of ~22.5k frames captured from the ego-
vehicle. Each frame, whose size is 720 x 1280, receives labels from { MoveForward, Stop, TurnLeft,
TurnRight} to reflect the right action to be undertaken. The goal is to correctly classify the reasons
(concepts) behind each action (final label, e.g. given Person VV RedLight —> Stop, Person caused
Stop). Frames are processed using a Faster-RCNN model [38] and the first pre-trained layer from [39]
so as to obtain 2048-dimensional embeddings expressing the features present in each training scene.
These embeddings are then used to train the NeSy models. Each frame (or equivalently, embedding) is
annotated with one of 4 possible labels { MoveForward, Stop, TurnLeft, TurnRight}, each indicating
a possible action taken by the ego-vehicle. The learning task, differently from the previous ones, is
multi-label: multiple different actions can be labelled as possible in the provided scene with the only
exception of MoveForward and Stop that are clearly mutually exclusive choices. Additionally, each
embedding is annotated with a subset of the 21 concepts that might cause the action:

{GreenLight, RedLight, TrafficSign, Follow, RoadClear, Car, Person, Rider, OtherObstacle,
LeftLane, LeftGreenLight, LeftFollow, NoLeftLane, LeftObstacle, LeftSolidLine, RightLane,
RightGreenLight, RightFollow, NoRightLane, RightObstacle, RightSolidLine}.

The rules in K specify concept-to-concept and concept-to-action relations. For example:

RedLight — —GreenLight,
—Car V Person V Rider V OtherObstacle <> RoadClear,
GreenLight V Follow VV RoadClear — MoveForward.

For the complete specification of the background knowledge K see Appendix C.2.5 of [29].

This dataset presents us with several challenges:

23

(a) Rider in the scene (b) Rider no longer in the scene

Figure 9: Both Images in the BDD-0IA dataset are labelled as Rider inducing a Stop action.

(a) Pedestrian caused the ego-vehicle to stop (b) Pedestrian did not cause the ego-vehicle to stop

Figure 10: Both Images in the BDD-0IA show instances of the Pedestrian class, yet only (a) is labelled
as such since the pedestrians in (b) did not cause the ego-vehicle to halt.

* Many concepts are under-represented, making it difficult for the model to learn to recognize
them effectively. In particular the exact distribution of the concepts is shown in Table 7. As
we can see the training data are heavily unbalanced, with some concepts being represented
by only a few examples;

* The labels are noisy, and may contain errors or inconsistencies. For example some image
may be labelled with both the actions MoveForward and Stop, which are mutually exclusive.
This is typical of large datasets, especially the real world ones like BDD-OIA, where the
labelling process is often done by humans and may be subject to errors or inconsistencies;

* In some frames temporal information may be lost. See Figure 9 for an example where the
temporal information is needed to correctly label the concepts. Indeed, in the Figure we can
see that both the frames are labelled as Rider, but in (a) it is clear that Rider is present and
cause for the stop, while in (b) the Rider is already far away and we are able to infer the
correct concept only by looking at the previous ones; conversely, the embeddings of the
scene are generated by looking at a single frame at a time. This limitation is known, as it
was already highlighted by [39];

* Single frames may lack contextual information, which can be important for understanding
the scene. For example, in Figure 10 we can see that the context of the pedestrians is crucial
for understanding the correct action to be taken. Indeed, even though in both frames the
pedestrians are crossing the street, the context is different: in (a) the pedestrians are crossing
the street and they are the only reason for the stop, while in (b) there is also a traffic light
that is red. This means that in (a) the pedestrians are labelled as present because the car
stops in front of them, while in (b) the pedestrians are not labelled as present because the car
stops due to the red light.

E Experimental Setup

Neural Architectures As backbone concept extractors for the baseline models we used the archi-
tecture [5]. On the other hand, as a neural prototypical extractor model for the MNIST-Even-0dd
task, we used the same convolutional neural network as in [42] composed of four convolutional
blocks: the first one is a 1 x 64 and the others 64 x 64, respectively. Each blocks consists of a 3 x 3

24

convolutional filter, a batch normalization layer [20], a ReLU nonlinearity, and a 2 x 2 max-pooling
layer. One such prototypical network is used to classify all digits. The same architecture has also
been employed for the Kand-Logic task, with the exception that prototypical networks work on
three RGB channels and their inputs are primitives detected in their corresponding images using
YOLO [37]. In particular, we adopted YOLOV11 [21] that exhibits enhanced detection capabilities in
virtue of the introduction of cross-stage partial blocks, spatial pyramid pooling, and convolutional
blocks with Parallel Spatial Attention components.

For running our experiments on Kand-Logic the nano version of YOLO was sufficient for the
purpose of primitive detection. The model was trained on the same support set constructed through
data augmentation for prototypical networks. We employed two prototypical extractors, sharing the
same architecture and support set, for the task of classifying primitives shapes and colours. For this
tasks, the backbone extractors for baseline are modified so as to process independently each primitive
extracted using YOLO. We also employ two distinct concept extractors to process in a disentangled
manner both shapes and colours, matching exactly the same setup for prototypical models.

As for BDD-0IA, each original frame is processed following [39] by the means of a Faster-RCNN
model that was pre-trained on MS-COCO and then fine-tuned on BDD-100k [52]. Through the
Faster-RCNN backbone the features for the objects in the scene are computed (e.g., traffic lights).
Subsequently, we employ the first pre-trained layer from [39] to produce a 2048-dimensional which
we use to train the NeSy models.

