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Abstract

We present a new algorithm for the approximate near neighbor problem that com-
bines classical ideas from group testing with locality-sensitive hashing (LSH). We
reduce the near neighbor search problem to a group testing problem by desig-
nating neighbors as “positives,” non-neighbors as “negatives,” and approximate
membership queries as group tests. We instantiate this framework using distance-
sensitive Bloom Filters to Identify Near-Neighbor Groups (FLINNG). We prove
that FLINNG has sub-linear query time and show that our algorithm comes with
a variety of practical advantages. For example, FLINNG can be constructed in a
single pass through the data, consists entirely of efficient integer operations, and
does not require any distance computations. We conduct large-scale experiments
on high-dimensional search tasks such as genome search, URL similarity search,
and embedding search over the massive YFCC100M dataset. In our comparison
with leading algorithms such as HNSW and FAISS, we find that FLINNG can
provide up to a 10x query speedup with substantially smaller indexing time and
memory.

1 Introduction

Nearest neighbor search is a fundamental problem with many applications in machine learning
systems. Informally, the task is as follows. Given a dataset D = {x1, x2, ...xN}, we wish to build a
data structure that can be queried with any point q to obtain a small set of points xi ∈ D that have
high similarity (low distance) to the query. This structure is called an index. Near neighbor indices
form the backbone of production models in recommendation systems, social networks, genomics,
computer vision and many other application domains.

Applications: In this paper, we focus on algorithms for approximate near neighbor search over high-
dimensional large scale datasets. Such tasks frequently arise in genomics, web-scale data mining,
machine learning, and other large-scale applications. Consider the Yahoo Flickr Creative Commons
dataset (YFCC100M) which consists of 100 million media embeddings that are derived from the
neuron activations for a convolutional neural network [21]. Each embedding is a 4096-dimensional
vector. The dataset is about 1TB in size and presents a substantial challenge for even the most popular
algorithms, which struggle with memory, index construction, and query time. Similar issues occur

∗Equal contribution.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



in genomics, where the task is to identify genome sequences with a high Jaccard similarity to the
query. Modern genomic datasets can contain millions of reads with billions of possible n-gram
sequences [17]. Many algorithms work well when there are a few hundred dimensions but are
inappropriate for such applications. Our experiments demonstrate that for the datasets of interest in
this paper, popular indices like HNSW and FAISS can take days to build, require gigabytes of RAM
and have a suboptimal precision-recall-query time tradeoff.

Since our goal is to perform approximate search, dimensionality reduction is a reasonable strategy.
However, dimensionality reduction is costly for ultra-high dimensional data. In genomics applications,
n-gram sizes are typically very large (n > 18). Thus, the one-hot encoding of each sequence can
require billions of dimensions (418 ≈ 68B), making it intractable to learn an embedding model. For
embedding applications such as YFCC100M or product search, a large embedding dimension can
lead to performance improvements [15]. Dimensionality reduction can incur a performance penalty,
so we may wish to perform the near neighbor search over the original metric space.

Ideally, we would choose an algorithm that did not store data points in RAM, evaluate the distance
function many times, employ iterative and non-streaming processes such as k-means, or construct
complicated structures such as graphs, which are hard to parallelize and distribute. Recent algorithms
such as FLASH [22] provide the ability to search based on aggregate LSH count statistics without
computing distances, but these methods are heuristics that do not have theoretical guarantees. On the
other hand, algorithms such as LSH, which have a well-established theoretical grounding, tend to
perform poorly in practice because of their prohibitive hash table size and post filtering stage, which
needs many (Nρ in theory) distance computations. In this paper, we present an algorithm having all
the practical advantages of a system like FLASH while also being more accurate, theoretically sound,
and provably sub-linear.

1.1 Our Contribution

In this paper, we address the computational challenges of high-dimensional similarity search by
presenting an index with fast construction time, low memory requirement, and zero query-time
distance computations. Our approach is to transform a near neighbor search problem into a group
testing problem by designing a test that outputs “positive” when a group of points contains a near
neighbor to a query. That is, each test answers an approximate membership query over its group.
Given a query, our algorithm produces a B × R array of group test results that can be efficiently
decoded to identify the nearest neighbors. This is more efficient than statistical aggregation algorithms
like FLASH because each test filters out entire groups of non-neighbors with a single test operation.

