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Abstract001

Object hallucination is a significant challenge002
that undermines the reliability of the Vision003
Language Model (VLM). Current methods for004
evaluating hallucination often require compu-005
tationally expensive complete sequence gener-006
ation, making rapid assessment or large-scale007
analysis difficult. We introduce HALP (HALlu-008
cination Prediction via Probing), a novel frame-009
work to efficiently estimate a VLM’s propen-010
sity to hallucinate objects without requiring full011
caption generation. HALP trains a lightweight012
probe on internal VLM representations ex-013
tracted after image processing but before au-014
toregressive decoding. HALP offers a new015
paradigm for efficient evaluation of VLM, a016
better understanding of how VLMs internally017
represent information related to grounding and018
hallucination, and the potential for real-time019
assessment of hallucination risk.020

1 Introduction021

Vision-Language Models (VLMs), including022

LLaVA (Liu et al., 2024), PaliGemma (Steiner023

et al., 2024), Qwen (Bai et al., 2024), and BLIP024

(Li et al., 2022), are transforming multimodal025

AI, demonstrating impressive capabilities in both026

visual understanding and language generation027

grounded in images. However, object hallucination028

where models describe nonexistent objects remains029

a persistent challenge, particularly in high-stakes030

applications such as healthcare, autonomous sys-031

tems, and assistive technologies. Such errors not032

only undermine user trust but can also result in033

harmful outcomes.034

Existing methods for evaluating hallucinations035

rely heavily on post-hoc analysis of fully generated036

captions (Li et al., 2023), which is computationally037

expensive and ill-suited for real-time use. While038

other approaches attempt to mitigate hallucination039

during generation or detect it in the generated text040

(Chen et al., 2024), they cannot predict hallucina-041

tion risk before decoding begins. This reveals a042

critical gap: there are few methods that assess a 043

model’s propensity to hallucinate based solely on 044

its internal representations. 045

To address this, we introduce HALP (Halluci- 046

nation Prediction via Probing), a lightweight prob- 047

ing framework that estimates hallucination risk us- 048

ing internal activations prior to caption generation. 049

HALP extracts hidden states at three key stages in 050

the captioning pipeline: after image encoding, af- 051

ter multimodal fusion, and across intermediate de- 052

coder layers. A Simple small MLPs is then trained 053

on these representations to predict CHAIRi (Contin- 054

uous Hallucination severity), binary hallucination 055

flags. 056

Our experiments on the COCO 2014 dataset 057

(Lin et al., 2015) demonstrate that early vision 058

encoder outputs are highly predictive of halluci- 059

nation. For instance, a vision-only probe trained 060

on LLaVA’s pooled CLIP embedding achieves an 061

MSE of 0.0455 and Hallucination Existence (AU- 062

ROC) of 0.750, outperforming probes built on 063

deeper decoder states (MSE ≥ 0.0509, AUC ≤ 064

0.665). Similarly, PaliGemma’s performance de- 065

clines as deeper layers are used (MSE rises to 066

0.8570). Notably, Qwen achieves its best perfor- 067

mance at a deeper query layer (MSE 0.03730, AU- 068

ROC 0.7611). Across all models, HALP enables 069

accurate, real-time hallucination prediction before 070

a single token is generated. 071

2 Background and Related Work 072

Object Hallucination in VLMs: Object hallu- 073

cination occurs when a VLM describes objects 074

not present in the visual input, reducing reliabil- 075

ity in sensitive domains like medical imaging or 076

autonomous navigation. These errors often stem 077

from mismatches between language priors and 078

visual grounding, or from annotation biases in 079

training data. Mitigation strategies typically act 080

during or after generation, including Uncertainty- 081
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Guided Dropout Decoding (Fang et al., 2024),082