To process the embeddings we created, the standard architecture of prototypical extractors from [42]
was adapted to work with 1D convolutions. More in details, the prototypical architecture we employed
adopts three convolutional blocks, including a 1 x 32, 32 x 64 and 64 x 128 layer respectively, each
comprising 5-wide convolutional filters, batch normalization, ReLU activation and a 1D kernel size 2
max-pooling layer. The last block replaces max-pooling with adaptive average pooling of length 1.
Finally, the output is flattened and further processed through a linear layer, 1D batch normalization
and ReL.U to yield a 256-dimensional embedding. For BDD-0IA, 21 prototypical extractors were
employed, each classifying one concepts. As for the case of Kand-Logic, we modify the standard
baseline to use the same number of backbones as the prototypical models.

All of our models were trained via SGD with Adam [22], a learning rate equal to 10~3, and weight
decay as the regularization method.

Support sets For most of the experiments we worked with at most one annotation per concept.
As we showed in Section 6 RQ1, this is enough to curb the reasoning shortcut problem. Under
this premise, in many experiments we decided to use standard data augmentation techniques on
the annotated data from the support set to pretrain and supervise standard NeSy models (as shown
in Section 6) and/or slightly improve the generalization ability of our prototypical extractors. For
example, In MNIST-EvenOdd, each annotated concept gets augmented through rotations (40 data
points generated), translation (144 data points), scaling (10 data points), elastic distortion (25 data
points) and Gaussian noise addition (4 data points). These transformations try to mimic some of the
variability observed in handwriting.

Likewise, for Kand-Logic the chosen transformations are scaling, anti-aliasing addition and trans-
lation, as the generated data are representative of the primitives the actual dataset contains. In the
latter case, we generate 163 data points per (shape, colour) pair. For BDD-0IA, given a concept j,
at least 6 samples are drawn with ¢ label 1. Then positive (resp. negative) samples are added from
samples positive for each class j/, j # 5/, where 7 also occurs (resp. does not occur). We end up with
~ 200 samples per class, more than 85% of which are negatives. No data augmentation is used and
the prototypical networks are all trained using one training batch randomly sampled at training time,
with some classes being significantly under-represented, as shown in Table 7.

Hyperparameters All the experiments were run across ten seeds: 0, 128, 256, 512, 1024, 2048,
4096, 8192, 16384, 32768. The value of the following hyperparameters is used consistently for all
the experiments when training the NeSy models to predict weak labels for each example in D:

* exponential decay rate 5: 0.99;

* number of epochs: 10 for MNIST-Even0dd and Kand-Logic, 40 for BDD-0IA;
* semantic loss weight wg: 10.0;

» warm-up steps for learning rate increase: 0.

25

Table 7: Concept-level number and percentage of occurrences for each class in 16080 training frames
from the BDDOIA dataset.

Concept Num. of occurrences Percentage
Green Light 5478 34.07%
Follow Traffic 2448 15.22%
Road is clear 3422 21.28%
Red Light 3766 23.42%
Traffic Sign 1095 6.81%
Obstacle Car 171 1.06%
Obstacle Person 116 0.72%
Obstacle Rider 3703 23.03%
Obstacle Other 329 2.05%
No Lane Left 100 0.62%
Obstacle on Left 464 2.89%
Solid Line Left 220 1.37%
On Right Turn Lane 115 0.72%
Traffic Light Allows Right 629 3.91%
Front Car Turning Right 270 1.68%
No Lane Right 3182 19.79%
Obstacle on Right 3177 19.76%
Solid Line Right 2587 16.09%
On Left Turn Lane 4303 26.76%
Traffic Light Allows Left 2796 17.39%
Front Car Turning Left 1563 9.72%

On the other hand, these hyperparameters were used across different models and tasks for the episodic
training of prototypical networks:

» learning rate for prototypical networks training: 10~3;

» number of support and query examples for prototypical networks training: 10 (5 each) if the
support set is expanded with data augmentation and 2 (1 each) otherwise;

» number of episodes per training epoch: 100.

As for the model and application specific parameters, for every task we report a detailed list of all the
hyperparameters we used for training NeSy models over the weakly labelled examples. We use B for
batch size, ~ for the learning rate and w for the weight decay. For LTN p refers to the hyperparameter
for quantifiers. When the models are trained with Shannon Entropy, the parameter wy, indicates its
weight. Lastly, m denotes the embedding dimension for the prototypes extracted.

MNIST-EvenOdd.
* DPL: B=32,vy=10"3, w=10"% w, = 1, m = 64,
e LTN: B=64,v = 1073, w = 1074, p = 6, wp = 10, AND operation uses Godel, OR and
IMPLICATION Produc; as fuzzy semantics, m = 64,
e SL: B=32,vy=10"3,w=10"% m = 64.
e CCN+: B=32,v=10"3,w=10"% m = 64.
« ABL:B=132,y=10"3,w=10"*%
Kand-Logic.
e DPL: B=32,vy=10"% w=0,w, = 1, m = 1024,
e LTN: B=64,7= 1073, w = 1073, p = 8, wp, = 0.8, AND operation uses Godel, OR and
IMPLICATION Product as fuzzy semantics, m = 1024,
« SL: B=32,vy=10"3,w=10"% m = 1024.
BDD-0IA.
* DPL: B=128,7y=107%,w =10"% wy, = 1, m = 256.

Notice that lowering the value and m in the case of BDD-0IA was necessary as we observed the
prototypical networks can in some cases easily overfit the training embeddings.

26

Computing Infrastructure All the experiments run on a machine equipped with the following:

¢ Intel® Xeon® CPU E5-2620 v3 @ 2.40GHz, 24 Cores, 48 Threads;
* 4 NVidia TITAN Xp GPU, 12 GB GDDR5X, 3840 CUDA Cores.

whose operating system is Ubuntu 20.04.5 LTS and CUDA Version 12.2. For realizing the code of
our experiments we used Python 3.20 and Pytorch 1.13.0.

F Additional Results

In this Section we include the additional results we obtained for each research question and experiment
which we could not include in the main body of the paper due to space constraints.

