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Abstract

Large Language Models (LLMs) excel in various natural
language tasks but often struggle with long-horizon plan-
ning problems requiring structured reasoning. This limitation
has drawn interest in integrating neuro-symbolic approaches
within the Automated Planning (AP) and Natural Language
Processing (NLP) communities. However, identifying opti-
mal AP deployment frameworks can be daunting. This paper
aims to provide a timely survey of the current research with
an in-depth analysis, positioning LLMs as tools for extracting
and refining planning models to support reliable AP planners.
By systematically reviewing the current state of research, we
highlight methodologies, and identify critical challenges and
future directions, hoping to contribute to the joint research on
NLP and Automated Planning.

1 Introduction
Large Language Models (LLMs) has marked a significant
paradigm shift in AI, sparking claims regarding emergent
reasoning capabilities within LLMs (Wei et al. 2022a) and
their potential integration into automated planning for agents
(Pallagani et al. 2023). While LLMs, due to the prowess
of distributed representation and learning, excel at System I
tasks, planning—an essential aspect of System II cognition
(Daniel 2017)—remains to be a significant bottleneck (Ben-
gio 2020). Furthermore, LLMs face challenges with long-
term planning and reasoning, often producing unreliable
plans (Valmeekam, Stechly, and Kambhampati 2024; Pal-
lagani et al. 2023; Momennejad et al. 2023), frequently fail-
ing to account for the effects and requirements of actions as
they scale (Stechly, Valmeekam, and Kambhampati 2024),
and their performance degrades with self-iterative feedback
(Stechly, Marquez, and Kambhampati 2023; Valmeekam,
Marquez, and Kambhampati 2023; Huang et al. 2024a).

Acknowledging the challenges of LLMs’ direct plan-
ning capabilities, Automated Planning (AP), or AI planning,
presents a promising alternative to generate robust, optimal
plans through logical and computational methods. Mean-
while, LLMs excel at extracting and refining classical plan-
ning models from Natural Language (NL), leaving the plan
generation to classical planners and heuristics.

This paper is driven by the fragmented landscape in
the current literature, where many surveys lack a cohesive
overview of LLM integration within this field. Our focus

Figure 1: Distinction of LLM-planning: (a) uses LLMs for
direct planning; (b) uses LLMs to generate AP specifications
for existing task planning methods such as PDDL.

stems from the need to address these gaps and provide a
clear framework, highlighting the importance of aligning
LLM capabilities with areas where they offer tangible bene-
fits. The motivation for this approach is threefold: (i) Plan-
ning Accuracy: LLMs can help ensure that all relevant fac-
tors are considered, reducing the risk of overlooked con-
straints (Huang, Lipovetzky, and Cohn 2024). (ii) Adapt-
ability: LLMs can aid systems in adapting to dynamic envi-
ronments to capture real-world nuances better, reducing the
need for manual edits (Dagan, Keller, and Lascarides 2023).
(iii) Agnostic Modeling: LLMs enable domain-agnostic
models reducing reliance on specialized expertise, a major
bottleneck in AP (Gestrin, Kuhlmann, and Seipp 2024).

Our survey’s taxonomy is divided into three key areas:
Model Generation, further consisting of (i) Task Gener-
ation (sec. 3.1.1), which translates initial and goal states
along with object assignments; (ii) Domain Generation (sec.
3.1.2), constructing predicates and action schemas; and (iii)
Hybrid Generation (sec. 3.1.3), encapsulating both task in-
stance and domain generation. Model refinement and repair
are addressed in Model Editing (sec. 3.2), while LLM-AP
benchmarks are discussed in Model Benchmarks (sec. 3.3).

To our knowledge, this is the first comprehensive survey
of LLM-driven AP-model construction. Our contributions
can be summarized as follows:

• A critical survey of LLM-driven Automated Planning
(AP) model generation, editing, and AP-LLM bench-
marks, structured within our taxonomy.

• A summary of both shared and novel technical ap-



proaches for integrating LLMs into AI planning frame-
works alongside their limitations.

• We provide insights on key challenges and opportunities,
outlining future research directions for the community.
To support future work, we provide Language-to-Plan
(L2P), an open-source Python library that implements
landmark papers covered in this survey.

We hope this paper will contribute to and facilitate the joint
research on Automated Planning and NLP.

2 Background
2.1 Automated Planning
Automated Planning (AP), focuses on synthesizing action
sequences to transition from initial to goal states within
its environmental constraints. Its most recognized category
is the Classical Planning Problem (Russell and Norvig
2020). This can be formally defined as a tuple M =
⟨S, sI , sG ,A, T ⟩ where S is a finite and discrete set of states
used to describe the world such that each state s ∈ S is
defined by the values of a fixed set of variables. sI ∈ S,
sG ⊆ S represent the initial state and goal world states, re-
spectively. A is a set of symbolic actions, and T is the under-
lying transition function which takes the current state si and
an action a ⊆ A as input and outputs the corresponding next
state T (si, a) = si+1. A solution to a planning problem P
is a plan ϕ consists of a sequence of actions ⟨a1, a2, ..., an⟩
such that the preconditions of a1 hold in sI , the precondi-
tions of a2 hold in the state that results from applying a1,
and so on, with the goal conditions all holding in the state
that results after applying an.

Consider a classic planning scenario where a deliv-
ery truck distributes packages. The state space S rep-
resents all package arrangements (e.g., in the ware-
house, on the truck, or delivered). The initial state sI
places packages in warehouses, while the goal state
sG defines their destinations. The action set A in-
cludes “load,” “unload,” and “move,” with transitions
governed by T . A valid plan ϕ might involve driving
to a warehouse, loading packages, delivering them.

2.2 PDDL
As a fundamental building block of AP, the Planning Do-
main Definition Language (PDDL) (McDermott et al. 1998)
is among the most used method of encoding planning tasks.
The PDDL representation comprises of two files: domain
DF and problem PF. DF defines the universal aspects of
a problem, highlighting the underlying fixed set of rules
and constraints. This consists of predicates defining the state
space S and set of actions A. Each a ⊆ A is broken down
into parameters Par(a) defining what types are being used in
the action, the preconditions Pre(a), and subsequent effects
Eff (a), encapsulating the transition function T . PF consists
of a list of objects that ground the domain, the problem’s
initial sI and goal states sG . We provide a concrete exam-
ple in Appendix A. The standardization and use of PDDL in

planning have strongly facilitated sharing and benchmark-
ing. This allows a wide selection of tools to support valida-
tion and refinement of models. Due to its flexibility, clear
syntax, and declarative nature, it aligns well with LLMs’ ca-
pabilities to translate descriptions into PDDL, as all modern
LLMs should have encountered PDDL code in their training
corpora (see Appendix A.1 for more details).