We develop a concrete example of such an algorithm by using Filters to Identify Near Neighbor
Groups (FLINNG). We use a standard non-adaptive group testing design with distance-sensitive
Bloom filters as tests. We prove that FLINNG solves the randomized nearest neighbor problem
in O

(
log2( 1

δ ) log3(N)N
1
2 +γ

)
time, where γ is a query-dependent parameter that characterizes

query stability. We also implement FLINNG in C++ and conduct experiments on real-world high-
dimensional datasets from genomics, embedding search, and URL analysis, where FLINNG achieves
up to a 10x query speedup over existing indices with faster construction time and lower memory.

2 Related Work

The near neighbor problem has been the focus of more than four decades of intense research activity.
The low dimensional problem is particularly well-understood, with space partitioning trees that
can efficiently find the exact k-nearest neighbors. However, exact search in high dimensions is
intractable due to the curse of dimensionality - the computational resources needed to solve the exact
problem scale exponentially with dimensions. This has led to a diverse set of algorithms to solve the
approximate near neighbor problem, which we now describe.

Locality Sensitive Hashing: LSH was the first approximate near neighbour algorithm to break the
curse of dimensionality. At their core, LSH algorithms use an LSH function to partition the dataset
into buckets. The hash function is selected so that the distance between points in the same bucket is
likely to be small. To find the near neighbors of a query, we hash the query and compute the distance
to every point in the corresponding bucket. Query performance can be improved with replication,
which queries multiple independent hash tables, multi-probe methods [13], which examine multiple
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buckets in the hash table, and data-dependent LSH [3], which tunes the hash function to the dataset.
Recent work shows that machine learning algorithms can also construct effective LSH partitions [6].

Count-Based LSH: There are several recent algorithms which identify neighbors by counting the
number of LSH collisions rather than explicitly computing distances. For example, the algorithm
from [22] uses the count values to quickly identify potential neighbors. The algorithm from [5]
applies compressed sensing techniques to the counts to compress the dataset, and a popular technique
in genomics is to simply replace each data point with its hash values [17].

Graphs: Graph-based methods are another successful family of algorithms. Graph algorithms locate
near neighbors by walking the edges of a graph where each point is (approximately) connected to its
k nearest neighbors. The focus in this area has been to improve graph properties using diversification,
pruning, hierarchical structures, and other heuristics [14]. Graph indices perform well on industry-
standard benchmarks but are not theoretically well-understood, despite recent progress [18]. Graph
indices also suffer from long construction times and bloated memory consumption.

Sample Compression: A large number of practical methods are based on quantization. Such
methods replace points in the dataset with compressed versions of the points. Methods such as scalar
quantization, vector quantization and product quantization alias each point to a collection of k-means
centroids. One can also use machine learning to obtain learned Hamming codes for the dataset and
perform efficient distance computations using bit operations. Advances in quantization are applicable
to most other algorithms, but have been particularly effective when combined with brute force search
on GPU hardware and partition-based search over billion-scale datasets [11].

Group Testing: We are not the first algorithm to apply group testing to near neighbor search.
However, existing algorithms have key limitations that prevent effective practical implementations
and rigorous theoretical analysis. The authors of [10] propose a group-based filtering algorithm based
on group representative vectors, or the vector average of group entries. To query the index, [10]
explicitly compute the distances to all points where the distance between the representative and query
exceeds a threshold. The algorithm of [20] uses the same group representatives, but applies an online
backpropagation algorithm to estimate the individual similarities.

This work has two shortcomings. First, the methods require many distance calculations against
the group representatives ([10] requires N/10 distances), resulting in poor query time. Second, the
average vector can be similar to the query even when all points are far from the query, precluding
a theoretical analysis except under restrictive distribution assumptions. In this work, we analyze
methods where only the group tests are used to identify the neighbors, as our goal is to avoid per-
forming expensive distance computations. Unsurprisingly, our method is theoretically and practically
superior.

Theoretical Comparison: In high dimensions, most methods require conditions that depend on the
data and query to prove efficient search time. Table 1 shows some representative theoretical results
for the classes of algorithms described previously.