RQ1: Can Prototypical Neurosymbolic Al avoid reasoning shortcuts? The complete results for
prototypical NeSy models are reported in Table 8, 10 and 9 for the MNIST-EvenOdd, Kand-Logic
and BDD-0TIA task respectively. In the Tables our mitigation strategy resorting on prototypical concept
extractor is denoted as PNet, while PNet* is the variant who employs standard data augmentation
techniques to enhance the variety of the support set, as explained in Appendix E, on MNIST-Even0Odd
and Kand-Logic. Regarding MNIST-EvenOdd we introduced several additional baselines exploiting
the annotations from the prototypical support sets in various ways. In particular, the other considered
mitigations are:

* support set S concept supervision: similarly to the mitigation strategy C, proposed in [29],
during training we supervise the NeSy models with the annotations in .S that undergone an
additional data augmentation step, so as to steer them towards the correct predictions. We
denote this variant as C(S)*;

* pretraining: the models’ backbones are trained in a supervised fashion on the support set
before training them on the target task. In this way the baselines can leverage the support set
information to learn better initial parameters. The main text discusses pretraining (Pre*) on
the support set until convergence before training on the weakly supervised data. We also
tested epoch pretraining (EPre*), where the model is pretrained on the support set for one
epoch before each training epoch on the actual task. This second pretraining strategy is
designed to closely resemble the execution of Algorithm | used to train our prototypical
models;

* combinations of pretraining and support set concept supervision.

These additional baselines are useful to demonstrate that the performance gains we present are due to
our architecture, rather than the support set information. From Table 8 two main observations can be
made. First, Prototypical Neurosymbolic models effectively avoid reasoning shortcuts. Second, none
of the baselines introduced is competitive with their prototypical counterpart across all metrics and
all the models studied.

Regarding this second point, observe for instance that EPre* performs competitively with our solution
on Semantic Loss, but it is outperformed by it on DeepProbLog and even more so on Logic Tensor
Networks.

Interestingly, Prototypical Neurosymbolic models also maintain - often even improve - their perfor-
mance on label scores compared to the baselines affected by the reasoning shortcuts. This shows
that enhancing concept alignment is also greatly beneficial to the overall task performance. The only
exception to the above concerns the F1(Y) score. This metric is lower than that of their respective
baselines in the case of Logic Tensor Networks and Semantic Loss. Conversely we do not observe
this drop in performance for DeepProbLog, where the F1(Y) score is actually improved wrt. most
baselines. The difference can be explained by the different ways in which these models integrate the
reasoning and learning components. Indeed, DeepProbLog leverages constrained-output marginal-
ization, and it allocates probability mass only to outputs that satisfy the logical constraints: as a
consequence, during training gradient updates are considered only for digits participating in consistent
sum predictions. In contrast, the semantic objective of Logic Tensor Networks and Semantic Loss
allows for occasional miss-classification.

Finally, notice that the use of data augmentation plays only a marginal role in avoiding reasoning
shortcuts in Prototypical Neurosymbolic models: the difference in both the concept and label scores

27

Table 8: Different mitigations strategies compared across NeSy models, trained with 100% of
MNIST-EvenOdd data. Best results are in bold and second best underlined.

Model / Mitigation Acc(C)(1) FIL(O)@) Acc(Y)(P) FI(Y)(1) CIs(C)(])

Logic Tensor Network

Baseline 0.13+0.07 0.054+0.04 0.61+0.18 0.66+0.10 0.79+0.08
R 0.14+0.07 0.05+0.02 0.72+0.00 0.71+0.01 0.70=+0.00
H 0.554+0.14 0.5540.14 0.77+0.09 0.85+0.08 0.08+0.02
C 0.26+0.00 0.124+0.00 0.77+0.00 0.78+0.00 0.71+0.00
C(S)* 0.46+0.31 0.37+0.35 0.80+0.12 0.61+0.10 0.49+0.29
R+H 0.65+0.10 0.61+0.10 0.74+0.20 0.81+0.20 0.21+o0.16
R+C 0.23+0.00 0.10+0.00 0.75+0.00 0.75+0.00 0.70+0.00
H+C 0.98+0.00 0.98+0.00 0.97+0.00 0.98+0.00 0.01+0.00
R+H+C 0.95+0.00 0.95+0.00 0.91+0.00 0.94+0.00 0.04+0.00
Pre* 0.51+0.22 0.394+0.25 0.89+0.07 0.70+0.06 0.45+0.23
Pre*+C(S)* 0.724+0.27 0.64+0.3¢ 0.94+0.06 0.71+0.05 0.24+0.25
Pre* 0.27+0.24 0.1940.26 0.78+0.09 0.58+0.08 0.62+0.21
PNet (ours) 0.95+0.03 0.95+0.03 0.91+0.05 0.71+0.03 0.00+0.00
PNet* (ours) 0.98+0.00 0.97+0.00 0.95+0.01 0.73+0.00 0.00+0.00
Semantic Loss
Baseline 0.084+0.12 0.04+0.04 0.99+0.00 0.99+0.00 0.68+0.04
R 0.01+0.00 0.01+0.00 0.99+0.00 0.99+0.00 0.70+0.00
H 0.01+0.00 0.01+0.00 0.99+0.00 0.99+0.00 0.70+0.00
C 0.30+0.01 0.22+0.01 0.99+0.00 0.99+0.00 0.60=+0.01
C(S)* 0.56+0.24 0.45+027 0.99+0.01 0.99+0.01 0.26+0.24
R+H 0.01+0.00 0.01+0.00 0.99+0.00 0.99+0.00 0.70+0.00
R+C 0.54+0.07 0.46+0.07 0.99+0.00 0.99+0.00 0.47+0.00
H+C 0.38+0.08 0.31+0.07 0.99+0.00 0.99+0.00 0.50+0.00
R+H+C 0.40+0.10 0.35+0.10 0.99+0.00 0.99+0.00 0.50+0.01
Pre* 0.52+0.25 0.42+0.28 0.98+0.00 0.98+0.01 0.40+0.24
Pre*+C(S)* 0.78+0.22 0.71+0.29 0.99+0.00 0.99+0.00 0.17+0.19
Pre* 0.95+0.10 0.94+0.12 0.98+0.00 0.98+0.00 0.03+0.09
PNet (ours) 0.98+0.01 0.98+0.01 0.97+0.01 0.74+0.00 0.00-0.00
PNet* (ours) 0.99+0.00 0.98+0.01 0.97+0.01 0.74+0.00 0.00+0.00
DeepProbLog
Baseline 0.08+0.10 0.04+0.05 0.87+0.06 0.94+0.04 0.67+0.05
R 0.174+0.00 0.07+0.00 0.75+0.00 0.74+0.00 0.70+0.00
H 0.01+0.00 0.01+0.00 0.99+0.00 0.99+0.00 0.70+0.00
C 0.01+0.00 0.01+0.00 0.75+0.00 0.84+0.00 0.70+0.00
C(S)* 0.26+0.11 0.15+0.07 0.8440.07 0.84+0.08 0.68+0.06
R+H 0.16+0.00 0.09+0.02 0.83+0.06 0.85+0.06 0.63+0.00
R+C 0.01+0.00 0.01+0.00 0.75+0.00 0.84+0.00 0.70+0.00
H+C 0.97+0.05 0.96+0.06 0.96+0.02 0.97+0.02 0.03+0.05
R+H+C 0.98+0.00 0.98+0.00 0.95+0.00 0.97+0.00 0.02+0.00
Pre* 0.64+0.22 0.55+0.28 0.95+0.06 0.95+0.06 0.32+0.24
Pre*+C(S)* 0.86+0.20 0.81+0.26 0.99+0.01 0.99+0.01 0.11+0.18
Pre* 0.84+0.28 0.81+0.33 0.95+0.07 0.95+0.08 0.14+0.28
PNet (ours) 0.97+0.03 0.96+0.04 0.98+0.02 0.98+0.02 0.00+0.00
PNet*(ours) 0.98+0.00 0.98+0.00 0.99+0.00 0.99+0.00 0.00-+0.00