2.3 Large Language Models + Planning
Large Language Models (LLMs) have shown promise in
generating highly structured outputs from natural language
(NL) descriptions. Frameworks like StarCoder (Li et al.
2023), CodeGen (Nijkamp et al. 2023) and PLANSEARCH
(Wang et al. 2024) have demonstrated LLMs’ ability to
translate NL to executable code. Previous work has trans-
lated formal intermediate representations such as Temporal
Logic (Chen et al. 2023b; Pan, Chou, and Berenson 2023;
Mao et al. 2024; Cosler et al. 2023; Liu et al. 2023b; Luo,
Xu, and Liu 2023; Fuggitti and Chakraborti 2023), Answer
Set Programming (ASP) (Yang, Ishay, and Lee 2023), and
other variations of the paradigm (Pan et al. 2023; Wang
et al. 2023; Chen et al. 2023a). Preliminary PDDL-LLM
works are found in (Miglani and Yorke-Smith 2020; Feng,
Zhuo, and Kambhampati 2018; Simon and Muise 2021;
Chalvatzaki et al. 2023). Currently, researchers are further
exploring the nuances of varying pipelines to balance the ef-
fectiveness and limitations of LLMs in building such neuro-
symbolic frameworks. Huang et al. (2024b) survey a lim-
ited amount of works to compose their high-level abstraction
of LLM-augmented planning agents. Pallagani et al. (2024)
go beyond the scope of traditional AP, encapsulating more
broader constructs, whereas Zhao et al. (2024) provide an
extensive overview of LLM-TAMP applications. Most akin
to our paper, Li et al. (2024a) and Wei et al. (2025) review
studies using LLMs in planning with PDDL; however, their
survey mainly consists of frameworks comprised of LLMs-
as-Planners, rather than LLM-as-Modelers (cf. Figure 1).

Scope of Survey: Broadly, LLMs+AP paradigms
can be categorized as: (i) LLMs-as-Heuristics, where
they enhance search efficiency by providing heuris-
tic guidance (Silver et al. 2022; Tuisov, Vernik,
and Shleyfman 2025; Sel, Jia, and Jin 2025); (ii)
LLMs-as-Planners, either directly involved with the
decision of action sequences (Zhang et al. 2024c)
or proposing plans that are later refined through
post-hoc implementations (Gundawar et al. 2024;
Arora and Kambhampati 2023; Pallagani et al. 2022;
Burns, Hughes, and Sycara 2024); and (iii) LLMs-as-
Modelers, where LLMs assist in constructing plan-
ners (Katz et al. 2024; Cao et al. 2024) or planning
models—defining planning domains, extracting task
representations, and refining problem formulations.
Our paper surveys approximately 80 papers and tech-
nical reports of the latter, focusing on key research
questions and potential directions for future work in
the context of LLMs and planning models.



Figure 2: Taxonomy of research in LLM Model Construction

3 Large Language Models for Constructing
Planning Models

We consider the research on leveraging powerful LLMs
to assist in constructing planning models to be of criti-
cal importance and a more promising approach than re-
lying on LLMs to perform planning directly (Vyas et al.
2025). Verifiable planning modules remain the backbone of
planning, ensuring reliability, robustness, and explainabil-
ity—core requirements for many planning tasks. Note that
deploying LLMs themselves in an end-to-end manner to per-
form planning still falls short of providing soundness guar-
antees (Valmeekam et al. 2024) and inherently struggle with
correctness and completeness (Katz et al. 2024). We orga-
nize the existing works into a taxonomy comprising three
key areas: Model Generation, Model Editing, and Model
Benchmarks, as shown in Figure 2. These tasks need joint
efforts from the NLP and automated planning community.

3.1 Model Generation
This first group of works are centered around Model Gener-
ation—extracting components or generating complete plan-
ning models from the user or environmental natural lan-
guage input. This is further divided into three aspects: Task
Modeling (sec. 3.1.1), which translates objectives into initial
conditions and goal states; Domain Modeling (sec. 3.1.2),
which defines the foundational components like entities, ac-
tions, and relationships in the system; and Hybrid Modeling
(sec. 3.1.3), which integrates both aspects to create a com-
plete model, enabling end-to-end planning.

To facilitate further discussion on LLM-driven model
construction, we highlight two key research questions:

RQ1 How can LLMs accurately align with human goals,
ensuring these models correctly represent desired
specifications and objectives?

RQ2 To what extent and granularity of detail can human-
level instructions be effectively translated into
accurate model definitions?

3.1.1 Task Modeling

For goal-only specification, Collins et al. (2022) and Grover
and Mohan (2024) utilize few-shot prompting whereas
Faithful CoT (Lyu et al. 2023) puts heavy emphasis on an
interleaving technique of chain-of-thought (CoT) prompt-
ing (Wei et al. 2022b). Xie et al. (2023) assess the effec-
tiveness of LLMs in translating tasks with varying levels of
ambiguity in both NL and other languages such as Python.
Text2Motion (Lin et al. 2023) leverage LLMs to gener-
ate goal predictions that are checked against a learned li-
brary of Q-function skills—based on feasibility—that sup-
port geometric feasibility in robotic tasks. Kwon, Kim, and
Kim (2024) decomposes long-term tasks into sub-goals us-
ing LLMs, then executing task planning for each sub-goal
with either symbolic methods or MCTS-based LLM plan-
ners. Safe Planner (Li et al. 2024b) uses an LLM to convert
NL instructions into PDDL goals, enabling a closed-loop
VLM-planner to operate based on real-time environmental



observations. Fine-Morris et al. (2024) propose a framework
that decomposes NL goals into predicate-based specifica-
tions, structured as Python dictionaries, which are then for-
matted into HDDL decomposition methods.

Branching to multi-agent goal collaboration, DaTAPlan
(Singh et al. 2024) employs an LLM to predict high-level an-
ticipated tasks against human actions, triggering re-planning
or new task predictions when deviations occur. PlanCol-
labNL (Izquierdo-Badiola et al. 2024) allocates sub-goals
among LLM agents which are then encoded into PDDL
goals, and modifying the action costs based on LLM recom-
mendations. TwoStep (Singh, Traum, and Thomason 2024)
decomposes multi-agent planning problems into two single-
agent problems with mechanisms to ensure smooth coordi-
nation. LaMMA-P (Zhang et al. 2024d) allocate sub-tasks
composed of general action sequences, and generates PDDL
problem descriptions for each robot’s domain.

Frameworks that handle complete PDDL task specifica-
tions can be broadly categorized into open-loop and closed-
loop approaches. For the former, LLM+P (Liu et al. 2023a)
uses in-context examples of problems within the same do-
main to generate whole problem files. TIC (Agarwal and
Sreepathy 2024) achieved nearly 100% accuracy with GPT-
3.5 Turbo across LLM+P planning domains by translating
the task into intermediate representations, refining them,
and processing them through a logical reasoner. (Lee et al.
2024) address a critical real-world application by introduc-
ing PlanAID, a system designed to generate emergency op-
eration plans (EOPs) by leveraging Retrieval-Augmented
Generation (RAG) documents to enhance the interaction be-
tween the user and the LLM. For real-world grounding, re-
cent work converts NL instructions into structured geomet-
ric representations that bridge abstract language understand-
ing and spatial reasoning (Ding et al. 2023b; Chen et al.
2023a; Chang et al. 2023), while other approaches inte-
grate LLMs with Vision Language Models (VLMs) to fur-
ther ground language understanding in spatial contexts (Shi-
rai et al. 2023; Wang et al. 2025).

