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Abstract

Object hallucination is a significant challenge
that undermines the reliability of the Vision
Language Model (VLM). Current methods for
evaluating hallucination often require compu-
tationally expensive complete sequence gener-
ation, making rapid assessment or large-scale
analysis difficult. We introduce HALP (HALIu-
cination Prediction via Probing), a novel frame-
work to efficiently estimate a VLM’s propen-
sity to hallucinate objects without requiring full
caption generation. HALP trains a lightweight
probe on internal VLM representations ex-
tracted after image processing but before au-
toregressive decoding. HALP offers a new
paradigm for efficient evaluation of VLM, a
better understanding of how VLMs internally
represent information related to grounding and
hallucination, and the potential for real-time
assessment of hallucination risk.

1 Introduction

Vision-Language Models (VLMs), including
LLaVA (Liu et al., 2024), PaliGemma (Steiner
et al., 2024), Qwen (Bai et al., 2024), and BLIP
(Li et al., 2022), are transforming multimodal
Al, demonstrating impressive capabilities in both
visual understanding and language generation
grounded in images. However, object hallucination
where models describe nonexistent objects remains
a persistent challenge, particularly in high-stakes
applications such as healthcare, autonomous sys-
tems, and assistive technologies. Such errors not
only undermine user trust but can also result in
harmful outcomes.

Existing methods for evaluating hallucinations
rely heavily on post-hoc analysis of fully generated
captions (Li et al., 2023), which is computationally
expensive and ill-suited for real-time use. While
other approaches attempt to mitigate hallucination
during generation or detect it in the generated text
(Chen et al., 2024), they cannot predict hallucina-
tion risk before decoding begins. This reveals a

critical gap: there are few methods that assess a
model’s propensity to hallucinate based solely on
its internal representations.

To address this, we introduce HALP (Halluci-
nation Prediction via Probing), a lightweight prob-
ing framework that estimates hallucination risk us-
ing internal activations prior to caption generation.
HALP extracts hidden states at three key stages in
the captioning pipeline: after image encoding, af-
ter multimodal fusion, and across intermediate de-
coder layers. A Simple small MLPs is then trained
on these representations to predict CHAIR; (Contin-
uous Hallucination severity), binary hallucination
flags.

Our experiments on the COCO 2014 dataset
(Lin et al., 2015) demonstrate that early vision
encoder outputs are highly predictive of halluci-
nation. For instance, a vision-only probe trained
on LLaVA’s pooled CLIP embedding achieves an
MSE of 0.0455 and Hallucination Existence (AU-
ROC) of 0.750, outperforming probes built on
deeper decoder states (MSE > 0.0509, AUC <
0.665). Similarly, PaliGemma’s performance de-
clines as deeper layers are used (MSE rises to
0.8570). Notably, Qwen achieves its best perfor-
mance at a deeper query layer (MSE 0.03730, AU-
ROC 0.7611). Across all models, HALP enables
accurate, real-time hallucination prediction before
a single token is generated.

2 Background and Related Work

Object Hallucination in VLMs: Object hallu-
cination occurs when a VLM describes objects
not present in the visual input, reducing reliabil-
ity in sensitive domains like medical imaging or
autonomous navigation. These errors often stem
from mismatches between language priors and
visual grounding, or from annotation biases in
training data. Mitigation strategies typically act
during or after generation, including Uncertainty-



Guided Dropout Decoding (Fang et al., 2024),
adaptive focal-contrast decoding (HALC) (Chen
et al., 2024), and perception-driven grounding aug-
mentation (Ghosh et al., 2025). Post-hoc methods
flag hallucinated mentions in generated captions.
Evaluation commonly relies on the CHAIR; metric
(Rohrbach et al., 2018a), which measures the ratio
of hallucinated object mentions to all mentioned
objects and requires full caption generation.

Representation Probing Representation Prob-
ing is a diagnostic method where lightweight classi-
fiers or regressors are trained on fixed internal acti-
vations to assess whether specific properties are en-
coded. In NLP, probes have shown that pretrained
language models capture part-of-speech tags, syn-
tactic dependencies, and coreference relations at
particular layers (Hewitt and Liang, 2019; Mar-
vin and Linzen, 2018). In computer vision, linear
probes on convolutional features reveal emergent
object detectors in scene-classification networks
(Zhou et al., 2015), and techniques like Network
Dissection align hidden units with semantic con-
cepts to quantify interpretability (Bau et al., 2017).
More recently, probing has been applied to Vision
Transformers, where intermediate self-attention
and MLP layers encode rich class-specific and
scene-level semantics (Chen et al., 2022). These
studies highlight probing as a lightweight yet ef-
fective tool for mapping task-relevant features in
deep networks, motivating its use here to detect
hallucination signals early in VLM decoding.