adaptive focal-contrast decoding (HALC) (Chen083

et al., 2024), and perception-driven grounding aug-084

mentation (Ghosh et al., 2025). Post-hoc methods085

flag hallucinated mentions in generated captions.086

Evaluation commonly relies on the CHAIRi metric087

(Rohrbach et al., 2018a), which measures the ratio088

of hallucinated object mentions to all mentioned089

objects and requires full caption generation.090

Representation Probing Representation Prob-091

ing is a diagnostic method where lightweight classi-092

fiers or regressors are trained on fixed internal acti-093

vations to assess whether specific properties are en-094

coded. In NLP, probes have shown that pretrained095

language models capture part-of-speech tags, syn-096

tactic dependencies, and coreference relations at097

particular layers (Hewitt and Liang, 2019; Mar-098

vin and Linzen, 2018). In computer vision, linear099

probes on convolutional features reveal emergent100

object detectors in scene-classification networks101

(Zhou et al., 2015), and techniques like Network102

Dissection align hidden units with semantic con-103

cepts to quantify interpretability (Bau et al., 2017).104

More recently, probing has been applied to Vision105

Transformers, where intermediate self-attention106

and MLP layers encode rich class-specific and107

scene-level semantics (Chen et al., 2022). These108

studies highlight probing as a lightweight yet ef-109

fective tool for mapping task-relevant features in110

deep networks, motivating its use here to detect111

hallucination signals early in VLM decoding.112

Hallucination Detection Recent work shows113

that vision and language models often encode114

hallucination-related signals in their internal states115

before generation. Orgad et al. (2023) trained116

probes on hidden activations to predict factual cor-117

rectness, finding that the most informative signals118

are concentrated around answer tokens. Zhao et al.119

(2024) used a lightweight classifier on first-token120

logits to distinguish safe from unsafe prompts,121

suggesting models implicitly signal likely errors.122

Kadavath et al. (2022) introduced self-evaluation123

strategies, such as adding “none of the above” or124

using binary questions, to gauge model confidence.125

These findings support the hypothesis that halluci-126

nation cues exist in intermediate representations,127

motivating pre-generative detection frameworks128

like HALP.129

Figure 1: Overview of the HALP pipeline. Visual to-
kens from the input image are fused with prompt and
last query token representations and passed to the de-
coder. Hidden states are extracted at key stages and
used by probes to predict hallucination before caption
generation.

3 HALP: HALlucination Prediction via 130

Probing 131

3.1 Preliminaries: VLM Architecture 132

A vision–language model (Liu et al., 2023) con- 133

sists of three core components in sequence: first, 134

a vision encoder (Radford et al., 2021) decom- 135

poses the input image into a set of continuous fea- 136

ture vectors, or “visual tokens,” capturing patch- 137

level visual information; next, a multimodal con- 138

nector which maps those visual tokens into the 139

same embedding space as the language model, en- 140

abling joint reasoning over vision and text; finally, 141

a Transformer-based LLM decoder (Team et al., 142

2024) consumes the fused visual embeddings op- 143

tionally alongside task-specific query tokens and 144

autoregressively generates the target text. It is pre- 145

cisely the hidden activations at various positions 146

within this encoder–connector–decoder pipeline 147

that we tap for our hallucination-prediction probes. 148

3.2 Post-Generation Hallucination 149

A caption is generated by processing an image 150

along with a prompt in VLM. Once the caption 151

ĉj is generated, the presence and degree of hallu- 152

cination are assessed based on two key indicators: 153

Continuous metric (aj): Proportion of objects hal- 154

lucinated. Binary indicator (bj): A binary value 155

indicating whether hallucination occurred (1) or 156
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not (0).157

3.3 Extracting Internal Representations for158

Probing159

To forecast hallucination risk before any tokens are160

generated, we extract three classes of vectors from161

a single forward pass of the VLM on image Ij :162

Global Vision Only Representation evj ∈ Rd:163

the pooled output of the vision encoder, which sum-164

marizes the primary visual features of Ij .165

Layer-wise Last Vision Token Representations166

e
(ℓ)
fj

∈ Rd: for each selected decoder layer ℓ ∈ L,167

we record the hidden state at the position immedi-168

ately following the projected visual tokens. This169

vector captures how the model’s attention mecha-170

nism has integrated image features with any pre-171

ceding text (e.g., system prompts).172

Query-conditioned decoder states h
(ℓ)
qj ∈ Rd:173

from the same layers ℓ ∈ L, we also extract the174

hidden state at the final query token i.e. just be-175

fore autoregressive generation begins to capture176

the fused multimodal context that guides the forth-177

coming caption.178

We then concatenate all of these evj , {e(ℓ)fj
}ℓ∈L,179

and {h(ℓ)
qj }ℓ∈L into a single feature vector xj . Our180

lightweight probe is trained on {(xj , yj)}, where181

yj is the ground-truth hallucination metric, en-182

abling pre-generation prediction of hallucination183

propensity.184

4 Experiments and Results185

4.1 Experimental Setup186

To evaluate HALP’s effectiveness across diverse187

Vision-Language Models (VLMs), we utilized the188

COCO 2014 dataset (Lin et al., 2015), a widely189

adopted benchmark for object recognition and cap-190

tioning.191

Models Our experiments included a comprehen-192

sive set of state-of-the-art VLMs: LLaVA-v1.5-193

Vicuna-13b (Liu et al., 2024), PaliGemma-2 3B194

(Steiner et al., 2024), Qwen 2.5 VL 7B (Bai et al.,195

2024), and BLIP (Li et al., 2022). Hallucination196

Metrics: We employed CHAIRi (Rohrbach et al.,197

2018b) for evaluating object hallucination. This198

metric was framed as both a Regression task (pre-199

dicting a continuous hallucination score) and a Bi-200

nary Classification task (predicting the presence or201

absence of hallucination based on a threshold).202

Vision Only Representation Last Vision Token Representation (Layer N) Last Query Token Representation (Layer N)