For closed-loop approaches, Auto-GPT+P (Birr et al.
2024) generates the initial state of the problem based on vi-
sual perception and an automated error self-correction loop
for the generated PDDL goal. Guo, Kingston, and Kavraki
(2024) decompose the problem into both PDDL and Python
specifications, incorporating a set of constraints into an
SMT-based TAMP solver via a Python API. LLM+DP (Da-
gan, Keller, and Lascarides 2023) holds beliefs in uncer-
tain environments to construct possible world states, dynam-
ically updating its internal state and re-plans. PDDLEGO
(Zhang et al. 2024a; Zhang 2024) performs a recursive task
decomposition into sub-goals that enable the agent to gather
new observations, progressively refining the problem file un-
til it can develop a solvable plan. Liu et al. (2024c) integrate
user information into a hierarchical scene graph of the envi-
ronment, enabling an LLM to predict human activities and
goal states, which are then refined using predicates and do-
main knowledge to ground problem specifications. Merino
and Sabater-Mir (2024) model NPC behavior by leveraging
LLMs conditioned on “memories” that represent environ-
mental context.

Instead of extracting PDDL models directly, Paulius et al.
(2024) introduce a modularized approach that leverages
LLMs to produce Object-Level Plans (OLP), which de-
scribe high-level changes to object states and uses them
to bootstrap TAMP hierarchically. TRIP-PAL (de la Rosa
et al. 2024) translates intermediate representations via travel
points of interest (POI) and user information into dictionar-
ies, which are then converted into PDDL planning tasks.

Summary: Some methods directly translate natu-
ral language task descriptions into PDDL (Kelly
et al. 2023; Liu et al. 2023a). Others enhance goal
specification by incorporating reasoning chains and
few-shot examples (Lyu et al. 2023), while (Dagan,
Keller, and Lascarides 2023; Zhang et al. 2024a) tar-
get dynamic, online-planning applications. However,
these current approaches rely on an explicit mapping
between NL and PDDL code, requiring users to spec-
ify each state predicate in detail. To address ambi-
guity in minimal task descriptions, future research
should develop methods capable of inferring com-
plete and robust PDDL specifications from sparse in-
put, building on prior work that has explored this con-
cept via external perceptual groundings (Shirai et al.
2023), RAG implementations (Lee et al. 2024), or
leveraging LLM commonsense capabilities to cap-
ture underlying assumptions and constraints (Agar-
wal and Sreepathy 2024).

3.1.2 Domain Modeling

Various works have executed domain modeling in a one-
shot manner. Kalland (2024) combines a language and an
automatic speech recognition model to generate PDDL spec-
ifications. To better understand cyber-attacks in real-time,
CLLaMP (Oates et al. 2024) leverages LLMs to extract
PDDL action models from Common Vulnerabilities and Ex-
posures descriptions, finding that in-context (IC) examples
are superior to CoT prompting. Zhang et al. (2024b) intro-
duce PROC2PDDL, which proposes a Zone of Proximal
Development prompt design—a variant of CoT (Vygotsky
1978). To mitigate misalignments with users requirements,
Huang, Lipovetzky, and Cohn (2024) use multiple LLMs to
generate candidate PDDL action schemas, which are then
passed through a sentence encoder to compute the semantic
relatedness of code and original NL descriptions.

Guan et al. (2023) recognize the impracticality of LLMs
generating fully functioning PDDL models in a single query
(Kambhampati et al. 2024). Their framework LLM+DM
outlines a generate-test-critique approach (Romera-Paredes
et al. 2024; Trinh et al. 2024), leveraging multiple LLM calls
to incrementally build key components of the domain by a
dynamically generated predicate list. Similarly, Ishay and
Lee (2025) introduce LLM+AL, which uses LLMs to gener-
ate action languages, but instead, in BC+ syntax (extension
of Answer Set Programming). Shah (2024) presents LAMP,
an extensive series of proposed algorithms that learn abstract



PDDL domain models. Sinha (2024) proposes a structured
prompt engineering approach to generate domain models
in the Hierarchical Planning Definition Language (HPDL).
Sikes et al. (2024b) explored decomposing NL informa-
tion from operational models via Javascript functions into
PDDL actions. BLADE (Liu et al. 2024a) bridges language-
annotated human demonstrations and primitive action inter-
faces by tasking an LLM to define PDDL preconditions and
effects conditioned on behaviors containing all possible se-
quences of contact primitive.

In terms of closed-loop frameworks, ADA (Action Do-
main Acquisition) (Wong et al. 2023) tasks LLMs with
generating candidate symbolic task decompositions, extract-
ing undefined action names, and iteratively prompting for
their definitions. COWP (Ding et al. 2023a) handles unfore-
seen situations in open-world planning by storing the robot’s
closed-world state when planning fails, triggering a “Knowl-
edge Acquirer” module that leverages LLMs to augment ac-
tion preconditions and effects. Unlike COWP, which relies
on predefined error factors, LASP (Chen et al. 2024) identi-
fies potential errors from environmental observations, using
an LLM to generate error causes in NL, suggesting action
preconditions. Xie et al. (2024b) use fine-tuned LLMs for
precondition and effect inference from NL actions, and se-
mantic matching to validate actions by comparing inferred
preconditions with the current world states.

Oswald et al. (2024) shifts focus to assessing domain
quality, addressing limitations of manual human evaluation
(Hayton et al. 2020; Huang, Chen, and Zhang 2014). This
study measures equivalence to the ground truth in terms of
operational equivalence—whether reconstructed domains
behave identically to the original by agreeing on the validity
of action sequences as plans. To achieve this, the authors de-
compose ground truth PDDL actions into NL using an LLM,
which then tasks them again to reconstruct PDDL domain
models for quality assessment.

Summary: Kambhampati et al. (2024); Wong et al.
(2023) use incremental methods that iteratively gen-
erate and refine models, while incorporating real-
world examples have shown to enhance contextual
input accuracy (Oates et al. 2024; Ding et al. 2023a).
The complexity of these frameworks demonstrate
that constructing domains are inherently more chal-
lenging than task specification. However, current
methods generate only a single domain, which risks
misalignment with human expectations by failing to
capture all necessary constraints. Future research
should explore methods that generate multiple can-
didate domains (Huang, Lipovetzky, and Cohn 2024)
and incorporate iterative refinement mechanisms to
better align with user requirements.

3.1.3 Hybrid Modeling

Kelly et al. (2023) extract narrative planning domains and
problems from input stories using a one-shot prompt, iterat-

ing with a second prompt conditioned on the planner’s er-
ror message until a successful plan is found. Smirnov et al.
(2024) utilize pre-processing steps like JSON markup gener-
ation, consistency checks, and error correction loops. Their
framework also includes a “reachability analysis” pipeline to
extract feedback from flawed domains or unreachable prob-
lems, alongside a dependency analysis to check predicate
usage across both files. ISR-LLM (Zhou et al. 2023) does
not offer any feedback mechanisms to fix PDDL specifica-
tions; however, it does introduce self-refinement during the
plan generation phase by incorporating the external valida-
tor tool, VAL (Howey, Long, and Fox 2004). Sakib and Sun
(2024) generate multiple high-level task plans in Knowl-
edge Graphs (KG), refine the network by removing unre-
liable components, and feed the task plan to an LLM to ex-
tract the PDDL domain and problem files for low-level robot
skills. Conversely, DELTA (Liu et al. 2024b) initially gener-
ates PDDL files and a scene graph, followed by pruning un-
necessary details from the graph to focus on relevant items.

