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ABSTRACT

Vision-language models (VLMs) are prone to hallucinations, including errors such
as factual inaccuracies, biases, and reasoning failures. Prior research has primarily
focused on object hallucinations in single-hop settings, where models are asked
to describe an image and are evaluated on whether they mention non-existent ob-
jects. However, such work overlooks broader forms of hallucination that arise in
more complex reasoning scenarios. In this paper, we investigate hallucinations
in vision-language reasoning beyond the first hop, where models must first ex-
tract factual content from an image and then combine it with external knowledge
to answer a question. In particular, we first present MMHop, a dataset of multi-
modal two-hop questions spanning five knowledge categories: general reasoning,
perceptual co-occurrence, temporal knowledge, cultural and regional knowledge,
and biasd prior knowledge. Using MMHop, we conduct a systematic analysis of
VLMs with different architectures and LLM backbones, uncovering where hallu-
cinations arise and how reasoning unfolds. Our comparative study reveals distinct
failure tendencies: some models are easily distracted by visual co-occurrence,
while others rely excessively on internal knowledge or stereotypical priors. Be-
yond model-specific behaviors, our results highlight common structural patterns
in two-hop reasoning. VLMs exhibit a two-stage inference process: an input un-
derstanding stage, dominated by multi-head attention, followed by a reasoning
stage, where feed-forward networks become increasingly important. Early rea-
soning layers primarily capture first-hop inference, while later layers focus on
second-hop reasoning. We further identify failure modes across categories: short-
cut reliance on visual context, shallow recall of temporal knowledge, weak cultural
grounding, and bias-driven errors. Finally, we show that question variants and
inference settings, such as test-time scaling, can alter reasoning dynamics and re-
duce hallucination. Our analyses provide new interpretability-driven insights into
multimodal hallucinations, paving the way toward more reliable and trustworthy
vision-language reasoning systems.

1 INTRODUCTION

Vision–Language Models (VLMs) (Achiam et al., 2023; Liu et al., 2023; Team et al., 2024; Meta,
2024) have achieved remarkable progress across a wide range of multimodal tasks, including image
captioning, visual question answering, and complex multimodal reasoning. Despite these advances,
VLMs remain prone to hallucinations, generating outputs that are fluent yet factually incorrect,
ungrounded in the image, or inconsistent with external knowledge (Zou et al., 2024; Li et al., 2025).
Such errors undermine trustworthiness in everyday use and pose serious risks in high-stakes domains
such as medical imaging or autonomous driving, where reliable multimodal reasoning is critical.

Prior research has primarily focused on hallucinations in single-hop settings, where models are
asked to describe an image or answer a straightforward question, and are evaluated on whether
they mention non-existent or incorrect objects (Huo et al., 2024; Cho et al., 2025; Zhang et al.,
2025). While important, this captures only a narrow subset of hallucinations. Real-world reasoning
often extends beyond the first hop, requiring models to extract intermediate facts from an image and
then integrate them with external or commonsense knowledge, as illustrated in Figure 1. In such
settings, hallucinations are not limited to object-level errors but also arise from deeper reasoning
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First-hop: What animal is playing with the balls in the water?

Second-hop: What is the main prey of polar bear?

Polar bear

Seal

Seal

Input Question Model Output

Combined two-hop: What is the main prey of the animal playing 
with the balls in the water?

Answer Probabilities Across Layers

First-hop: Which sport is being played?

Second-hop: Which U.S. state hosts the Hall of Fame for baseball?

Baseball

New York

CaliforniaCombined two-hop: Which U.S. state hosts the Hall of Fame for 
the sport being played in the image?

Input Image

Figure 1: Correct and incorrect multimodal two-hop reasoning. In the first example, the model answers both
hops correctly and successfully integrates object identification with external knowledge, yielding the correct
combined answer. The decoded answer probabilities rise steadily for the correct token across layers. In the
second example, although the model answers each hop correctly in isolation, it fails on the combined question,
showing a breakdown in reasoning integration. The decoded probabilities initially favor the correct answer but
are overtaken by the incorrect one in the final layers.

failures: misattributing visually co-occurring cues, overlooking temporal changes, ignoring cultural
specificity, or defaulting to stereotypical priors. Understanding these richer forms of hallucination
is essential for building more reliable multimodal systems.

