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Abstract

For classification models based on neural networks, the maximum predicted class
probability is often used as a confidence score. This score rarely predicts well the
probability of making a correct prediction and requires a post-processing calibration
step. However, many confidence calibration methods fail for problems with many
classes. To address this issue, we transform the problem of calibrating a multiclass
classifier into calibrating a single surrogate binary classifier. This approach allows
for more efficient use of standard calibration methods. We evaluate our approach
on numerous neural networks used for image or text classification and show that it
significantly enhances existing calibration methods. Our code can be accessed at
the following link: https://github.com/allglc/tva-calibration!

1 Introduction

The considerable performance increase of modern deep neural networks (DNNs) and their potential
deployment in real-world applications has made reliably estimating the probability of wrong decisions
a key concern. When such components are expected to be embedded in safety-critical systems (e.g.,
medical or transportation), estimating this probability is crucial to mitigate catastrophic behavior. One
way to address this question is to treat it as an uncertainty quantification problem [2| [12]], where the
uncertainty value computed for each prediction is considered as a confidence. This confidence can be
used to reject uncertain decisions proposed by the DNN [[13]], for out-of-distribution detection [22]], or
to control active learning [34] or reinforcement learning based systems [[76]. When confidence values
reliably reflect the true probability of correct decisions, i.e., their accuracy, a predictive system is said
to be calibrated. In this case, confidence values can be used as a reliable control for decision-making.

We are interested in producing an uncertainty indicator for decision problems where the input is high
dimensional and the decision space large, typically classifiers with tens to thousands of classes. For
this kind of problem, DNNs are common predictors, and their outputs can be used to provide an
uncertainty value at no cost, i.e., without necessitating heavy estimation such as Bayesian sampling
[15] or ensemble methods [33]]. Indeed, most neural architectures for classification instantiate their
decision as a softmax layer, where the maximum value can be interpreted as the maximum of the
posterior probability and, therefore, as a confidence. Unfortunately, uncertainty values computed in
this way are often miscalibrated. DNNs have been shown to be over-confident [17], meaning their
confidence is higher than their accuracy: predictions with 90% confidence might be correct only 80%
of the time. A later study [44] suggests that model architecture impacts calibration more than model
size, pre-training, and accuracy. For ImageNet classifiers, the accuracy and the number of model
parameters are not correlated to calibration, but model families are [[11]].

These studies show that it is difficult to anticipate the calibration level of confidence values computed
directly from DNNs and exhibit the benefits of a complementary post-processing calibration. This
calibration process can be seen as a learning step that exploits data from a calibration set, distinct
from the training set, and is used to learn a function that maps classifier outputs into better-calibrated
values. This process is typically lightweight and decoupled from the issue of improving model
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performance. A standard baseline for post-processing calibration is Temperature Scaling [[17], where
the penultimate logit layer is scaled by a coefficient optimized on the calibration set.

Many post-processing calibration methods have been developed for binary classification models
[50,169,[70]. Applying these methods to multiclass classifiers requires some adaptation. One standard
approach reformulates the multiclass setting into many One-versus-All binary problems (one per
class) [[70]]. One limitation of this approach is that it does not scale well. When the number of classes
is large, the calibration data is divided into highly unbalanced subsets that do not contain enough
positive examples to solve the One-versus-All binary problems. Other methods based on Platt scaling
[S0] involve learning a set of parameters whose size grows with the number of classes. For problems
with many classes, they tend to overfit, as we demonstrate in this work.

The main idea of our work is to reformulate the multiclass confidence estimation into a single binary
problem. This problem can be phrased as the unique question: "Is the prediction correct?". In this
formulation, the confidence score is defined as the maximum class probability of the binary problem
that outputs 1 if the predicted class is correct and 0 otherwise. The intent is that the confidence
score accurately describes whether the prediction is correct, regardless of the class. We show that
this novel approach, which we call Top-versus-All (TvA), significantly improves the performance
of standard calibration methods: Temperature and Vector Scaling [17]], Dirichlet Calibration [29]],
Histogram Binning [69], Isotonic Regression [[7/0], Beta Calibration [28]], and Bayesian Binning into
Quantiles [46]. We also introduce a simple regularization for Vector Scaling or Dirichlet Calibration
that mitigates overfitting when the number of classes is high relative to the calibration data size. We
conduct experiments on multiple image and text classification datasets and many pre-trained models.

Our main contributions are the following:

* We discuss four issues of the standard approach to confidence calibration.

* To solve these issues, we develop the Top-versus-All approach to confidence calibration of
multiclass classifiers, transforming the problem into a single binary classifier’s calibration.
This straightforward reformulation enables more efficient use of existing calibration methods,
achieved with minimal modifications to the methods’ original algorithms.

» Applied to scaling methods for calibration (such as Temperature Scaling), TvA allows the
use of the binary cross-entropy loss, which is more efficient in decreasing the confidence of
wrong predictions and leads to stronger gradients in the case of Temperature Scaling.
Applied to binary methods for calibration (such as Histogram Binning), TvA significantly
improves their performance and makes them accuracy-preserving.

* We demonstrate our approach’s scalability and generality with extensive experiments on im-
age classification with state-of-the-art models for complex datasets and on text classification
with Pre-trained Language Models (PLMs) and Large Language Models (LLMs).

2 Related work

Calibration There are various notions of multiclass calibration. One can consider confidence [17],
class-wise [28]], top-r [[19], top-label [18]], decision [75]], projection smooth [16], or strong [60, [65]]
calibration. For recent surveys, we refer to [[10] and [63]. In this work, we focus on confidence
calibration and not on the calibration of the full probability vector. Indeed, confidence calibration is
useful for many applications that only require a single confidence value: selective classification [[13],
out-of-distribution detection [22], or active learning [34]]. For these applications, stronger notions of
calibration are both difficult and useless. Also, class-wise calibration metrics do not appropriately
scale to large numbers of classes, a setting we consider in this work, as explained in Appendix [E]

Metrics Several metrics have been proposed to quantify calibration error. The most common is the
Expected Calibration Error (ECE) [46] (see Equation[2). ECE has flaws: the estimation quality is
influenced by the binning scheme, and it is not a proper scoring rule [[14} 160} 48]]. Despite its flaws, it
remains the standard comparison metric for confidence calibration. Variants of ECE have also been
developed: classwise-ECE [29], ECE with equal mass bins [48] 44], or top-label-ECE, which adds a
conditioning on the predicted class [[18]]. The Brier score [4] is also used to measure calibration. The
proximity-informed expected calibration error (PIECE) evaluates the miscalibration due to proximity
bias [[68]. We mainly use the standard ECE in this work, and the Appendix contains more metrics.



Training calibrated networks Several solutions have been proposed in the literature to improve
calibration by training neural networks in specific ways, generally by making use of a new loss term
(31} 158l 26,16, 15]]. While these methods directly optimize calibration during the training phase of the
networks, they require a high development time, often compromise accuracy, and are not adapted to
pre-trained foundation models. That is why we prefer to focus on calibrating already-trained models.

Post-processing (or post-hoc) calibration methods Another approach is to calibrate already-
trained models. This lowers the development time by decoupling accuracy optimization and calibra-
tion. In this paper, we divide post-hoc calibration methods into two categories: scaling and binary.
Scaling methods are derived from Platt scaling [50] and optimize some parameters to scale the logits.
Temperature Scaling [[17]] is a popular simple post-processing calibration method. The logits vector is
scaled by a coefficient, which modifies the probability vector. Vector Scaling [[17] is more expressive
and has good performance in many cases [[17, 48], 29]]. Matrix Scaling can also be considered for more
expressiveness but is difficult to apply without overfitting [17]. Dirichlet Calibration [29] proposes a
regularization strategy for Matrix Scaling. [72] developed Ensemble Temperature Scaling. Scaling
can be combined with binning [30]. Besides logits or probabilities, features can also be used [35].
Another family of methods tackles binary classification. We designate them as binary methods.
Histogram Binning [69] divides the prediction into B bins according to the predicted probability. For
each bin, a calibrated probability is computed from the calibration data. The probability becomes
discrete: it can only take B values. With some modifications, it outperforms scaling methods [18|149].
Isotonic Regression [70] learns a piecewise constant function to remap probabilities. Bayesian
Binning into Quantiles [46]] brings Bayesian model averaging to Histogram Binning. Beta Calibration
[28] uses a beta distribution to obtain a calibration mapping.

Our work reformulates the multiclass calibration problem and allows more efficient use of all these
calibration methods, with little to no change in their algorithms.

Multiclass to Binary Using binary calibration methods for a multiclass classifier requires adapting
the multiclass setting. This is usually done with a One-versus-All approach [70} [17]. The multiclass
setting is decomposed into L One-versus-All independent problems: one binary problem for each
class. [[18] introduce the notion of top-label calibration, i.e., confidence calibration with additional
conditioning on the predicted class (top-label). They describe a general multiclass-to-binary frame-
work to develop top-label calibrators. [6] derive L(L — 1)/2 pairwise binary problems. The approach
requires training the classifier from scratch, and its performance decreases with the number of classes.
Our work tackles this multiclass-to-binary research problem. Contrary to [6], the One-versus-All
approach [70] and top-label calibrators [[18], our approach works well for problems with many classes.
The methods I-Max [49] and IRM [[72] use a shared class-wise strategy to compute a single calibrator.
The calibrator is applied to all class probabilities separately, so the class probabilities ranking and
prediction might change. In contrast, TvA applied to binary methods rescales the confidence after the
class prediction is made. I-Max and IRM consider the full class probabilities vectors, while TvA only
considers confidence values. Also, they build on top of Histogram Binning and Isotonic Regression,
respectively, while we apply our approach to many calibration methods. A concurrent work building
on an intuition similar to ours derives a calibration method based on a Correctness-Aware Loss [38]].
Appendix [C]discusses the differences between our approach and others.

3 Problem setting

3.1 Background

Confidence calibration of a classifier We consider the classification problem where an input x
is associated with a class label y € Y = {1,2, ..., L}. The neural network classifier f provides a
class prediction from a final softmax layer o that transforms intermediate logits z into probabilities.
The classifier prediction is the most probable class § = arg maxgey fi(x) with fi(z) referring to
the probability of class &, and the confidence score defined as s = maxcy fir(x). Note that we use
the term confidence to denote the maximum class probability. With y the real label, we consider the
confidence calibration definition from [17] that says that the classifier f is calibrated if:

P(g=yls=p)=p, Vpel0,1] 1)

where the probability is over the data distribution. Equation () expresses that the probability of being
correct when the confidence is around p is indeed p. For instance, if we consider the set of predictions



with a confidence of 90%, they should be correct 90% of the time. The conditional probability of
is not rigorously defined mathematically (the event {s = p} has zero probability), and interval-based
empirical estimators are often used to define metrics capable of evaluating how well (T)) is satisfied.
This is the case of ECE, which approximates the calibration error by partitioning the confidence
distribution into B bins. The absolute difference between the accuracy and confidence is computed
for each subset of data in the bins. The final value is a weighted sum of the differences of each bin.

B
ECE = Z %|acc(b) — conf(b)| )
b=1

Where n;, is the number of samples in bin b, N is the total number of samples, acc(b) is the accuracy
in bin b, and conf(b) is the average confidence in bin b. ECE can be interpreted visually by looking at
diagrams such as those of Figure|l} ECE computes the sum of the red bars (difference between bin
accuracy and average confidence) weighted by the proportion of samples in the bin.

Post-processing calibration methods We are considering the scenario where a classifier has
already been trained, and the objective is to enhance its calibration. Post-processing calibration
methods aim to remap the classifier probabilities to better-calibrated values without modifying the
classifier. They typically use a calibration set different from the training set to optimize parameters or
learn a function. We note the calibration data D.,; = {(z;,y;)}_,. We focus on post-processing
calibration because it enables better utilization of off-the-shelf models and separates model training
(optimized for accuracy) from calibration. These advantages significantly reduce the development
cost of obtaining a well-performing and well-calibrated model, contrary to optimizing calibration
during training. We categorize the post-processing calibration techniques considered in this paper
into two groups: scaling methods and binary methods.

3.2 Issues related to current approaches

Behavior of current scaling methods Scaling methods for calibration optimize one or more
coefficients that scale the logits vector to minimize on calibration data the cross-entropy loss defined
as lep = — 2521 lp—y - log(fr(x)) = —log(fy(x)). Minimizing o therefore increases the
probability of the true class. We can distinguish two cases to understand what happens during the
optimization: whether the prediction ¢ is correct or not. In the first case, the confidence score is
s = fy(x): minimizing lc increases the confidence f,(z). In the second case, the prediction is
incorrect, which implies that f,(z) < s. Minimizing /¢ g increases the probability of the true class
fy(x) but does not directly change the confidence (because s # f,(x)). Instead, the confidence
(which was attributed to a wrong class) is indirectly lowered through the softmax normalization.

— Issue 1: Cross-entropy loss only indirecly lowers confidence in wrong predictions.

We identified another issue of some scaling methods. By design, the number of parameters optimized
by Vector Scaling and Dirichlet Calibration grows with the number of classes. When the number of
classes is high, these methods overfit the calibration set as shown in Figure 2]

— Issue 2: Vector Scaling and Dirichlet Calibration overfit calibration sets with many classes.

One-versus-All approach for binary methods The One-versus-All (OvA) calibration approach
[70] allows adapting calibration methods for binary classifiers to multiclass classifiers. To do so, it
decomposes the calibration of multiclass classifiers into sets of L binary calibration problems: one
for each class k. For each problem, the considered probability is fx(x), and the associated label
1y=x € {0,1}. When calibrating a classifier from data, each binary problem is highly imbalanced
with a ratio between positive and negative examples equal to ﬁ if the classes are equally sampled.
For instance, for ImageNet, the ratio is 1/999: out of 25000 examples, only 25 have a positive label.

—lIssue 3: OvA approach leads to highly imbalanced binary problems.

At test time, each of the L class probabilities is calibrated by a separate calibration model. The
resulting probability vector can be normalized to ensure a unit norm. Because each probability is
calibrated independently, their ranking can change, thus modifying the predicted class. In Table [0}
we see that accuracy is often negatively impacted in practice.

—Issue 4: OvA approach can change the predicted class and negatively impact the accuracy.



4 Top-versus-All approach to confidence calibration

Algorithm 1 Top-versus-All approach to confidence calibration

Input:
Dear: {(xi,y;) Y, the calibration data
f: the multiclass classifier

g: a calibration function > e.g., Temperature Scaling
Preprocessing:

Ui < arg maxgey fr(x;) > Compute class predictions
yf — ly—y, > Compute predictions correctness
fb <+ maxpey fr > Create surrogate binary classifier
DI« {(xi, y)) Y, > Build binary calibration set

Learn calibration function:

Learn g to calibrate the surrogate binary classifier f° on D

Inference:
Use ¢ to calibrate the confidences of the original multiclass classifier f

4.1 General presentation

In the calibration definition (II]) and the standard ECE metrics, only the confidence, i.e., the maximal
probability, reflects the likelihood of making an accurate prediction. The probabilities of other classes
are not taken into account. However, the standard approach to calibration uses the entire set of
probabilities, not just confidence, which introduces unnecessary complexity. We aim to simplify the
process by reformulating the problem of calibrating multiclass classifiers into a single binary problem.
This problem can be phrased as: "Is the prediction correct?". In this setting, we do not calibrate
the predicted probabilities vector but only a scalar: the confidence. The remaining probabilities are
discarded. This is equivalent to calibrating a surrogate binary classifier that predicts whether the
class prediction is correct. Since this correctness classifier only considers the maximal probability
versus all others, we call our approach Top-versus-All (TvA).

Replacing the standard approach by TvA is straightforward. Given the standard calibration data
Dear = {(wi,y:)}Y,, we add a few data preprocessing steps. First, compute the class pre-
dictions 7 and their correctness: y® = ly—y. Second, create the surrogate binary classifier
fb(x) = maxgcy fr(z). Finally, build the calibration set for the surrogate binary classifier:

Dyt = {(zi, w1l 3)
After this preprocessing, we choose a standard calibration function g, e.g., Temperature Scaling, to
calibrate the surrogate binary classifier. The learning of the calibration function follows its original
underlying algorithm but uses the modified calibration data D*7. The learned calibration function
is then applied to the confidences of the original multiclass classifier. Algorithm [I]describes our
approach. In the Appendix, Algorithm [3|provides more details and highlights differences with the

standard approach of Algorithm[2]

After this general presentation, we explain how TvA impacts the two categories of calibration
methods, scaling and binary, in Subsections 4.2]and [4.3] respectively. We also justify its behavior.

4.2 Top-versus-All approach for scaling methods

Because our Top-versus-All setting reformulates the calibration of multiclass classifiers into a binary
problem, the natural loss is the binary cross-entropy:

Ipep = —(y" - logs + (1 —y") - log(1 — s)) )

Minimizing this loss results in confidence estimates that more accurately describe the probability of
being correct, regardless of the L — 1 less likely class predictions. Using the binary cross-entropy as
a calibration loss makes an important difference compared to the usual multiclass cross-entropy. The
cross-entropy loss takes into account the probability of the correct class, while with TvA the binary
cross-entropy takes into account the probability of the predicted class (i.e., the confidence).



As for the standard approach, only two cases are possible. When the prediction is correct, o =
—log(s) = —log(fy) = lce. We get the same result as the cross-entropy loss: minimizing it
directly increases the confidence. But when the prediction is incorrect, [gcp = —log(1 — s) # log.
Minimizing the loss now directly decreases the confidence. This is a key difference compared to
using the multiclass cross-entropy loss.

The impact of the reformulation can be seen for Temperature Scaling, which optimizes a coefficient
T that scales the logits z;. The reformulation generates stronger gradients when the prediction is
incorrect:

fors > 0.5 (5)

OdlpcE
oT

Olcp
oT

with 2Bee = L. L (maxy 2, — >, 25 - f) and 222 = &> (2, — 37, 21, - fi). See Appendix
[Difor the mathematical calculations. Because for interesting problems, the confidence verifies s > 0.5
most of the time (as shown in Figure[I), our approach strengthens the gradients. The optimization
of the temperature 7' is more efficient as confident incorrect predictions are more heavily penalized.
This effect is not mitigated by the choice of learning rate, which does not vary with s. Applying
standard Temperature Scaling usually results in overconfident probabilities, but our approach limits
this overconfidence. This is verified experimentally in Table[§] which displays the average confidences
for TS without and with TvA.