Hallucination Detection Recent work shows
that vision and language models often encode
hallucination-related signals in their internal states
before generation. Orgad et al. (2023) trained
probes on hidden activations to predict factual cor-
rectness, finding that the most informative signals
are concentrated around answer tokens. Zhao et al.
(2024) used a lightweight classifier on first-token
logits to distinguish safe from unsafe prompts,
suggesting models implicitly signal likely errors.
Kadavath et al. (2022) introduced self-evaluation
strategies, such as adding “none of the above” or
using binary questions, to gauge model confidence.
These findings support the hypothesis that halluci-
nation cues exist in intermediate representations,
motivating pre-generative detection frameworks
like HALP.
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Figure 1: Overview of the HALP pipeline. Visual to-
kens from the input image are fused with prompt and
last query token representations and passed to the de-
coder. Hidden states are extracted at key stages and
used by probes to predict hallucination before caption
generation.

3 HALP: HALlucination Prediction via
Probing

3.1 Preliminaries: VLM Architecture

A vision—language model (Liu et al., 2023) con-
sists of three core components in sequence: first,
a vision encoder (Radford et al., 2021) decom-
poses the input image into a set of continuous fea-
ture vectors, or “visual tokens,” capturing patch-
level visual information; next, a multimodal con-
nector which maps those visual tokens into the
same embedding space as the language model, en-
abling joint reasoning over vision and text; finally,
a Transformer-based LLM decoder (Team et al.,
2024) consumes the fused visual embeddings op-
tionally alongside task-specific query tokens and
autoregressively generates the target text. It is pre-
cisely the hidden activations at various positions
within this encoder—connector—decoder pipeline
that we tap for our hallucination-prediction probes.

3.2 Post-Generation Hallucination

A caption is generated by processing an image
along with a prompt in VLM. Once the caption
¢; is generated, the presence and degree of hallu-
cination are assessed based on two key indicators:
Continuous metric (a;): Proportion of objects hal-
lucinated. Binary indicator (b;): A binary value
indicating whether hallucination occurred (1) or



not (0).

3.3 Extracting Internal Representations for
Probing

To forecast hallucination risk before any tokens are
generated, we extract three classes of vectors from
a single forward pass of the VLM on image /;:

Global Vision Only Representation e, € R%:
the pooled output of the vision encoder, which sum-
marizes the primary visual features of I;.

Layer-wise Last Vision Token Representations
e(i) € RY: for each selected decoder layer ¢ € L,
we record the hidden state at the position immedi-
ately following the projected visual tokens. This
vector captures how the model’s attention mecha-
nism has integrated image features with any pre-
ceding text (e.g., system prompts).

Query-conditioned decoder states h((lf) € R%:
from the same layers ¢ € L, we also extract the
hidden state at the final query token i.e. just be-
fore autoregressive generation begins to capture
the fused multimodal context that guides the forth-
coming caption.

We then concatenate all of these e,,, {e%_) Yeer,

and {h((z?} ¢e, into a single feature vector x;. Our
lightweight probe is trained on {(z;,y;)}, where
y; is the ground-truth hallucination metric, en-
abling pre-generation prediction of hallucination
propensity.

4 Experiments and Results

4.1 Experimental Setup

To evaluate HALP’s effectiveness across diverse
Vision-Language Models (VLMs), we utilized the
COCO 2014 dataset (Lin et al., 2015), a widely
adopted benchmark for object recognition and cap-
tioning.

Models Our experiments included a comprehen-
sive set of state-of-the-art VLMs: LLaVA-v1.5-
Vicuna-13b (Liu et al., 2024), PaliGemma-2 3B
(Steiner et al., 2024), Qwen 2.5 VL 7B (Bai et al.,
2024), and BLIP (Li et al., 2022). Hallucination
Metrics: We employed CHAIRi (Rohrbach et al.,
2018b) for evaluating object hallucination. This
metric was framed as both a Regression task (pre-
dicting a continuous hallucination score) and a Bi-
nary Classification task (predicting the presence or
absence of hallucination based on a threshold).