Hallucination Degree (MSE) ↓

LLaVA 0.045 0.050 0.052
PaliGemma 0.085 0.857 0.084
BLIP 0.039 0.043 0.746
Qwen 0.042 0.043 0.040

Hallucination Existence (AUROC) ↑

LLaVA 0.750 0.632 0.500
PaliGemma 0.732 0.500 0.492
BLIP 0.515 0.500 0.500
Qwen 0.708 0.553 0.761

Table 1: Summary of probe performance on two VLMs.
Top: mean-squared error (MSE) for CHAIRi regression;
bottom: ROC–AUC for binary hallucination detection.
Layer N refers to the final layer of the language model
decoder.

Embedding Extraction Internal VLM represen- 203

tations were extracted from the following key 204

points within each model’s architecture: 205

• Vision Encoder: The final output embedding 206

of the VLM’s dedicated vision encoder, repre- 207

senting the raw visual features. 208

• LLM Decoder: These were extracted at posi- 209

tions corresponding to the end of the image 210

token (multimodal Last Vision Token Repre- 211

sentation) and the end of the query token 212

(query-conditioned decoder state). The se- 213

lected layers were Layer 1, n/4, n/2, 3n/4, and 214

n, allowing us to analyze information flow 215

across the decoding process. 216

Probe Architecture The probe consists of a 217

lightweight, feed-forward Neural Network (NN) 218

with 3 hidden layers and respective dimensions of 219

[1024, 512, 256]. The probes predicts the Hal- 220

lucination metric (Binary and Continuous from 221

CHAIRi) by taking hidden LLM decoder states 222

as input. 223

4.2 Results and Analysis 224

Our experiments evaluate the performance of 225

lightweight probes on four distinct Vision- 226

Language Models (VLMs): Qwen, BLIP, LLaVa, 227

and PaliGemma. The probes are trained to predict 228

object hallucination by tapping into internal model 229

representations at various depths. Performance is 230

measured using Mean Squared Error (MSE) for 231

continuous hallucination score regression (lower 232

is better) and ROC-AUC for binary hallucination 233

classification (higher is better). The analysis is 234

structured to compare performance across different 235

decoder layers, models, and embedding types. 236

Layer-wise Analysis We evaluate hallucination 237

existence prediction across five decoder layers 238

(Layer 1, N/4, N/2, 3N/4, N) using AUROC scores 239

(Figure 2). Across models, performance generally 240

improves from the shallowest layer to intermediate 241
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Figure 2: Hallucination Existence (AUROC) for binary
hallucination detection. Layer-wise