3 Background

Formal Problem Statement: In this paper, we solve the randomized nearest neighbor problem.
Definition 1 is a stronger version of the well-studied (R, c)-approximate near neighbor problem.
In particular, any algorithm which solves the randomized nearest neighbor problem also solves the
approximate near neighbor problem with c = 1 and any R ≥ the distance to the nearest neighbor.

Definition 1. Randomized Nearest neighbor: Given a dataset D, a distance metric d(·, ·) and a
failure probability δ ∈ [0, 1], construct a data structure which, given a query point y, reports the
point x ∈ D with the smallest distance d(x, y) with probability greater than 1− δ.

3.1 Group Testing

Suppose we are given a set D of N items, k of which are positive (“hits”) and N − k of which are
negative (“misses”). The group testing problem is to identify the hits by grouping items and using
a small collection of group tests. A group test is positive if and only if any item from the group is
positive. The objective of group testing is to reliably identify the positive items using fewer than N
group tests. The problem is noisy if the tests make i.i.d. mistakes with some false positive and false
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Table 1: Asymptotic query times for several types of near neighbor algorithms. Where possible, we
adapt the guarantees and notation to apply to our problem statement. For randomized algorithms,
we report the time needed to succeed with constant probability - this may be boosted to an arbitrary
failure rate δ in polylog(1/δ) time using standard techniques.

Method Query Time Notes

LSH [9] O(Nρ logN) ρ =
log 1/s|K|

log 1/s|K|+1

Many improvements
to reduce ρ.

Graphs [18] O
(√

dN
1
dMd

)
and M is problem-dependent.

Only for dense
uniform data on the
unit sphere.

Random Trees [19] O
(
d logN
| log Φ|

)
Φ(q) = 1

N−1

∑
xi 6=x?

dist(q,xi)
dist(q,x?)

Φ depends on the
query and can be
arbitrarily close to 1.

FLINNG [this work] O
(
N

1
2 +γ log3(N)

)
γ =

log s|K|
log s|K|+1−log s|K|

γ can be < 0.5
(query-dependent).

negative rate. The group testing problem may also be adaptive, where we are allowed to design test n
based on the results of tests {1, 2, ...n− 1}, or non-adaptive, where we must perform all tests at once.

Since the problem’s introduction in 1943, there has been considerable work toward the construction
of test designs under various constraints. For a recent review, see [1]. In this paper we develop
near neighbor search algorithms using the noisy group testing framework. For simplicity, we
mainly consider the doubly regular design, where we evenly distribute items among B tests, and we
independently repeat this process R times to obtain a B×R grid of group tests (Figure 1). This block
testing design is similar to that of RAMBO [8], but with different filtering and inference algorithms.
However, our algorithmic framework is compatible with any non-adaptive testing design.

3.2 Locality-Sensitive Hashing

A hash function h(x) 7→ {1, ..., R} is a function that maps an input x to an integer in the range
[1, R]. An LSH family H is a set of hash functions with the following property: Under the hash
mapping, nearby points have a high probability of having the same hash value. The two points x
and y are said to collide if h(x) = h(y). We will use the notation s(x, y) to refer to the collision
probability PrH[h(x) = h(y)]. The original definition of LSH given by [9] establishes lower bounds
on s(x, y) when d(x, y) is small (i.e. we want a high probability that x and y collide) and upper
bounds when d(x, y) is large (i.e. we do not want x and y to collide). For our analysis, we will
assume a slightly different notion of LSH. Specifically, we suppose that s(x, y) is exactly equal to
the similarity between x and y. That is, s(x, y) = sim(x, y). The vast majority of LSH functions in
the literature satisfy this property - see [7] for a review.

We also introduce the concatenation trick. For any positive integer L, we may transform an LSH
family H with collision probability s(x, y) into a new family having s(x, y)L by sampling L hash
functions fromH and concatenating the values to obtain a new hash code [h1(x), h2(x), ..., hL(x)].
If the original hash family had the range [1, R], the new hash family has the range [1, RL].