In this paper, we move beyond single-hop evaluation and investigate hallucinations in multimodal
two-hop reasoning. To enable systematic study, we introduce MMHop, a new dataset of two-hop mul-
timodal questions spanning five knowledge categories: general reasoning, perceptual co-occurrence,
temporal knowledge, cultural and regional knowledge, and biasd prior knowledge. Through our pre-
liminary study, we reveal two key insights. First, VLMs follow a two-stage inference process: an
input understanding stage and a reasoning stage. Second, within the reasoning stage, earlier layers
primarily resolve first-hop inference, while deeper layers focus on second-hop reasoning. Building
on these findings, we design new metrics to characterize hallucinations across categories, uncov-
ering failure modes such as over-reliance on visual cues, shortcut reasoning without intermediate
steps, weak cultural grounding, and bias-driven errors.

Contributions. Our work makes the following contributions: (1) We introduce MMHop, a dataset
of multimodal two-hop questions designed to elicit and analyze hallucinations across five distinct
knowledge categories. (2) Through systematic interpretability experiments, we reveal the internal
reasoning dynamics of VLMs, showing a two-step inference process where early layers ground
first-hop reasoning and deeper layers consolidate second-hop reasoning. (3) We propose novel met-
rics and provide a detailed error analysis of VLM hallucinations, revealing category-specific failure
modes and offering new insights into the internal mechanisms behind multimodal hallucinations. (4)
We conduct additional experiments, including test-time scaling and hidden states probing, uncover-
ing valuable findings that further illuminate the dynamics of multimodal reasoning and hallucination.
Together, these contributions advance both benchmarking and interpretability of VLMs, laying the
foundation for more reliable multimodal reasoning systems.

2 PRELIMINARIES OF VLM INFERENCE AND GENERATION

Input representation. VLMs process multimodal inputs by combining visual and textual infor-
mation in a unified transformer architecture. Formally, the input consists of an image I and a text
prompt X = {x1, . . . , xm}. The image I is first encoded by a vision encoder into a sequence of
visual embeddings {v1, . . . , vp}, which are then projected into the text embedding space through
a projection layer. The resulting visual tokens {vi} are concatenated with the text tokens {xj},
forming the joint input sequence z0 = {v1, . . . , vp, x1, . . . , xm}, which is fed into the LM.

Transformer inference. The joint sequence z0 is processed by a stack of N transformer decoder
layers. Each layer ℓ ∈ {1, . . . , N} consists of a multi-head self-attention (MHA) module and a
feed-forward network (FFN), both applied with residual connections:

z̃ℓ = MHAℓ(zℓ−1) + zℓ−1, zℓ = FFNℓ(z̃ℓ) + z̃ℓ.
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What sound does the animal 
in the image typically make?

Meow

Input Question

Model Output

Input Image

Figure 2: VLM reasoning dynamics. The example illustrates a two-hop question where the model must first
identify the object “cat,” retrieve knowledge about its sound, and integrate the two steps to answer correctly. The
top-right figure shows module attribution scores: early layers are dominated by MHAs, indicating integration of
visual and textual input, while later layers are dominated by FFNs, reflecting reliance on parametric knowledge.
The bottom-right figure shows token probabilities across layers: first-hop answers (“cat”) emerge earlier, while
second-hop answers (“meow”) rise in later layers, demonstrating step-by-step two-hop reasoning.

The residual stream zℓ therefore accumulates contributions from both MHAs and FFNs. Intuitively,
MHAs aggregate information across tokens, including cross-modal interactions, while FFNs inject
and apply parametric knowledge stored in the network’s weights through nonlinear transformations.

3 HOW DO VLMS PERFORM TWO-HOP REASONING?

In this section, we conduct a preliminary study to investigate how VLMs perform two-hop reasoning.
To this end, we manually construct 100 two-hop questions from images sampled from COCO (Lin
et al., 2014) and analyze VLM behavior using attribution metrics and interpretability tools.