—Solution for Issue 1: Use the binary cross-entropy loss resulting from TvA approach.

Regularization of scaling methods Overfitting of Vector Scaling and Dirichlet Calibration can
be reduced with a simple L2 regularization that penalizes the coefficients of the vector v that are far
from the reference value 1.

req

b« \

L
Z (6)

This regularization allows these methods to take advantage of their additional expressiveness without
being subject to overfitting. The loss for Vector Scaling becomes ipc g + Alreg(v) where A is a
hyperparameter. The loss for Dirichlet Calibration uses additional matrix regularization terms. A is
the only additional hyperparameter introduced by our method, and it applies only to Vector Scaling
and Dirichlet Calibration.

—Solution for Issue 2: Use L2 regularization.

4.3 Top-versus-All approach for binary methods

Our TvA approach replaces the One-versus-All approach to apply binary methods to the multiclass
setting. TVA transforms the multiclass setting into a single binary problem that uses the binary
calibration dataset (3). In this dataset, the proportion of positive labels equals the classifier’s accuracy

a. The ratio between negative and positive examples is O(lﬂ - — 1. For a classifier with 80%
accuracy on ImageNet and a calibration dataset of 25000 examples there are 5000 negative and
20000 positive examples (ratio of 1/4). This is still a bit imbalanced but orders of magnitude smaller
than the class-wise binary calibration datasets of the One-versus-All approach (ratio of 1/999).

—Solution for Issue 3: By not dividing the calibration data into class-wise datasets, the TvA
approach yields a much better balanced binary calibration problem.

The Top-versus-All approach operates on confidence alone, not the full class probabilities vector.
This means that the class prediction is already done, and the ranking of the class probabilities does
not change, unlike with One-versus-All. The classifier’s prediction and accuracy are unaffected. This
scheme allows decoupling accuracy improvements (during training time) and calibration (during
post-processing calibration), thus avoiding compromises and reducing development time.

—Solution for Issue 4: By operating on confidence alone, the Top-versus-All approach does not
impact the classifier’s prediction or accuracy for binary methods applied to the multiclass scenario.
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Figure 1: Reliability diagrams for ResNet-50 and ViT-B/16 when using Temperature Scaling (TS),
Vector Scaling (VS), and Histogram Binning (HB) on ImageNet. The subscript 1ya signifies that the
TvA reformulation was used, and ., means our regularization (6) was applied. Red bars show the
differences between bin accuracy (blue bar) and accuracy for perfect calibration (dashed red line).
As the methods improve the calibration, these differences are reduced and the average confidence
(vertical dotted line) will get closer to the global accuracy (vertical dashed line).

S Experiments

5.1 Setting

Datasets and models For image classification, we used the datasets CIFAR-10 (C10) and CIFAR-
100 (C100) [27] with 10 and 100 classes respectively, ImageNer (IN) [7] with 1000 classes, and
ImageNet-21K (IN21K) [54] with 10450 classes. For text classification, we used Amazon Fine Foods
(AFF) [43] and DynaSent (DF) [51]] for sentiment analysis with 3 classes, MNLI [[66]] for natural
language inference with 3 classes, and Yahoo Answers (YA) for topic classification on 10 classes.
Experiment results are averaged over five random seeds that randomly split the concatenation of the
original validation and test sets into calibration and test sets.

We used the following models for image classification: ResNer [21]], Wide-ResNet-26-10 (WRN) [[11]],
DenseNet-121 [24]], MobileNetV3 (MN3) [23]], ViT [9], ConvNeXt [41l], EfficientNet [56}, 57, Swin
[40139], and CLIP [52]] which matches input images to text descriptions in a shared embedding space,
assigning labels based on the highest similarity score. For text classification, we used the PLMs
RoBERTa [37]] and T5 [33]].

More details about datasets, calibration sets sizes, and model weights can be seen in Appendix [F}

Baselines  Our Top-versus-All (1y4) reformulation and regularization (g can be applied to different
calibration methods. We have tested the following scaling methods: Temperature Scaling (TS) and
Vector Scaling (VS) [17], and Dirichlet Calibration (DC) [29] with the best-performing variant
Dir-ODIR, which regularizes off-diagonal and bias coefficients. We also tested the following binary
methods: Histogram Binning (HB) using for each case the best-performing variant between
equal-mass or equal-size bins, Isofonic Regression (Iso) [10], Beta Calibration (Beta) [28]], and
Bayesian Binning into Quantiles (BBQ) [46)]. For comparison, we include methods with state-of-
the-art results on problems with many classes: I-Max [49] and IRM [72]]. See Appendix [C|for more
details on these methods. More details on code implementations can be seen in Appendix



Table 1: ECE in % (lower is better). The subscript tya denotes that our reformulation was applied to
the calibration method. IRM and I-Max are competing methods. The best method for a given model
is in bold. Methods in purple impact the model prediction, potentially degrading accuracy; methods
in teal do not. Values are averaged over five random seeds. Results are averaged over models of the
same family. Detailed results for all models can be seen in Tables E] and@ of the Appendix.

| scaling methods binary methods

|
Dataset  Models Uncal. IRM I-Max | TS TSr, | VS VSt | DC DCoor | Iso  Tson, | BBQ BBQy, | HB  HBy,
C10 ConvNets 177~ 0.67 0.61 120 125 | 117 1.17 1.16 117 | 112 068 | 1.17 077 | 1.06 043
CLIP 5.03 1.03  0.94 0.78  0.73 | 2.56 1.85 2.56 1.84 1.05 086 | 1.39  0.86 L. 82 0.73
C100 ConvNets ~ 6.04 1.30 115 4.65 296 | 491 2.35 4.89 2.35 533 1.38 | 9.63 1.35 | 956 1.02
CLIP 1037 290 257 254 251 | 178 2.86 7.55 1.84 253 1.61 | 748 148 | 723 139
IN ResNet 1526 131 1.07 265  1.89 | 277 1.67 3.59 2.23 305 079 | 841 076 | 749 0.55
EffNet 1572 0.68 048 348 259 | 3.67 1.26 3.65 1.23 2.83 0.68 | 6.55 0.64 | 439 043
ConvNeXt 16.46 0.82 0.58 3.67 225 | 4.05 1.37 4.04 1.35 297 075 | 741 0.68 | 513 0.52
ViT 4.40 0.81 0.61 4.09 296 | 431 2.02 4.31 1.99 360 077 | 664 073 | 659 0.52
Swin 5.85 0.75 0.49 3.63 291 | 4.04 1.70 4.03 1.67 3.19 074 | 709 071 539 048
CLIP 196 108 072 | 1.89 182 | 1.63 105 | 3203 6765 |235 092|831 093 |7.16 080
IN21K  MN3 1234 err. e 8.69 439 | 252 2.40 5884  81.16 | 200 021 | e 020 | 550 0.17
ViT-B/16  6.27 err.  err. 892 655 | 238 1.54 8.22 3.20 2.14 022 024 | 789 0.12
AFF TS 547 0.27  0.26 110 115 | 1.52 1.42 118 1.31 037 027 | 039 028 |287 0.17
RoBERTa  7.37 0.30 0.28 240 233 | 141 1.85 1.38 1.68 052 027 | 0.75 035 | 402 0.20
DS TS 8.86 .39 1.38 219 217 | 6.13 2.00 5.91 2.02 150 155 | 1. 38 1.58 1.90 112
RoBERTa 16.12  1.56 1.50 12.07 12.07 | 1466  6.80 13.90 5.57 L.71  1.53 | 16 .14 | 1.05 091
MNLI TS 7.04 0.72  0.70 2.81 280 | 446 1.79 4.31 1.82 0.80 074 | 1.3 0.69 | 209 043
RoBERTa  9.22 0.89 0.71 572 572 | 6.99 1.92 6.59 1.99 1.00 092 | 1.6 0.84 1.02  0.60
YA TS 7.84 0.80 0.81 .07 1.35 | 3.70 1.16 3.75 L.15 1.73 082 | 2.8 0.96 | 3.65 0.69
RoBERTa 19.59 0.97 0.79 12.39 1238 | 16.47 2.52 16.07 2.21 1.92 0.99 | 5.0 075 | 341 0.58

5.2 Top-versus-All

For visual qualitative results, Figure I|displays reliability diagrams [47]. We observe that initially,
ResNet-50 is highly underconfident and ViT-B/16 a bit underconfident. Applying TS and VS solves
the underconfidence and makes the models slightly overconfident. TvA improves these methods, and
the average confidence gets closer to the accuracy. HBry4 makes the calibration almost perfect.

Table [T| shows the results of applying the Top-versus-All reformulation to several calibration methods.
For clarity, results are averaged over families of models (models based on the same architecture) and
the full results are available in Tables [5|and [6]of the Appendix. In most cases, the TvVA reformulation
significantly lowers the ECE by dozens of percent. Without TvA, binary methods often perturb the
prediction and degrade the classifier’s accuracy (see Table [J), making them inapplicable in a practical
setting. TvA solves the issue as it only scales the confidence (after the prediction is made) and makes
binary methods outperform scaling methods.

Improvements due to TvA are consistent across models. However, exceptions are observed for CLIP:
it is the model family with the lowest ECE pre-calibration, but the highest ECE post-calibration for
ImageNet. CLIP’s multimodal training regime, zero-shot adaptation as a classifier, and very large
training dataset might cause this different behavior. CLIP’s low ECE was also observed in [44, [11]].
[64] specifically tackles the calibration of fine-tuned CLIP, a setting not considered here.

We also found that DC is sensitive to hyperparameter tuning, and its performance is usually not much
better than VS, which is consistent with [29]]. In some cases, the optimization diverges, leading to
very poor results, e.g., for CLIP on ImageNet.

Improvements due to TvA are also consistent across datasets, although they tend to increase with
the number of classes. Improvements on ImageNet are usually better than on CIFAR-100, whose
improvements are usually better than on CIFAR-10. This is notable with e.g., TS or HB. The
magnitude of improvement is usually higher for binary methods, e.g., HB, than scaling methods, e.g.,
TS, especially for many classes. This indicates that Issue 3 is more serious than Issue 1.

For text datasets with only three classes (AFF, DS, and MNLI), TS does not benefit from TvA, but
other methods do, despite the small number of classes. According to [5], TS is among the best
calibration methods for the text classification tasks considered here, even compared to ones that
retrain the model. Even so, our method HBtya significantly outperforms it.



Some methods’ current implementations could not handle the large scale of ImageNet-21K, resulting
in out-of-memory errors written as "err." in the Table. For I-Max and IRM, this is because they
consider the full probability vectors while TvA efficiently uses data by considering only confidence
values. Indeed, TvA handles this scale without difficulty.

Additional results are included in Appendix [H] Tables [5)and [6] contain the full results for ECE, with
the standard deviations in Table[7] Table[§|reveals that ImageNet networks are mostly underconfident.
This is aligned with [11] and goes against previous knowledge on overconfidence, which was initially
believed to be linked to network size [17]. Table[Q|provides the accuracies after calibration. Table[I0]
exhibits that ECE with equal-mass bins has similar values as standard ECE. Table |l I{shows that TvA
mostly lowers the Brier score, except for Iso, which has the lowest score overall.

Calibration methods can also be applied to Large Languages Models (LLMs) using In-Context
Learning (ICL) to tackle text classification tasks [[77, 120, 25| 78, [1]]. The primary goal of these
methods is to improve model accuracy. TvA was not designed for this objective, but it can still be
applied on top of an existing method that improves the accuracy. TvA then lowers the calibration
error while keeping the accuracy gain. Results for GPT-J [62] and Llama-2 [59)] are in Table[12]

To summarize the results for practical use, our experiments show that Histogram Binning (within the
TvA or I-Max setting) is the best calibration method overall, providing ECE values mostly below
1%. This is the method we advise using. However, suppose the underlying application requires a
confidence with continuous values, e.g., to rank the predictions for selective classification. In that
case, we advise using a method that improves the AUROC, shown in Appendix [G] such as TS or Iso.

5.3 Solving overfitting with regularization and TvA

On ImageNet, VS and DC overfit the calibration set, degrading the calibration on the test set. The
lower performance of VS relative to TS indicates this overfitting. As visualized in Figure[2] combining
the binary cross-entropy loss used in the TvA reformulation and an additional regularization term
prevents overfitting. We fixed the value A = 0.01 as it works well across models. Initializing the
vector coefficients to % with T obtained by TS, helps further improve performance.

5.4 Influence of the calibration set size

The size of the calibration set influences the performance of the different methods, as seen in Figure[3]
TS and TSy,, do not benefit from more data due to their low expressiveness. VS does not improve
the ECE because of the overfitting problem. In contrast, VS,, 1., benefits from more calibration data.
With enough data (= 15000), it outperforms TSy,,. Binary methods using the standard One-versus-All
approach have poor performance and need a large amount of data to be competitive. Using TvA, they
get excellent performance with little data.

—-- VS o B
VStya P R U ——
""" TStva 5 4 - == BBQ === HB Iso
—— VS 8 9 BBQrya HBrya Tsorea
VSiee Tva 0 "K‘ =
T e ra T < 4 .
I I T T % 3 | S VS - == TS
50 100 150 200 et VSieg TvA TStya
epochs g 27
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Figure 2: Test ECE evolution during training calibration set size

with ResNet-50 on ImageNet. The combination

of regularization and TvA prevents overfitting of ~ Figure 3: Influence of the calibration set size for

Vector Scaling. Temperature Scaling with TvA ~ ResNet-101 on ImageNet. Binary methods at the

is shown for reference. top and scaling methods at the bottom.



6 Limitations

Our approach tackles confidence calibration and is unlikely to improve performance for stronger
notions of calibration, such as class-wise calibration. However, confidence calibration is useful for
many practical cases, such as selective classification [13]], out-of-distribution detection [22], or active
learning [34]]. Also, calibration improvements are less significant for problems with few classes
(< 10) than for problems with many classes, but our approach still provides the best results.

7 Conclusion

Reducing the miscalibration of neural networks is essential to improve trust in their predictions.
This can be done after the model training with an optimization using calibration data. However,
many current calibration methods do not scale well to complex datasets: binary methods under
the One-versus-All setting do not have enough per-class calibration data, and scaling methods are
inefficient. We demonstrate that reformulating the confidence calibration of multiclass classifiers as a
single binary problem significantly improves the performance of baseline calibration techniques. The
competitiveness of scaling methods is increased, and binary methods use per-class calibration data
more efficiently without altering the model’s accuracy. In short, our TvA reformulation enhances
many existing calibration methods with little to no change in their algorithm. Extensive experiments
with state-of-the-art image classification models on complex datasets and with text classification
demonstrate our approach’s scalability and generality.
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A Appendix contents

discusses the broader impacts of the work.

[C]discusses the proposed approach in more details, and compares with other methods.

[D|contains a theoretical justification for Top-versus-All in the case of Temperature Scaling.
discusses the limits of classwise-ECE and top-label-ECE for a high number of classes.

[F| describes implementation details, including the computing time in Table 3]

|G| shows the impact of different calibration methods on selective classification.

provides additional results: full ECE results in Table [5| and [6] standard deviations in Table
confidences in Table[§] accuracies in Table[9] equal-mass bins ECE in Table[I0] Brier score in Table
[11] experiments for in-context learning of LLMs in Table

B Broader impacts

Our reformulation of the confidence calibration of multiclass classifiers as a binary problem is both
simple and general. It has several benefits. On the theoretical side, it might lead to new perspectives
on the confidence calibration problem and the development of new calibration methods. On the
practical side, existing calibration methods can be adapted to our problem reformulation by adding
just a few lines of code. This is an easy and quick way to improve the calibration of classification
models. Better-calibrated models are more trustworthy: potential incorrect predictions are more
easily identifiable and preventable. However, this also comes with potential risks. The knowledge
that a model is well-calibrated might lead to undue trust in the system and the tendency to overlook
prediction errors. Even well-calibrated models are not entirely reliable, and developers and users
must remember this. Post-processing calibration requires data not included in the training set, which
leaves less data available for a thorough evaluation of the model. Calibration does not fix biases in
the data. Finally, we tested the calibration improvement only on in-distribution data, but real systems
might receive out-of-distribution data (e.g., an image of a new class) or adversarial examples. For
such inputs, the classifier predicted probabilities (and thus the confidence) are unreliable, even for
well-calibrated models, and a pipeline to filter such data is necessary.

C Details on the method

Algorithm 3 Top-versus-all approach

Input:
Algorithm 2 Standard approach Dil: {(zs,y:)}IL, the calibration data

Input: f: the multiclass classifier
Dear: {(I“ yi)}i\le the calibration data g: a calibration function D> e.g., Temperature Scaling
£ the multiclass classifier Preprocessing:
g: a calibration function > e.g., Temperature Scaling Ui < argmaxgey fr(xi) > Compute class predictions
Learn calibration function: yf — ]‘};i:Yi > Compute predictions correciness
if g is scaling method then fb < mMaxgey fk; D> Create surrogate binary classifier

loss [ := Cross-Entropy DIV} o (s, y?) I, B Build binary calib. set

Learn g to calibrate f by minimizing [ on D4

A Learn calibration function:
else if g is binary method then

if g is scaling method then

for k& k: 1to L do > One-}z\ﬁmus-All approach loss | := Binary Cross—Entropy
Dior = {(=i,9:) |y = k}i):l if g is vector or Dirichlet scaling
Learn gy, to calibrate f on Déal loss ] < [ + /\l,.aq D> Add regularization
end for end if ‘
g < (91,92,---,9r) Learn g to calibrate fb by minimizing [ on DZ;’?
end if else if g is binary method then
Inference: Learn g to calibrate f* on D29
Use g to calibrate confidences from f end if

Inference:
Use g to calibrate confidences from f
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Comparison with the standard approach Algorithm[2]describes the standard approach to post-
processing calibration, and Algorithm [3|describes our approach in more details and shows in blue
the differences with the standard approach. Our approach adds a preprocessing step to keep only the
confidences instead of the full probabilities vector. It can be seen as creating a surrogate "correctness"”
classifier and its associated calibration data. The calibrator is learned for the surrogate classifier
and applied to the original classifier at inference time. Also, we add regularization for some scaling
methods and we have only one binary calibrator instead of one per class.