Huang and Zhang (2024) further support that LLMs are
prone to one-shot generation errors, highlighting the need
for intermediate representations before converting to PDDL.
NL2Plan (Gestrin, Kuhlmann, and Seipp 2024) is the first
domain-agnostic offline end-to-end NL planning system, re-
quiring only minimal description and using pre-processing
and automated common sense feedback to interface between
the LLM and the user. LLM4CAP (da Silva et al. 2024) re-
duces manual effort, with an LLM-generated ontology be-
ing iteratively verified using an LLM to check for syntax
errors, hallucinations, and missing elements. LLMFP (Hao,
Zhang, and Fan 2024) translates goals, decision variables,
and constraints into a JSON representation, which is then
used to generate Python code for an SMT solver to pro-
duce plans without task-specific examples or external crit-
ics. NIPE (Ying et al. 2023) leverages LLMs as few-shot se-
mantic parsers to generate conditional statements from spa-
tial descriptions, guiding PDDL sampling and action model
definition for Bayesian goal inference.

Previous works tackle open-world settings, with MO-
PRHeus (Ye et al. 2024) focusing on human-in-the-loop
long-horizon planning, introducing an anomaly detection
mechanism to identify potential execution errors and up-
date corresponding PDDL files to reflect changes in the
world model. InterPret (Han et al. 2024) uses LLMs to
enable robots to learn PDDL predicates and derive action
schemas through interactive language feedback from non-
expert users via Python perception APIs. Like other frame-
works, Mahdavi et al. (2024) uses environmental interac-
tions for evaluation and verification, starting with the LLM
defining candidate PDDL problem files and domain sets,
which are then refined through iterative cycles using their
novel Exploration Walk (EW) method. Athalye et al. (2024)
introduces pix2pred, a framework that leverages VLMs
to propose predicates and determine their truth values in
demonstrations. By bridging raw sensor data with symbolic
planning, it structures the invented predicates to generalize
across complex, long-horizon tasks, enabling the conversion
of image data into planner-compatible representations, such
as those based on PDDL.



Instead of generating planning models to be used by ex-
ternal planners, AgentGen (Hu et al. 2024) uses LLMs
to synthesize diverse environments and planning tasks (in
languages such as PDDL) and their corresponding NL de-
scriptions, targeted for LLM-based agent training. The au-
thors found that LLMs instruction tuned with this dataset
achieved significant improvement in both in-domain and
out-of-domain planning tasks. As an exploration, (Hu et al.
2025) uses this dataset to run supervised fine-tuning with
the LLaMA-3.1 models and found significant improvements
in generating domain models–where larger models tend to
benefit more from supervised fine-tuning.

Summary: Complexities arise due to the need to
coordinate between the domain and the problem.
Human-in-the-loop interactions are frequently em-
ployed (Kelly et al. 2023), whereas other meth-
ods incorporate pre-processing steps–involving ex-
ternal tools like FastDownward and VAL (Zhou
et al. 2023; Smirnov et al. 2024) or custom-designed
rules (Mahdavi et al. 2024; Gestrin, Kuhlmann, and
Seipp 2024). Yet, these linear pipelines risk cascad-
ing errors–such as the possibility of new objects in
the task, prompting new PDDL types in the domain.
Future work should focus on modularity, such as en-
abling dynamic integration of types and predicates in
later stages of generation. This would result in more
adaptable and error-tolerant planning systems.

3.2 Model Editing

Model edits have gained traction as a promising application
functioning more as assistive tools than fully autonomous
generative solutions. Insights into the likelihood of various
model outcomes can support authors in refining models with
greater efficiency toward an automated approach.

Gragera and Pozanco (2023) investigate the limitations
of LLMs in repairing unsolvable tasks caused by incorrect
task specifications, assessing the effectiveness of prompt-
ing in both PDDL and NL. As derivative work, Caglar et al.
(2024) tackle the challenge of modifying model spaces be-
yond classical planning by exploring the effectiveness of
LLMs in generating more plausible model edits, particu-
larly concerning unsolvability and plan executability, either
as a direct replacement or in augmentation of combinato-
rial search (CS) methods and manual authoring. Patil (2024)
conduct a comprehensive study on using LLMs, with tra-
ditional error-checking methods, to detect and correct syn-
tactic and semantic errors in PDDL domains, demonstrat-
ing that while LLMs excel at identifying and fixing syntac-
tic issues, their performance in resolving semantic inconsis-
tencies is less reliable. Sikes et al. (2024a) address the is-
sues of planning models with domains containing a set of
semantically equivalent state variables, which are syntacti-
cally different–provided with different labels. Specifically,
they address failures in scenarios where information about
the model is coming from heterogeneous sources.

Summary: Current research shows promise in lever-
aging LLMs to correct syntactic errors, but address-
ing semantic errors remains a significant challenge
(Patil 2024). To overcome these issues, future work
should explore post-hoc correction strategies. For in-
stance, researchers could develop methodologies to
analyze plan outputs after generation, identifying se-
mantic gaps or inconsistencies through automated
metrics or even human-in-the-loop evaluation sys-
tems. Such feedback can iteratively refine planning
models, ensuring plans are both syntactically correct
and semantically faithful.

3.3 Model Benchmarks
Non-deterministic output behaviors inherent in LLMs make
it challenging to assess the quality of frameworks used in
planning benchmarks. This heightens the importance of ro-
bustness, especially for evaluating LLMs’ ability to extract
planning models (Behnke and Bercher 2024). However, this
also introduces challenges of automating evaluation with
these extracted models, determining levels of ambiguity in
natural language inputs and assumptions, and monitoring
fine-granular modes of failure in generation.

PlanBench (Valmeekam et al. 2023) aims to systemati-
cally evaluate LLM planning capabilities with an emphasis
on cost-optimal planning and plan verification. ACPBench
(Kokel et al. 2024) standardizes evaluation tasks and metrics
for assessing reasoning about actions, changes (transitions),
and planning—across 13 domains, on 22 SOTA language
models including OpenAI’s o1 reasoning model. AutoPlan-
Bench (Stein and Koller 2023) first converts PDDL planning
benchmarks into NL via LLMs, and then tasks LLMs to pro-
duce a plan through various prompting techniques. Bohnet
et al. (2024) provide a scalable benchmark suite in both
PDDL and NL to measure the planning capabilities of LLMs
in various strategies, as well as providing a mapping method
for translating PDDL benchmarks to NL and measuring the
performance of the generated benchmarks. Puerta-Merino
et al. (2025) propose a road map and benchmark to address
the gap of LLM integration in Hierarchical Planning (HP).

To determine whether testing PDDL domains have been
leaked to training data of LLMs, Mystery Blocksworld
(Kambhampati et al. 2024) obfuscates the classic
Blocksworld (Gupta, Efros, and Hebert 2010) plan-
ning problem by altering the named types to be syntactically
nonsensical. ALFWorld and Household (Shridhar et al.
2021; Guan et al. 2023) tackles the complexities of real-
world typical household environment that uses PDDL
semantics to produce textual observations. TravelPlanner
(Xie et al. 2024a) assesses language models’ abilities
in planning through agent-based interactions in a travel-
planning environment. Zheng et al. (2024) extend this work
with Natural Plan, which evaluates LLMs on realistic
planning and scheduling benchmarks using APIs.