depths. Layer N/4 consistently yields the highest242

AUROC scores peaking at 0.665 indicating that243

mid-level representations are most informative for244

hallucination detection. Beyond this point, perfor-245

mance plateaus or declines slightly, with minimal246

gains observed at deeper layers. Notably, early247

layers show weaker predictive capacity, often near248

chance level, suggesting that hallucination-relevant249

features emerge progressively and are most salient250

in the middle of the decoder.251

Token Representation Analysis Figure 4252

presents a token-wise comparison of hallucination253

prediction using image vs. query embeddings254

across decoder layers. We find that image embed-255

dings consistently yield low MSE (0.038–0.043),256

while query embeddings produce high MSE257

(0.713), indicating that BLIP primarily encodes258

hallucination-irrelevant signals in the query path.259

This suggests a failure to effectively ground text260

generation in visual content, highlighting a core261

limitation in BLIP’s architecture.262

Model-Wise Hallucination Prediction Analysis263

We observe that BLIP consistently yields high MSE264

scores ( 0.7127), indicating poor modeling of hal-265

lucination signals. This underperformance likely266

stems from its earlier architecture and shallow vi-267

sion language alignment, which limits its ability to268

ground text in visual content.269

In contrast, Qwen and LLaVa both recent mod-270

els achieve significantly lower MSE. Their supe-271

rior performance can be attributed to deeper cross-272

modal integration, stronger supervision, and train-273

ing on more diverse datasets. These results high-274

light the importance of modern architectures and275

robust alignment for effective hallucination model-276

ing.277

5 Conclusion278

We presented HALP, a lightweight probing frame-279

work for pre-generative prediction of object hal-280

Figure 3: Hallucination Degree (MSE) for regression
probes. Model Wise

Figure 4: Image vs Query

lucination in vision language models. By extract- 281

ing global Vision Only Representations and layer- 282

wise fusion representations from a single forward 283

pass, and training simple MLP probes, we demon- 284

strated that most hallucination-predictive informa- 285

tion is already encoded in the vision encoder’s out- 286

puts. Our experiments on QwenVL-2.5,LLaVA- 287

1.5, BLIP and PaliGemma-2 show that a vision- 288

only probe outperforms deeper, multimodal fusion- 289

based probes in both Hallucination Degree (MSE) 290

and Hallucination Existence (AUROC) prediction, 291

highlighting the limited incremental value and oc- 292

casional noise introduced by later decoder layers. 293

These findings have two main implications. First, 294

they enable rapid, real-time hallucination risk as- 295

sessment without expensive autoregressive decod- 296

ing. Second, they suggest that future mitigation 297

strategies might focus on refining the vision en- 298

coder’s grounding signals rather than modifying the 299

decoder. In future work, we plan to extend HALP 300

to additional hallucination metrics (e.g. attribute or 301

relation errors), evaluate its generalization across 302

diverse VLM architectures and domains, and inte- 303

grate probe outputs into decoding-time correction 304

mechanisms for on-the-fly hallucination preven- 305

tion. 306
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6 Ethical Considerations307

Our work focuses on detecting and predicting308

object hallucinations in vision–language models309

(VLMs) by probing internal representations. While310

HALP itself does not generate novel content, its de-311

ployment may influence downstream applications312

that rely on VLM outputs for example, in health-313

care, autonomous vehicles, or assistive technolo-314

gies. An overly aggressive hallucination flag could315

result in false alarms, causing unnecessary inter-316

vention or eroding user trust, whereas an under-317

sensitive probe could fail to catch critical errors.318

We therefore advocate for human-in-the-loop val-319

idation in high-stakes domains and recommend320

threshold calibration based on application require-321

ments. Additionally, our probe is trained on COCO322

data, which may contain demographic or cultural323

biases in image selection and caption annotations;324

these biases could propagate into hallucination pre-325

dictions. We encourage future practitioners to eval-326

uate HALP’s performance on diverse, represen-327

tative datasets and to apply bias-mitigation tech-328

niques when extending the framework to real-world329

systems.330

7 Limitations331

First, HALP’s efficacy depends on the quality and332

diversity of the training set: we use COCO 2014,333

which covers a limited set of object categories and334

visual scenarios. Our continuous CHAIRi proxy335

and binary flag capture only object-level halluci-336

nations and do not account for errors in attributes,337

relations, or higher-order semantics. Second, we338

evaluate on only four open-source VLM architec-339

tures (Qwen, LLaVA-1.5, BLIP and PaliGemma-2);340

results may not generalize to much larger or pro-341

prietary models with different fusion mechanisms342

or decoding strategies. Third, our probe requires343

access to intermediate hidden states, which may344

not be exposed by closed-source APIs or edge-345

deployed models. Finally, HALP predicts halluci-346

nation risk but does not itself correct or mitigate347

errors; integrating probe outputs into a feedback348

loop for on-the-fly correction remains future work.349

5



References350

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-351
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shi-352
jie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu,353
Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei354
Wang, Wei Ding, Zheren Fu, Yiheng Xu, and 8 others.355
2024. Qwen2.5-vl technical report.356

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and357
Antonio Torralba. 2017. Network dissection: Quanti-358
fying interpretability of deep visual representations.359
Preprint, arXiv:1704.05796.360

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang,361
Yibing Song, Jue Wang, and Ping Luo. 2022. Adapt-362
former: Adapting vision transformers for scalable363
visual recognition. Preprint, arXiv:2205.13535.364

Zhaorun Chen, Zhuokai Zhao, Hongyin Luo, Huaxiu365
Yao, Bo Li, and Jiawei Zhou. 2024. Halc: Object366
hallucination reduction via adaptive focal-contrast367
decoding. Preprint, arXiv:2403.00425.368