Comparison with IRM and I-Max IRM [72] and I-Max [49] are, like TvA, multiclass-to-binary
reductions. This is why TvA cannot be applied on top of them: they already transform the multiclass
problem into a binary one using a different strategy.

The shared class-wise strategy of [49] and the data ensemble strategy of [[72] are described very briefly
in subsections 3.2 and 3.3.2 of their respective papers and not rigorously justified. Our understanding
is that these two strategies do exactly the same thing. To build the calibration set, they concatenate
all the class probability vectors so that we get a big probability vector of size N.L (/N samples and
L classes) as predictions and similarly concatenate the one-hot embedding of the target class (a big
vector with IV ones and N.(L — 1) zeros) as targets. Then, they learn a single calibrator. For each
example, this calibrator aims to simultaneously increase the probabilities for the target class (target is
1) and decrease all the other class probabilities (target is 0). The single calibrator is applied to each
class probability separately, meaning that the ranking of class probabilities can change, modifying
the classifier prediction.

Our strategy derives from transforming the multiclass calibration into a single binary problem. The
intuition is to learn the calibrator on a surrogate binary classifier and apply this calibrator to the
original classifier. This binary classifier is built on top of the original classifier (by applying the
max function to the class probabilities vector). They thus share their confidence. However, the
binary classifier aims to solve a different task: predicting the correctness of the original classifier. To
build the calibration set, we concatenate all the confidences (a vector of size N) as predictions and
concatenate all the correctnesses as targets (also a vector of size N). The correctness value of a given
example is 1 if the class prediction is correct; otherwise, it is 0. Then, we learn a single calibrator,
similar to the strategy above. However, there is a key difference: this calibrator aims to increase
the probabilities for correct predictions and decrease them for incorrect predictions. Note that our
probabilities are all confidences (the maximum class probabilities), meaning we only consider the
confidences, which the calibrator directly increases or decreases. In the strategy from [49] and [72],
the calibrator has to manage all class probabilities (L times more), even the ones that do not matter,
including the lowest class probabilities close to 0. This is less efficient (actually, while this can surely
be fixed, the original implementations of IRM and I-Max could not run on ImageNet-21K). This point
is closely linked to the analysis of the binary cross entropy loss for scaling methods in Subsection 4.2:
when the prediction is incorrect, increasing the probability of the correct class indirectly decreases
the confidence (strategy from [49] and [72]) while our strategy directly decreases the confidence.

[-Max is more complex because it modifies the Histogram Binning algorithm, while our approach
does not. Additionally, [35] found that I-Max produces unusable probability vectors. Indeed, they do
not sum up to 1, and normalizing them degrades the method’s performance.

We wrote our paper with practicality and generality in mind. Contrary to [49] and [72], we demon-
strate the generality of our strategy by applying it on top of existing calibration baselines of different
natures (scaling and binary). One of our main goals is that practitioners can easily and quickly try
our TvA approach, using just a few lines of code, which can significantly improve the calibration
performance of their existing calibration pipeline while having no impact on the predicted class by
design (except for VS and DC).

Comparison with ProCal Another recent calibration method is ProCal [68]. However, its primary
objective differs from ours: it "focuses on the problem of proximity bias in model calibration, a
phenomenon wherein deep models tend to be more overconfident on data of low proximity". Its goal
is to lower the difference in the confidence score values between regions of low and high density,
i.e., to make the confidence score independent of a local density indicator called "proximity." There
is no theoretical guarantee, however, that minimizing the proximity bias improves the confidence
calibration, the focus of our work. Theorem 4.2 about the PIECE metric is a direct consequence
of Jensen’s inequality and is true for any random variable D, not necessarily a proximity score.
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Theorem 5.1 is an interesting bias/variance decomposition of the Brier score. However, as this type
of decomposition usually states, the error may come from bias (here, a wrong initial calibration) or
high estimation variance (which can be related to low density but is not expressed as such in the
decomposition). We experimentally compare our approach to the ProCal algorithm using the code
provided by its authors and observe in Table [2] that our approach gives much better ECE confidence
calibration and, for half of the models, also better PIECE values.

ProCal aims to achieve three goals: mitigate proximity bias, improve confidence calibration, and
provide a plug-and-play method. We share the last two goals. Concerning improving confidence
calibration, our approach has better results, as shown in Table[2] Both approaches are plug-and-play,
but they apply very differently. ProCal is applied after existing calibration methods to further improve
calibration. It thus does not solve any of the four issues we identified (e.g., cross-entropy loss is
still inefficient, and One-versus-All still leads to highly imbalanced problems). Our Top-versus-All
approach is a reformulation of the calibration problem that uses a surrogate binary classifier. Existing
approaches are applied to this surrogate classifier, which is how the four issues are solved. We do
not propose a new method but a new way of applying existing methods. Our approach does not
introduce new hyperparameters (except in the particular case of regularizing scaling methods). ProCal
introduces several new hyperparameters, such as the choice of the distance, the number of KNN
neighbors, or a shrinkage coefficient.

Comparison with Correctness-Aware Loss A concurrent work [38]] builds a calibration method on
top of an intuition similar to ours: binarize the calibration problem. However, what the authors do with
this intuition differs vastly from our approach. They derive a Correctness-Aware Loss (Eq. 7 of their
paper), which is almost the standard binary cross-entropy loss we use for scaling methods but without
a logarithm. They use this loss to learn a separate model that predicts a sample-wise temperature
coefficient. This is a new calibration method, which is not straightforward to implement due to the
numerous hyperparameters (network architecture, image transformations...). It also requires multiple
inferences at test-time, which can be problematic in some production models. Our approach is, again,
not a calibration method but a general reformulation of the calibration problem that enhances existing
methods. By looking at their Table 1, they get an ECE of 2.22 on ImageNet (in-distribution), while our
approach achieves values around 0.5 for most models in our paper’s Table 1. Their method, contrary
to TvA, improves the AUROC, but in our understanding, it seems mostly due to the use of image
transformations, not from their proposed loss. Their method seems to work best in out-of-distribution
scenarios, which is not the main objective of our paper. However, these good results for AUROC and
out-of-distribution scenarios make this method complementary to our approach, and combining the
two in some way could be promising.
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Table 2: ECE, MCE, ACE, and PIECE in %. The experimental setting is the one used for Table 4 of
[68]. The baselines are no calibration (conf), Temperature Scaling (TS), Multi Isotonic Regression
(MIR), and Histogram Binning (HB). The ProCal calibration method [[68] is applied after one of
the baselines, as symbolized by the "+" symbol. Our approach, Top-versus-All, changes what the
baselines optimize and is symbolized by "1yo". We apply it for TS, Isotonic Regression (Iso), and
HB. The best values for each model and metric are in bold.

Overall, HBry4 is the best calibration method as it always gets the lowest ECE and ACE. Our TvA
approach lowers PIECE and even achieves the lowest value for half of the models.

Model Method ECE(l) MCE({) ACE() PIECE()
BeiT conf 3.60 1.52 3.58 4.26
TS 2.99 0.76 3.08 3.56
MIR 0.59 0.14 0.64 1.88
HB 4.96 1.83 6.13 7.20
conf+ProCal 1.02 0.33 0.94 1.69
TS+ProCal 1.52 0.76 145 2.05
MIR+ProCal 0.61 0.15 0.71 141
HB+ProCal 5.53 4.13 5.81 6.39
TStva 2.10 0.49 2.20 2.88
Isorya 0.65 0.14 0.68 1.92
HBrtya 0.44 0.19 0.58 1.70
Mixer conf 10.78 5.00 10.78 10.86
TS 4.81 1.92 4.72 5.57
MIR 1.14 0.25 1.29 341
HB 9.65 4.00 9.97 13.09
conf+ProCal 2.64 0.94 2.55 3.23
TS+ProCal 1.32 0.38 1.22 2.13
MIR+ProCal 0.83 0.14 0.88 2.08
HB+ProCal 6.57 4.43 7.32 7.83
TStva 2.51 0.74 2.50 4.32
Isorya 0.86 0.15 0.86 3.18
HBrtya 0.64 0.19 0.75 3.17
ResNet50 conf 8.59 4.58 8.50 8.74
TS 5.03 2.48 5.01 5.34
MIR 0.75 0.18 0.82 1.79
HB 7.63 2.61 9.32 10.17
conf+ProCal 2.63 1.31 2.61 3.26
TS+ProCal 1.66 0.66 1.53 2.50
MIR+ProCal 0.76 0.17 0.74 1.78
HB+ProCal 6.32 4.38 7.52 7.65
TStva 6.89 1.17 6.95 7.13
Isorya 0.76 0.19 0.73 1.79
HBtyA 0.55 0.21 0.59 1.35
ViT conf 1.14 0.33 1.09 1.83
TS 1.46 0.46 1.41 2.03
MIR 0.64 0.13 0.75 1.54
HB 4.59 2.32 7.07 7.20
conf+ProCal 0.81 0.22 0.81 1.71
TS+ProCal 0.83 0.25 0.84 1.74
MIR+ProCal 0.78 0.14 0.76 1.59
HB+ProCal 6.80 4.72 7.42 7.55
TStya 1.08 0.25 1.05 1.86
Isorya 0.51 0.11 0.62 1.46
HBrya 0.37 0.17 0.51 1.20
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D Theoretical justification for Top-versus-All in the case of Temperature
Scaling

We define L the number of classes, fi(z) the classifier estimated probability for class k and data
sample z, y the correct class, and the confidence s(z) := maxy, fr(x). The cross-entropy loss is

lep(z,y) = Zk T Hk=y}- log(fk( ) = log(fy( )) Because the last layer 0f the classiﬁer
is a softmax function, f,(x) = Zk
z in the following for clarity.

Temperature scaling optimizes a coefficient 7' > 0 that scales the logits vector. Predicted probabilities
ey /T

Sy ek/T"
Let us first develop the standard cross-entropy loss when temperature scaling is applied:

become f,(z) =

ey /T

V4
lop = —log(fy) = —log(=——77) = — | log(e (e*/T) —log( Zezk/T = —Z+log(d_e/T)
2 e T .

Let us compute its gradient:

Olce _ z, N dlog(> . ex/T)y 0y, ex/T

by application of the chain rule on the second term.

T — T2 9y ,ex/T  aT
%y n 1 dexr/T
T2 Y e /T e 9T

T W o o U
T2 Y, en/T oT

— 2794, 1 .Zlog(eZk)(ezk)l/T

2 zk /T T2
T S e/ - T
2y 1 2 - e/ T
T T2 + o e/ T . ; —T2

zk e#k/T
( Se)
1 zk ezr/T
-T2 Z S enl/T

Z 2 - fk> (7

For our TvA approach, the problem becomes binary. The classification output becomes the confidence
s(x) = max;cy f;(x) and the ground truth label becomes a binary representation of the prediction

correctness: y° = 1y_, with §(z) = arg maxxey f(z) and 1 the indicator function. The loss we
use is the binary cross entropy lpc g (z,y) = —(y° - log s(z) + (1 — y°) - log(1 — s(z)))
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Let us compute the gradient:

Olpcg  Olpcr Os

or ~  9s oT
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k
- First case, the prediction is correct: y® = 1 and z,, = z,. Let us inject these in (8): 2z¢2 =
7z (2y =D 2k fu) = mCE . We thus get the same gradient as the standard cross-entropy loss.
- Second case, the prediction is incorrect: yb = 0 and 2z, > z,. becomes: alg% =

% - =55 - (2m — 2_p 2k - fr). By comparing to (7), we have the term T2 (2m — 2o 2k fr) >

7 (zy = Yk 2k fr) = 8ZCE and the remaining part of' |=25| > 1 when s > 0.5.

So to recapitulate, |alBCE | > |BZCE | when s > 0.5, which corresponds to the vast majority of data
points as the class1ﬁer gets better cahbrated This is shown in Figure[I]

We also have lim,_,; |-*7| = oo. In practice, s is not close enough to 1 to generate exploding
gradients, so it just means that as confidences for wrong predictions gets higher, so does the gradient
to reduce the confidences.

The conclusion is that for correct predictions, our approach does not change the optimization, but
for incorrect predictions, the gradient is stronger and penalizes more heavily confident predictions
that are wrong. This is also proven experimentally by looking at Table [8| where we see that average
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confidences of temperature scaling with the TvA approach (TSy,,) are lower than the ones using the
standard approach (TS), for almost all networks. This makes the average confidences closer to the
accuracy, showing reduced overconfidence.

E Limits of classwise-ECE and top-label-ECE for a high number of classes

2

% 10" 10*

o0

2 ) .

7 10% 10° 1

)

'_Q: b

E 10%1 10° 1

2]

Yy

S 10" 10" 4

£

£ 10 100

00 02 04 06 08 10 00 02 04 06 08 00 02 04 06 08 1.0
class probability for class 677 class probability for class 537 class probability for class 845

Figure 4: Histogram of class probabilities for 3 random classes, for ViT-16/B on ImageNet.

Let us define the ECE for class j:
B
ECE; = ; %|acc(b,j) — conf(b, j)|
The difference compared to (2)) is that now acc(b, j) corresponds to the proportion of class j in the
bin. Also, conf(b, j) now is the average probability given to class j for all samples in the bin.
Then, classwise-ECE [29] takes the average for all classes:

L
ECE., = » ECE;
j=1
Classwise-ECE considers the full probabilities vectors: all the class probabilities for each prediction.
However, this metric does not scale to large numbers of classes. Let us see why with an example.

Let us use a test set of NV samples, N/L for each of the L classes (the dataset is balanced), and a
high-accuracy classifier fairly calibrated. The classifier predicts /N probability vectors of length L.
Predicted probabilities for class j are all the values of the vector at dimension j. Because the classifier
has a high accuracy and is fairly calibrated, around N/L values are close to 1 (corresponding to
mostly correct predictions), and the remaining ones, around N — N/ L, are close to 0 (because the
predicted class is not class j, and the predicted probability is high for another class).

To compute ECE; with equal size 15 bins, the predicted probabilities for class j are partitioned into
15 bins. The first bin (with probabilities close to 0), contains n; &~ N — N/L samples while the last
one (with probabilities close to 1) contains ng &~ N/L samples. The remaining bins are usually even
more empty. That means that the calibration error in the first bin is weighted ny /ng = L — 1 times
more than the last one. For the 1000 classes of ImageNet, L — 1 = 999. Figure | shows the number
of samples (n;) in each bin for an ImageNet classifier.

Because the impact of the calibration error in the bin with the high probabilities is negligible relative
to the bin with the low probabilities, the classwise-ECE mostly measures whether probabilities close
to 0 are calibrated. We argue this is not what we are interested in: what matters more is the calibration
of higher values of the probabilities.

Top-label ECE [18] is another interesting metric that does not scale to large numbers of classes either.
Top-label-ECE divides data into subsets according to the predicted class, computes the ECEs of these
subsets, and averages them. For an ImageNet test set of 25000 samples (25 per class), data is divided
into 1000 subsets of ~ 25 samples each (the classifier is high-accuracy, most of the time the predicted
class is equal to the true class). The ECE is computed for each subset containing only 25 samples.
To compute the ECE, samples are typically partitioned into 15 bins. The number of samples per bin
does not allow a correct estimation of the average confidence or accuracy.
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F Implementation details

F.1 Models weights

Model weights for CIFAR are from [45]].

Model weights for ImageNet come from torchvision [42].
Model weights for ImageNet-21K are from [54].

CLIP weights are from |OpenAl’s Hugging Face.

Original weights for T5 and RoBERTa come from the Transformers library [67]. The models
are fine-tuned for each task using prompt-based learning [36l]. For more details, see [3]].

We used the model GPT-J https://huggingface.co/EleutherAl/gpt- j-6b/(Apache-
2.0 license) and Llama-2 https://huggingface.co/meta-1lama/Llama-2-13b (li
cense).

F.2 Datasets

CIFAR-10 (C10) and CIFAR-100 (C100) [27] contain 60000 32x32 images corresponding to
10 and 100 classes, respectively. Data is split into subsets of 45000/5000/10000 images for
train/validation/test. We concatenate the original validation and test sets, and randomly split
that into a calibration set of size 5000, and a test set of size 10000.

ImageNet (IN) [7]] contains 1.3 million images from 1000 classes. Following [17], we
randomly split the original validation test of size 50000 into a calibration set and a test set,
both of size 25000.

ImageNet-21K (IN21K) [54], in its winter21 version, contains 11 million images in the train
set, and 522500 in the test set (50 for each of the 10450 classes). We randomly split the test
set into equal-sized calibration and test set (261250 samples each, 25 per class).

Amazon Fine Foods [43] is a collection of customer reviews for fine foods sold on Amazon.
Reviews are categorized into bad, neutral, and good. The original validation set size is 78741
and test size 91606. We randomly split them into 78741 samples for calibration and 91606
for test.

DynaSent [51] is a dynamic benchmark for sentiment analysis consisting of sentences
annotated as positive, neutral, and negative. The original validation set size is 11160 and
test size 4320. We randomly split them into 11160 samples for calibration and 4320 for test.

MNLI [66] contains pairs of sentences labeled as contradiction, neutral, and entailment. The
original validation set size is 19635 and test size 9815. We randomly split them into 19635
samples for calibration and 9815 for test.

Yahoo Answers (YA) [13] contains question-answers pairs corresponding to 10 different
topics. The original validation set size is 14000 and test size 60000. We randomly split them
into 14000 samples for calibration and 60000 for test.

TREC [61] contains questions categorized into 6 classes. The training set contains 5500
labeled questions, and the test set contains another 500.

SST-5 [55] contains 11855 sentences corresponding to 5 sentiments (from very negative to
very positive).

DBpedia [74]] contains text for topic classification with 14 classes. The training set contains
560000 samples, and the test set 5000.