Vision Only ion  Last Vision Token

ion (Layer N)  Last Query Token Representation (Layer N)

Hallucination Degree (MSE) |

LLaVA 0.045 0.050 0052
PaliGemma 0.085 0.857 0.084
BLIP 0.039 0.043 0.746
Quen 0.042 0.043 0.040
Hallucination Existence (\AUROC)

LLaVA 0750 0.632 0.500
PaliGemma 0732 0.500 0492
BLIP 0515 0.500 0.500

wen 0.708 0553 0761

Table 1: Summary of probe performance on two VLMs.
Top: mean-squared error (MSE) for CHAIR; regression;
bottom: ROC—-AUC for binary hallucination detection.
Layer N refers to the final layer of the language model
decoder.

Embedding Extraction Internal VLM represen-
tations were extracted from the following key
points within each model’s architecture:

* Vision Encoder: The final output embedding
of the VLM’s dedicated vision encoder, repre-
senting the raw visual features.

* LLM Decoder: These were extracted at posi-
tions corresponding to the end of the image
token (multimodal Last Vision Token Repre-
sentation) and the end of the query token
(query-conditioned decoder state). The se-
lected layers were Layer 1, n/4, n/2, 3n/4, and
n, allowing us to analyze information flow
across the decoding process.

Probe Architecture The probe consists of a
lightweight, feed-forward Neural Network (NN)
with 3 hidden layers and respective dimensions of
[1024, 512, 256]. The probes predicts the Hal-
lucination metric (Binary and Continuous from
CHAIR;) by taking hidden LLM decoder states
as input.

4.2 Results and Analysis

Our experiments evaluate the performance of
lightweight probes on four distinct Vision-
Language Models (VLMs): Qwen, BLIP, LLaVa,
and PaliGemma. The probes are trained to predict
object hallucination by tapping into internal model
representations at various depths. Performance is
measured using Mean Squared Error (MSE) for
continuous hallucination score regression (lower
is better) and ROC-AUC for binary hallucination
classification (higher is better). The analysis is
structured to compare performance across different
decoder layers, models, and embedding types.

Layer-wise Analysis We evaluate hallucination
existence prediction across five decoder layers
(Layer 1, N/4, N/2, 3N/4, N) using AUROC scores
(Figure 2). Across models, performance generally
improves from the shallowest layer to intermediate
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Figure 2: Hallucination Existence (AUROC) for binary
hallucination detection. Layer-wise

depths. Layer N/4 consistently yields the highest
AUROC scores peaking at 0.665 indicating that
mid-level representations are most informative for
hallucination detection. Beyond this point, perfor-
mance plateaus or declines slightly, with minimal
gains observed at deeper layers. Notably, early
layers show weaker predictive capacity, often near
chance level, suggesting that hallucination-relevant
features emerge progressively and are most salient
in the middle of the decoder.

Token Representation Analysis Figure 4
presents a token-wise comparison of hallucination
prediction using image vs. query embeddings
across decoder layers. We find that image embed-
dings consistently yield low MSE (0.038-0.043),
while query embeddings produce high MSE
(0.713), indicating that BLIP primarily encodes
hallucination-irrelevant signals in the query path.
This suggests a failure to effectively ground text
generation in visual content, highlighting a core
limitation in BLIP’s architecture.

Model-Wise Hallucination Prediction Analysis
We observe that BLIP consistently yields high MSE
scores ( 0.7127), indicating poor modeling of hal-
lucination signals. This underperformance likely
stems from its earlier architecture and shallow vi-
sion language alignment, which limits its ability to
ground text in visual content.

In contrast, Qwen and LLaVa both recent mod-
els achieve significantly lower MSE. Their supe-
rior performance can be attributed to deeper cross-
modal integration, stronger supervision, and train-
ing on more diverse datasets. These results high-
light the importance of modern architectures and
robust alignment for effective hallucination model-
ing.

5 Conclusion

We presented HALP, a lightweight probing frame-
work for pre-generative prediction of object hal-
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lucination in vision language models. By extract-
ing global Vision Only Representations and layer-
wise fusion representations from a single forward
pass, and training simple MLP probes, we demon-
strated that most hallucination-predictive informa-
tion is already encoded in the vision encoder’s out-
puts. Our experiments on QwenVL-2.5,LLaVA-
1.5, BLIP and PaliGemma-2 show that a vision-
only probe outperforms deeper, multimodal fusion-
based probes in both Hallucination Degree (MSE)
and Hallucination Existence (AUROC) prediction,
highlighting the limited incremental value and oc-
casional noise introduced by later decoder layers.