3.3 Distance-Sensitive Bloom Filters

The distance-sensitive Bloom filter [12] is a data structure which solves the approximate set member-
ship problem.
Definition 2. Approximate Set Membership: Given a set D of N points and similarity thresholds
SL and SH , construct a data structure which, given a query point y, has:
True Positive Rate: If there is x ∈ D with sim(x, y) > SH , the structure returns true w.p. ≥ p
False Positive Rate: If there is no x ∈ D with sim(x, y) > SL, the structure returns true w.p. ≤ q

The distance-sensitive Bloom filter solves this problem using LSH functions and a 2D bit array. The
structure consists of m binary arrays that are each indexed by an LSH function. There are three
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parameters: the number of arrays m, a positive threshold t ≤ m, and the number of concatenated
hash functions L used within each array. The length of each array is set to be the range of the LSH
family and is therefore not a parameter.

To construct the filter, we insert elements x ∈ D by setting the bit located at array index [m,hm(x)] to
1. To query the filter, we determine the m hash values of the query y. If at least t of the corresponding
bits are set, we return true. Otherwise, we return false. For our group testing analysis, we need
explicit bounds on the error rates p and q. We obtain these bounds using a straightforward extension
of Proposition 2.1 from [12] and provide a proof in the supplementary materials.
Theorem 1. Assuming the existence of an LSH family with collision probability s(x, y) = sim(x, y),
the distance-sensitive Bloom filter solves the approximate membership query problem with

p ≥ 1− exp
(
−2m

(
−t+ SLH

)2)
q ≤ exp

(
−2m

(
−t+NSLL

)2)
(1)

Algorithm 1 Index Construction
Input: Dataset D of size N , positive inte-
gers B and R, similarity threshold S
Output: A FLINNG search index consist-
ing of membership setsMr,b and group tests
Cr,b
for r = 0 to R− 1 do

Let π(D) be a random permutation of D
Define Mr,b = {π(D)i | i mod B =
b}

for r = 0 to R− 1 do
for b = 0 to B − 1 do

Construct a classifier Cr,b for member-
ship set Mr,b with true positive rate p
and false positive rate q

Algorithm 2 Index Query
Input: A FLINNG index and a query y
Output: Approximate set K̂ of neighbors
with similarity greater than the threshold S
K̂ = {1, . . . , N}
for r = 0 to R− 1 do
Y = ∅
for b = 0 to B − 1 do

if Cr,b(y) = 1 then
Y = Y ∪Mr,b

K̂ = K̂ ∩ Y

4 Algorithm

We will now describe our algorithm for high-dimensional near neighbor search. We begin by reducing
the near neighbor search problem to a group testing problem. Suppose we are given an N -point
dataset D and are asked to return points which are similar to a query y. If we apply a similarity
threshold to the dataset, we obtain a near neighbor set K = {x ∈ D|sim(x, y) ≥ S}. We consider K
to be the set of “positives” in the group testing problem. We can solve the similarity search problem
by finding the |K| positives among the N − |K| negatives using group testing.

In order to do so, we split the dataset D into a set of groups, which we visualize as a B × R grid
of cells. Each cell has a group of items Mr,b and a corresponding group test Cr,b. To assign items
to cells, we evenly distribute the N points among the B cells in each column of the grid, and we
independently repeat this assignment process R times.

To identify groups that contain positives, we need a testing procedure that outputs “true” when the
group contains a point similar to y and “false” otherwise. That is, we require a binary classifier Cr,b
that solves the approximate membership testing problem for Mr,b (Definition 2). For group testing
to be effective, the true positive rate p and false positive rate q of the classifier Cr,b should be good
enough to reliably identify positive and negative cells, respectively.

Algorithm 1 shows how to construct the index. We begin by randomly distributing the points across
the B cells in each row, so that each cell has the same number of points. This can be done by
randomly permuting the elements of D and assigning blocks of NB elements to each cell using modulo
hashing. Then, we construct classifiers (group tests) to solve the approximate membership problem
in each cell.