F.3 Code

We used the library netcal [32] (Apache-2.0 license) for their implementation of binary
methods for calibration and adapted their reliability diagrams code. For HB, we tested equal-
size and equal-mass bins, and chose the best variant for each case. All hyperparameters
were kept at their default values (10 bins for HB).

We took inspiration from the official implementation of temperature scaling: https://
github.com/gpleiss/temperature_scaling (MIT license).
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* We took inspiration from the official implementation of Dirichlet calibration: https:
//github.com/dirichletcal/experiments_dnn (MIT license).

* We used the official implementation of I-Max: https://github.com/boschresearch/
imax-calibration|/(AGPL-3.0 license).

* We used the official implementation of IRM: https://github.com/zhang64-11nl/
Mix-n-Match-Calibration (MIT license).

* For evaluation, we used codes from https://github.com/JeremyNixon/
uncertainty-metrics-1 (Apache-2.0 license) and https://github.com/IdoGalil/
benchmarking-uncertainty-estimation-performance (MIT license).

* We used PyTorch 2.0.0 [3] (BSD-style license).

* We used CIFAR models from [45] https://github.com/torrvision/focal_
calibration|(MIT license).

* We wused ImageNet-21K models [54] |https://github.com/Alibaba-MIIL/
ImageNet21K (MIT license).

* We used CLIP models from HuggingFace’s Transformers library [67] (Apache-2.0 license).

* We used pretrained language models from Transformers [67]] and calibration codes from [J5]]
https://github.com/lifan-yuan/PLMCalibration (MIT license).

* We used code from https://github.com/mominabbass/LinC for the calibra-
tion of LLMs using ICL, itself built upon https://github.com/tonyzhaozh/
few-shot-learning (Apache-2.0 license).

Table 3: Computing time (in seconds) of the calibration on ImageNet, using one NVIDIA V100 GPU.
The first column denotes the data preprocessing time, which includes computing the model logits for
all calibration examples. Post-hoc calibration methods do not usually require much computing power
compared to classifier training.

Model Preproc. | IRM  I-Max | TS TSy, | VS VSq. | DC DCyry | HB HBy, | Iso  Isoy, | Beta Betas,, | BBQ BBQy,
ResNet-50 141 2021 543 | 215 218 | 214 217 | 226 226 129 1 66 1 873 22 1156 2
ViT-B/16 151 7119 524 | 225 226 | 217 222 | 232 235 127 1 61 1 917 23 1169 2

G Impact on selective classification

Selective classification aims to improve a model’s prediction performance by trading-off coverage: a
reject option allows to discard data that might result in wrong predictions, thus improving the accuracy
on the remaining data. A strong standard baseline uses thresholding on the maximum softmax
probability outputted by the classifier [[13]. Improving confidence calibration means uncertainty is
better quantified and should result in better selective classification.

Results in Table T]show the superiority of Histogram Binning (applied with the right framework) in
reducing the calibration error ECE. Unfortunately, it does not translate into improvements in selective
classification. AUROC is a standard metric for selective classification [11]]. Table ] shows that
Histogram Binning actually degrades the AUROC, while the best method is Isotonic Regression. Our
TvA framework does not significantly impact the AUROC.

This paper addresses confidence calibration, usually measured by ECE. AUROC is a global rank-
based metric for selective classification: it relies on the relative values of the scores, not their absolute
values. Even though calibration and selective classification are related, improvement in calibration
does not directly translate to better selective classification. This has been clearly demonstrated
experimentally by [[L1].

A good example of that difference is the behavior of HBry4: it is the best calibration method overall
but actually degrades the AUROC in most cases. Such a difference can be explained by the fact that
selective classification benefits from a continuous score able to discriminate between certain and
uncertain examples finely, but HB quantizes the confidences into, e.g., 10 different values.
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Table 4: AUROC in % (higher is better). Methods in purple impact the model prediction, potentially
degrading accuracy; methods in teal do not. Improvements from the uncalibrated model are colored
in blue and degradations in orange.

(a) CIFAR-10

Model Uncal. IRM  I-Max | TS TSi, | VS VSugns | DC DCiry | Beta  Betay, | Iso Isor,, | BBQ  BBQu, | HB  HBy,
ResNet-50 9209 9179 91.30 | 9201 9198 | 9271 9276 | 9271 9276 | 90.94 92.09 | 92.29 91.87 | 7563 8553 | 7578 84.69
ResNet-110 9226 9225 9153 [ 9219 9218 | 92,18 9231 | 9216 9230 | 9133 9226 | 9240 9220 | 7344 8501 | 7446 8456
WRN 91.17 9117 9036 | 9121 91.19 | 91.80 9232 | 91.82 9231 | 9045 9117 | 92.28 9LI8 | 7599  86.62 | 73.91 8538
DenseNet 9046 9015 8968 | 90.48 9045 | 90.84 9140 | 90.84 9139 | 8998 9046 | 9146 90.12 | 77.07  87.07 | 7461 8307

CLIP (ViT-B/32) 89.85 89.72 89.73 | 89.97 8997 | 90.73  91.07 | 90.95 91.14 | 90.58 89.85 | 90.28 89.66 | 88.86 8941 | 88.01 8876
CLIP (ViT-B/16)  91.00  90.96 90.72 | 91.10 91.10 | 91.79  91.99 | 91.88  92.06 | 91.75 91.00 | 90.69 90.83 | 89.36  90.57 | 89.12 89.97
CLIP (ViT-L/14) 9322 9315 9432 | 9332 9331 | 93.69 9378 | 9379 93.87 | 93.17 9322 | 9278 9305 | 8729 9173 | 8865 091.33

(b) CIFAR-100

Model Uncal. IRM  I-Max | TS TS, | VS VSuerw | DC DCrry | Beta  Betay, | Iso Isor,, | BBQ BBQq, | HB  HB,,
ResNet-50 85.80 85.03 | 8573 8562|8592 8650 |85.91 8651 | 8549 8580 | 87.19 85.69 | 81.21 8531 | 81.90 8390
ResNet-110 85.03 76 | 84.94 8485 8482 8534 | 8484 8533 | 8457 8503 | 8632 8497 | 80.54 8447 | 8140 8293
WRN 87.59 §7.02 | 87.59 8748 | 87.83  88.17 | 87.85  88.14 | 8745 87.59 | 88.65 87.46 | 83.59 8646 | 8377 85.69
DenseNet 86.17 85.64 | 8612 86.00 | 86.60 8679 | 86.59 8679 | 86.01 86.17 | 87.09 86.11 | 83.02 8542 | 8347 8480

CLIP (ViT-B/32)  83.06
CLIP (ViT-B/16) ~ 82.57
CLIP (ViT-L/14)  84.26

8200 | 83.74 83.70 | 83.95 85.16 | 83.99 8502 | 84.17 8306 | 84.61 8295|8559 83.00 | 85.61 85282
8251 | 83.65 83.66 | 83.95 85.29 | 84.04 8576 | 84.18 8257 | 8445 8251 | 8576 8246 | 8562 8224
8414 | 8551 8550 | 86.56  87.57 | 86.62 8750 | 85.64 84.26 | 86.94 8411 | 86.92 8412 | 86.67 84107

(c) ImageNet
Model Uncal. IRM  I-Max | TS TSi, | VS VSugns | DC DCiry | Beta  Betay, | Iso Isor,, | BBQ | HB  HB,,
ResNet-18 85.73 85.37 | 85.64 85.65 | 85.63 8588 | 8530 8539 | 8439 8573 | 86.12 8569 | 83.19 8373 85.03
ResNet-34 86.18 8578 | 8611 8610 | 8625 8638 | 85806 8599 | 84.64 86.18 | 86.41 86,14 | 82.26 83.03 8577
ResNet-50 80.53 80.12 | 8593 85.69 | 8560 8557 | 85.58 8557 | 8234 80.53 | 8691 8049 | 8527 8363 79.96
ResNet-101 84.18 8357 | 8596 8571 | 8538 8556 | 85.34 8553 | 8238 8418 | 87.09 84.18 | 8248 81.16  83.80
EffNet-B7 84.92 8410 | 86.61 86.34 | 8518 8551 | 85.18 8552 | 8101 8492 | 87.14 8487 | 8157 80.38  84.26
EffNetV2-S 85.77 8529 | 87.02 86.86 | 8530 8567 | 8528 8508 | 8255 8577 | 8742 8572 | 8244 80.86  84.80
EffNetV2-M 82.36 8158 | 8526 8492 | 83.66 84.19 | 83.64 8423 | 8051 8236 | 86.51 81.24 79.45 81.71
EffNetV2-L 84.63 8396 | 8633 86.05 | 8577 8594 | 8575 8587 | % 84.63 | 86.70 81.78 80.56  84.08
ConvNeXt-T 82.35 §1.84 | 8547 85.18 | 8560 8557 | 8559 8559 | 8193 8235 | 86.97 82.58 81.88
ConvNeXt-S 82.29 81.87 | 8527 84.88 | 8481 8501 | 8481 8501 | 8122 8220 | 86.98 81.29 81.86
ConvNeXt-B 82.27 8170 | 85.13 8475 | 8440 8488 | 8440 8490 | 8087 8227 | 87.01 81.79 81.69
ConvNeXt-L 82.35 §142 | 8481 8438 | 84.04 8458 | 8404 8454 | 8024 8235 | 86.79 80.49 81.75
VIT-B/32 85.57 8510 | 8631 86.13 | 8595 8598 | 8593 8598 | 83.56 87.16 83.39 85.11
ViT-B/16 85.52 8492 | 8632 86.12 | 8536 8553 85.56 | 81.82 87.19 81.56 85.09
VIT-L/32 85.42 84.78 | 85.93 8573 | 8519 8529 85.30 | 82.07 87.25 81.51 85.09
VIT-L/16 85.85 8463 | 86.16  86.00 | 8433 8465 84.64 | 80.96 86.97 79.76 80.08  84.85
VIT-H/14 87.28 86.60 | 87.53 87.34 | 86.74 8671 86.78 | 82.15 86.65 79.33 80.08  85.32
Swin-T 85.68 8504 | 8650 8634 | 8579 8586 85.86 | 83.14 87.10 82.15 8139 85.16
Swin-S 85.37 8 85.99 8578 | 8499 8520 8520 | 80.92 86.92 80.05  84.80
Swin-B 84.11 8338 | 8526 8491 [ 8393  84.18 84.20 | 79.78 86.55 79.09  83.09
SwinV2-T 85.80 8510 | 86.74 8656 | 8582  86.04 86.02 | 83.06 87.29 81.47 8526
SwinV2-§ 85.75 8503 | 86.61 8639 | 8519 8551 | 8519 8550 | 81.77 87.18 8041 8473
SwinV2-B 85.15 84.19 | 86.07 85.82 | 8443 8470 | 8440 8465 | 8031 86.99 79.57 7942 83.86
CLIP (ViT-B/32)  80.56 8024 | 80.59 80.57 | 81.73 8321 | 7772 7792 | 8114 80.56 | 8143 8052 | 81.85 82.14  80.18
CLIP (ViT-B/16)  81.12 8096 | 81.16 81.15 | 82.28  83.64 | 7810 8457 | 8152 8112 | 8217 8110|8233 8107 | 8242 8076
CLIP (VIT-L/14)  82.98 8§2.50 | 8290 8286 | 83.66 8507 | 80.09  79.86 | 8275 8298 | 8329 8293 | 82.85 8280 | 82.87 8236

(d) ImageNet-21K
Model Uncal. IRM I-Max | TS TSy, | VS VSera | DC DCryra | Beta  Betar, | Iso  Tson, | BBQ BBQu, | HB  HBy,

MN3 68.79 emr.  err 6780 6589 ] 80.00 81.00 | 61.24 5194 err. 6879 | 79.62 068.77 | err 68.77 1 90.86 6840
ViT-B/16 7299 err.  err 7436 73.17 | 79.78 8142 | 7629  78.92 err. 7299 | 79.66 73.10 | err 73.20 | 90.27 71.95

(e) Amazon Fine Foods

Model Uncal. IRM  [-Max | TS TS, | VS VS.ma | DC DCp i | Beta  Betar,, | Iso Isor,, | BBQ  BBQ, | HB HBy,,
TS 85.04 8499 8432 | 8511 85.11 | 87.84 87.99 | 83.09 88.02 | 8746 85.04 | 87.03 8504 | 8553 8347 | 8053 79.41
T5-large 81.33 81.34 8052 | 8075 80.74 | 8584 8794 | 8747 87.80 | 8727 8133 | 8515 81.38 | 83.35 7827 | 7753 7425
RoBERTa 8352 8350 8050 | 8334 8334 | 8496  86.75 | 86.44  86.56 | 86.27 8351 | 83.93 8351 | 81.62 7517 5

L)

G

RoBERTa-large 87.88  87.67 8218 | 87.99 87.99 | 88.04 88.25 | 88.70  88.33 | 88.40 87.88 | 87.34 87.88 | 81.52 7492

(f) DynaSent
Model Uncal. IRM  I-Max | TS TS, | VS VS | DC DCp i | Beta  Betay,, | Iso Isor,, | BBQ  BBQ, | HB HBy,,
T5 7801 7780 7751 | 7812 78.12 | 78.11 7834 | 7831 7831 | 7820 7801 |78.57 7791|7688 7681 | 7414 7604
T5-large 77.61 7769 7663 | 77.81 77.81 | 7782  79.18 | 78.87  79.35 | 7883 77.61 | 79.20 7761 | 7472 7434 | 6926 7332
RoBERTa 7516 7515 7277 | 7530 7530 | 7523 7547 | 7560 7605 | 7531 7516 | 76.10 7500 | 6447 6697 | 5947

5
RoBERTa-large  76.18 7583 7280 | 76.34 76.34 | 7625  76.52 | 76.05 76.12 75.67 7618 | 76.13 76.06 | 61.33  66.46 | 59.53

(g) MNLI
Model Uncal. IRM  I-Max | TS TS, | VS VS | DC DCpy i | Beta  Betay,, | Iso Isor,, | BBQ  BBQ, | HB HB,,,
TS 84.44 8439 8331 | 8451 8451 | 8455 8501 | 8507 85.15 | 8459 8444 | 8489 8437 | 7985 8050 | 7097 7839
T5-large 82.01 337908 | 8210 82.10 | 82.08 8199 | 8226 8230 | 82.14 8201 | 8211 8192 | 6648  69.68 | 59.63 72.69
RoBERTa 8236 8233 7946 | 8250 8250 | 8248 8283 | 8282  82.89 | 8278 8236 | 8299 8232|6799 7267 | 6025 7319

RoBERTa-large 83.58 8349 7943 | 83.63 83.63 | 83.58 83.78 | 83.63  83.75 8349 83.58 | 83.58 83.50 | 68.68 7221 | 6139 7425

(h) Yahoo Anwsers
Model Uncal. IRM  I-Max | TS TS, | VS VSier | DC DCpura | Beta  Betay, | Iso Iso,, | BBQ BBQ, | HB  HBy,
TS 81.60 8153 8110 | 81.61 8161 | 81.64 81.65 | 81.63 81.65 | 8159 81.60 | 81.70 §1.53 | 8046 80.81 | 78.99  80.03
T5-large 81.09  81.00 8045 | 81.08 81.07 | 81.16  81.17 | 8122 8129 |81.07 81.09 | 81.15 81.05 | 79.24  79.89 | 7741  79.06
RoBERTa 78.63 7859 7652 | 78.80 78.80 | 7873 7870 | 7890  79.07 |78.68 78.63 | 78.86 7857 73.17 | 7320 6791

RoBERTa-large 79.13  79.08 7692 | 79.41 79.41 | 79.30  79.46 | 79.37  79.81 79.34 7913 | 7935 79.04

72.69 | 73.67 72.96
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H Additional results

Table 5: ECE in % (lower is better, best in bold) — full results for image classification datasets.
Averages on 5 seeds. Mean relative improvements from TvA are shown (negative values for reductions
of ECE). Methods in purple impact the model prediction, potentially degrading accuracy; methods in
teal do not. Values are averaged over five random seeds.