Previous LLM+AP benchmarks only focus on LLM plan
generation capabilities, whereas Planetarium (Zuo et al.
2024) rigorously evaluates LLM-generated PDDL task spec-



ifications, highlighting two issues: (i) LLMs can produce
valid code that misaligns with the original NL description,
and (ii) evaluation sets often use NL descriptions too sim-
ilar to the ground truth, reducing the task’s challenge. The
benchmark assesses LLMs’ ability to generate PDDL prob-
lems across varying levels of abstraction and size. On the
other hand, Text2World (Hu et al. 2025) introduces an au-
tomated pipeline for domain extraction and rigorous multi-
criteria metrics that address the limitations of narrow do-
main scope (Liu et al. 2023a) and indirect evaluation meth-
ods in end-to-end plan assessments (Guan et al. 2023). Key
metrics, including executability, structural similarity, and
component-wise F1 scores, are employed while exploring
state-of-the-art LLMs and fine-tuning techniques for gener-
ating and evaluating PDDL models.

Summary: Assessing the quality of LLM-generated
PDDL models (Zuo et al. 2024; Oswald et al. 2024)
has made significant progress toward rigorous eval-
uation; however, the rapid leakage of training data
to LLMs remains a major challenge, with (Hu et al.
2025) reporting high contamination rates in the eval-
uation domains from (Guan et al. 2023). “Mystify-
ing” the domains (Kambhampati et al. 2024) does
not address LLMs’ limitations in handling real-world
modeling tasks. Other concerns arise that even with
“mystified” domains, LLMs may still memorize code
structures, rendering string obfuscation ineffective
(Chen et al. 2025). Future work should explore so-
lutions for routinely changing benchmark standards
for domains, actively involving the planning commu-
nity in its ongoing refinement. Khandelwal, Sheth,
and Agostinelli (2024) proposes a tool for generating
diverse and complex planning domains, which could
serve as a foundation for such a benchmark.

4 (L2P) Library
With the proliferation of related techniques to convert NL
to PDDL, we are seeing an ever-increasing set of related
methods. To bring them together under a single computa-
tional umbrella, and beyond just relating the work together
conceptually as we have done thus far in this survey, we cre-
ated a unified platform: L2P 1, which re-implements land-
mark papers covered in this survey. This Python library
is open source and has the capability of encapsulating the
generalized version of the proposed “LLM-Modulo” frame-
work (Kambhampati et al. 2024), which emphasizes sound-
ness guarantees through iterative plan refining via external
verifiers. While L2P embodies the core principles of the
LLM-Modulo framework, which advocates for LLMs au-
tonomously generating plan candidates themselves, it shifts
the focus by facilitating the creation of PDDL files using
LLMs – aligning with this paper’s paradigm. This approach
allows for the integration of external verifiers and feedback
critics, enabling users to modify and refine the extracted
models. L2P offers three major benefits:

1Code made publicly at: https://github.com/AI-Planning/l2p

(i) Comprehensive Tool Suite: users can easily plug in
various LLMs for streamlined extraction experiments
with our extensive collection of PDDL extraction and re-
fining tools.

(ii) Modular Design: facilitates flexible PDDL generation,
allowing users to explore prompting styles and create
customized pipelines.

(iii) Autonomous Capability: supports a fully autonomous
pipeline, reducing the need for manual authoring.

Appendix B demonstrates several usage examples of L2P.
To demonstrate the flexibility of the framework, we re-
implemented several of the landmark papers covered in this
survey, and Appendix C provides potential works that can
be recreated by L2P at the time of writing. We hope that the
community contributes to the L2P framework as a repos-
itory of existing advancements in LLM model acquisition
and relevant papers, ensuring that users have access to the
most current research and tools under a common framework
for fair comparison.

4.1 Paper Reconstructions
L2P can recreate and encompass previous frameworks for
converting natural language to PDDL, serving as a compre-
hensive foundation that integrates past approaches. The L2P
GitHub contains multiple paper reconstructions as exam-
ples of how existing methods can be implemented and com-
pared within a unified system, demonstrating L2P’s flexibil-
ity and effectiveness in standardizing diverse NL-to-PDDL
techniques. An example of Guan et al. (2023) ”action-by-
action” algorithm can be found in Figure 3; predicate output
can be found in Appendix B Figure 7.

5 Discussion
Revisiting RQ1: While frameworks can generate parsable
and solvable PDDL files, it remains uncertain if these spec-
ifications align with human goals. Simple domains like
Blocksworld are easier to verify. Still, scaling complex do-
mains require users to understand how LLMs generate these
specifications, emphasizing the need for explainable plan-
ning for robust, transparent, and correctable outputs (Zuo
et al. 2024). Corrective feedback loops have demonstrated
significant improvements in resolving failing actions pre-
conditions (Raman et al. 2024), or re-planning in case of un-
expected failures during the execution of the plan (Joublin
et al. 2023; Raman et al. 2022). Ensuring alignment with
user goals involves breaking down PDDL model construc-
tion into pre-processing steps with human-in-the-loop feed-
back, as seen in frameworks like (Kelly et al. 2023). Very
reminiscent of the “critics” process in the LLM-Modulo
framework (Kambhampati et al. 2024), setting up a sort
of external verifier checklist and using LLMs to provide
feedback, is demonstrated by Gestrin, Kuhlmann, and Seipp
(2024) and Smirnov et al. (2024). A strong idea is analyzing
the semantic correctness of plans generated and using that
as feedback to refine the LLM-generated PDDL specifica-
tions (Sakib and Sun 2024). Additionally, intermediate rep-
resentation (i.e. ASP, Python, JSON) methods that are easier
for LLMs to process before converting to PDDL (Agarwal



1 import os

2 from l2p import *
3
4 def run_aba_alg(model: LLM, action_model,

5 domain_desc, hierarchy, prompt, max_iter: int=2

6 ) -> tuple[list[Predicate], list[Action]]:

7 actions = list(action_model.keys())

8 pred_list = []

9
10 for _ in range(max_iter):

11 action_list = []

12 # iterate each action spec. + new predicates

13 for _, action in enumerate(actions):

14 if len(pred_list) == 0:

15 prompt = prompt.replace(’{predicates}’,

16 ’\nNo predicate has been defined yet’)

17 else: res = ""

18 for i, p in enumerate(pred_list):

19 res += f’\n{i + 1}. {p["raw"]}’

20 prompt = prompt.replace(’{predicates}’, res)

21 # extract pddl action and predicates (L2P)

22 pddl_action, new_preds, response = (

23 builder.extract_pddl_action(

24 model=model,

25 domain_desc=domain_desc,

26 prompt_template=prompt,

27 action_name=action,

28 action_desc=action_model[action][’desc’],

29 action_list=action_list,

30 predicates=pred_list,

31 types=hierarchy["hierarchy"]

32 )

33 )

34 new_preds = parse_new_predicates(response)

35 pred_list.extend(new_preds)

36 action_list.append(pddl_action)

37 pred_list = prune_predicates(pred_list,action_list)

38 return pred_list, action_list

39
40 if __name__ == "__main__":

41 builder = DomainBuilder() # domain build class

42 # load in assumption files

43 base_path=’paper_reconstructions/llm+dm/prompts/’

44 action_model=load_file(

45 f’{base_path}action_model.json’)

46 domain_desc=load_file(

47 f’{base_path}domain_desc.txt’)

48 hier=load_file(

49 f’{base_path}hierarchy_requirements.json’)

50 prompt=load_file(f’{base_path}pddl_prompt.txt’)

51 # initialise LLM engine (OpenAI in this case)

52 api_key = os.environ.get(’OPENAI_API_KEY’)

53 llm = OPENAI(model="gpt-4o-mini", api_key=api_key)

54
55 # run "action-by-action" algorithm

56 pred, action = run_aba_alg(model=llm, action_model,

57 domain_desc, hier, prompt)

Figure 3: Shortened L2P reconstruction of “action-by-action
algorithm” (Guan et al. 2023). This iterates through each ac-
tion description and generates its PDDL specifications while
maintaining a dynamically generating predicate list.

and Sreepathy 2024; Smirnov et al. 2024) can also enhance
accuracy. However, over time, LLMs are likely to improve,
with fewer syntax errors and more logical semantic outputs
as they train on more PDDL knowledge.