Yixiong Fang, Ziran Yang, Zhaorun Chen, Zhuokai369
Zhao, and Jiawei Zhou. 2024. From uncertainty370
to trust: Enhancing reliability in vision-language371
models with uncertainty-guided dropout decoding.372
Preprint, arXiv:2412.06474.373

Sreyan Ghosh, Chandra Kiran Reddy Evuru, Sonal Ku-374
mar, Utkarsh Tyagi, Oriol Nieto, Zeyu Jin, and Di-375
nesh Manocha. 2025. Visual description grounding376
reduces hallucinations and boosts reasoning in lvlms.377
Preprint, arXiv:2405.15683.378

John Hewitt and Percy Liang. 2019. Designing and in-379
terpreting probes with control tasks. In Proceedings380
of the 2019 Conference on Empirical Methods in Nat-381
ural Language Processing and the 9th International382
Joint Conference on Natural Language Processing383
(EMNLP-IJCNLP), pages 2733–2743, Hong Kong,384
China. Association for Computational Linguistics.385

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom386
Henighan, Dawn Drain, Ethan Perez, Nicholas387
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli388
Tran-Johnson, Scott Johnston, Sheer El-Showk,389
Andy Jones, Nelson Elhage, Tristan Hume, Anna390
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,391
and 17 others. 2022. Language models (mostly)392
know what they know. Preprint. Preprint,393
arXiv:2207.05221. ArXiv:2207.05221.394

Junnan Li, Dongxu Li, Caiming Xiong, and Steven395
Hoi. 2022. Blip: Bootstrapping language-image pre-396
training for unified vision-language understanding397
and generation. Preprint, arXiv:2201.12086.398

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Xin Zhao,399
and Ji-Rong Wen. 2023. Evaluating object hallucina-400
tion in large vision-language models. In Proceedings401
of the 2023 Conference on Empirical Methods in402
Natural Language Processing, pages 292–305, Sin-403
gapore. Association for Computational Linguistics.404

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir 405
Bourdev, Ross Girshick, James Hays, Pietro Perona, 406
Deva Ramanan, C. Lawrence Zitnick, and Piotr Dol- 407
lár. 2015. Microsoft coco: Common objects in con- 408
text. Preprint, arXiv:1405.0312. 409

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan 410
Zhang, Sheng Shen, and Yong Jae Lee. 2024. Llava- 411
next: Improved reasoning, ocr, and world knowledge. 412

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae 413
Lee. 2023. Visual instruction tuning. Preprint, 414
arXiv:2304.08485. 415

Rebecca Marvin and Tal Linzen. 2018. Targeted syn- 416
tactic evaluation of language models. In Proceed- 417
ings of the 2018 Conference on Empirical Methods 418
in Natural Language Processing, pages 1192–1202, 419
Brussels, Belgium. Association for Computational 420
Linguistics. 421

Hadas Orgad, Michael Toker, Zorik Gekhman, Roi Re- 422
ichart, Idan Szpektor, Hadas Kotek, and Yonatan 423
Belinkov. 2023. Llms know more than they 424
show: On the intrinsic representation of llm hal- 425
lucinations. Preprint. Preprint, arXiv:2312.06605. 426
ArXiv:2312.06605. 427

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya 428
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas- 429
try, Amanda Askell, Pamela Mishkin, Jack Clark, 430
Gretchen Krueger, and Ilya Sutskever. 2021. Learn- 431
ing transferable visual models from natural language 432
supervision. Preprint, arXiv:2103.00020. 433

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, 434
Trevor Darrell, and Kate Saenko. 2018a. Object hal- 435
lucination in image captioning. In Proceedings of the 436
2018 Conference on Empirical Methods in Natural 437
Language Processing, pages 4035–4045, Brussels, 438
Belgium. Association for Computational Linguistics. 439

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, 440
Trevor Darrell, and Kate Saenko. 2018b. Object 441
hallucination in image captioning. In Proceedings 442
of the 2018 Conference on Empirical Methods in 443
Natural Language Processing (EMNLP), pages 4035– 444
4045. Association for Computational Linguistics. 445

Andreas Steiner, André Susano Pinto, Michael Tschan- 446
nen, Daniel Keysers, Xiao Wang, Yonatan Bitton, 447
Alexey Gritsenko, Matthias Minderer, Anthony Sher- 448
bondy, Shangbang Long, Siyang Qin, Reeve Ingle, 449
Emanuele Bugliarello, Sahar Kazemzadeh, Thomas 450
Mesnard, Ibrahim Alabdulmohsin, Lucas Beyer, and 451
Xiaohua Zhai. 2024. Paligemma 2: A family of ver- 452
satile vlms for transfer. Preprint, arXiv:2412.03555. 453