(a) CIFAR-10

Model Uncal. IRM I-Max | TS TS, | VS DC iy | Beta  Betay,, | Iso  Isor, | BBQ BBQ, | HB  HBy,
ResNet-50 1.80 0.77  0.68 1.07  1.09 | 091 0.90 0.91 0.89 216  1.50 | 1.13 074 | 1.27  0.94 .02 0.53
ResNet-110 2.57 0.53  0.54 132 1.36 | 1.35 1.33 1.35 1.34 2.97 140 | 120 0.56 | 145 0.67 142 037
WRN 1.21 0.78  0.64 110 092 | 1.19 0.97 1.19 0.97 175 146 | 1.16 082 | 0.88 078 | 079 0.52
DenseNet 1.52 0.60 0.59 132 1.61 | 1.21 1.47 1.19 1.47 2.04 205 | 098 058 | 1.07 0.71 1.00  0.30

Mean improvement ConvNets

3% | 0% [ 1% | 25% -39% 3% | 51%

CLIP (ViT-B/32) 4.77 .39 1.35 .02 1.02 | 2.79 1.88 2.82 1.90 1.64 1.46 121 116 | 1.79 1.05 | 232 098
CLIP (ViT-B/16)  5.39 1.04 095 0.64 057 | 291 1.91 2.92 1.89 1.15 1.83 129 079 | 1.58 0.91 2.14 075
CLIP (ViT-L/14)  4.93 0.65 0.52 0.68 0.60 | 1.98 1.76 1.94 1.74 096 077 | 0.65 0.62 | 0.81 0.62 1.01 046

8% | 26% | 26% | 9% | -16% 36% | -59%

(b) CIFAR-100

Mean improvement CLIP

Model Uncal. IRM I-Max | TS  TS;, | VS VS, | DC DCyqu | Beta Betay, | Iso  Iso,, | BBQ  BBQ,, | HB  HBy,
ResNet-50 6.56 137 135 493 297 | 523 224 522 224 559 339 |570 140 | 10.07 1.47 9.62 1.17
ResNet-110 7.95 1.40 131 505 404 | 532 2.65 5.30 2.70 6.10 474 | 659 134 | 853 1.44 10.04 123
WRN 4.41 1.24 095 442 270 | 457 228 4.55 227 450 275 | 442 141 | 10.02 1.26 8.45 0.94
DenseNet 523 1.20 097 4.19 212 | 453 223 4.51 220 499 284 | 461 135 | 991 1.24 10.12 0.76
Mean improvement ConvNets | -37% | -52% | -52% | -36% | -73% | -86% | -89%
CLIP (ViT-B/32) 9.51 222 180 222 212 | 874 3.49 797 1.98 652 271 235 147 | 8.11 1.21 8.13 1.23
CLIP (ViT-B/16) 10.63 3.33 3.04 271 274 | 8.64 3.04 8.14 1.80 7.09 253 278 174 | 741 1.76 7.09 1.48
CLIP (ViTL/14) 1096 3.15 2.86 | 268 266 | 596 206 | 654 174 | 644 199 |246 162 | 693 147 | 646 146
Mean improvement CLIP | -1% | -63% | -75% | -64% | -36% | -80% | -80%
(c) ImageNet
Model Uncal. IRM I-Max | TS TSy, | VS VSgq, | DC DCyuy | Beta  Betay, | Iso  Ison, | BBQ BBQ, | HB  HBy,
ResNet-18 271 1.01  0.57 1.87 1.86 | 1.73 2.12 3.43 3.44 4.39 1.44 387 094 | 9.68 091 9.54 057
ResNet-34 3.63 0.84  0.56 1.77 180 | 1.87 2.02 3.46 2.98 4.97 1.11 408 0.83 | 9.17 0.85 8.42  0.60
ResNet-50 41.15 256 259 325 1.66 | 3.26 0.90 327 0.94 1130 2.20 123 0.68 | 8.44 0.66 580 0.50
ResNet-101 1356 0.82 0.58 372 222 | 422 1.62 4.20 1.58 9.21 1.87 3.01 071 | 635 0.61 6.18  0.52
Mean improvement ResNet | 2% | -26% | -37% | -76% | -69% | -91% | -92%
EffNet-B7 1261 061 0.40 371 296 | 3.84 1.41 3.82 1.35 9.32 227 |293 065 | 693 0.58 4.89 040
EffNetV2-S 16.92  0.68 0.44 3.60 334 | 391 1.43 3.90 1.45 8.03 2.57 297 0.67 | 7.66 0.68 533 047
EffNetV2-M 2488 0.80 0.70 377 271 | 3.84 1.16 3.82 1.14 8.32 179 | 289 0.75 | 6.55 0.75 436 049
EffNetV2-L 8.48 0.63 0.39 286 134 | 3.08 1.05 3.06 0.98 9.45 0.99 2.51 0.64 | 5.06 0.54 299 037
Mean improvement EffNet | 27% | -66% | -66% | -78% | 16% | -90% | -90%
ConvNeXt-T 1695 1.11 0.84 3.08 152 | 3.49 1.18 348 1.15 8.95 1.66 | 255 0.87 | 7.34 0.70 563 0.61
ConvNeXt-S 1760 075 0.59 376 229 | 419 1.32 4.18 1.31 8.77 1.73 3.06 070 | 7.46 0.68 532 048
ConvNeXt-B 18.78 0.74 041 383 251 | 410 1.33 4.09 1.31 9.44 1.84 3.03 077 | 1.72 0.70 502 052
ConvNeXt-L 1252 0.66 047 4.02 269 | 442 1.64 4.42 1.63 7.97 1.37 326 067 | 7.12 0.62 455 046
Mean improvement ConvNeXt | -39% | -66% | -67% | -81% | 74% | -91% | -90%
ViT-B/32 6.37 0.77  0.60 4.02 217 | 4.67 1.82 4.66 1.77 6.58 1.68 3.58 084 | 9.51 0.73 776  0.53
ViT-B/16 5.61 0.86 0.54 380 325 | 429 1.93 427 1.92 7.36 229 339 079 | 5.88 0.71 6.79  0.51
ViT-L/32 4.27 083 0.75 500 3.89 | 537 2.53 5.37 2.49 6.33 2.57 | 443 076 | 9.31 0.79 739 0.61
ViT-L/16 5.17 099 0.77 577 4.63 | 529 2.62 527 2.58 7.44 3.05 4.10 0.85 | 6.83 0.78 738 0.54
ViT-H/14 0.60 0.60  0.40 1.84 088 | 1.95 1.22 2.00 1.17 7.84 0.75 248 0.62 | 1.67 0.63 3.62 042
Mean improvement ViT | 31% | -51% | -53% | -70% | 18% | -85% | -92%
Swin-T 6.82 0.76 045 3.08 1.85 | 3.45 1.38 3.44 1.37 772 1.61 294 072 | 6.72 0.67 6.31 043
Swin-S 3.65 0.78 0.54 3.63 295 | 417 1.77 4.17 1.76 791 231 329 077 | 7.20 0.80 572 044
Swin-B 4.77 072 045 3.88 343 | 422 1.98 421 1.95 7.98 227 333 075 | 6.83 0.68 470  0.52
SwinV2-T 8.31 0.80 0.46 3.61 225|392 1.51 391 1.49 8.68 1.76 3.08 081 | 7.81 0.79 620 052
SwinV2-S 6.07 0.75 046 379 332 | 424 1.74 423 1.71 8.51 2.26 316 074 | 7.18 0.67 502 041
SwinV2-B 5.50 0.69 0.59 382 3.68 | 425 1.80 422 1.73 7.53 2.68 334  0.67 | 6.78 0.63 442 055
Mean improvement Swin | 21% | -58% | -59% | -73% | 1% | -90% | -91%
CLIP (ViT-B/32)  1.50 096 0.75 1.70 1.58 | 1.38 0.92 36.01 70.52 3.57 082 | 222 0.84 | 812 0.88 6.63 082
CLIP (ViT-B/16)  1.80 131 075 1.92 189 | 1.61 0.87 34.02  66.04 4.53 1.08 | 235 1.01 | 848 091 6.98 0.74
CLIP (ViT-L/14)  2.57 097 0.67 204 199 | 1.89 1.36 26.06  66.40 5.95 1.35 249 092 | 833 1.01 786 0.84

Mean improvement CLIP | -4% | -36% | 115% | -71% | -61% | -89% | -89%
(d) ImageNet-21K
Model Uncal. IRM I-Max | TS TS, | VS VS, | DC DCyy 1y | Beta Betay, | Iso  Ison, | BBQ BBQ, | HB  HBy,
MN3 1234  err. err. ‘ 8.69 439 ‘ 252 2.40 ‘ 58.84  8l.16 err. 1.02 ‘ 2.00 021 ‘ err. 0.20 550 017
ViT-B/16  6.27 e e 892 655|238 154 | 822 320 | e 372 | 214 022 | err. 024 | 789 012
Mean improvement | -38% | -20% | -12% | err. | -90% | err. | -98%
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Table 6: ECE in % (lower is better, best in bold) — full results for text classification datasets. Averages
on 5 seeds. Mean relative improvements from TvA are shown (negative values for reductions of
ECE). Methods in purple impact the model prediction, potentially degrading accuracy; methods in
teal do not. Values are averaged over five random seeds.

(a) Amazon Fine Foods

Model Uncal. IRM I-Max | TS TSy, | VS VSyuu | DC DCyra | Beta  Betay, | Iso Tsoy, | BBQ BBQ., | HB  HBy,
TS5 5.18 0.28 025 124 126 | 1.3 1.34 | 0.99 1.28 544 080 | 041 028 | 0.38 030 | 245 021
T5-large 5.76 026 026 |097 1.04 | 1.7 1.49 1.36 1.34 5.71 1.63 | 033 026 | 040 026 |329 0.14
Mean improvement TS | 4% \ -6% \ 14% | -78% \ -26% \ -28% | -94%
RoBERTa 7.90 028 030 |227 221 748 430 0.28 037 | 407 024
RoBERTa-large  6.83 032 025 252 244 4 6.36 445 7 0.26 0.34 |39 0.16
Mean improvement RoBERTa | -3% | 32% ‘ 22% | -36% | -37% ‘ -39% | -95%
(b) DynaSent
Model Uncal. IRM  I-Max | TS TSi, | VS VSuerw | DC DCry | Beta  Betay, | Iso  Isor, | BBQ BBQu, | HB  HBy,
TS5 7.99 148 1.40 118 1.16 | 4.88 1.97 4.66 2.04 1095  2.81 1.4 1.66 | 1.32 1.53 1.99  1.32
T5-large 9.73 1.30  1.36 320 3.19 | 738 2.03 7.15 2.00 1181 472 | L5 145 | 1.44 1.62 1.80  0.92
Mean improvement TS | -1% | -66% | -64% | -67% | 4% \ 14% | -41%
RoBERTa 1737 1.67 159 1320 13.20 | 15.84 15.02 6.40 1836 1048 | 1.68 126  1.06
ROBERTa-large  14.88 146 142 | 10.94 10.94 | 13.49 i 7 1278 473 | 1569 930 | 1.74 085 0.75
Mean improvement RoBERTa | 0% | -54% | -60% | -42% | -10% ‘ -31% | -14%
(c) MNLI
Model Uncal. IRM I-Max | TS TSy, | VS  VSguy | DC DCyra | Beta  Betar, | Iso  Ison, | BBQ BBQ, | HB  HB,,
TS 6.48 0.71  0.67 1.17 115 | 3.25 1.88 321 2.01 7.74 212 | 084 073 | 098  0.80 191 047
T5-large 7.59 0.74 072 | 446 445 | 5.66 1.71 5.41 1.64 8.20 443 | 077 076 | 1.78 057 | 228 0.40
Mean improvement T5 | -1% | -56% | -54% | -59% ‘ -1% ‘ -43% | -79%
RoBERTa 1026 0.90 0.81 652 6.52 | 7.83 2.03 7.38 2.12 11.06  6.16 0.94 0.93 1.20  0.60
RoBERTa-large  8.18 0.87  0.61 493 492 | 6.15 1.80 5.81 1.85 8.80 5.39 0.90 0.75 | 0.84  0.60
Mean improvement ROBERTa | -0% | -12% | -70% | -42% \ -6% \ -45% | -39%
(d) Yahoo Anwsers
Model Uncal. IRM I-Max | TS TS, | VS VSuera | DC DCiera | Beta  Beta, | Iso  Ison, | BBQ BBQq, | HB  HBy,
TS5 6.64 0.74  0.90 0.67 097 | 2.70 1.01 2.66 0.94 7.70 1.64 | 1.57 079 | 2.61 095 | 415 071
T5-large 9.04 0.87 0.72 147 173 | 470 1.31 4.84 1.36 1034 239 | 190 085 | 3.01 098 | 3.15 0.67
Mean improvement T5 | 31% -67% | -68% | -78% ‘ -52% ‘ -66% | -81%
RoBERTa 1953 1.03 0.72 12.02 1200 | 16.26 2.29 15.85 1.73 20.13 941 0.72 | 3.56  0.60
RoBERTa-large  19.65 0.90 0.86 1277 1275 | 16.67 2.75 16.30 2.70 20.18  10.19 078 |326 057
Mean improvement RoOBERTa | -0% | -85% | -86% | -51% \ -48% \ -85% | -83%

27



Table 7: Standard deviations of ECE in % for 5 seeds.

(a) CIFAR-10

Model Uncal. IRM I-Max | TS TSy, | VS VS,qu | DC DCyyy | Beta  Betay, | Iso  Tson, | BBQ BBQ, | HB  HB,,
ResNet-50 0.6 0.5 0.5 |0.14 026]025 018 |024 016 [029 029 |0.19 0.14 | 039 012 |037 0.09
ResNet-110 010 022 008 |012 010|014 016 |0I12 015 |014 021 |022 0.8 | 024 020 |0.17 0.19
WRN 009 017 021 [029 021|025 007 |025 008 [009 057 |023 020|019 022 |026 024
DenseNet 011 008 016 |012 018|009 009 |009 008 |013 078 |014 005|015 008 |0.19 0.10
CLIP (ViT-B/32) 0.12 049 035 |017 013|031 037 |030 032 |029 032 |0I3 044 | 048 041 [039 032
CLIP (VIT-B/16) 0.17 036 033 | 019 010 | 022 0I5 |022 03 |013 091 |018 027 | 009 026 |0.11 029
CLIP (VIT-L/14) 005 022 021 |01l 009 |01l 0I5 |010 016 |022 015 |019 018 | 021 0.1 [0.18 009
(b) CIFAR-100
Model Uncal. IRM I-Max | TS TSy, | VS VSgqu | DC DCuery | Beta Betay, | Iso  Ison, | BBQ BBQu, | HB  HBy,
ResNet-50 022 050 060 |053 047|052 050 044 | 047 048 |032 050 | 037 033 |049 025
ResNet-110 028 023 025 |038 039|035 033 031 [033 059 |028 034|060 021 |056 011
WRN 019 024 038 |027 014|025 024 033 |016 028 |023 046 | 071 057 |033 032
DenseNet 010 024 0.7 |026 0.3 {030 035 022 |060 079 |024 045|068 028 |031 022
CLIP (ViT-B/32) 0.14 025 020 |005 0.14 |013 027 |048 045 |032 117 |026 025|049 023 | 040 046
CLIP (ViIT-B/16) 021 035 042 |030 037 |040 037 |042 048 |074 100 |050 042 | 054 042 |037 051
CLIP (ViT-L/14)  0.17 033 053 |0.16 0.19 |023 024 |019 032 |034 114 |025 024 | 039 030 |027 009
(c) ImageNet
Model Uncal. IRM I-Max | TS TSy, | VS VS,qu | DC DCyyy | Beta  Betay, | Iso  Tson, | BBQ BBQy, | HB  HB,,
ResNet-18 0.14 012 014 | 011 011 ]013 013 |015 014 [038 019 |003 017 | 023 024 |022 0.17
ResNet-34 012 016 024 |012 010|014 020 |013 017 |054 010 |024 017 | 019 021 |006 0.13
ResNet-50 021 020 0.8 |026 034032 015 |031 015 | 171 018 |022 0.6 | 015 026 |02l 0.09
ResNet-101 015 011 022 |01l 018|018 025 |017 025 |1.02 008 |019 0.1 | 023 016 |025 014
EffNet-B7 007 013 011 [010 012|015 018 |014 022 |191 017 |013 0.10 | 016 016 |0.11 0.06
EffNetV2-S 015 019 008 |017 019 |022 021 |022 017 | 110 024 |026 0.5 ]032 0I5 |020 024
EffNetV2-M 018 012 03 | 017 015|016 026 |018 022 | 110 047 |0.13 010 | 024 015 |026 0.06
EffNetV2-L 011 007 012 |015 012|021 017 |018 019 | 164 023 |025 007 | 033 017 |04l 0.3
ConvNeXt-T 016 008 0.2 |025 028|029 030 |028 033 |157 042 |031 012|022 021 [0I5 0.10
ConvNeXt-S 0.14 026 018 |023 017|024 027 |023 028 |L17 021 |015 0.2 | 014 014 |[029 008
ConvNeXt-B 020 009 016 |030 026036 033 |036 032 |212 036 |033 010 | 0.11 006 |040 0.12
ConvNeXt-L 016 010 009 |026 017|021 027 |020 028 |133 012 |028 0.4 |026 019 [033 0.3
ViT-B/32 020 017 019 029 017|034 034 |037 030 [099 012 |031 015|021 016 |028 0.14
ViT-B/16 0.5 007 03 |026 017|035 036 |035 034 |054 024 |028 008|023 011 [023 0.10
VIT-L/32 010 015 011 |019 010|028 022 |028 022 |031 017 |029 0.1 | 020 016 |023 014
ViT-L/16 022 024 039 019 015]035 036 |035 037 |08l 012 |030 028|031 023 |021 032
ViT-H/14 015 018 009 |021 028|019 020 |020 022 |075 0.5 |020 0.19 | 034 016 |029 0.8
Swin-T 017 03 019 [019 012020 016 |020 016 |070 010 |023 0.5 |034 020 |012 017
Swin-S 010 0.8 0.8 |0.19 019|021 025 |022 020 |048 027 |024 0.6 | 022 027 [030 0.14
Swin-B 007 014 016 |021 025|024 030 |021 032 |080 011 |028 021 |024 015 |034 013
SwinV2-T 010 009 0.4 |015 010|022 020 |020 020 |163 007 |029 0.3 |032 022 |01l 0.16
SwinV2-S 0.14 006 017 |08 016|026 021 |025 027 |129 008 |031 009 | 029 014 [0.19 021
SwinV2-B 010 010 0.8 |0.14 013 ]024 017 |024 020 [057 009 |016 0.3 | 011 011 |02l 004
CLIP(VIT-B/32) 020 033 034 |025 020|018 017 |073 18 |051 018 |036 035|023 024 [017 037
CLIP (ViIT-B/16) 0.11 027 0.2 |012 010 |017 010 |108 369 |071 062 |08 017 | 022 0.3 [010 015
CLIP (ViT-L/14)  0.16 ~ 0.10 0.11 |007 0.6 |0.10 005 |096 1876 |10l 045 |0.15 0.5 | 023 015 |029 021
(d) ImageNet-21K

Model Uncal. IRM I-Max | TS  TS;, | VS = VS,qu | DC DCyuy | Beta Betay, | Iso  Iso,, | BBQ BBQ,, | HB  HB,,

MN3 004 e e | 010 007 | 007 008 |734 1787 | ew. 023 | 008 006 | er. 004 | 004 005

VIT-B/I6 008 er. e [0.09 0.6 008 004 |023 018 | er 029 | 010 006 | er. 006 |005 0.05

(e) Amazon Fine Foods
Model Uncal. IRM I-Max | TS TSy, | VS VS, | D€ DCyqra | Beta Betay, | Iso  Iso,, | BBQ BBQ, | HB  HB,,
T5 009 006 0.0 |005 005]007 015 |008 014 |008 009 |011 006|006 004 |0.14 006
T5-large 009 006 007 |006 005|002 018 |007 023 |009 028 |007 005|005 007 [0I3 005
RoBERTa 012 008 006 |0.14 014 007 005 |006 012 |015 004 |007 007 | 006 009 [0.12 008
RoBERTa-large  0.10  0.11  0.06 | 009 0.10 [005 016 |0.09 026 |0.13 007 |008 004|007 013 |0.12 005
(f) DynaSent
Model Uncal. IRM I-Max | TS TSy, | VS VS, | D€ DCyra | Beta Betay, | Iso  Iso,, | BBQ BBQ. | HB  HB,,
TS 0.51 021 039 |035 028 | 060 054 |052 047 |069 055 |022 020|042 033 |049 054
T5-large 028 032 031 |[020 020|028 020 |038 033 |060 048 |021 035|031 058 |032 047
RoBERTa 0.67 041 058 |065 065|063 049 |060 063 |054 028 |057 045|033 030 [016 0.17
RoBERTa-lage 048 025 044 | 043 043 [ 045 042 | 045 035 |040 069 |048 031 | 094 025 |034 034
(g) MNLI
Model Uncal. IRM I-Max | TS TSy, | VS VSqy | DC DCyra | Beta Betay, | Iso  Ison, | BBQ BBQ, | HB  HBy,
T5 017 019 020 ]023 022]020 021 |023 018 |0I8 035 |[023 018|037 024 |017 015
T5-large 027 016 0.3 |035 034|030 040 |034 038 |020 020 |021 014|012 023 |023 026
RoBERTa 041 033 023 036 036|037 038 |036 040 |034 020 |0.17 034|018 027 |045 021
RoBERTa-large  0.13  0.13 0.8 |02 012 [013 016 |013 017 |019 021 |028 0.6 | 019 026 |027 0.6
(h) Yahoo Answers

Model Uncal. IRM I-Max | TS TSy, | VS  VSu | DC DCyora | Beta Betar, | Iso  Isor,, | BBQ BBQ., | HB  HB;,
TS 004 020 036 [007 024 ]018 025 |017 029 |022 074 [018 023]022 031 |076 023
T5-large 007 0.2 013 010 020|015 008 |018 009 |033 023 | 0I5 0.I3]025 028 |[022 009
RoBERTa 009 019 026 |009 0.09 009 025 |0.11 029 | 011 044 | 021 011|030 026 |036 030
RoBERTa-large 006 0.15 0.18 | 006 006 [007 029 |010 032 |010 020 |0.17 0.3 | 125 024 |026 0.18
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Table 8: Average confidence in %. Methods in purple impact the model prediction, potentially
degrading accuracy; methods in teal do not. Overconfidence (average confidence > accuracy) is
shown in violet and underconfidence (average confidence < accuracy) in brown.