Revisiting RQ2: LLMs have demonstrated that they are
significantly sensitive to prompting raising questions about
whether they are better off functioning as machine transla-
tors or generators. Liu et al. (2023a) demonstrate that highly
explicit descriptions improve translation accuracy, while
Gestrin, Kuhlmann, and Seipp (2024) and Smirnov et al.
(2024) leverage minimal descriptions, relying on LLMs’ in-
ternal world knowledge to enrich outputs. Huang, Lipovet-
zky, and Cohn (2024), Liu et al. (2023a), and Guan et al.
(2023) recognize that specifying a precise predicate set in
natural language is crucial and addresses the common prob-
lem of evaluating across different methods. The challenge
of operating with minimal to no textual guidance beyond
the initial task prompt becomes significantly more complex
in online planning contexts. This underscores the impor-
tance of standardizing prompt granularity for initial gener-
ation and iterative feedback (Liu et al. 2024b). Nabizada
et al. (2024) provides a promising organized and standard-
ized paradigm of automated generated PDDL descriptions
that can be applied to LLMs.

5.1 Literature Scope and Additional Outlooks
Our survey examines nearly 80 works, with over 50 integrat-
ing LLMs into the workflow for generating AP specifica-
tions. These frameworks span task (30 papers), domain (15
papers), and hybrid (15 papers) model generation. Strong
emphasis on task modeling stems from the fact that many
systems, already operate within well-defined domains–such
as robotics. However, advancing toward more sophisticated
and adaptable systems–such as dialogue agents–requires a
more holistic approach, where both task objectives and do-
main constraints are dynamically constructed. We encour-
age researchers to use this survey as a foundation for ex-
ploring beyond task modeling and toward integrated domain
and hybrid specification approaches, enabling more robust
and scalable end-to-end planning.

6 Conclusion
The issue of extracting these planning models has long been
recognized as a major barrier to the widespread adoption
of planning technologies, a topic that has been explored
in depth within the knowledge acquisition literature in AP
for decades (Vallati and Kitchin 2020; Hendler, Tate, and
Drummond 1990). Even with the emergence of LLMs, this
remains a persistent challenge, introducing a new suite of
obstacles. In this survey, we examine nearly 80 scholarly
articles that propose their frameworks and some other sub-
sidiary works delegating model acquisition tasks to LLMs.
By identifying the research distribution and gaps within
these categories, we aim to provide a higher generalization
from each framework’s methodologies into broader aspects
for future architectures. Additionally, we hope researchers
can apply these methodologies to more advanced planning
languages with the support of our L2P library–that can be
found here: https://github.com/AI-Planning/l2p.



Limitations
This survey has two primary limitations. First, regarding its
scope, our focus is limited to PDDL construction frame-
works and related papers. Techniques remain largely un-
explored in this context, and LLM capabilities in planning
are still in their early stages. Due to page space constraints,
we provide only a brief overview of each work rather than
an exhaustive technical analysis. Additionally, our study
primarily draws works published in ACL, ACM, AAAI,
NeurIPS, ICAPS, COLING, CoRR, ICML, ICRA, EMNLP,
and arXiv, so there is a possibility that we may have missed
relevant research from other venues. Secondly, our L2P li-
brary currently supports only basic PDDL extraction tools
for fully observable deterministic planning, and does not yet
include tools for areas such as conditional, temporal, or nu-
meric planning. We plan to expand the library to cover a
broader range of PDDL applications, aiming to further re-
search into the challenges LLMs encounter in these areas.

Ethics Statement
This survey does not pose any ethical issues beyond those
already present in the existing literature on planning model
construction via LLMs. As with any sufficiently advanced
technology, there is an opportunity for misuse of the pro-
posed L2P library (e.g., extracting actionable planning mod-
els for unethical domains). However, we view this as a per-
vasive issue with all of the existing methods that aim to ex-
tract planning theories from natural language.
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A Additional Information on PDDL
A.1 Why PDDL?
PDDL, as a declarative language, differs fundamentally from imperative languages like Python in how problems are expressed
and solved. Declarative programming specifies what needs to be achieved rather than how to achieve it, leaving execution to an
external planner. In contrast, imperative programming defines explicit step-by-step instructions, requiring precise control over
execution flow. While LLMs struggle with logical reasoning in imperative programming due to its sequential dependencies, they
can perform well with declarative representations like PDDL. Using LLMs for PDDL model construction is not traditional
code generation but rather knowledge structuring—organizing states, actions, and constraints into a formalized model.

A.2 PDDL Example
Automated Planning is a specialized field within AI that can be challenging for those unfamiliar with its principles. A key tool
in classical planning is the Planning Domain Definition Language (PDDL), which models planning problems and domains. We
illustrate its concepts with the Blocksworld problem, where blocks must be stacked in a specific order using actions like picking
up, unstacking, and placing blocks, all while respecting constraints like moving only one block at a time or not disturbing
stacked blocks.

Demonstrated below is the Blocksworld PDDL domain file DF:

1 (define (domain blocksworld)
2 (:requirements :strips)
3 (:predicates (clear ?x) (on-table ?x) (arm-empty) (holding ?x) (on ?x ?y))
4 (:action pickup
5 :parameters (?ob)
6 :precondition (and (clear ?ob) (on-table ?ob) (arm-empty))
7 :effect (and (holding ?ob) (not (clear ?ob)) (not (on-table ?ob)) (not

(arm-empty)))
8 ))

Predicates define relationships or properties that can be true or false, such as (on ?x ?y) for block ?x on ?y, (ontable
?x) for ?x on the table, (clear ?x) for ?x having nothing on top, and (holding ?x) for the robot holding ?x. Ac-
tions describe possible state changes. For instance, (pick-up) contains the parameter(s) block ?ob, preconditions requiring
(clear ?ob) and (ontable ?ob), and effects updating the state to reflect the robot holding ?ob, which is no longer on
the table and clear.

The following is the corresponding PDDL problem/task file PF:

1 (define (problem blocksworld-problem)
2 (:domain blocksworld)
3 (:objects A B C) ; Blocks
4 (:init (ontable A) (ontable B) (on C A) (clear B) (clear C)) ; Initial state
5 (:goal (and (on A B) (on B C)))) ; Goal state

Objects represent the entities involved, such as blocks A, B, and C. The initial state defines the starting arrangement, where
blocks A and B are on the table, block C is on A, and both B and C are clear. The goal state specifies the desired configuration,
where block A is stacked on B, and block B is stacked on C.