Gemma Team, Thomas Mesnard, Cassidy Hardin, 454
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, 455
Laurent Sifre, Morgane Rivière, Mihir Sanjay 456
Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, 457
Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam 458
Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, 459
Ambrose Slone, and 89 others. 2024. Gemma: Open 460
models based on gemini research and technology. 461
Preprint, arXiv:2403.08295. 462

6

https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/1704.05796
https://arxiv.org/abs/1704.05796
https://arxiv.org/abs/1704.05796
https://arxiv.org/abs/2205.13535
https://arxiv.org/abs/2205.13535
https://arxiv.org/abs/2205.13535
https://arxiv.org/abs/2205.13535
https://arxiv.org/abs/2205.13535
https://arxiv.org/abs/2403.00425
https://arxiv.org/abs/2403.00425
https://arxiv.org/abs/2403.00425
https://arxiv.org/abs/2403.00425
https://arxiv.org/abs/2403.00425
https://arxiv.org/abs/2412.06474
https://arxiv.org/abs/2412.06474
https://arxiv.org/abs/2412.06474
https://arxiv.org/abs/2412.06474
https://arxiv.org/abs/2412.06474
https://arxiv.org/abs/2405.15683
https://arxiv.org/abs/2405.15683
https://arxiv.org/abs/2405.15683
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2201.12086
https://doi.org/10.18653/v1/2023.emnlp-main.20
https://doi.org/10.18653/v1/2023.emnlp-main.20
https://doi.org/10.18653/v1/2023.emnlp-main.20
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://arxiv.org/abs/2304.08485
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
https://arxiv.org/abs/2312.06605
https://arxiv.org/abs/2312.06605
https://arxiv.org/abs/2312.06605
https://arxiv.org/abs/2312.06605
https://arxiv.org/abs/2312.06605
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://doi.org/10.18653/v1/D18-1437
https://doi.org/10.18653/v1/D18-1437
https://doi.org/10.18653/v1/D18-1437
https://aclanthology.org/D18-1437
https://aclanthology.org/D18-1437
https://aclanthology.org/D18-1437
https://arxiv.org/abs/2412.03555
https://arxiv.org/abs/2412.03555
https://arxiv.org/abs/2412.03555
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295


Qinyu Zhao, Ming Xu, Kartik Gupta, Akshay Asthana,463
Liang Zheng, and Stephen Gould. 2024. The first464
to know: How token distributions reveal hidden465
knowledge in large vision-language models. Preprint.466
Preprint, arXiv:2406.13259. ArXiv:2406.13259.467

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude468
Oliva, and Antonio Torralba. 2015. Object de-469
tectors emerge in deep scene cnns. Preprint,470
arXiv:1412.6856.471

7

https://arxiv.org/abs/2406.13259
https://arxiv.org/abs/2406.13259
https://arxiv.org/abs/2406.13259
https://arxiv.org/abs/2406.13259
https://arxiv.org/abs/2406.13259
https://arxiv.org/abs/1412.6856
https://arxiv.org/abs/1412.6856
https://arxiv.org/abs/1412.6856


A Appendix472

This appendix provides a detailed breakdown of473

the performance metrics for each Vision-Language474

Model (VLM) evaluated in this study. For each475

model, we present the Mean-Squared Error (MSE)476

for the regression task and the AUROC score for477

the binary classification task. The results are orga-478

nized by the type of internal representation used479

for the probe: the Vision Only Representation, Last480

Vision Token Representation and Last Query Token481

Representation at various decoder layers.482

Layer Vision Only Representation Last Vision Token Representation Last Query Token Representation
Vision Encoder LLM Decoder LLM Decoder

Layer 1 0.0504 0.0524
Layer n/4 0.0513 0.0523
Layer n/2 0.0455 0.0523 0.0526
Layer 3n/4 0.0523 0.0523
Layer n 0.0509 0.0523

Table 2: Hallucination Degree (MSE) for probes built
on vision only representation, last vision token represen-
tation and last query token representations at different
decoder layers using LLaVA-v1.5-Vicuna-13b.