(a) CIFAR-10

Model Acc. | Uncal. IRM I-Max | TS TSy, | VS VSquu | DC DCyny | Beta  Betay, | Iso  Isor, | BBQ BBQy, | HB  HBy,
ResNet-50 9491966 949 948 ]956 9521956 955 |956 955 |968 951 |953 949 | 949 949 | 949 950
ResNet-110 946 | 97.1 949 948 |957 953 | 957 957 | 957 957 |97.5 950 |954 948 | 948 948 | 948 9438
WRN 958959 961 960 | 968 965|968 963 |968 963 |974 960 |96.5 960 | 962 960 | 962 96.0
DenseNet 950 1957 950 949 |959 956 | 960 956 |959 956 |969 952 |955 950 | 951 950 | 951 949

CLIP (ViT-B/32) 88.2 | 83.4 875 873 877 818 | 815 88.5 87.6 88.5 89.8 884 |89.7 879 | 89.2 87.9 88.8 879
CLIP (VIT-B/16)  90.2 | 84.8 89.8 895 89.8  90.1 | 89.4 90.4 89.5 90.5 91.7 909 |91.9 902 | 91.3 90.2 90.8  90.2
CLIP (ViT-L/14) 953 | 90.4 950 887 949 950 | 945 94.8 94.6 94.8 957 960 |962 952 | 959 952 957 952

(b) CIFAR-100

Model Acc. | Uncal. IRM I-Max | TS TSy, | VS VS, | DC DCyuy | Beta Betay, | Iso Isop, | BBQ BBQy, | HB  HB;,
ResNet-50 76.7 | 82.9 772 77.0 809 769 | 814 71.5 81.4 774 80.3 780 |8L5 769 | 740 769 | 756 768
ResNet-110 75.0 | 82.8 755 753 79.6 755 | 80.0 762 80.0 76.2 793 769 | 806 752 | 714 752 | 73.0 753
WRN 79.6 | 83.0 79.5 793 83.0 793 | 834 79.7 83.3 79.7 81.1 796 |832 793 | 755 793 | 773 793
DenseNet 763 | 81.0 762 760 | 796 760 | 80.1 766 |80.1 766 |787 756 |799 758 | 726 758 | 740 760

CLIP (VIT-B/32) 623 | 52.8 60.7  60.1 633 623 | 59.0 63.9 58.3 63.5 60.7 629 | 652 623 | 57.0 62.3 57.8 623
CLIP (ViT-B/16)  66.7 | 56.0 645 639 66.9 67.1 | 62.7 68.4 62.0 67.9 640 665 | 685 669 | 61.0 66.9 62.1 670
CLIP (VIT-L/14)  76.0 | 65.0 739 734 76.1  76.0 | 74.1 78.6 73.4 78.4 73.5 746 | 785 76.0 | 72.8 76.0 734 759

(c) ImageNet
Model Acc. | Uncal. IRM I-Max | TS TSy, | VS VS,qu | DC DCyny | Beta  Beta, | Iso BBQ., | HB  HB;,
ResNet-18 69.8 | 720 696 692 | 694 697|703 708 | 714 707 | 655 694 | 731 698 | 67.8 69.8
ResNet-34 732768 734 729 | 735 731 | 744 743 | 752 742 | 683 732 | 768 733 | 724 733
ResNet-50 80.8 | 397 785 779 | 840 822|842 802 |842 802 |693 812 |8L6 80.9 | 747 809
ResNet-101 81.9 | 683 817 814 |855 834|860 831 |860 831 |725 822 |845 820 | 80.6 821
EffNet-B7 842 | 716 842 840 | 878 857 | 883 855 |883 855 |750 842 | 870 84.1 | 840 841
EffNetV2-S 843 | 673 842 840 | 879 856|882 853 |882 852 |763 847 |868 842 | 835 842
EffNetV2-M 851 | 602 849 847 | 888 866 |89.1 859 |89.1 858 |768 849 | 877 852 | 844 851
EffNetV2-L 858 | 773 857 854 | 836 869 | 889 867 |89 866 |764 858 |88.1 856 | 859 857
ConvNeXt-T 825 | 656 820 817 |856 840|859 833 |859 832 |735 819 |847 825 | 812 825
ConvNeXt-S 83.6 | 660 835 832 | 874 853 | 878 847 |878 847 | 749 831 |863 836 | 829 836
ConvNeXt-B 840 | 653 839 837 | 878 856 882 850 |882 850 |746 840 | 867 84.1 | 834 841
ConvNeXt-L 844 | 719 845 843 | 884 862|888 858 |838 858 766 845 |874 845 | 843 845
ViT-B/32 759 1696 759 756 | 799 773 | 805 774 |804 773 | 693 757 | 789 759 | 737760
ViT-B/16 810 | 755 812 810 | 848 826|853 828 |853 827 |738 812 |840 810 | 805 811
VIT-L/32 770 | 742 773 772 | 816 788 | 822 790 |82 790 |[717 770 | 808 769 | 760 769
VIT-L/16 79.6 | 788 80.1 800 |845 817|851 821 |851 821 [729 801 | 836 797 | 798 797
VIiT-H/14 88.6 | 89.0 886 884 | 904 893|905 895 |905 895 808 884 | 908 88.6 | 89.3 887
Swin-T 815 | 747 813 81 | 845 826|850 827 |850 826 |737 813 |840 815 | 809 814
Swin-S 832|799 833 831 | 868 846 | 873 847 |873 847 |753 837 |86 83.1 | 831 832
Swin-B 836 | 797 838 836 |875 854|880 856 |80 855 |758 836 |867 835 | 840 835
SwinV2-T 820 | 737 821 819 |856 834 |860 834 |860 834 | 734 822 |847 822 | 815 822
SwinV2-§ 837 | 777 838 837 |875 852|880 854 |80 853 |753 84l |867 837 | 838 837
SwinV2-B 84.1 | 789 843 841 | 879 857 | 884 858 | 884 858 | 767 845 | 871 84.1 | 843 842
CLIP (ViT-B/32) 573 | 573 571 567 |579 575|593 601 |67.1 707 |554 571 |618 572 | 550 572
CLIP (ViTB/16) 629 | 626 625 621 | 634 632|646 656 |699 662 |[0602 625 |674 630 | 614 63.0
CLIP (ViT-L/14) 701 | 721 700 698 |709 703 | 730 728 |769 066 |657 705 | 746 701 ] 69.2  69.9

(d) ImageNet-21K

Model Acc. | Uncal. IRM I-Max | TS TSy, | VS VSgua | DC DCyny | Beta  Betay, | Iso  Ison, | BBQ BBQu, | HB  HBy,

MN3 1541277 e e | 240 174|355 333 | 719 812 |ew 151 [351 153 | em 153 | 157 153
VIT-B/16 192|214 em em [255 219 [ 434 413 |487 415 |em 193 |428 192 | em 190 [206 192
(e) Amazon Fine Foods
Model Acc. | Uncal. IRM I-Max | TS  TS;, | VS VSiny | DC DCpyr | Beta Betar, | Iso  Isor, | BBQ BBQ, | HB  HBy,
T5 89.8 1950  89.8 898 |902 903 1908 915 [90.7 916 |9.0 895 |905 898 | 904 898 |902 8938
T5-large 91.6 | 973 916 916 | 920 919 | 923 933 | 923 933 |978 916 | 921 916 | 921 916 919 916
RoBERTa 90.0 | 978 900 900 | 922 922 1906 917 |907 9L7 |980 900 | 905 900 | 904 900 |902 90.0

RoBERTa-large  91.4 | 98.2 915 915 93.9 939 | 923 933 923 93.3 983 915 | 921 915 | 919 915 91.7 914

(f) DynaSent
Model Acc. | Uncal. IRM I-Max | TS TSy, | VS  VSgyuu | DC DCuor | Beta Betar, | Iso Ison, | BBQ BBQ.. | HB  HBy,
TS 788 868 785 785 |789 788 | 836 805 |834 80.6 |87 785 |789 783 | 787 783 | 784 782
T5-large 822|918 818 817 |850 850 | 895 839 |893 8.9 |94l 822 |82 816 | 820 816 [818 816
RoBERTa 7771951 779 778 | 909 909 | 935 854 | 927 841 |961 783 | 784 778 | 780 777 | 780 7718

RoBERTa-large  81.2 | 96.0 812 812 9.1 9.1 | 946 86.7 94.0 859 96.9 805 | 817 810 | 814 80.9 813 810

(g) MNLI
Model Acc. | Uncal. IRM I-Max | TS TSy, | VS  VSgu | DC DCyona | Beta Betay, | Iso Iso,, | BBQ BBQy, | HB  HBy,
TS 88.4 | 94.8 885 885 894 894 | 916 902 |916 90.3 96.1  89.0 | 887 885 | 8.6 835 |84 885
T5-large 90.1 | 976 90.0 899 | 945 9451957 917 |955 917 | 983 902 | 902 899 | 90.1 899 |90.0 899
RoBERTa 86.4 | 96.7 86.1  86.1 929 929 | 942 884 | 9338 88.5 915  86.1 86.5 86.1 | 86.2 86.0 | 86.1 86.1

RoBERTa-large  88.9 | 97.1 88.8 887 93.8 938 | 95.0 90.6 94.7 90.7 97.7 889 | 89.1 887 | 8.9 88.7 88.8  88.7

(h) Yahoo Answers
Model Acc. | Uncal. IRM I-Max | TS TSy, | VS  VSgq, | DC DCyoy | Beta Betar, | Iso  Ison, | BBQ BBQ, | HB  HB,,
T5 753|820 756 754 | 751 746 | 780 761 | 780 760 |829 748 |765 754 | 754 754 | 750 754
T5-large 756 | 846 758 756 | 754 748 | 803 763 |80.5 764 |858 759 |770 756 | 758 756 | 753 756
RoBERTa 7241919 726 725 | 844 844 |86 746 |86 747 | 928 720 | 744 723 | 727 723 | 724 723

RoBERTalarge 72.8 | 92.5  73.1 730 | 856 856 | 895 756 |893 761 |932 726 |748 729 | 732 729 | 730 730
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Table 9: Accuracy in % (higher is better). Methods in purple impact the model prediction, potentially
degrading accuracy; methods in teal do not. Because classifiers can be well calibrated when not
accurate (by having low accuracy and low confidence), it is important to monitor the accuracy. It is
even better when the methods preserve the accuracy by design.

(a) CIFAR-10

Model Uncal. IRM  I-Max | TS TSn, | VS VSusma | DC DCoyns | Beta  Betar,, | Iso Isor,, | BBQ BBQq, | HB  HBy,
ResNet-50 94.89 9492 9489 | 94.89 94.89 | 94.84 94.83 | 94.84 94.83 | 94.84 94.89 | 94.83 94.89 | 9472 94.89 | 9470 94.89
ResNet-110 94.55 94.53 9451 | 94.55 94.55 | 9450  94.52 | 94.51  94.52 | 94.55 94.55 | 9442 9455 | 9440 94.55 | 9432 9455
WRN 9579 9580 9576 | 9579 9579 | 95.68 9573 | 95.68 9574 | 95.80 9579 | 95.63 9579 | 95.65 9579 | 9559 95.79
DenseNet 94.99 9498 9497 | 9499 94.99 | 95.05 95.05 | 95.05 95.05 | 94.99 9499 | 94.86 94.99 | 9474  94.99 | 94.80 94.99

CLIP (ViT-B/32) 88.17 88.16 87.92 | 88.17 88.17 | 90.29  90.28 | 90.38  90.33 | 90.18 88.17 | 90.36 88.17 | 90.29  88.17 | 90.18 88.17
CLIP (ViT-B/16)  90.23  90.16 90.01 | 90.23 90.23 | 92.33 9230 | 92.40 9233 | 92.10 90.23 | 9221 9023 | 92.19 90.23 | 91.90 90.23
CLIP (VIT-L/14) 9528 9522 8891 | 9528 95.28 | 9648  96.50 | 9649  96.48 | 96.31 95.28 | 96.31 9528 | 9639 9528 | 96.25 9528

(b) CIFAR-100

Model Uncal. IRM  I-Max | TS TSi. | VS VSugrw | DC DCiry | Beta  Betay, | Iso Iso;,, | BBQ BBQ,, | HB  HBy,
ResNet-50 7671 76.64 7672 | 7671 7671 | 76.63 7650 | 76.65 7650 | 76.67 7671 | 76.24 76.71 | 76.01 7671 | 74.89 76.71
ResNet-110 75.00 7500 7491 | 7500 75.00 | 75.00 7494 | 75.00 7494 | 7496 75.00 | 74.66 75.00 | 74.14 7500 | 73.12 75.00
WRN 79.57 7952 7942 | 79.57 79.57 | 7936 79.34 | 7936 7936 | 7951 79.57 | 79.08 79.57 | 71857 79.57 | 7735 79.57
DenseNet 7626 7631 7621 | 7626 7626 | 7631 7631 | 7633 7631 | 7630 7626 | 76.07 76.26 | 7548  76.26 | 7442 76.26

CLIP (ViT-B/32) 6233 62.18 61.60 | 62.33 6233 | 67.77 6733 | 6631 6395 | 6640 62.33 | 66.48 6233 | 6385 6233 | 64.06 62.33
CLIP (ViT-B/16)  66.66 66.62 66.10 | 66.66 66.66 | 71.35  71.02 | 70.18  68.48 | 70.04 66.66 | 70.21 66.66 | 67.38  66.66 | 67.55 66.66
CLIP (ViT-L/14) 7596 7587 75.67 | 75.96 75.96 | 80.09  79.87 | 79.96  79.02 | 79.38 7596 | 79.52 75.96 | 77.29 7596 | 77.05 75.96