These findings have two main implications. First,
they enable rapid, real-time hallucination risk as-
sessment without expensive autoregressive decod-
ing. Second, they suggest that future mitigation
strategies might focus on refining the vision en-
coder’s grounding signals rather than modifying the
decoder. In future work, we plan to extend HALP
to additional hallucination metrics (e.g. attribute or
relation errors), evaluate its generalization across
diverse VLM architectures and domains, and inte-
grate probe outputs into decoding-time correction
mechanisms for on-the-fly hallucination preven-
tion.



6 Ethical Considerations

Our work focuses on detecting and predicting
object hallucinations in vision—-language models
(VLMs) by probing internal representations. While
HALP itself does not generate novel content, its de-
ployment may influence downstream applications
that rely on VLM outputs for example, in health-
care, autonomous vehicles, or assistive technolo-
gies. An overly aggressive hallucination flag could
result in false alarms, causing unnecessary inter-
vention or eroding user trust, whereas an under-
sensitive probe could fail to catch critical errors.
We therefore advocate for human-in-the-loop val-
idation in high-stakes domains and recommend
threshold calibration based on application require-
ments. Additionally, our probe is trained on COCO
data, which may contain demographic or cultural
biases in image selection and caption annotations;
these biases could propagate into hallucination pre-
dictions. We encourage future practitioners to eval-
uvate HALP’s performance on diverse, represen-
tative datasets and to apply bias-mitigation tech-
niques when extending the framework to real-world
systems.

7 Limitations

First, HALP’s efficacy depends on the quality and
diversity of the training set: we use COCO 2014,
which covers a limited set of object categories and
visual scenarios. Our continuous CHAIR; proxy
and binary flag capture only object-level halluci-
nations and do not account for errors in attributes,
relations, or higher-order semantics. Second, we
evaluate on only four open-source VLM architec-
tures (Qwen, LLaVA-1.5, BLIP and PaliGemma-2);
results may not generalize to much larger or pro-
prietary models with different fusion mechanisms
or decoding strategies. Third, our probe requires
access to intermediate hidden states, which may
not be exposed by closed-source APIs or edge-
deployed models. Finally, HALP predicts halluci-
nation risk but does not itself correct or mitigate
errors; integrating probe outputs into a feedback
loop for on-the-fly correction remains future work.
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A Appendix

This appendix provides a detailed breakdown of
the performance metrics for each Vision-Language
Model (VLM) evaluated in this study. For each
model, we present the Mean-Squared Error (MSE)
for the regression task and the AUROC score for
the binary classification task. The results are orga-
nized by the type of internal representation used
for the probe: the Vision Only Representation, Last
Vision Token Representation and Last Query Token
Representation at various decoder layers.

Layer Vision Only fon__Last Vision Token Representation _Last Query Token Representation
LLM Decoder LLM Decoder

0.0504 0.0524
0.0513 0.0523
0.0455 0.0523 0.0526
0.0523 0.0523
0.0509 0.0523

Vision Encoder

Table 2: Hallucination Degree (MSE) for probes built
on vision only representation, last vision token represen-
tation and last query token representations at different
decoder layers using LLaVA-v1.5-Vicuna-13b.

LLaVA-v1.5-Vicuna-13b  The results for LLaVA
highlight that the strongest predictive signal for
hallucination is contained within the initial vision
encoding. As shown in Tables 2 and 3, both regres-
sion and classification performance peak with the
vision-only probe and degrade as more decoder-
level context is added.

* Regression (Table 2): The vision embedding
probe achieved the lowest MSE of 0.0455.
The fusion and query embedding probes con-
sistently resulted in higher errors across all
layers.

¢ Classification (Table 3): The vision embed-
ding probe achieved a superior ROC-AUC of
0.750. The fusion embedding probe’s perfor-
mance peaked at Layer 1 (0.665) and then
declined, while the query embedding probe
showed only modest predictive power in inter-
mediate layers.

PaliGemma-2-2B  Similar to LLaVA, the results
for PaliGemma indicate that the raw visual features
are the most reliable predictors of hallucination.
Deeper representations consistently underperform
compared to the simple vision-only probe.