28

Table 9: Results of different RSs mitigation strategies for models trained on the BDD-0IA task
employing 100% of the unsupervised data. Best results are in bold and second best are underlined.

Model / Mitigation Acc(C)(1) FILO)() Acc(Y)(T) FIL(Y)(T) CIs(O){)

DeepProbLog
Baseline;p 0.64+0.04 0.08+0.14 0.76+0.01 0.58+0.08 0.81+0.06
Baseline;yp prp 0.62+0.07 0.08+0.13 0.77 +0.010 0.61+0.04 0.82+0.13
C(S)*inp 0.83 +0.00 0.07+0.16 0.74+0.02 0.4640.05 0.70+0.06
C(S)* 1p,prp 0.81+0.00 0.11+0.17 0.76+0.01 0.53+0.05 0.51+0.15
Pre*;np 0.83 +0.01 0.05+0.14 0.72+0.03 0.43+0.05 0.86+0.04
Pre* i 5p prp 0.824+0.03 0.054+0.13 0.71+0.02 0.52+0.07 0.85+0.04
Pre*+C(S)* i mp 0.83 +0.01 0.07+0.16 0.73+0.02 0.41+0.04 0.75+0.08
Pre*+C(S)* inp pro 0.814+0.02 0.10+0.16 0.76+0.05 0.51+0.04 0.5240.11
EPre;qp 0.83 +0.02 0.06+0.15 0.71+0.03 0.44+0.05 0.82+0.07
EPre;up prp 0.83 +t0.01 0.05+0.13 0.73+0.03 0.46+0.10 0.82+0.07
PNet 0.60+0.03 0.16 +0.15 0.63+0.05 0.41+0.08 0.35 +o0.11

for the prototypical models with and without data augmentation is minimal. Thus data augmentation
is considered only as a complementary technique to slightly improve concept alignment.

We tested as well a more recent, state-of-the-art neurosymbolic model, namely Coherent by Con-
struction NNs (CCN ™). The results are shown in Table 11 and notice they are similar to the ones we
previously discussed in Table 8: this evidence confirms that integrating NeSy models with prototypes
is greatly beneficial in avoiding reasoning shortcuts, regardless of the particular model considered.

To further expand our study, we then tested for shortcut reasoning the abductive learning (ABL)
paradigm [0] as well. The results in Table 12 show that pretraining the ABL model and supervising
with the augmented support set at training time (Pre*+C(S)*) allows to successfully reconstruct the
unlabelled concepts. However, in learning the concepts the model is not synergistically aligned with
the final task (sum prediction), as pointed out by the significant drop in F1(Y) score. Conversely,
prototypical NeSy models can reconstruct the unlabelled digits, while predicting the right final label.

We run similar experiments for the Kand-Logic task. Here we allow for other two type of baselines:

o Input Disentanglement (inD): the architecture of the baseline processes one single concept
in isolation from the rest.

* Predicate Disentanglement (prD): the architecture of the baselines processes one single
concept with separate branches for each set of mutually exclusive concept classes.

Since each concept is assigned a pair of different classes (i.e., a class of the shape and colour),
distinguishing between inD and prD allows to effectively isolate the contribute of disentanglement
from the one of prototypes. The results in Table 10 confirm the enhanced ability of PNet models
in successfully retrieving the intended semantics for the intermediate concepts, while using them
so comply with background knowledge. Moreover, they indicate that combining both forms of
disentanglement with pretraining is generally the second best mitigation strategy across the board.

29

Table 10: Different mitigations strategies compared across NeSy models, trained with 100% of
Kand-Logic data. Best results are in bold and second best underlined.