To query the index with a point y, we begin by querying each classifier. If Cr,b(y) = 1, then at least
one of the points in Mr,b has high similarity to y. We collect all of these “candidate points” by taking
the union of the Mr,b sets for which Cr,b(y) = 1. We repeat this process for each of the R repetitions
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Figure 1: Intuition behind our approach. We mark the neighbors (black dots) of a query (blue X) as
“positives” for group testing and construct a B ×R array of tests. Based on the test results, we obtain
sets S1, S2, ...SR of candidates, which we intersect to identify the neighbors. In general, the tests can
be any classifier that detects neighbors. In this paper, we use distance-sensitive Bloom filters.

to obtain R candidate sets, one for each column in the grid. With high probability, each candidate
set contains the true neighbors, but it may also have some non-neighbors that were included in Mr,b

by chance. To filter out these points, we intersect the candidate sets to obtain our approximate near
neighbor set K̂. Algorithm 2 explains this process in greater detail.

Intuition: In each repetition, we partition N points into B groups, where B � N . To understand
why this strategy leads to good performance, suppose we are only interested in finding the nearest
neighbor xNN (i.e. |K| = 1). If the tests have a high true positive rate p, then the R cells that contain
xNN will have Cr,b(y) = 1. If the tests have a low false positive rate q, then the cells that do not
contain xNN will have Cr,b(y) = 0 with high probability.

In the first repetition, our tests identify the group M0,b that contains xNN - each point in M0,b is
a near-neighbor candidate. Thus, with only B calls to the classifier Cr,b(y), we have reduced the
number of candidates fromN to N

B . If we repeat this process, we find another candidate setM1,b. Our
overall set of candidates is now the intersection M0,b ∩M1,b, whose expected size is N

B2 . In general,
each repetition reduces the number of candidates by a factor of 1

B , which decreases exponentially
with the number of repetitions. We progressively rule out more and more candidates until we are left
with only the near neighbors.

In practice, this process is efficient because we can construct tests with a reasonable p and q that are
very fast to query. For example, when Cr,b is a distance-sensitive Bloom filter, the testing process can
be implemented using constant memory with bit operations or efficient integer lookup tables. The set
union and intersection operations can also be implemented using cheap integer operations. The result
is an algorithm that identifies the near neighbors using group testing, without explicitly storing the
data or performing any distance computations.

5 Theory

Proof Sketch: We defer full proofs to the supplementary materials; what follows is a high-level
description of our theory. To obtain theoretical guarantees, we first assume that the tests have a
universal fixed false positive and false negative rate. Under this assumption, we derive bounds on
the query time and error rates of the FLINNG algorithm. Next, we show how to construct distance-
sensitive Bloom filters with a given error rate that satisfies these conditions. Here, the main technical
difficulty is to bound the query time necessary to achieve the correct testing error rate. To do this,
we introduce a data-dependent sparsity measure γ that is small when the query has only a few close
neighbors. To prove our main theorem, we set the test error rates so that the group design solves the
randomized nearest neighbor problem.

5.1 Group Testing: Runtime and Accuracy

We first derive bounds on the error rates of our index. To find the probability of correctly reporting
points as neighbors, we assume that each group test has a fixed false positive and negative rate.
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Lemma 1. Suppose we have a dataset D of points, where a subset K ⊆ D is “positive” and the rest
are “negative.” Construct a B ×R grid of tests, where each test has i.i.d. false positive rate p and
false negative rate q. Then Algorithm 2 reports points as “positive” with probability:

Pr[Reportx|x ∈ K] ≥ pR (2)

Pr[Reportx|x 6∈ K] ≤

[
q

(
eN(B − 1)

B(N − 1)

)|K|
+ p

(
1−

(
N(B − 1)

eB(N − 1)

)|K|)]R
(3)

The cost of group testing inference (Algorithm 2) is the cost to do all B ×R tests, plus the cost of
intersecting the positive groups. We bound this cost by bounding the number of positive groups.
Theorem 2. Under the assumptions in Lemma 1, suppose that each test runs in time O(T ). Then
with probability 1− δ

tquery = O

(
BRT +

RN

B
(p|K|+ qB) log(1/δ) logN

)
(4)

5.2 Bounding the Test Cost

Our next step is to find the runtime and error rates of a specific binary classifier: a distance-sensitive
Bloom filter. To distinguish between the K nearest neighbors and the rest of the dataset, we construct
a filter using Theorem 1 with SH = sim(x|K|, y) = s|K| and SL = sim(x|K|+1, y) = s|K|+1, where
x|K| is y’s Kth nearest neighbor. We also assume that the filter contains N

B points and B = 2
√
N .