* Regression (Table 4): The vision embedding
probe yielded the best MSE of 0.0852. Im-
age embedding MSE was significantly worse,
especially at deeper layers, while query em-
bedding MSE showed no improvement.

* Classification (Table 5): The vision embed-
ding probe achieved a strong ROC-AUC of
0.732. Both image and query embedding
probes performed poorly, with ROC-AUC
scores hovering around the 0.5 mark, indi-
cating they are no better than random chance.

Last Vision Token
LLM Decoder

Layer Vision Only Last Query Token

LLM Decoder

Vision Encoder

Layer 1 0.639 0.503
Layer n/4 0.665 0.525
Layer n/2 0.750 0.644 0.621
Layer 3n/4. 0.633 0.620
Layern 0.632 0.500

Table 3: Hallucination Existence (AUROC) scores for
binary hallucination detection probes on vision only
representation, last vision token representation and last
query token representations at different decoder layers
using LLaVA-v1.5-Vicuna-13b.

BLIP The results for BLIP present a more nu-
anced story. While the vision-only probe is not the
top performer, the model’s query embeddings show
strong potential for regression, though its overall
classification ability appears limited.

* Regression (Table 6): Probes on query em-
beddings consistently yielded the best perfor-
mance, with an MSE as low as 0.0354 at layer
11. This is a notable improvement over the
vision-only probe’s MSE of 0.0397.

* Classification (Table 7): BLIP’s classification
performance was modest overall. The best
ROC-AUC score was 0.622, achieved by a
query embedding at layer 3. The vision-only
probe was near chance at 0.515, suggesting
the raw visual features in BLIP are not highly
discriminative for this task.

Last Vision Token
Vision Encoder LLM Decoder

Layer 1 0.089 0.0857
Layer n/2 0.0852 0.128 0.0849
Layern 0.857 0.0840

Table 4: Hallucination Degree (MSE) for probes built
on vision only representation, last vision token represen-
tation and last query token representations at different
decoder layers using PaliGemma-2.

Layer Vision Only Last Query Token Representation

LLM Decoder

Layer Vision Only Representation _Last Vision Token Representation _Last Query Token Representation
LLM Decoder LLM Decoder

Vision Encoder

Layer 1 0.508 0.500
Layer n/2 0732 0.488 0.500
Layern 0.500 0.492

Table 5: Hallucination Existence (AUROC) scores for
binary hallucination detection probes on vision only
representation, last vision token representation and last
query token representations at different decoder layers
using PaliGemma-2.




Last Vision Token

Layer

Vision Only

Last Query Token

Vision Encoder

LLM Decoder

LLM Decoder

Layer |
Layer n/4
Layer n/2
Layer 3n/4
Layern

0.0455

0.0504
0.0513
0.0523
0.0523
0.0509

0.0524
0.0523
0.0526
0.0523
0.0523

Table 6: Hallucination Degree (MSE) for probes built
on vision only representation, last vision token represen-
tation and last query token representations at different
decoder layers using BLIP.

Layer Vision Only Last Vision Token Representation _Last Query Token
Vision Encoder LLM Decoder LLM Decoder
Layer | 0639 0503
Layer n/4 0.665 0525
Layer n/2 0750 0644 0.621
Layer 3n/4 0.633 0.620
Layern 0.632 0.500

Table 7: Hallucination Existence (AUROC) scores for
binary hallucination detection probes on vision only
representation, last vision token representation and last
query token representations at different decoder layers
using BLIP.

QwenVL-2.5-7B stands out as an architecture
where query-conditioned decoder states provide
a significant boost in predictive performance, sur-
passing the vision-only probe in both tasks.

» Regression (Table 8): The query embedding at
layer 21 achieved the lowest MSE of 0.0373,
outperforming the vision probe’s MSE of
0.0422.

* Classification (Table 9): Performance steadily
improved with query embedding probes at
deeper layers, peaking with an ROC-AUC of
0.7611 at layer 27. This is a substantial im-
provement over the vision probe’s 0.7083 and
demonstrates the value of query conditioning
in the Qwen model.

ion  Last Vision Token

Layer Vision Only Last Query Token

Vision Encoder

LLM Decoder

LLM Decoder

Layer 1
Layer n/4
Layer n/2
Layer 3n/4
Layern

0.04223

0.04758
0.04452
0.04306
0.04395
0.04368

0.44061
0.04223
0.03883
0.03730
0.04010

Table 8: Hallucination Degree (MSE) for probes built
on vision only representation, last vision token represen-
tation and last query token representations at different
decoder layers using Qwen.