LLaVA-v1.5-Vicuna-13b The results for LLaVA483

highlight that the strongest predictive signal for484

hallucination is contained within the initial vision485

encoding. As shown in Tables 2 and 3, both regres-486

sion and classification performance peak with the487

vision-only probe and degrade as more decoder-488

level context is added.489

• Regression (Table 2): The vision embedding490

probe achieved the lowest MSE of 0.0455.491

The fusion and query embedding probes con-492

sistently resulted in higher errors across all493

layers.494

• Classification (Table 3): The vision embed-495

ding probe achieved a superior ROC-AUC of496

0.750. The fusion embedding probe’s perfor-497

mance peaked at Layer 1 (0.665) and then498

declined, while the query embedding probe499

showed only modest predictive power in inter-500

mediate layers.501

PaliGemma-2-2B Similar to LLaVA, the results502

for PaliGemma indicate that the raw visual features503

are the most reliable predictors of hallucination.504

Deeper representations consistently underperform505

compared to the simple vision-only probe.506

• Regression (Table 4): The vision embedding507

probe yielded the best MSE of 0.0852. Im-508

age embedding MSE was significantly worse,509

especially at deeper layers, while query em-510

bedding MSE showed no improvement.511

• Classification (Table 5): The vision embed- 512

ding probe achieved a strong ROC-AUC of 513

0.732. Both image and query embedding 514

probes performed poorly, with ROC-AUC 515

scores hovering around the 0.5 mark, indi- 516

cating they are no better than random chance. 517

Layer Vision Only Representation Last Vision Token Representation Last Query Token Representation
Vision Encoder LLM Decoder LLM Decoder

Layer 1 0.639 0.503
Layer n/4 0.665 0.525
Layer n/2 0.750 0.644 0.621
Layer 3n/4 0.633 0.620
Layer n 0.632 0.500

Table 3: Hallucination Existence (AUROC) scores for
binary hallucination detection probes on vision only
representation, last vision token representation and last
query token representations at different decoder layers
using LLaVA-v1.5-Vicuna-13b.

BLIP The results for BLIP present a more nu- 518

anced story. While the vision-only probe is not the 519

top performer, the model’s query embeddings show 520

strong potential for regression, though its overall 521

classification ability appears limited. 522

• Regression (Table 6): Probes on query em- 523

beddings consistently yielded the best perfor- 524

mance, with an MSE as low as 0.0354 at layer 525

11. This is a notable improvement over the 526

vision-only probe’s MSE of 0.0397. 527

• Classification (Table 7): BLIP’s classification 528

performance was modest overall. The best 529

ROC-AUC score was 0.622, achieved by a 530

query embedding at layer 3. The vision-only 531

probe was near chance at 0.515, suggesting 532

the raw visual features in BLIP are not highly 533

discriminative for this task. 534

Layer Vision Only Representation Last Vision Token Representation Last Query Token Representation
Vision Encoder LLM Decoder LLM Decoder

Layer 1 0.089 0.0857
Layer n/2 0.0852 0.128 0.0849
Layer n 0.857 0.0840

Table 4: Hallucination Degree (MSE) for probes built
on vision only representation, last vision token represen-
tation and last query token representations at different
decoder layers using PaliGemma-2.

Layer Vision Only Representation Last Vision Token Representation Last Query Token Representation
Vision Encoder LLM Decoder LLM Decoder

Layer 1 0.508 0.500
Layer n/2 0.732 0.488 0.500
Layer n 0.500 0.492

Table 5: Hallucination Existence (AUROC) scores for
binary hallucination detection probes on vision only
representation, last vision token representation and last
query token representations at different decoder layers
using PaliGemma-2.
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Layer Vision Only Representation Last Vision Token Representation Last Query Token Representation
Vision Encoder LLM Decoder LLM Decoder

Layer 1 0.0504 0.0524
Layer n/4 0.0513 0.0523
Layer n/2 0.0455 0.0523 0.0526
Layer 3n/4 0.0523 0.0523
Layer n 0.0509 0.0523

Table 6: Hallucination Degree (MSE) for probes built
on vision only representation, last vision token represen-
tation and last query token representations at different
decoder layers using BLIP.

Layer Vision Only Representation Last Vision Token Representation Last Query Token Representation
Vision Encoder LLM Decoder LLM Decoder

Layer 1 0.639 0.503
Layer n/4 0.665 0.525
Layer n/2 0.750 0.644 0.621
Layer 3n/4 0.633 0.620
Layer n 0.632 0.500

Table 7: Hallucination Existence (AUROC) scores for
binary hallucination detection probes on vision only
representation, last vision token representation and last
query token representations at different decoder layers
using BLIP.