Given the above PDDL domain and problem, a classical planner might generate the following plan:

1 Unstack C from A
2 Put C on table
3 Pick up A
4 Stack A on B
5 Pick up B
6 Stack B on C



B (L2P) Framework
B.1 General Library Overview
L2P provides a comprehensive suite of tools for PDDL model creation and validation. The Builder classes enable users to
prompt the LLM to generate essential components of a PDDL domain, such as types, predicates, and actions, along with
their parameters, preconditions, and effects. It also supports task specification, including objects, initial, and goal states that
correspond to the given domain. L2P features a customized Feedback Builder class that incorporates both LLM-generated
feedback and human input, or a combination of the two. Additionally, the library includes a syntax validation tool that detects
common PDDL syntax errors, using this feedback to improve the accuracy of the generated models—as illustrated in Figure 6,
which shows how LLM feedback can be used to refine a PDDL problem specification. L2P is now publicly available for pip
installation and can be found at: https://github.com/AI-Planning/l2p

B.2 L2P Usage Example
Below are example usages using our L2P library. Full documentation can be found on our website.

1 import os

2 from l2p import *
3
4 domain_builder = DomainBuilder() # initialize Domain Builder class

5
6 # REPLACE WITH OWN API KEY

7 api_key = os.environ.get(’OPENAI_API_KEY’)

8 llm = OPENAI(model="gpt-4o-mini", api_key=api_key)

9
10 # retrieve prompt information

11 base_path=’tests/usage/prompts/domain/’

12 domain_desc = load_file(f’{base_path}blocksworld_domain.txt’)

13 extract_predicates_prompt = load_file(f’{base_path}extract_predicates.txt’)

14 types = load_file(f’{base_path}types.json’)

15 action = load_file(f’{base_path}action.json’)

16
17 # extract predicates via LLM

18 predicates, llm_output = domain_builder.extract_predicates(

19 model=llm,

20 domain_desc=domain_desc,

21 prompt_template=extract_predicates_prompt,

22 types=types,

23 nl_actions={action[’action_name’]: action[’action_desc’]}

24 )

25
26 # format key info into PDDL strings

27 predicate_str = "\n".join([pred["clean"].replace(":", " ; ") for pred in predicates])

28
29 print(f"PDDL domain predicates:\n{predicate_str}")

30
31 -------------------------------------------------------------------------------------

32
33 ### OUTPUT

34 (holding ?a - arm ?b - block) ; true if the arm ?a is holding the block ?b

35 (on_top ?b1 - block ?b2 - block) ; true if the block ?b1 is on top of the block ?b2

36 (clear ?b - block) ; true if the block ?b is clear (no block on top of it)

37 (on_table ?b - block) ; true if the block ?b is on the table

38 (empty ?a - arm) ; true if the arm ?a is empty (not holding any block)

Figure 4: L2P usage - generating simple PDDL predicates



1 import os

2 from l2p import *
3
4 task_builder = TaskBuilder() # initialize Task Builder class

5 api_key = os.environ.get(’OPENAI_API_KEY’)

6 llm = OPENAI(model="gpt-4o-mini", api_key=api_key)

7
8 # load in assumptions

9 problem_desc = load_file(r’tests/usage/prompts/problem/blocksworld_problem.txt’)

10 extract_task_prompt = load_file(r’tests/usage/prompts/problem/extract_task.txt’)

11 types = load_file(r’tests/usage/prompts/domain/types.json’)

12 predicates_json = load_file(r’tests/usage/prompts/domain/predicates.json’)

13 predicates: List[Predicate] = [Predicate(**item) for item in predicates_json]

14
15 # extract PDDL task specifications via LLM

16 objects, initial_states, goal_states, llm_response = task_builder.extract_task(

17 model=llm,

18 problem_desc=problem_desc,

19 prompt_template=extract_task_prompt,

20 types=types,

21 predicates=predicates

22 )

23
24 # format key info into PDDL strings

25 objects_str = task_builder.format_objects(objects)

26 initial_str = task_builder.format_initial(initial_states)

27 goal_str = task_builder.format_goal(goal_states)

28
29 # generate task file

30 pddl_problem = task_builder.generate_task(

31 domain="blocksworld",

32 problem="blocksworld_problem",

33 objects=objects_str,

34 initial=initial_str,

35 goal=goal_str)

36
37 print(f"### LLM OUTPUT:\n {pddl_problem}")

38 -------------------------------------------------------------------------------------

39 ### LLM OUTPUT

40 (define

41 (problem blocksworld_problem)

42 (:domain blocksworld)

43 (:objects

44 blue_block - object

45 red_block - object

46 yellow_block - object

47 green_block - object

48 )

49 (:init

50 (on_top blue_block red_block)

51 (on_top red_block yellow_block)

52 (on_table yellow_block)

53 (on_table green_block)

54 (clear blue_block) (clear yellow_block) (clear green_block)

55 )

56 (:goal

57 (and (on_top red_block green_block))

58 )

59 )

Figure 5: L2P usage - generating simple PDDL task specification



1 import os

2 from l2p import *
3
4 feedback_builder = FeedbackBuilder()

5 api_key = os.environ.get(’OPENAI_API_KEY’)

6 llm = OPENAI(model="gpt-4o-mini", api_key=api_key)

7
8 problem_desc = load_file(r’tests/usage/prompts/problem/blocksworld_problem.txt’)

9 types = load_file(r’tests/usage/prompts/domain/types.json’)

10 feedback_template = load_file(r’tests/usage/prompts/problem/feedback.txt’)

11 predicates_json = load_file(r’tests/usage/prompts/domain/predicates.json’)

12 predicates: List[Predicate] = [Predicate(**item) for item in predicates_json]

13 llm_response = load_file(r’tests/usage/prompts/domain/llm_output_task.txt’)

14
15 objects, initial, goal, feedback_response = feedback_builder.task_feedback(

16 model=llm,

17 problem_desc=problem_desc,

18 feedback_template=feedback_template,

19 feedback_type="llm",

20 predicates=predicates,

21 types=types,

22 llm_response=llm_response)

23
24 print("FEEDBACK:\n", feedback_response)

25 -------------------------------------------------------------------------------------

26 ### LLM OUTPUT

27 FEEDBACK:

28 1. Are any necessary objects missing?

29 All necessary objects are included based on the problem description. So: No.

30 2. Are any unnecessary objects included?

31 All objects included are relevant to the problem. Hence: No.

32 3. Are any objects defined with the wrong type?

33 All objects are correctly defined as "object". Therefore: No.

34 4. Are any unnecessary or incorrect predicates declared?

35 All predicates used in the initial state are relevant and correctly applied. Thus: No.

36 5. Are any needed or expected predicates missing from the initial state?

37 The initial state is missing the predicate for the red block being clear. Since the red block is covered by

38 the blue block, it should not be clear. Therefore: Yes.

39 6. Is anything missing from the goal state?

40 The goal state accurately reflects the desired outcome of having the red block on top of the green block.

So: No.

41 7. Is anything unnecessary included in the goal description?

42 The goal description is concise and only includes what is necessary. Therefore: No.

43 8. Should any predicate be used in a symmetrical manner?

44 The predicates used do not require symmetry as they are directional in nature. So: No.

45
46 My concrete suggestions are the following:

47 - Add the predicate to indicate that the red block is not clear:

48 - (clear red_block) should be removed from the initial state since the red block is covered by the blue

block.