Last Vision Token

Layer Vision Only Last Query Token

Vision Encoder

LLM Decoder

LLM Decoder

Layer |
Layer n/4
Layer n/2
Layer 3n/4
Layern

0.7083

0.5449
0.6031
0.6019
0.6213
0.5531

0.5000
0.7542
0.7127
0.7469
0.7611

Table 9: Hallucination Existence (AUROC) scores for
binary hallucination detection probes on vision only
representation, last vision token representation and last
query token representations at different decoder layers
using Qwen.

W= Qwen s BLIP mm LlaVa

0.620
0.761

0.500
0.500
0.500

Layer 1 Layer N/4

Hallucination Existence (AUROC)
°
2
3

Layer N/2

Layer 3N/4 Layer N

LLM Decoder Layers

Figure 5: ROC-AUC for binary hallucination detection
across LLM Decoder layers.

mm LlaVa

0.0550

0.0523
0.0523

0.0525

0.0509

0.0500

0.0475

0.0445
0.0440
0.0437

0.0450

0.0427

0.0425

0.0400

Hallucination Degree (MSE)

0.0375

0.0350

Layer 1

Layer N/4 Layer N/2 Layer 3N/4 Layer N

LLM Decoder Layers

Figure 6: MSE for hallucination degree regression
across LLM Decoder layers.

Our experimental results, depicted in Figures
5 through 9, provide insights into HALP’s per-
formance across various Vision-Language Models
(VLMs) and probe configurations for hallucination
detection.

Figure 5 : AUROC from Query Embeddings.
This bar chart demonstrates that Qwen consistently
achieves the highest AUROC scores (peaking at
0.761) using Query Embeddings, significantly out-
performing BLIP (around 0.500) and LLaVA (peak-
ing at 0.665). This indicates strong hallucina-
tion predictability from query-conditioned states in
Qwen.

Figure 6 : Overall Performance from Vision-
Only Probes. Figure presents two subplots eval-
uating performance using vision-only probes. The
left subplot (AUROC) shows LLaVA (0.750) and
PaliGemma (0.732) achieve the highest scores,
with Qwen (0.7083) also performing well. BLIP
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Figure 7: Left Subplot: ROC-AUC for binary hallucina-
tion detection using vision-only probes.
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Figure 8: ROC-AUC for binary hallucination detection
by LLM Decoder layer for the Qwen model.

0.80
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Layer N/4 Layer N/2 Layer 3N/4 Layer

Figure 9: Comparison of AUROC performance for hallu-
cination detection in BLIP and Qwen models, showcas-
ing vision, query, and image embeddings across LLM
decoder layers.

(0.5152) performs near chance. The right subplot
(MSE) indicates BLIP (0.0397) has the lowest MSE
in regression, but this is misleading as its poor
ROC-AUC suggests limited discriminative power
from its initial visual features.

Figure 7 : MSE from Image Embeddings. This
figure illustrates the MSE for hallucination degree
regression using Image Embeddings across lay-
ers. BLIP generally maintains low MSE values
(e.g., 0.0380), while LLaVA shows higher MSE,
suggesting varied precision in quantifying halluci-
nation degree from image-conditioned representa-
tions across models.

Figure 8 : Qwen’s AUROC: Image vs. Query
Embeddings. Figure focuses on the Qwen
model, directly comparing the AUROC perfor-
mance between Image Embeddings (blue bars) and
Query Embeddings (orange bars) across decoder
layers. It clearly shows that Query Embeddings
consistently and significantly outperform Image
Embeddings for AUROC (peaking at 0.7611 vs.
0.6213). This highlights the dominance of query-
conditioned information for hallucination existence
prediction in Qwen.

10

Figure 9 : AUROC Trends for BLIP vs. Qwen.
Figure provides a direct line plot comparison of
AUROC trends between BLIP (orange lines) and
Qwen (purple lines) across different embedding
types and decoder layers. Qwen’s Vision (solid
purple, ~0.708) and Query (dashed purple, peak-
ing over 0.75) embeddings consistently outperform
BLIP’s (orange lines). BLIP’s performance re-
mains modest across all embedding types, reinforc-
ing Qwen’s superior ability to capture hallucination
signals from diverse internal representations.
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