QwenVL-2.5-7B stands out as an architecture535

where query-conditioned decoder states provide536

a significant boost in predictive performance, sur-537

passing the vision-only probe in both tasks.538

• Regression (Table 8): The query embedding at539

layer 21 achieved the lowest MSE of 0.0373,540

outperforming the vision probe’s MSE of541

0.0422.542

• Classification (Table 9): Performance steadily543

improved with query embedding probes at544

deeper layers, peaking with an ROC-AUC of545

0.7611 at layer 27. This is a substantial im-546

provement over the vision probe’s 0.7083 and547

demonstrates the value of query conditioning548

in the Qwen model.549

Layer Vision Only Representation Last Vision Token Representation Last Query Token Representation
Vision Encoder LLM Decoder LLM Decoder

Layer 1 0.04758 0.44061
Layer n/4 0.04452 0.04223
Layer n/2 0.04223 0.04306 0.03883
Layer 3n/4 0.04395 0.03730
Layer n 0.04368 0.04010

Table 8: Hallucination Degree (MSE) for probes built
on vision only representation, last vision token represen-
tation and last query token representations at different
decoder layers using Qwen.

Layer Vision Only Representation Last Vision Token Representation Last Query Token Representation
Vision Encoder LLM Decoder LLM Decoder

Layer 1 0.5449 0.5000
Layer n/4 0.6031 0.7542
Layer n/2 0.7083 0.6019 0.7127
Layer 3n/4 0.6213 0.7469
Layer n 0.5531 0.7611

Table 9: Hallucination Existence (AUROC) scores for
binary hallucination detection probes on vision only
representation, last vision token representation and last
query token representations at different decoder layers
using Qwen.

Figure 5: ROC–AUC for binary hallucination detection
across LLM Decoder layers.

Figure 6: MSE for hallucination degree regression
across LLM Decoder layers.

Our experimental results, depicted in Figures 550

5 through 9, provide insights into HALP’s per- 551

formance across various Vision-Language Models 552

(VLMs) and probe configurations for hallucination 553

detection. 554

Figure 5 : AUROC from Query Embeddings. 555

This bar chart demonstrates that Qwen consistently 556

achieves the highest AUROC scores (peaking at 557

0.761) using Query Embeddings, significantly out- 558

performing BLIP (around 0.500) and LLaVA (peak- 559

ing at 0.665). This indicates strong hallucina- 560

tion predictability from query-conditioned states in 561

Qwen. 562

Figure 6 : Overall Performance from Vision- 563

Only Probes. Figure presents two subplots eval- 564

uating performance using vision-only probes. The 565

left subplot (AUROC) shows LLaVA (0.750) and 566

PaliGemma (0.732) achieve the highest scores, 567

with Qwen (0.7083) also performing well. BLIP 568

Figure 7: Left Subplot: ROC-AUC for binary hallucina-
tion detection using vision-only probes.
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Figure 8: ROC-AUC for binary hallucination detection
by LLM Decoder layer for the Qwen model.

Figure 9: Comparison of AUROC performance for hallu-
cination detection in BLIP and Qwen models, showcas-
ing vision, query, and image embeddings across LLM
decoder layers.

(0.5152) performs near chance. The right subplot569

(MSE) indicates BLIP (0.0397) has the lowest MSE570

in regression, but this is misleading as its poor571

ROC-AUC suggests limited discriminative power572

from its initial visual features.573

Figure 7 : MSE from Image Embeddings. This574

figure illustrates the MSE for hallucination degree575

regression using Image Embeddings across lay-576

ers. BLIP generally maintains low MSE values577

(e.g., 0.0380), while LLaVA shows higher MSE,578

suggesting varied precision in quantifying halluci-579

nation degree from image-conditioned representa-580

tions across models.581

Figure 8 : Qwen’s AUROC: Image vs. Query582

Embeddings. Figure focuses on the Qwen583

model, directly comparing the AUROC perfor-584

mance between Image Embeddings (blue bars) and585

Query Embeddings (orange bars) across decoder586

layers. It clearly shows that Query Embeddings587

consistently and significantly outperform Image588

Embeddings for AUROC (peaking at 0.7611 vs.589

0.6213). This highlights the dominance of query-590

conditioned information for hallucination existence591

prediction in Qwen.592

Figure 9 : AUROC Trends for BLIP vs. Qwen. 593

Figure provides a direct line plot comparison of 594

AUROC trends between BLIP (orange lines) and 595

Qwen (purple lines) across different embedding 596

types and decoder layers. Qwen’s Vision (solid 597

purple, ∼0.708) and Query (dashed purple, peak- 598

ing over 0.75) embeddings consistently outperform 599

BLIP’s (orange lines). BLIP’s performance re- 600

mains modest across all embedding types, reinforc- 601

ing Qwen’s superior ability to capture hallucination 602

signals from diverse internal representations. 603
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