Model / Mitigation Acc(C)(1) F1(O)() Acc(Y)(T) FI(Y)(T) Cls(O{)

Logic Tensor Network

Baseline;p 0.37+0.04 0.32+0.06 0.50+0.01 0.36+0.03 0.26+0.22
Baseline;np prp 0.36+0.06 0.22+0.06 0.50+0.01 0.34+0.02 0.64+0.16
C(S)" inp 0.39+0.03 0.34+0.04 0.51+0.01 0.41+0.06 0.26+0.16
C(S)* ip,prp 0.60+0.06 0.52+0.06 0.51+0.01 0.36+£0.04 0.54=+0.09
Pre*ip 0.57+0.010 0.56+0.01 0.51+0.00 0.43+0.01 0.00 +0.00
Pre* ;np pro 0.90+0.00 0.90+0.01 0.76+0.03 0.74+0.04 0.00 +0.00
Pre*+C(S)* i mp 0.43+0.02 0.40+0.02 0.50+0.00 0.34+0.01 0.16+0.05
Pre*+C(S) inp prp 0.8840.03 0.8740.03 0.53+0.03 0.39+0.05 0.00 +0.00
PNet (ours) 0.91+0.01 0.90+0.01 0.79+0.03 0.78+0.03 0.00 +0.00
PNet* (ours) 0.93 +to.01 092 +0.01 0.87 +0.05 0.87 +0.05 0.00 +0.00
Semantic Loss
Baseline;p 0.33+0.03 0.22+0.04 0.50+0.00 0.33+0.00 0.57+0.33
Baseline;np prp 0.35+0.05 0.20+0.04 0.50+0.00 0.33+0.00 0.73+0.12
C(S)*im 0.3940.03 0.26+0.06 0.50+0.00 0.34+0.01 0.56+0.25
C(S)* 11p,prp 0.65+0.08 0.60+0.07 0.50+0.00 0.33+0.00 0.36+0.11
Pre*inp 0.58+0.00 0.57+0.00 0.51+0.00 0.43+0.01 0.00 +0.00
Pre* ;np prp 0.91+0.01 0.90+0.01 0.77+0.05 0.76+0.06 0.00 +0.00
Pre*+C(S)* inp 0.42+0.04 0.36+£0.10 0.51+0.03 0.37+0.08 0.29+0.33
Pre* +C(S)* inp prp 0.88+0.02 0.87+0.02 0.50+0.00 0.33+0.00 0.00 +0.00
PNet (ours) 0.92 +t0.02 0.92 +0.02 0.88 +0.10 0.88 +0.11 0.00 +0.00
PNet* (ours) 0.92 +0.01 0.91+o0.01 0.82+0.05 0.81+0.05 0.00 +0.00
DeepProbLog
Baseline; 0.354+0.02 0.26+0.03 0.50+0.01 0.37+0.07 0.52+0.17
Baseline;np prp 0.39+0.05 0.25+0.06 0.50+0.01 0.33+0.00 0.66+0.18
C(S)" inp 0.37+0.00 0.36+£0.00 0.50+0.01 0.34+0.03 0.47+0.08
C(S)* 1p,prp 0.73+0.05 0.68+0.05 0.71+0.21 0.62+0.20 0.37+0.10
Pre*;op 0.58+0.00 0.58+0.00 0.51+0.00 0.44+0.00 0.00 +0.00
Pre* ;np prp 0.92+0.00 0.914+0.00 0.814+0.01 0.80+0.01 0.00 +0.00
Pre*+C(S)* inp 0.42+0.02 0.41+0.01 0.50+0.01 0.40+0.02 0.17+0.06
Pre*+C(S)" snp prp 0.79+0.08 0.76+0.09 0.61+0.17 0.50+0.25 0.38+0.16
PNet (ours) 0.94 to.00 0.94 +0.01 099 +0.00 0.99 +0.00 0.00 +0.00
PNet* (ours) 0.94 1000 0.94 001 0.99 +000 0.99 +0.00 0.00 +0.00

Table 11: Mitigation strategies compared for CCN' on MNIST-EvenOdd. Best results in bold and
second best underlined.

Acc(O)(T) FLOM) Ace(Y)(1) FI(V)(M) Cls(O)WU)

Baseline 0.03+0.07 0.01+0.03 0.92+0.10 0.92+0.11 0.73+0.05
C(S)* 0.36+0.10 0.24+0.08 0.91+0.06 0.90+0.07 0.52+0.11
Pre* 0.33+0.11 0.22+0.10 0.91+0.090 0.91+0.09 0.57=+0.09
Pre*+C(S)* 0.54+021 0.91+0.10 0.92+0.09 0.91+0.10 0.34+0.22
EPre* 0.66+0.14 0.56+0.17 0.97+0.03 0.97+0.03 0.25+0.16

PNet (ours) 0.96+0.04 0.95+0.05 0.96+0.07 0.96+0.08 0.00 +0.00
PNet*(ours) 098 +o.01 0.97 +0.01 0.96+0.09 0.95+0.11 0.00 +0.00