Our goal in this section is to select a threshold t, number of bit arrays m, and LSH parameter L to
obtain a specified value of p and q. Once we have a test with the required error rates, we will bound
the test time T .

Without imposing additional requirements on the query and dataset, it is impossible to design a
filter for an arbitrary p and q, as observed by [12]. However, this limitation is not serious. We can
obtain the error rates provided that the query has K clearly-defined neighbors and the non-neighbor
points are easily distinguished from the neighbors (i.e. s|K|+1 � s|K|). This is closely related to
the stability condition from [4], so we refer to such queries as stable. We formally define a γ-stable
query as:

Definition 3. γ-stable Query: We say that a query is γ-stable if log(s|K|)

log(s|K|+1)−log(s|K|)
≤ γ

We are now ready to design the classifier. Our classifier achieves the error rates p and q for any
γ-stable query and has bounded query time, fulfilling the conditions from Theorem 2.
Theorem 3. Given a true positive rate p, false positive rate q and stability parameter γ, it is possible
to choose m, L and t so that the resulting distance-sensitive Bloom filter has false positive rate p and
false negative rate q for all γ-stable queries. The query time is

O(mL) = O (− log(min(q, 1− p))Nγ log(N)) (5)

5.3 Query Time Analysis

In this section, we initialize the group testing framework using Bloom filter tests to solve the
randomized nearest neighbor problem. First, we consider the query time of a 2

√
N × R grid of

Bloom filter classifiers. Lemma 2 is a straightforward substitution of the query time from Theorem 3
into Theorem 2, with T = mL.
Lemma 2. Under the assumptions in Lemma 1, we can use distance-sensitive Bloom filters as tests
to achieve the following query time tquery of Algorithm 2 with probability 1− δ

tquery = O(RN
1
2 +γ log(N) max(− log(q),− log(1− p)) +RN

1
2 log2(N)(|K|+ qN

1
2 ) log(1/δ))

There are two ways that Algorithm 2 can fail to solve the nearest neighbor problem (i.e. |K| = 1).
We may fail to return the nearest neighbor, but we may also return any point in D that is not the
nearest neighbor. We can determine the values of p and q needed to achieve an overall failure rate δ
by requiring that both events occur with probability < δ

2 and applying the union bound.
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Lemma 3. Under the assumptions in Lemma 1, we can build a data structure that solves the
randomized nearest neighbor problem for sufficiently large N and small δ, where2

p = 1− δ

2R
q = N−

1
2 R =

log( 1
δ )

log(4.80N
1
2 )− log(2e2 + 3.44N

1
2 )

(6)

We obtain our main theorem by using the values from Lemma 3 with the query time from Lemma 2.
Note that the query time is sublinear when the (data-dependent) stability parameter γ < 1

2 .

Theorem 4. (Main Theorem) Under the assumptions of Lemma 3, we solve the randomized nearest
neighbor problem for γ-stable queries in time tquery:

tquery = O

(
N

1
2 +γ log4(N) log3

(
1

δ

))
(7)

Practical Implications: We must have s1+γ
|K| < sγ|K|+1 to have sub-linear query time (γ < 0.5). In

practice, this means that the |K| neighboring points should have high similarity to the query and
the non-neighboring points should be far away. The high-dimensional Gaussian mixture model is
a simple example of a favorable data distribution, where queries are γ-stable if the Gaussians are
sufficiently well-spaced to produce tight clusters. Real datasets also happen to satisfy the γ-stable
condition for many queries. For example, 15% of the queries for the RefSeqG dataset satisfy γ < 0.5
with K = 1. If we consider 1 ≤ K ≤ 100, 35% of queries satisfy the sub-linearity condition for
some K in this range. We provide additional results in the supplementary materials.

Finally, the size of the index is O(NmBR) = O(N
3
2 log2(N), leading to two concerns. First,

the space is asymptotically super-linear. However, the practical index size scales much better than
expected because the Bloom filter space overhead involves very small constant factors (often a few
bits). This leads to practical index sizes that are much smaller than other methods - even those with
superior asymptotic behavior. Second, the size depends on the range m of the LSH function h(x).
While some LSH families have small constant m, others have infinite m. However, we may simply
use a univeral hash function to rehash the infinite output space to range m in such cases. The penalty
is a minor distortion to the collision probability that does not substantially affect our results.