49
50 Final output should reflect this change in the initial state:

51 ‘‘‘

52 (clear blue_block): blue block is clear

53 (clear yellow_block): yellow block is clear

54 (clear green_block): green block is clear

55 ‘‘‘

56
57 Overall, the feedback is: Yes, the initial state needs to reflect that the red block is not clear.

Figure 6: L2P usage - generating LLM-feedback on task specification



## PREDICATES

{’name’: ’truck-at’,

’desc’: ’true if the truck ?t is currently at location ?l’,

’raw’: ’(truck-at ?t - truck ?l - location): true if the truck ?t is currently at location ?l’,

’params’: OrderedDict([(’?t’, ’truck’), (’?l’, ’location’)]),

’clean’: ’(truck-at ?t - truck ?l - location): true if the truck ?t is currently at location ?l’}

{’name’: ’package-at’,

’desc’: ’true if the package ?p is currently at location ?l’,

’raw’: ’(package-at ?p - package ?l - location): true if the package ?p is currently at location ?l’,

’params’: OrderedDict([(’?p’, ’package’), (’?l’, ’location’)]),

’clean’: ’(package-at ?p - package ?l - location): true if the package ?p is currently at location ?l’}

{’name’: ’truck-holding’,

’desc’: ’true if the truck ?t is currently holding the package ?p’,

’raw’: ’(truck-holding ?t - truck ?p - package): true if the truck ?t is currently holding the package ?p’,

’params’: OrderedDict([(’?t’, ’truck’), (’?p’, ’package’)]),

’clean’: ’(truck-holding ?t - truck ?p - package): true if the truck ?t is currently holding the package ?p’}

{’name’: ’truck-has-space’,

’desc’: ’true if the truck ?t has space to load more packages’,

’raw’: ’(truck-has-space ?t - truck): true if the truck ?t has space to load more packages’,

’params’: OrderedDict([(’?t’, ’truck’)]),

’clean’: ’(truck-has-space ?t - truck): true if the truck ?t has space to load more packages’}

{’name’: ’plane-at’,

’desc’: ’true if the airplane ?a is located at location ?l’,

’raw’: ’(plane-at ?a - plane ?l - location): true if the airplane ?a is located at location ?l’,

’params’: OrderedDict([(’?a’, ’plane’), (’?l’, ’location’)]),

’clean’: ’(plane-at ?a - plane ?l - location): true if the airplane ?a is located at location ?l’}

{’name’: ’plane-holding’,

’desc’: ’true if the airplane ?a is currently holding the package ?p’,

’raw’: ’(plane-holding ?a - plane ?p - package): true if the airplane ?a is currently holding package ?p’,

’params’: OrderedDict([(’?a’, ’plane’), (’?p’, ’package’)]),

’clean’: ’(plane-holding ?a - plane ?p - package): true if the airplane ?a is currently holding package ?p’}

{’name’: ’connected-locations’,

’desc’: ’true if location ?l1 is directly connected to location ?l2 in city ?c’,

’raw’: ’(connected-locations ?l1 - location ?l2 - location ?c - city): ?l1 is connected to ?l2 in city ?c’,

’params’: OrderedDict([(’?l1’, ’location’), (’?l2’, ’location’), (’?c’, ’city’)]),

’clean’: ’(connected-locations ?l1 - location ?l2 - location ?c - city): ?l1 is connected to ?l2 in city ?c’}

Figure 7: L2P formatted predicate output from LLM (action-by-action algorithm) of Logistics domain.

C Paper Overview
This section contains an overview of the core framework papers found within this survey. The table provides a structured
distinction between the papers based on their methodological approaches and specific areas of focus, such as what aspect are
they modeling, prompting style/weight, and feedback mechanism. Additionally, it highlights papers already covered by the
L2P library, ensuring users have quick access to resources that have been implemented or analyzed in detail. These covered
papers will be included in our GitHub repository for easy reference. The distinction in the table also aims to emphasize gaps in
the literature, such as under explored techniques or novel applications of NL-PDDL through LLMs, paving the way for future
research. To maintain relevance, we plan to keep an updated installment of all NL-PDDL works leveraging LLMs, ensuring
this survey evolves alongside the field.



Framework Task Domain NHI Prompt Feedback
⋆(Collins et al. 2022) ✓ × ✓ Medium (Few-shot) None

(Xie et al. 2023) ✓ × ✓ Medium (Few-shot) None

(Lyu et al. 2023) ✓ × ✓ Light (CoT) None

(Grover and Mohan 2024) ✓ × ✓ Medium (Few-shot) Env.

(Lin et al. 2023) ✓ × ✓ Medium (Few-shot) LLM+Env.
⋆(Liu et al. 2023a) ✓ × ✓ Heavy (Few-shot) None

(Birr et al. 2024) ✓ × ✓ Light (CoT) External tool

(Agarwal and Sreepathy 2024) ✓ × × Medium None

(Dagan, Keller, and Lascarides 2023) ✓ × ✓ Medium LLM + Env.

(Zhang et al. 2024a) ✓ × ✓ Medium (Few-shot) LLM

(Liu et al. 2024c) ✓ × × Extended Scene Graph Env.

(Singh et al. 2024) ✓ × × Light LLM+Deviation

(Izquierdo-Badiola et al. 2024) ✓ × ✓ Light LLM

(Singh, Traum, and Thomason 2024) ✓ × ✓ Medium (One-shot+) LLM Helper Agent

(Zhang et al. 2024d) ✓ × ✓ Light FastDownward+External Tool

(Oates et al. 2024) × ✓ × Medium (Few-shot, in-context) Human
⋆(Zhang et al. 2024b) × ✓ × Medium (Few-shot) None
⋆(Guan et al. 2023) × ✓ × Light Human

(Huang, Lipovetzky, and Cohn 2024) × ✓ ✓ Light Sentence Encoder Filter

(Wong et al. 2023) × ✓ ✓ Medium (Few-shot) None

(Liu et al. 2024a) × ✓ × Heavy Human

(Ding et al. 2023a) × ✓ ✓ Light LLM

(Chen et al. 2024) × ✓ ✓ Medium Env.

(Kelly et al. 2023) ✓ ✓ ✓ Medium (One-shot+) External tool

(Smirnov et al. 2024) ✓ ✓ ✓ Light LLM

(Liu et al. 2024b) ✓ ✓ ✓ Medium (One-shot+) None

(Zhou et al. 2023) ✓ ✓ ✓ Heavy (Few-shot) None

(Ye et al. 2024) ✓ ✓ × Heavy Human

(Han et al. 2024) ✓ ✓ × Light Human
⋆(Gestrin, Kuhlmann, and Seipp 2024) ✓ ✓ ✓ Heavy (Few-shot) LLM + Human

(da Silva et al. 2024) ✓ ✓ ✓ Light LLM

(Mahdavi et al. 2024) ✓ ✓ ✓ Light LLM + Env.

(Sakib and Sun 2024) ✓ ✓ ✓ Light None

(Ying et al. 2023) ✓ ✓ ✓ Medium (Few-shot) Syntax rejection filter

Table 1: Summary of frameworks in this survey. NHI = No Human Intervention. ⋆Papers reconstructed by L2P