30

(square,Red) 0.00 0.02 0.06 0.03 0.18 0.27 0.02 0.20 0.22 Liauare,kedJOJO 0.12 0.16 0.04 0.04 021 003 0.03 0
0.6
Square, velow) 0.00 | 0.31 0.09 0.10 [0.31 0.04 0.02 0.2 0.02 (sauare, Yellow) 0.110.10 0.08 0.18 0.07 0.03 0.16 0.03 03
(square, Blue) 0.00 0.04 0.03 0.020.23 0.02 0.16 0.07 0.5 (Square, Blue) | 0.12 0.110.04 0.03 0.14 008 004 0.15
0.3
(Circle,Red) 0.00 0.06 0.06 0.05 0.28 0.16 0.02 0.27 0.11 o (circle, Red) 009 0.05 0.050414 0.14 019 003 0.04
.4
0.2
(Circle, Yellow) o.ooﬂom 0.09 0.26 0.05 0.01 0.08 0.01 (Circle, Yelow) 0,02 0.11 0.03 0.190.13 0.02 ' 0.15 0.02
03 -0.2
(Circle, Blue) 0.00 0.06 0.02 0.04 NUEPN 0.20 0.03 0.12 0.02 (Circle, Blue) 0.03 0.04 0.14 0.13 0-150-05 0.05 0.15
-0.1
(Fiangle, Red) 0.00 0.03 0.01 0.02 WJErM 0.23 0.02 0.11 0.05 0.2 (Tiangle, Re) 0.08 0.04 0.09 0.10 0.02 0.050.12 0.16
-0.1
Fiangle, Yellow) | 0.00 0.06 0.00 o.oeﬁmz 0.01 0.08 0.01 (Tiangle, vellow) | 0.01 0.08 0.05 0.03 0.11 0.09 0.14 NJEEN 0.16
-0.1
-0.0
(tangle, i) 0.00 0.03 0.00 0.03 014 002 0.08 001 (Tiangle, Bue) 0.02 0.02 0.11 0.02 0.02 0.11 0.14 0.13 K]
5 N 5 N N NN -00 S S @ 4 N
B A R R R
& e & e & & v & R R A R I Py
S A A S S g ¢ e & @«
*
(a) SLinp (b) SL;jp+Pre
(quare, Red) 000 0.00 0.00 o.ooo.oo 0.00 0.22 0.00 «squave,kea»ﬁo.oo 0.02 002 001 001 026 0.01 0.1
0.8
(square, Yellow) 0,00 0.00 0.00 o.ooo.oo 0.00 0.24 0.00 08 (square, Yellow) 0.01H0.o1 0.01 012 001 001 032 0.01
(Square, Blue) 0,00 0.00 0.00 0.00 0.03 0.00 o,ooo,oo (square, Blue) | 0.01 o.o1ﬂo.o1 0.02 002 001 002 0.01
0.6
(Circle, Re) 0,00 0.00 0.00 0.00 0.00 039 0.00 0.6 (Circle, Re) 0,01 0.01 0.01 0.00 0.00 0.06 0.02 0.02
(Circle, Yellow) ~ 0.00 0.00 0.00 0.00 0.00 0.33 0.00 (Circle, Yellow) 0.01 0.03 0.03 0.000.01 0.01 0.14 0.00
-0.4
(Circle, Blue) 0.00 0.00 0.00 0.00 0.02 0.00 0.00 WVKER 0.00 o4 (Circle, Blue) | 0.01 0.01 0.05 0.00 0.01 Ll 0.01 0.02 0.02
(Triangle. Red) 0.00 0.00 0.00 0.00 0.02 0.00 0.00 LN 0.00 (Triangle, Red) 0.01 0.01 0.00 0.01 0.00 0-010.°Z 0.02
Lo -0.2
Tiangle, vellow | 0,00 0.00 0.00 0.00 0.03 0.00 0.00 XYM 0.00 ’ (tiangle, vellow) 0.01 0.01 0.01 0.01 0.00 0.01 o.ozo.oz
(Triangle, Bue) ~ 0.00 0.00 0.00 0.00 0.03 0.00 0.00 HX¥A 0.00 (Triangle, Blue) 0.01 0.00 0.01 0.02 0.00 0.01 0.02 0.02.
-0.0
N NN
I R R A
A e & @ 5 E @ & & S
T N R P e ¢ ¢ & <€ SO
*
(C) SLinD,prD (d) SLinD,prD"'Pre
(Square, Rem.o.ol 0.02 0.01 0.01 0.01 0.02 0.01 0.01
. "
(Square, Yellow) 0.01 WMl 0.01 0.01 0.05 0.01 0.01 0.11 0.01
(Square, Blue) 0.02 0.010.00 0.02 0.01 0.01 0.01 0.01
0.6
(circle, Red) 0.03 0.01 0.01 JK:E@ 0.00 0.00 0.06 0.01 0.02
(circle, Yellow) 0.01 0.02 0.03 0.000.01 0.01 0.08 0.00
-0.4
(circle, Blue) 0.01 0.01 0.08 0.00 0.01 0.01 0.02 0.01
(Tiangle, Red) 0.01 0.01 0.01 0.01 0.00 04000.02 0.02
-0.2
(Triangle, Yellow) 0.01 0.01 0.01 0.01 0.00 0.01 0,020.02
(Triangle, Blue) 0.01 0.00 0.01 0.02 0.00 0.01 0.02 0,02
& @_@@ L \f@ & & \fo
B S ;
& «,&”’& & ¢ \O‘O@ SR @“&e @’&

(e) SL+PNet
Figure 11: Kand-Logic (shape,colour) concept confusion matrices for the standard and pretrained

Semantic Loss model disentangled wrt. inputs (inD), inputs and the predicates (inD,prD) and
integrating prototypes (PNet).

31

Table 12: Standard mitigation strategies compared for ABL on MNIST-EvenOdd.
Acc(C)(1) FIOYT) Ace(Y)(T) FI(V)(T) Cls(O)1)

Baseline 0.06+0.09 0.03+0.05 0.70+0.08 0.31+0.14 0.56+0.15
C(S)* 0.67+0.16 0.64+0.16 0.71+0.10 0.15+0.02 0.00+0.00
Pre* 0.90+0.03 0.89+0.02 0.83+0.04 0.15+0.01 0.00+0.00

Pre*+C(S)* 0.95+0.01 0.934+0.010 0.90+0.01 0.17+0.01 0.00+0.00

(a) SL (b) SL+C(S)* (c) SL+Pre* (d) SL+Pre*+ C(S)* (e) SL+PNet

Figure 12: MNIST-EvenOdd concept confusion matrices for different mitigation strategies.