(c) ImageNet
Model Uncal. IRM  I-Max | TS TS, | VS VSusma | DC DCiyns | Beta  Betar,, | Iso Isor,, | BBQ BBQq, | HB  HBy,
ResNet-18 69.77  69.76  69.37 | 69.77 69.77 | 69.81  69.21 | 68.12  67.60 | 69.72 69.77 | 69.24 69.77 | 68.34  69.77 | 66.65 69.77
ResNet-34 7323 73.19 7277 | 7323 7323 | 73.19 7270 | 71.96  71.53 | 73.10 73.23 | 72.81 73.23 | 72.21 73.23 | 7046 73.23
ResNet-50 80.85 80.80 80.26 | 80.85 80.85 | 80.93  80.81 | 80.94  80.81 | 80.60 80.85 | 80.47 80.85 | 78.13  80.85 | 78.49 80.85
ResNet-101 81.86 81.83 81.54 | 81.86 81.86 | 81.77 81.65 | 81.80 81.66 | 81.74 81.86 | 81.44 81.86 | 80.82 81.86 | 79.80 81.86
EffNet-B7 84.16 84.18 84.06 | 84.16 84.16 | 84.45 84.31 | 8445 8430 | 8427 84.16 | 84.09 84.16 | 83.71 84.16 | 8272 84.16
EffNetV2-S 84.27 84.19 8399 | 84.27 84.27 | 84.33 8423 | 8434 8422 | 8426 84.27 | 83.83 84.27 | 83.52 84.27 | 82.55 84.27
EffNetV2-M 85.06 85.05 8490 | 85.06 85.06 | 8528 8519 | 85.28 8517 | 85.10 85.06 | 84.87 85.06 | 84.19 85.07 | 83.72 85.06
EffNetV2-L 85.80 8578 85.60 | 85.80 85.80 | 85.88 8583 | 8589  85.87 | 8589 8580 | 85.58 85.80 | 85.23 85.80 | 84.25 85.80
ConvNeXt-T 82.50 8249 82.18 | 82.50 82.50 | 8244 8229 | 8245 8228 | 8245 8250 | 82.10 8250 | 81.51 8250 | 80.37 82.50
ConvNeXt-S 83.65 8359 8336 | 83.65 83.65 | 83.63 83.55 | 83.63 8355 | 83.64 83.65 | 83.28 83.65 | 82.89 83.65 | 81.84 83.65
ConvNeXt-B 84.04 84.01 8378 | 84.04 84.04 | 84.09 8398 | 84.10 83.96 | 84.04 84.04 | 83.68 84.04 | 8322 84.04 | 82.34 84.04
ConvNeXt-L 84.38 8437 8423 | 84.38 84.38 | 84.41 84.32 | 8441 8434 | 84.44 8438 | 84.12 84.38 | 83.98 84.38 | 82.92 84.38
ViT-B/32 7595 7591 75.69 | 7595 7595 | 7581 75.65 | 7583  75.66 | 7585 75.95 | 7536 7595 | 7459 7595 | 73.13 7595
VIiT-B/16 81.04 81.01 8090 | 81.04 81.04 | 81.00 80.88 | 81.01  80.87 | 80.96 81.04 | 80.63 81.04 | 80.38  81.04 | 79.06 81.04
ViT-L/32 7696 76.94 76.84 | 76.96 76.96 | 76.79  76.73 | 76.79  76.72 | 76.88 76.96 | 76.37 76.96 | 76.04  76.96 | 74.55 76.96
VIiT-L/16 79.64  79.64 79.59 | 79.64 79.64 | 79.80  79.67 | 79.81  79.68 | 79.66 79.64 | 79.47 79.64 | 79.20  79.64 | 77.82 79.64
ViT-H/14 83.62 83.61 83.48 | 88.62 88.62 | 88.62 8850 | 8859 88.46 | 88.63 88.62 | 88.34 88.62 | 88.33 88.62 | 87.24 88.62
Swin-T 81.49 8145 8128 | 8149 8149 | 81.55 8142 | 81.55 8142 | 8144 8149 | 81.07 81.49 | 80.77 81.49 | 79.43 81.49
Swin-S 8321 8320 83.04 | 83.21 83.21 | 83.13 83.02 | 83.13 83.03 | 8321 83.21 | 82.79 83.21 | 82.74 83.21 | 81.40 83.21
Swin-B 83.60 83.57 83.53 | 83.60 83.60 | 83.75  83.61 | 83.76  83.59 | 83.63 83.60 | 83.39 83.60 | 83.40 83.60 | 82.16 83.60
SwinV2-T 82.02 82.01 81.83 | 82.02 82.02 | 82.12 8198 | 82.13 82.00 | 82.05 82.02 | 81.66 82.02 | 81.27 82.02 | 80.08 82.02
SwinV2-S 83.74 8373 83.64 | 83.74 8374 | 83.81 8371 | 8380 83.72 | 8372 8374 | 83.56 83.74 | 83.34  83.74 | 82.31 83.74
SwinV2-B 84.10 84.12 84.03 | 84.10 84.10 | 84.14  84.06 | 84.16 84.08 | 84.16 84.10 | 83.81 84.10 | 83.79 84.10 | 82.53 84.10

CLIP (ViT-B/32) 57.34 57.32 56.94 | 57.34 5734 | 59.80 59.57 | 31.10 0.18 5893 5734 | 5954 5734 | 5725 5734 | 5605 57.34
CLIP (ViT-B/16) 62.89 6291 6243 | 62.89 62.89 | 65.61 65.28 | 35.86 0.18 64.62 62.89 | 6507 6289 | 6324 6289 | 62.18 62.89
CLIP (ViT-L/14)  70.15 70.14 69.89 | 70.15 70.15 | 72.66 7225 | 50.88 0.17 71.57 70.15 | 7230 70.15 | 70.59  70.15 | 69.36 70.15

(d) ImageNet-21K

Model Uncal. IRM I-Max | TS TSy, | VS VSt | DC DCrni | Beta  Betag, | Iso Isor,, | BBQ BBQ, | HB HB,,,
MN3 1536 err. e 1536 1536 | 37.26  34.95 | 13.07 0.02 err. 1536 | 35.62 1536 | err. 1536 | 21.17 15.36
ViT-B/16 19.18 err.  err 19.18 19.18 | 4542 42.70 | 40.54  40.70 err.  19.18 | 4372 19.18 | err. 19.18 | 2846 19.18

(e) Amazon Fine Foods

Model Uncal. IRM  I-Max | TS TS, | VS VSt | DC DCrqiy | Beta  Betay, | Iso Isor,, | BBQ BBQ, | HB  HB,,
TS 89.81 89.83 89.83 | 89.81 89.81 | 90.04 90.18 | 9031  90.34 | 90.59 89.81 | 90.60 89.81 | 90.58  89.81 | 90.64 89.81
T5-large 9157 9158 91.61 | 91.57 91.57 | 91.67 91.82 | 92.04 91.98 | 92.10 91.57 | 92.14 91.57 | 92.14  91.57 | 92.11 91.57
RoBERTa 89.95 8995 89.98 | 89.95 89.95|89.99 90.15 | 9029  90.21 | 90.56 89.95 | 90.59 89.95 | 90.59 89.95 | 90.54 89.95

RoBERTa-large 91.42  91.50 9148 | 91.42 9142 | 9142 91.64 |91.74 91.69 | 9194 9142 |91.95 9142|9190 9139 | 9191 91.42

(f) DynaSent
Model Uncal. IRM  I-Max | TS TSy, | VS VSt | DC DCrny | Beta  Betay, | Iso Iso;,, | BBQ BBQ,, | HB  HB,,
TS 78.83 78.88 78.82 | 78.83 78.83 | 78.84  78.83 | 78.82 78.86 | 78.81 78.83 | 78.70 78.83 | 78.71 78.83 | 78.73 7883
T5-large 8220 82.16 82.19 | 8220 8220 | 8220 8223 | 82.32 8225 | 82.35 82.20 | 8231 8220 | 82.19 8220 | 82.29 82.20
RoBERTa 7772 7767 7791 | 7172 7172 | 7172 77.74 | 7796 7770 | 7797 77.72 | 7175 7172 | 7186  71.72 | 7197 7172

RoBERTa-large  81.19 8129 81.33 | 81.19 81.19 | 81.19  81.19 | 81.24  81.44 | 81.28 81.19 | 81.50 81.19 | 81.51 81.19 | 81.66 81.19

(g) MNLI
Model Uncal. IRM  I-Max | TS TSy, | VS VSt | DC DCinn | Beta  Betay, | Iso Iso,. | BBQ BBQ. | HB  HB,,
T5 8835 8835 8838 | 8835 8835|8836 8839 |8839 8839 | 8841 8835 | 88.34 88.35|88.28 8835 | 88.37 88.35
T5-large 90.07  90.10 90.14 | 90.07 90.07 | 90.07  90.15 | 9020 ~ 90.21 | 90.07 90.07 | 90.I5 90.07 | 90.06 90.07 | 90.16 90.07
RoBERTa 8641 8640 8643 | 8641 8641 | 8641 8642 | 8645 8648 | 8644 8641 | 8637 8641 | 8641 8641 | 8638 8641

RoBERTa-large 88.89 8890 8892 | 88.89 88.89 | 88.90 88.96 | 8898 89.02 | 8890 88.89 | 88.95 88.89 | 88.86 88.89 | 88.92 88.89

(h) Yahoo Answers
Model Uncal. IRM  I-Max | TS TSy, | VS VSuerw | DC DCrr | Beta  Betay, | Iso Isor, | BBQ  BBQy, | HB HB.,,
TS 7535 7535 7526 | 7535 7535|7534 7534 | 7536 7535 | 7524 7535 | 7530 7535|7522 7535 | 7525 7535
TS-large 75.57 75.60 7556 | 7557 7557 | 7559 75.55 | 7569  75.66 | 7553 7570 7557 | 75.62  75.57 | 75.67 7557
RoBERTa 7238 7237 7235 | 7238 7238 | 7239 7243 | 7274 73.05 | 7272 73.00 7238 | 72.87 7238 | 7291 7238

7348 72.84 | 7329 72.84 | 73.38 72.84

RoBERTa-large  72.84  72.83 72.81 | 72.84 72.84 | 72.83 72.88 | 73.01  73.40 | 72.98
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Table 10: ECE with 15 equal mass bins in % (lower is better). Methods in purple impact the model
prediction, potentially degrading accuracy; methods in teal do not.

(a) CIFAR-10

Model Uncal. IRM I-Max | TS TSy, | VS VSgqu | DC DCury | Beta Betar, | Iso  Ison, | BBQ BBQ, | HB  HB,,
ResNet-50 181 071 062 | 133 124|128 129 |128 129 [203 155 |093 070 | 245 047 |233 046
ResNet-110 258 048 051 | 178 172 | 174 174 | 172 175 [291 156 | 099 043 | 259 034 |271 023
WRN 180 058 051 | 174 175 | 148 152 | 149 152 | 174 209 | 098 062 | 207 054 |215 046
DenseNet 204 056 046 |200 207 | 148 170 | 147 170 |203 245 | 078 056 | 271 069 |275 029
CLIP(VIT-B/32) 473 133 130 [093 091 |276 179 |280 180 | 166 134 |106 105 | 215 147 |247 090
CLIP (ViT-B/16) 538 112 1.0l | 059 048 |291 191 |287 187 |121 180 |105 087 | 1.63 091 |241 063
CLIP (VIT-L/14) 490 054 050 [056 048 | 198 174 |193 172 | 096 094 | 055 046 | 098 051 [096 037
(b) CIFAR-100
Model Uncal. IRM I-Max | TS  TS;, | VS VS, | DC DCyqouy | Beta Betay, | Iso  Iso,, | BBQ  BBQ,, | HB  HBy,
ResNet-50 653 155 126 |500 354|515 231 514 230 |554 390 [560 144 |1010 208 | 1097 119
ResNet-110 783 127 1.8 | 531 424 | 511 286 |507 290 |597 495 |649 130 | 972 211 | 1089 113
WRN 433 107 095 | 436 279 | 446 238 |445 237 | 440 285 |428 122 [ 1029 094 | 999 0.83
DenseNet 516 112 0.86 | 425 230 | 447 226 | 448 225 | 483 294 |450 137 | 1046 127 | 10.60 1.07
CLIP(ViT-B/32) 951 210 174 | 186 178 |872 349 |797 199 |651 275 [232 125|795 213 | 799 135
CLIP (VIT-B/16) 10.64 335 3.04 |266 272 |868 3.5 |820 172 |703 255 [268 177 | 714 212 | 713 152
CLIP (VIT-L/14) 1096 3.14 294 |247 253 |60l 205 |657 174 |652 193 |[239 164 | 665 166 | 648 144
(c) ImageNet
Model Uncal. IRM TSia | VS VSqrw | D€ DCiyry | Beta  Betar, | Iso  Isor, | BBQ BBQq, | HB  HBy,
ResNet-18 259 078 055 |1.86 1.82 | 171 207 | 336 335 | 436 139 |385 075|984 065 |945 056
ResNet-34 361 074 052 | 175 175 | 181 202 | 340 291 | 486 LIl | 404 071|917 068 |929 064
ResNet-50 4115 275 260 |3.19 176 | 323 110 | 322 113 [ 1130 222 | 129 076 | 824 098 |545 052
ResNet-101 1355 079 056 |3.69 234|421 160 | 418 156 | 921 210 |30l 063 |78 100 |668 046
EffNet-B7 1260 051 048 |384 294|382 158 | 381 156 | 931 232 293 056 | 691 071 |606 039
EffNetV2-S 1692 063 040 | 404 332|391 169 | 38 167 | 798 252 |296 065|758 092 |650 058
EffNetV2-M 2488 090 067 |378 266 |383 135 | 38 134 | 831 183 |28 073 | 668 108 |538 0.54
EffNetV2-L 848  0.60 044 |284 149 |306 094 | 305 090 | 945 118 |251 062|603 078 |530 037
ConvNeXt-T 1695 1.17 087 |3.08 167|347 121 | 346 117 | 895 183 |255 082|764 099 | 601 0.67
ConvNeXt-S 1760 076 056 |3.80 256 |4.19 144 | 418 141 | 877 202 |306 071|736 079 |607 051
ConvNeXt-B 1877 068 044 | 381 267 | 409 144 | 407 144 | 944 218 | 303 073 | 748 104 | 604 058
ConvNeXt-L 1251 065 043 | 402 290 | 442 182 | 441 177 | 789 159 |326 063|705 078 |627 041
VIiT-B/32 637 071 061 |410 249 | 464 190 | 462 184 | 653 175 | 358 071 | 924 074 |830 058
ViT-B/16 556 075 053 | 419 318 | 427 209 | 425 207 | 724 239 |338 070 | 768 093 |7.12 057
VIT-L/32 413 085 075 |530 420|537 267 | 537 264 | 619 280 |442 072|918 103 |864 0.63
VIT-L/16 517 102 059 592 520 | 528 274 | 526 269 | 736 359 |410 076 | 782 129 |832 0.60
VIT-H/14 061 056 035 | 175 083 | 188 108 | 192 105 | 806 070 |246 060 | 396 053 |464 041
Swin-T 682 077 049 |3.10 182|343 133 | 343 127 | 770 167 |294 071 | 752 090 |687 048
Swin-S 357 059 052 |392 298 | 417 184 | 417 182 | 788 233 |329 059 | 678 083 |697 050
Swin-B 465 060 035 | 436 371|422 204 | 421 204 | 789 281 |333 063|650 078 | 664 041
SwinV2-T 831 072 046 |362 221 |392 160 | 390 159 | 866 183 |307 071 | 797 067 |684 052
SwinV2-S 606 064 045 | 418 332|424 188 | 423 183 | 846 234 |315 056 | 704 079 |675 050
SwinV2-B 527 061 046 |442 368 | 425 195 | 422 188 | 747 274 |333 057 | 656 075 |653 042
CLIP(ViT-B/32) 151  1.00 073 | 162 156 | 142 081 |3601 7052 | 359 084 | 225 098 | 7.88 104 |6.66 079
CLIP (ViIT-B/16) 178 125 074 | 190 1.88 | 1.60 080 |3402 6604 | 451 107 | 231 095|817 083 |696 071
CLIP (VIT-L/14) 254 117 0.64 |203 204 | 179 132 |2606 6639 | 593 150 | 239 110 | 903 088 |7.87 084
(d) ImageNet-21K
Model Uncal. IRM I-Max | TS TSy, | VS VSgq, | DC DCyory | Beta Betar, | Iso  Ison, | BBQ BBQ, | HB  HBy,
MN3 1234 e, e [ 869 443 | 251 238 |5884 8116 | em 114 | 193 028 | er. 031 |553 0.19
VIT-B/16 6.54 err. e | 903 686|234 155 | 818 320 | emw 372 | 214 021 | er. 043 | 790 0.17
(e) Amazon Fine Foods
Model Uncal. IRM I-Max | TS  TS;, | VS VS, | DC  DCyqu | Beta Betay, | Iso  Iso,, | BBQ BBQ, | HB  HB,,
T5 517 028 022 | 135 136|135 143 |099 130 |544 087 |047 029 | 114 021 |251 021
T5-large 576 027 022 |18 184 | 171 167 | 137 135 |570 181 |075 026|197 017 |3.18 0.7
RoBERTa 789 033 023 |227 221 | 146 211 | 160 190 |747 429 | 045 032|273 022 [376 021
RoBERTa-large  6.82 034 0.8 | 253 245|147 213 | 129 193 |635 421 |056 028 | 281 024 |3.68 0.16
(f) DynaSent
Model Uncal. IRM I-Max | TS TSy, | VS VSuerw | DC DCrpyy | Beta  Betay, | Iso  Tson, | BBQ BBQ,, | HB  HBy,
T5 792 176 133 | 1.60 160 | 478 212 | 458 220 | 1085 283 | 146 189 | 200 151 | 158 121
T5-large 962 156 1.02 | 334 333 | 726 200 | 698 207 |1L71 467 | 179 164 | 150 136 | 175 1.09
RoBERTa 1734 238 159 | 13.14 13.14 [ 1580 768 | 1496 635 | 1834 1036 | 1.69 236 | 245 127 |215 108
RoBERTa-large  14.80 151 1.14 | 1088 10.87 | 1343 553 | 1271 453 | 1563 9.09 | 193 141 | 278 1.09 |290 0.61
(g) MNLI
Model Uncal. IRM I-Max | TS TSy, | VS VS, | DC DCyra | Beta  Betay, | Iso  Iso,, | BBQ BBQ, | HB  HB,,
T5 646 090 064 | 122 120|321 191 [320 198 | 773 211 [086 090 | 1.55 058 | 1.83 045
T5-large 758 077 051 | 440 439 |563 174 |531 169 | 820 443 | LIl 079 | 1.77 040 |218 035
RoBERTa 1025 098 076 | 647 647 | 780 234 | 733 240 | 1102 607 | 100 102|256 077 |3.07 0.64
RoBERTa-large  8.17 ~ 1.00 056 | 491 490 | 613 185 |574 184 | 880 526 | 124 095|202 048 [250 049
(h) Yahoo Answers
Model Uncal. IRM  I-Max TSi, | VS VSuerw | DC DCrr | Beta  Betay, | Iso  Isor, | BBQ BBQn, | HB  HBy,
TS 6.64 083 090 | 071 098 | 266 092 | 264 088 | 7.68 168 | 147 086 | 352 086 |478 072
T5-large 9.04 088 068 | 146 171 | 467 126 | 482 127 |1032 236 | 181 086 | 372 089 |489 0.65
RoBERTa 1953 106 079 | 1202 1200|1626 218 | 1585 170 |20.13 936 | 194 099 | 515 072 | 648 0.62
RoBERTa-large  19.65 1.00 092 | 1276 1275 | 16.67 274 | 1629 268 |20.18 10.11 | 1.87 094 | 653 074 | 670 0.60
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Table 11: Brier score of the predicted class in 10~2 (lower is better). Methods in purple impact the
model prediction, potentially degrading accuracy; methods in teal do not.