Algorithm 3 Threshold Relaxation Algorithm
Input: A: Array of cells, sorted in descending order
by hash collisions, k: number of neighbors to return

Output: Approximate k neighbors of the query
Counts← Array of length N , initialized to 0
Result← Empty list of IDs
for i = 0 to B ×R− 1 do

for point x ∈ cell A[i] do
increment Counts[x]
if Counts[x] = R then

append x to Result
if |Result| = k then

return Result

Figure 2: Precision recall tradeoff on Prome-
thION with a query time limit of 20 ms. Up
and to the right is better.

6 Implementation

Several nontrivial implementation tricks are needed to achieve good practical performance. First,
we use the same m LSH functions for all of the filters, allowing us to hash the query only one
time. Second, we represent the distance-sensitive Bloom filters as lists of hash codes rather than
bit arrays. This allows us to represent the FLINNG structure as a reverse index from hash values

2We require N ≥ 150 and δ small enough that R ≥ 10 logN
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to cells. The reverse index is a lookup table that, given a hash value h, returns a list of cells whose
distance-sensitive Bloom filters contain h. We keep a reverse index for each of the m LSH functions.

To query the index, we use the reverse index to count the number of times that each cell collides with
the query across the m LSH functions. This results in an array of B ×R count values, one for each
cell. To obtain the classifier outputs, we mark all cells with count values larger than a threshold t
as “true.” In Theorem 3, we used a global value of t for all queries. However, this does not work in
practice because different queries require different similarity thresholds. To address this issue, we use
Algorithm 3, which relaxes t until enough cells return “true” so that k neighbors are returned. This
process is equivalent to running Algorithm 2 with decreasing thresholds until k points are returned.

We implemented FLINNG in C++, compiled with the highest level of optimization with GCC, and
used OpenMP to parallelize index construction. We implemented the reverse index as an m× 2L

table of pointers to vectors, where each vector contains a list of cells. To reduce index space, we store
cell identifiers as short integers when possible. Finally, note that Algorithm 3 requires an array of
length N to store the count values associated with each point. For large datasets, this can exceed the
CPU cache size leading to a slowdown from RAM access. However, we can avoid this issue if R = 2
(which is often sufficient for many applications). By storing the counts as a bit array of N/8 bytes,
we can fit N ≤ 240 million into a 30 MB CPU cache. We make this substitution where appropriate.

7 Experiments

Datasets: We tested FLINNG on high-dimensional genomics, web-scale data mining, and embedding
search datasets. We list the datasets in Table 2 and briefly describe them here. RefSeqG and RefSeqP
are sets of reference genome and proteome sequences for approximately 88k species [17]. The
sequences are represented as sets of 21-grams (k-mers) and are compressed via MinHash. Similarity
search is relevant to RefSeq because we can answer basic scientific questions by clustering genomes.
PromethION is a stream of raw metagenomic sequence reads from the latest sequencing machine by
Oxford Nanopore [16], which generates 4TB of data per day. We preprocess the reads into 16-grams.
Here, similarity search is important for read de-duplication and other pre-assembly applications. The
URL dataset and Webspam datasets are from the libsvm repository. The YFCC100M dataset consists
of embeddings derived from neural network activations for 100M videos and images [21].

Dataset N d d̄ Description

RefSeqG 117k 1.4T 1k Compressed genomes
RefSeqP 117k 1.4T 1k Compressed proteins

PromethION 3.7M 4.3B 286 Raw sequencer data
URL 2.4M 3.2M 116 n-gram features

Webspam 340k 16.6M 3.7k n-gram features
YFCC100M 97M 4096 4096 Neural embeddings

Table 2: Datasets: We selected data from genomics, text and
embedding problems. Datasets have N points and d dimen-
sions, with an average d̄ nonzero entries per point.

Memory Indexing

FLINNG 3.5 GB 40 sec
FAISS 3.7 GB 12 hr
HNSW >1 TB >5 days
FLASH 4.3 GB 80 sec

Table 3: Index characteristics for
YFCC100M.