Crucially, even though concept-level scores for this mitigation are comparable to PNet models, the
performance on label-level metrics is lower than the one of our approach. This can be explained by
the fact that the embedding update introduced in Section 4 does a better job than the standard NeSy
update in aligning the concept representation with the final label prediction task.

The improved concept alignment Nesy models enjoy when paired with prototypical extractors is
even more clear looking at the confusion matrices: in Figure 12 we see how different mitigation
strategies allow to gradually improve the Semantic Loss model ability to correctly reconstruct the
unlabelled concepts, with the prototypical model being the better. Similar considerations hold for the
confusion matrices reported in Figure | | for the case of Kand-Logic: we can see that incorporating
the disentanglement wrt. the shape and colour concepts does not help the Semantic Loss model to
better disambiguate the concepts, but the difference between the two is evident as soon as the support
set is made available for pretraining. Even in the case of a pretrained, fully disentangled model
however, there concept [is often confused with A. On the other hand, the prototypical NeSy model
does not suffer for this confusion.

Lastly, we report the full results for BDD-0IA in Table 9. In this task the data are very unbalanced
(c.f. Table 7). Interestingly, the best results our architecture achieves for F1(C) and Cls(C) show
that the prototypical model is robust wrt. the unbalance and does not collapse its predictions on the
dominant class “0”. Conversely, pretraining on the support set not help in mitigating the shortcut
reasoning behaviour. Even worse, the score for F1(C) decreases for pretrained models wrt. the
standard baselines. Overall, the most competitive approach with prototypical models is C(S)* in its
twofold disentangled version. However, this baseline as well only achieves a minor improvement
wrt. the F1(C) score (0.11) of the standard DeepProbLog model (0.08). Conversely, the PNet model
doubles this score (0.16). In addition, even if the C(S)* baseline succeeds in reducing concept
collapse (0.51), it is still far from the lower collapse of the prototypical model (0.35). We observe that
label-level metrics and Acc(C) decrease in the PNet models: this is expected as, given the unbalanced
data, baselines frequently predicting class “0”.

RQ2. How does prototypical NeSy compare with other mitigation strategies?

In Table 8 we report an exhaustive picture for the comparison of shortcut mitigation strategies in
MNIST-EvenOdd. The Table accounts for the mitigations introduced in [29] already discussed in the
main text (Section 6 (RQ2)): these are partial concept supervision (C), input reconstruction (R) via
the introduction of a reconstruction loss with an encoder-decoder architecture, Shannon entropy loss
(H), and combinations thereof. The scores for baseline models are obtained from [5] and we used the
code for all the mitigation strategies and combinations thereof as in [29]. Also, to convey the broader
picture, we included the computation for concept (Acc(C)) and label (Acc(Y)) accuracy. As expected,
we see that the results wrt. Acc(C) mirror those reported in Table 4, where we reported the F1(C) for
the same experiments. Moreover, our models consistently succeed in minimizing Cls(C), which is 0.0
across all the models considered. On the other hand, we see that the mitigation strategies generally

32

1'0 ..
— s L — 1.0
— 0.9~ o8 T e
@) @)
] Y “UlStandard NN__ 2
<077 e SL+PNet <L 0.4 //’\.\ e SL+Pre*+C(S)*
06 —.— LTN+PNet 0.2 N/ '\'/. —-— LTN+Pre*+C(S)*
' DPL+PNet 00 DPL+Pre*+C(S)*
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0203 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Unsupervised Data Percentage Unsupervised Data Percentage
(a) Acc(C) for NeSy+PNet models (b) Acc(C) for NeSY+Pre+C(S) models
O oo i e e 10} e T
0.9 i e = =
~08 ,/'/ ~08 ~. _/‘~'\._,./'” """"""" ~.
Zo7 z Standafd NN
[v] SRR R e e
0 0.6 Q |V
<os5 SL+PNet < e SL+Pre*+C(S)*
04 —-— LTN+PNet 0.4 —— LTN+Pre*+C(S)*
' DPL+PNet DPL+Pre*+C(S)*
0.3 0.2
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Unsupervised Data Percentage Unsupervised Data Percentage
(c) Acc(Y) for NeSy+PNet models (d) Acc(Y) for NeSY+Pre+C(S) models
1.0 L0 |
0.9
0.8 0.8
0.7 = Standard NN
< < 0.6 . ST =
= 0.6 — o N
L 05l SL+PNet P SL+Pre*+C(S)*
0'4 —-— LTN+PNet ' —— LTN+Pre*+C(S)*
0'3 DPL+PNet 0.2 DPL+Pre*+C(S)*
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Unsupervised Data Percentage Unsupervised Data Percentage
(e) F1(Y) for NeSy+PNet models (f) F1(Y) for NeSY+Pre+C(S) models
ooaf SL+PNet 0.8
—— LTN+PNet 061 ~ N S~
. \ £, o’ ~N.-
~ 002 DPL+PNet | — NN valy
O Qoa va v 7
@ 0.00————— I
© 102 Oo.2 | SL+Pre*+C(S)*
' |standard' NN —— LTN+Pre*+C(S)*
-0.04 0.0 DPL+Pre*+C(S)*
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Unsupervised Data Percentage Unsupervised Data Percentage
(g) Cls(C) for NeSY+PNet models (h) CIs(C) for NeSY+Pre+C(S) models

Figure 13: Extensive Comparison of Prototypical NeSy models (left) vs Standard Pretrained
ones (right) supervised on support sets, across different percentages of unlabelled datapoints on
MNIST-Even(Odd.