(a) CIFAR-10

Model Uncal. IRM I-Max | TS TSy, | VS VSgqu | DC DCuyeny | Beta Betar, | Iso  Ison, | BBQ BBQy, | HB  HBy,
ResNet-50 3.75 3.64 3.64 3.67 3.66 | 3.67 3.65 3.66 3.65 3.82 3.69 |3.67 3.63 | 405 3.76 | 400 3.78
ResNet-110 3.95 3.64  3.65 375 372 | 372 3.73 3.73 3.73 4.02 373 |3.62 364 | 421 376 | 425 3.80
WRN 3.06 3.02 3.02 3.1 3.08 | 3.11 3.07 3.11 3.07 3.17 3.0 |3.02 3.03 | 337 3.09 | 343 313
DenseNet 3.68 3.54 3.56 3.69 3.67 | 3.65 3.62 3.65 3.62 378 370 |3.56 3.53 | 4.01 358 | 401 3.67

CLIP (ViT-B/32)  7.63 737 1733 727  7.26 | 6.31 6.19 6.24 6.16 643 733 | 635 735 | 642 737 | 6.62 736
CLIP (ViT-B/16)  6.48 6.08 6.07 6.02 6.01 | 5.15 5.05 5.12 5.03 521 6.15 | 520 6.09 | 524 6.08 | 539 6.13
CLIP (ViT-L/14)  3.62 320 322 3.15 3.15 | 2.65 2.61 2.63 2.61 274 320 | 264 3.9 | 276 3.18 | 274 319

(b) CIFAR-100

Model Uncal. IRM  I-Max | TS TSya | VS VS | DC DCyry | Beta  Betar, | Iso  Tson, | BBQ BBQu, | HB  HBy,
ResNet-50 1275 1196 1202 | 1244 1214 [ 1239 1193 | 1239 1192 | 1250 1216 | 12.08 11.99 | 1426 12.12 | 13.65 1201
ResNet-110 13.86 12,69 1274 | 1329 1294 | 1327 1282 | 1326 1282 | 1337 1311 | 13.07 1270 | 1488 1280 | 1424 1275
WRN 1105 1072 1074 | 11.05 1085 | 11.03 1071 | 11.03 1072 | 11.08 1082 | 10.77 10.75 | 12.65 10.82 | 12.07 10.86
DenseNet 1249 1209 1210 | 1233 1216 | 1230  12.04 | 1230 12.04 | 1247 1216 | 1211 12,07 | 1406 1213 | 1341 1211
CLIP (VIT-B/32) 17.25 1620 16.12 | 1588 1590 | 1598 1472 | 1603 1509 | 1592 1628 | 1497 1623 | 1555 1631 | 1536 16.25
CLIP (VIT-B/16) 1721 1601 1594 | 1542 1541 | 1537 1398 | 1544 1406 | 1549 1587 | 1439 1585 | 1469 1592 | 1452 1588
CLIP (VIT-L/14) 1478 1333 13.27 | 1270 1271 | 1153 10.67 | 11.69 1090 | 12.59 13.17 | 11.00 13.16 | 11.56 13.18 | 11.38 13.15
(c) ImageNet
Model Uncal. IRM  I-Max | TS TS, | VS VSusma | DC DCoyns | Beta  Betar,, | Iso Isor,, | BBQ BBQq, | HB  HBy,
ResNet-18 1393 1386 13.85 | 13.94 1393 | 1392 1392 | 1448 1453 | 1450 13.87 | 13.89 13.87 | 1556 13.90 | 1502 13.93
ResNet-34 13.15 1297 1299 | 13.04 1305 | 1299 1305 | 13.54 1353 | 1370 1299 | 13.13 1299 | 1492 1301 | 1443 13.08
ResNet-50 2979 1225 1233 | 1095 10.88 | 1098 1092 | 1098 1092 | 13.14 12,07 | 10.71 12,02 | 11.90 1208 | 11.08 12.12
ResNet-101 1265 1072 1079 | 1065 1051 | 1070 1051 | 1070 1051 | 11.97 1077 | 10.35 10.71 | 1172 1074 | 11.40 10.75
EffNet-B7 1128 959 969 | 971 955 | 972 951 | 972 950 |11.02 970 | 941 9.60 | 1071 9.62 | 1035 9.65
EffNetV2-S 1239 940 945 | 966 948 | 971 950 | 971 950 | 1061 955 | 937 943 |10.64 946 | 1037 9.50
EffNetV2-M 1605 972 983 | 959 944 | 955 932 | 954 931 | 1064 978 | 918 972 | 1040 976 | 1002 9.78
EffNetV2-L 980 899 908 | 890 882 | 893 883 | 893 884 |1028 901 | 881 9.00 | 996 9.0l | 970 9.03
ConvNeXt-T 1402 1087 1096 | 1039 1033 | 1040 1033 | 1040 1032 | 11.79 1089 | 1013 10.87 | 11.6] 1090 | 11.14 1091
ConvNeXt-S 1362 1030 1035 | 10.16 1002 | 10.16 995 | 1015 995 | 1132 1036 | 978 10.32 | 11.27 1035 | 10.83 10.37
ConvNeXt-B 1386  10.14 1020 | 1005 9.89 | 1001 979 | 1001 979 | 1136 1020 | 9.60 10.14 | [1.11  10.18 | 10.63 10.19
ConvNeXt-L 1158 988 999 | 992 976 | 999 970 | 999 971 |1097 992 | 946 9.88 | 1096 9.90 | 1046 9.94
ViT-B/32 1268 1222 1226 | 1235 1217 | 1253 1233 | 1254 1232 | 1328 1226 | 1211 1224 | 1372 1226 | 13.40 1230
ViT-B/16 1102 1065 1071 | 1089 1072 | 11.01 1084 | 11.01 1083 | 11.98 10.73 | 10.59 10.66 | 12.09 10.67 | 11.84 10.72
VIT-L/32 1215 1192 1202 | 1235 1201 | 1249 1221 | 1249 1221 | 1320 1202 | 11.92 11.93 | 13.87 1196 | 13.45 12.04
VIT-L/16 1139 1113 1122 | 11,73 1146 | 11.88 1157 | 11.88 11,57 | 1282 1128 | 1113 1111 | 1321 1115 | 1271 11.22
VIT-H/14 746 747 751 | 749 746 | 757 759 | 757 759 | 879 746 | 7.58 747 | 860 748 | 846 752
Swin-T 11.09 1059 1064 | 10.64 1053 | 1071 1064 | 1071  10.63 | 11.68 10.64 | 10.51 10.61 | 11.89 10.63 | 11.66 10.66
Swin-S 10.14 998 1004 | 1023 1006 | 1032  10.12 | 1032 10.13 | 11.40 10.06 | 9.95 998 | 1148 10.00 | 11.14 10.06
Swin-B 10.18 990  10.00 | 1021 1005 | 1022 10.10 | 1023 10.10 | 11.42 1001 | 9.82 991 | 1146 993 | 11.06 10.00
SwinV2-T 11.06 1033 1039 | 1045 1029 | 1054 1038 | 10.54 1038 | 11.65 10.38 | 10.25 10.34 | 11.69 1036 | 11.43 10.37
SwinV2-S 1005 961 967 | 991 972 | 1001 978 | 1001 977 | 1113 970 | 957 9.62 | 1113 964 | 1070 9.69
SwinV2-B 1000 964 970 | 997 979 | 1004 982 | 1003 983 |11.05 976 | 9.59 9.64 | 1121 966 | 1078 9.73
CLIP (ViT-B/32) 17.76  17.75 17.72 | 1775 17.76 | 17.05 1637 |31.17 5078 | 17.52 17.74 | 1724 1776 | 1805 17.79 | 1738 1781
CLIP (ViIT-B/16) 1699 1699 16.89 | 1698 1698 | 16.12 1554 | 30.53 4473 | 1674 1697 | 1622 1698 | 17.14 1699 | 1654 17.03
CLIP (VIT-L/14) 1496 1491 1493 | 1497 1499 | 14.17 13.67 | 26.10 47.35 | 1495 1491 | 1432 1492 [ 1539 1493 | 1487 14.99

(d) ImageNet-21K

Model Uncal. IRM I-Max | TS TSy, | VS VSt | DC DCruni | Beta  Betag, | Iso Isor,, | BBQ BBQ, | HB HB,,,

MN3 14.08 err.  err 1335 1271 | 17.17 1626 | 49.94  69.66 err. 11.95 | 17.06 11.93 | err 11.93 | 10.70 11.95
ViT-B/16 1351 err. e 13.54 1349 | 18.14  17.11 | 20.10 18.22 err. 1296 | 18.12 12.76 | err. 1277 | 1291 1296

(e) Amazon Fine Foods

Model Uncal. IRM I-Max | TS  TS;, | VS = VS, | DC  DCyqu | Beta Betay, | Iso  Iso,, | BBQ BBQ, | HB  HB,,
TS5 7.78 727 730 | 727 727|693 685 |6.73 6.75 732 730 |6.69 728 | 677 729 |7.19 733
T5-large 7.02 634 636 | 640 640 | 6.11 5.94 | 576 5.82 657 646 | 580 634|592 638 | 642 641
RoBERTa 8.66 730 735 | 742 742|722 702 |687 6.99 812 785 |6.86 730 | 7.11 748 | 770 737

RoBERTa-large  7.43 6.15 623 |630 629 | 618  6.01 5.89 6.00 6.96 685 | 586 6.14 | 6.21 649 | 674 622

(f) DynaSent
Model Uncal. IRM  I-Max | TS TSy, | VS VSt | DC DCrny | Beta  Betay, | Iso Isor,, | BBQ BBQ,, | HB  HB,
TS 14.68 1396 1396 | 13.89 13.89 | 14.15 13.88 | 14.09 13.87 | 1540 14.02 | 13.84 1398 | 1400 14.05 | 1421 13.96
T5-large 13.67 1248 1252 | 1252 1252 | 13.08 1221 | 12.82 1216 | 1416 12.80 | 12.14 1250 | 1243 12.62 | 12.78 1254
RoBERTa 18.98 1496 1509 | 17.03 17.03 | 18.16 1553 | 17.66  15.15 | 1939 16.62 | 14.67 14.97 | 1560 15.64 | 1596 15.01

RoBERTa-large  16.14  13.21 1335 | 14.65 14.65 | 1554  13.51 1529 1337 16.66 1470 | 13.09 13.20 | 13.91 13.83 | 1420 13.25

(g) MNLI
Model Uncal. IRM  [-Max | TS TS, | VS VSuerw | DC DCir | Beta  Betay, | Iso  Ison, | BBQ BBQ, | HB  HB,,
TS 895 821 825 | 821 821 | 835 819 | 829 817 | 933 828 |814 822 | 828 829 | 865 824
T5-large 856 749 752 | 776 776 | 798 746 | 788 741 | 880 798 |7.40 749 | 780 778 | 807 754
RoBERTa 1150 9.60 9.67 | 1024 1023|1057 957 | 1036 954 | 1180 1048 | 9.44 960 | 10.06 1003 | 1048 9.60

RoBERTa-large  9.30 8.04 8.12 840 840 | 8.65 8.04 8.56 8.03 9.57 872 | 798 8.05 | 840 8.39 8.71 8.12

(h) Yahoo Answers
Model Uncal. IRM  I-Max | TS TSi, | VS VSuer | DC DCrr | Beta  Betay, | Iso Ison, | BBQ  BBQn, | HB  HBy,
T5 1470 1418 1421 | 1414 1415 | 1422 1414 | 1421 1413 | 1498 1420 | 1414 1418 | 1441 1424 | 1475 1424
T5-large 1523 1425 1429 | 1423 1425 | 1444 1421 | 1441 1402 | 1566 1428 | 1418 1424 | 1449 1433 | 1483 1429
RoBERTa 2095 1594 1612 | 1757 1756 | 1920 1592 | 1884 1554 | 2123 17.15 | 1564 1594 | 1675 1655 | 1720 1599

RoBERTa-large  20.94 15.68 15.86 | 17.57 17.57 | 19.23  15.59 | 1896 1530 | 21.21 17.14 | 15.38 15.68 | 16.71 1642 | 17.15 1572
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Table 12: Calibration methods applied to in-context learning of LLMs. Accuracy and ECE are in %.

Dataset TREC SST-5 DBpedia
Acc. (1) ECE() | Acc. (1) ECE() | Acc. (1) ECE ()
Model Shots  Method
Uncalibrated 24.7 29.7 33.7 22.5 19.7 27.4
0 ConC 40.0 14.0 40.7 10.3 47.7 24.6
LinC 58.9 26.4 46.3 11.0 62.2 12.8
LinC+HBy,, 58.9 6.5 46.3 7.0 62.2 5.7
Uncalibrated 43.7 12.1 36.3 30.9 58.7 14.2
1 ConC 41.7 13.6 50.7 14.2 82.7 6.9
LinC 59.9 9.1 50.1 12.3 844 6.6
GPT-J 6B LinC+HBy,, 59.9 39 50.1 73 84.4 5.1
Uncalibrated 26.0 41.6 51.3 28.2 89.0 15.7
4 ConC 40.3 14.4 54.3 8.8 94.0 6.9
LinC 57.9 9.7 53.6 10.6 94.3 5.7
LinC+HBy,, 57.9 5.2 53.6 7.1 94.3 4.8
Uncalibrated 36.0 26.0 483 9.7 92.3 9.2
8 ConC 46.7 15.5 43.7 11.7 92.0 6.8
LinC 60.7 6.3 51.7 9.5 93.9 5.8
LinC+HBy,, 60.7 6.6 51.7 7.6 93.9 2.6
Uncalibrated 48.7 214 34.0 17.6 543 19.7
0 ConC 71.7 18.7 333 17.2 753 17.2
LinC 73.3 114 47.6 11.3 844 16.2
LinC+HB;,, 73.3 9.3 47.6 6.7 84.4 4.1
Uncalibrated 63.0 8.6 413 29.4 90.7 11.4
1 ConC 76.0 5.9 41.0 12.6 92.3 52
LinC 79.7 6.3 48.7 12.1 93.1 44
Llama-2 13B LinC+HBq,, 79.7 6.0 48.7 9.6 93.1 3.0
Uncalibrated 60.0 12.0 50.7 37.6 94.0 9.9
4 ConC 71.3 6.9 51.3 18.6 95.3 3.8
LinC 75.6 8.0 52.9 15.1 95.3 3.8
LinC+HBy,, 75.6 4.0 529 7.6 95.3 2.2
Uncalibrated 70.0 5.2 55.0 7.0 94.7 5.9
8 ConC 73.7 12.6 44.0 22.8 94.3 39
LinC 73.5 9.4 50.2 14.4 95.3 3.9
LinC+HBy,, 73.5 7.0 50.2 4.2 95.3 2.1

Large Language Models (LLMs) exhibit an in-context learning (ICL) capability, meaning they can
learn from just a few examples in the context. It works by constructing a prompt that includes
input-output pairs demonstrating the considered task, followed by a query for a new input. See [§]] for
a survey. Recent works develop calibration methods whose main goal is to improve the performance
of ICL for LLMs, without requiring a complicated model fine-tuning. [77] uses a customized variant
of Platt scaling (more specifically, Vector Scaling). Their method infers good values of the vector
scaling parameters in a data-free procedure. The idea is that for a "content-free" input, e.g., "N/A",
the calibrated probability has a 50% chance (for a binary classification task) of removing a bias
toward the positive or negative class. In our paper, we denote this method as ConC. [[1] builds on top
of this work but uses a calibration set to learn the scaling parameters by minimizing the cross-entropy
loss. This can be considered as Matrix Scaling. We denote this method as LinC. [/8] proposes a
per-class normalization of the probabilities on a given batch. [25]] estimates the in-context model
label marginal p(y) from limited data and uses it to calibrate the model probabilities. Paper [20] uses
a Gaussian mixture model.

In our experiments, we have tested a two-step calibration. First, we use the state-of-the-art method
LinC to maximize the accuracy by learning scaling parameters on a calibration set. Then, we apply
HB7y4 to scale the confidences to lower the calibration error ECE, while preserving the accuracy gains.
We use the same calibration set for the two methods. LinC performance depends on hyperparameter
values, but to keep the experiments simple, we fixed the following values: 100 epochs, a learning rate
of 0.001, and 300 calibration samples. It means that the reported performance of LinC is suboptimal
and could be enhanced even more. We used the same experimental setting as [1]. We used the models
GPT-J with 6B parameters [62] and Llama-2 with 13B parameters [39]. The text classification datasets
are TREC [61] for question classification with 6 classes, SST-5 [55] for sentiment analysis with 5
classes, and DBpedia [74] for topic classification with 14 classes. The 0-shot, 1-shot, 4-shot, and
8-shot learning settings were tested. Five different sets of 300 test samples were randomly selected,
and results are averaged over 5 seeds. We evaluated the accuracy and ECE for each configuration.
Please see Table ['1;2] for the results. In most cases, LinC+HBrya achieves the best accuracy and ECE.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims in the abstract and introduction are that our approach solves
the failure of many calibration methods when applied to problems with many classes and
that we conduct extensive experiments. This reflects our analyses in Sections [3]and ] and
experimental results in Section[5]and Appendices [G|and

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section[6]is a separate "Limitations" section in the paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: No strong theoretical result, but mathematical calculations are in Appendix [D]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We use publicly available models and data and experiments details are provided
in Section [5)and Appendix [F] Our provided code can be used to reproduce our results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly available models and data and provide a clean code imple-
mentation aiming for easy reuse and reproducibility.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Details are provided in Section[5] Appendix [F} and in the provided code.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All our tables show values averaged over five random seeds that generate
different calibration and test datasets, as mentioned in Section E} Standard deviations are
reported in Table[7}

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

36


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Table[3]in the Appendix provides computing times and the GPU model used.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper does conform with the NeurIPS Code of
Ethics and we preserve anonymity.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Appendix [B]discusses the broader impacts of the work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We believe that improved confidence calibration does not have a high risk of
misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The papers producing the used datasets are cited. The code implementations
used are cited and the URLSs are provided in Appendix [F

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Our provided code is well documented.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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