Baselines: We compare FLINNG against popular implementations of graph algorithms, LSH, and
quantization-based search. FALCONN is a fast implementation of the traditional LSH algorithm
that supports multi-probe LSH in various metric spaces [2]. FLASH is a recent LSH algorithm that
uses aggregate LSH count statistics to avoid distance computations [22]. HNSW is a multi-level
graph search algorithm with exceptional performance on industry-standard benchmarks [14]. We
use the hnswlib library and extended it to work on genomic datasets. FAISS is a highly optimized
quantization-based library used for billion-scale similarity search at Facebook [11]. Finally, we
compare against a simple inverted index approach for sparse data when feasible, as well as our
implementation (GROUPS) of the other group testing algorithm from [20].

Experiment setup: We construct indices in parallel but query using a single core. Due to limitations
of baseline algorithms, we were unable to evaluate all algorithms on all tasks. Due to space constraints,
we provide information about hyperparameters, experiment setup, and computing hardware in the
supplementary materials.
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Figure 3: Time recall tradeoff for each dataset (Pareto frontier across hyperparameter configurations).
Up and to the right is better. We report R1@100 except for YFCC100M, where we report R1@1.

Results: We show the recall-query time tradeoff for all algorithms in Figure 3. Figure 2 shows the
precision-recall curve for the top 10 neighbors on the PromethION dataset when we constrain the
query time to 20ms. We find that FLINNG obtains between a 2-10x speedup on many search tasks.
For example, FLINNG was 3.4 times faster than FAISS at the 0.99 recall level on YFCC100M and
was 4x faster than HNSW on PromethION at the 0.8 recall level. FLINNG also has a small index
size and construction time when compared with baselines (Table 3).

8 Discussion

FLINNG is a theoretically sound algorithm with attractive practical properties that lead to a fast
implementation. Our theory shows that FLINNG has sublinear query time when the query has a
relatively small number of highly similar neighbors, and our experiments show that FLINNG is
efficient for many real-world problems. This is particularly true in genomics, where FLINNG can
outperform algorithms like HNSW by a substantial 4x margin. Existing algorithms often require
expensive iterative algorithms such as k-means clustering or graph construction. In contrast, FLINNG
relies on a simple lookup table structure that can be constructed in a single pass.

We believe that FLINNG could be particularly effective for situations where it is hard to reduce the
high-dimensional similarity search to a medium-dimensional problem. In genomics, this problem
is difficult because the k-mer distribution contains billions of items and often has a heavy-tailed
distribution. The situation may also arise for embedding tasks such as YFCC100M, where it is known
that dimensionality reduction can hurt performance. In these scenarios, where we prefer to search
over the original metric space, FLINNG provides a fast and scalable solution.

Limitations and Ethical Considerations: We do not foresee any ethical problems. The main
limitation of our method is that it works best on high-dimensional search tasks where the neighbors
are all above a (relatively high) similarity threshold. For this reason, FLINNG is likely not the best
choice for problems such as k-NN classification, where low-similarity results may be important.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] The 10x query speedup is shown in Figure ?? and the
theoretical results (sub-linear query time) are proven in Section 5.;

(b) Did you describe the limitations of your work? [Yes] The main limitation is that our
method – like most LSH based algorithms – is not good for finding neighbors with low
similarity to the query. If the nearest points are far from the query, other algorithms
will be better. See Section 8 for more.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We do
not foresee any negative consequences from this work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] The main

assumption is γ-stability, which is defined in Section 5.2.
(b) Did you include complete proofs of all theoretical results? [Yes] There is a proof

sketch in the paper, but the full proofs are in the supplementary materials.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In the supplementary materials.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We report the average of 10,000 queries. One option is
to re-issue the set of 10,000 queries multiple times and compute the standard devia-
tion. This results in a very small value. Another option is to individually measure the
query latency 10,000 times, but this requires lots of instrumentation which affects the
performance.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] We used two machines: one
with 88 Intel Xeon E5-2699A v4 processors and one with 96 Intel Xeon Gold 5220R
processors. There is more information in the supplementary materials.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the FAISS,

FALCONN and HNSW implementations.
(b) Did you mention the license of the assets? [Yes] FAISS and FALCONN are released

under the MIT license. HNSW is released under the Apache-2.0 license.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include code, which is not yet released under any license.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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