33

—
=)
g
=)
=}
©

B I S ACCY i e 08l L g
>.0.8DPL Acc(Y) 5,08 5,07 Sy
@) @) 006
Sos os € 0.5 TN Acc(v).
Soa S04 go4
<> Acc(C) | < Acc(C) <0.3 Acc(C)
0.2[ppL Acc(C) o Acc(Y) 2%t Acc(c) - Acc(Y) 924N Acc() o Acc(Y)
8 7 6 5 4 3 2 7 6 5 4 3 2 8 7 6 5 4 3 2
Number of hidden classes Number of hidden classes Number of hidden classes
(a) DPL+PNet (b) SL+PNet (c) LTN+PNet
0.7
0.8
go.a DPL %0-6 St §0.7 LN
Zos 205 Los6
Oo4 Go4 Sos
o3 803 o4
g o g 0.2 ::d 0.3
o I 501 | 502 |
Soa Cls(C) S, ClIs(C) So1 Cls(C)
8 7 6 5 4 3 2 7 6 5 4 3 2 8 7 6 5 4 3 2
Number of hidden classes Number of hidden classes Number of hidden classes
(d) DPL+PNet (e) SL+PNet (f) LTN+PNet

Figure 14: Acc(C), Acc(Y) and Cls(C) obtained with the Prototypical NeSy models on
MNIST-EvenOdd when varying the number of hidden classes, i.e., the number of concepts for
which we have zero examples. The red dotted lines indicate the performance of the corresponding
baseline model.

do not have a great impact on the metrics over the final label (i.e., Acc(Y) and F1(Y)), as the NeSy
models were already performing well on the unlabelled classes.

RQ3. Are Prototypical NeSy models robust wrt. the number of unlabelled datapoints?

In Figure 13 we report the results obtained in the same experiment reported in Section 6 (RQ3)
wrt. the metrics Acc(C), Acc(Y), F1(C) and FI1(Y). Similarly to F1(C), we can see from the Figure
(a) that the results we obtain for ACC(C) using our PNets are very stable and improve as we add
more unsupervised data. On the contrary, as (b) shows, if we use the standard NeSy models taking
advantage of the supervisions both in a pretraining stage (Pre) and at training time with a cross-
entropy loss (C(S), the results present a high variance and are very susceptible to the percentage of
unsupervised data used for training. Similar considerations hold for ACC(Y) as well in (c) and (d),
with only the Semantic Loss baseline model maintaining label accuracy scores comparable with the
PNet approach. Moreover, from (e) and (f) we notice the PNet approach consistently improves the
standard NeSy models F1(Y) score as well (with SL being the only exception) for all the percentages
of unsupervised data. Crucially, observe from (h) that all the standard models suffer from high concept
collapse. How much each model collapses it predictions is again susceptible to the percentage of
unsupervised data used for training. Now compare this behaviour with (g): our prototypical models
have 0.0 concept collapse across all the percentages of unsupervised data.

RQ4. What is the impact of having unlabelled classes?

In Figure 14 and Figure 15 we report the results obtained in the experiments described in Section 6
(RQ4) wrt. Acc(C), Acc(Y) and Cls(C) on the MNIST-Even0Odd task and the Kand-Logic task,
respectively. As expected, the more classes are labelled the better the results become. However, it is
interesting to note that—in the MNIST-Even0dd task—even by labelling only two images we obtain
better results over the concepts than using the standard NeSy models. The same happens for the
Kand-Logic task, where we need at least two examples for the shape primitives and two for the
colour primitives. However, we can again see that with just four labelled examples we get better
results than all the standard NeSy models.

34

0.8

e o8 e —
>O‘7 < 520.7] - e
8 0.6l o Qo.6¢"
5 " PPL Acc(Y) 506 5 TN Acc(Y)
Yos o 005
o O L O
< 04 Acc(C) < 7L Acc(Y) Acc(C) < 04 Acc(C)
. 4 .
0.3PPLACC() Acc(Y) %% Acc() Acc(Y) LTN Acc(C) Acc(Y)
3 2 3 2 3 2
Number of hidden classes Number of hidden classes Number of hidden classes
(a) DPL+PNet (b) SL+PNet (c) LTN+PNet

0.8
Q 0.7 0.8
) DPL I 0
go7 Eg.g SL o7
© he ©0.6
oos Soa o
) 4-4 + 0.5
2.0.5 0.3 o
[J] [J] [J) 0.4
o V0.2 o U
g 0.4 Cls(C) g 0.1 Cls(C) g 0.3 Cls(C)
&) s oY oL

033 0.04 § 5 TN

2
Number of hidden classes

(d) DPL+PNet

2
Number of hidden classes
(e) SL+PNet

Number of hidden classes

(f) LTN+PNet

Figure 15: Acc(C), Acc(Y) and Cls(C) obtained with the Prototypical NeSy models on Kand-Logic
when varying the number of hidden classes, i.e., the number of concepts for which we have zero
examples. The red dotted lines indicate the performance of the corresponding baseline model.

p=0.2

p=0.2

0.67%

0.5
Jo.4
T3
0.2
0.1

-~- p=0.5

p=0.2

p=0.99

7 6 5 4 3 2
Number of hidden classes

(a) F1(C)

7 6 5 4 3 2
Number of hidden classes

(b) Acc(C)

7 6 5 4 3 2
Number of hidden classes

(c) CIs(C)

Figure 16: F1(C), Acc(C) and Cls(C) obtained with PNet+SL when varying the number of hidden
classes and for different values of p, i.e., for different lower-tail quantiles of the X2 distribution.

RQS: How important is the centroid initialization for unlabelled classes?

In Figure 16 we report the results obtained wrt. F1(C), Acc(C) and Cls(C) for different lower-tail
quantiles of the x? distribution. Clearly, choosing p = 0.99 improved our results—no matter the
metric considered.

35

	Introduction
	Problem Statement
	Prototypical Neurosymbolic AI
	Reasoning over Distances
	Counting Deterministic Reasoning Shortcuts
	Experimental Analysis
	Related Work
	Conclusion
	Proof Theorem 4.1
	Proof Corollary 4.2
	Proof of Proposition 5.1
	Tasks Details
	Experimental Setup
	Additional Results