3.1 METRICS DESIGN

Module contribution attribution. Since each module writes additively into the residual stream,
we quantify its influence by measuring the extent to which it shifts hidden states. Specifically,
we compute attribution scores using the Wasserstein distance between the residual representations
before and after each module:

AttrℓMHA = W (zℓ−1, z̃ℓ), AttrℓFFN = W (z̃ℓ, zℓ),

where W (·, ·) denotes the Wasserstein distance. Larger distances correspond to stronger shifts in
representation space, and thus greater influence of the module on the model’s predictions.

Logit lens. To probe intermediate representations across layers, we adopt the logit lens technique.
Given a hidden state zℓt at layer ℓ for position t, the logit lens projects it into the vocabulary distri-
bution using the unembedding matrix WU :

pℓ(y | zℓt ) = softmax(LayerNorm(zℓt )WU ).

Although only the final-layer hidden states are trained to predict the next token, applying the logit
lens to intermediate states reveals prediction tendencies across layers, providing a lens into the
model’s evolving reasoning. In our experiments, we focus on the position of the first answer token
and omit the index t for simplicity.

3.2 FINDINGS

VLMs exhibit a two-stage inference process of input understanding and reasoning. Fig-
ure 2 (top right) shows attribution scores across layers for LLaVA. A consistent depth-wise pattern
emerges. In the early layers, multi-head attention (MHA) dominates residual stream updates, indi-
cating that the model is primarily integrating multimodal inputs, including both visual and textual
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tokens. In later layers, feed-forward networks (FFNs) become the primary contributors, suggesting
increasing reliance on parametric knowledge to reason about the question and refine predictions. At-
tention remains active throughout, but the clear crossover from MHA-heavy to FFN-heavy updates
marks a transition from input contextualization to knowledge-driven reasoning. This two-stage pro-
cess is robust across architectures, backbones, and prompt variations in our two-hop setting.

Early reasoning layers capture first-hop inference, while later layers focus on second-hop rea-
soning. We further probe reasoning dynamics by decoding intermediate hidden states with the logit
lens. Figure 2 (bottom right) shows token probabilities for a commonsense two-hop question: first
identifying the animal (“cat”) and then recalling its characteristic sound (“meow”). We find that
token probabilities start to appear in the second reasoning stage identified above, and they reveal a
sequential progression of reasoning. In earlier reasoning layers, the model converges on the first-hop
answer, with “cat” rapidly increasing in probability and dominating alternatives. In deeper layers,
the probability of “cat” declines as “meow” rises and eventually dominates, indicating a shift from
entity recognition to factual recall. This depth-wise progression shows that two-hop reasoning is
distributed across layers: early ones resolves the first hop, while later layers handle the second hop.

Summary. Together, these findings reveal a structured inference process in VLMs: (i) an input-
understanding stage, where MHAs dominate and contextualize multimodal inputs, followed by (ii)
a reasoning stage, where FFNs drive major representational shifts and finalize predictions. Within
the reasoning stage, logit-lens trajectories further decomposes the process into first-hop inference in
earlier layers and second-hop reasoning in later layers. This layered structure provides a mechanis-
tic explanation of how VLMs solve two-hop questions and lays the foundation for our subsequent
analysis of hallucination patterns across knowledge categories.

4 METHODOLOGY

Building on the insights from Section 3.2, we aim to systematically investigate how VLMs perform
two-hop reasoning and where hallucinations arise. To this end, we design a set of inspection metrics
that quantify different aspects of the reasoning trajectory. By combining these perspectives, we
obtain a fine-grained view of when intermediate answers appear, how strongly they persist, and
whether the reasoning chain collapses. This allows us not only to localize hallucinations to specific
stages of inference but also to distinguish between different failure modes across question categories.

4.1 METRICS FOR REASONING AND HALLUCINATION ANALYSIS

Building on the preliminary study in Section 3.2, we design five inspection metrics to quantify how
VLMs perform two-hop reasoning and where hallucinations emerge. These metrics are derived
from the logit lens, which decodes intermediate hidden states across layers into vocabulary distribu-
tions, allowing us to trace when and how candidate answers appear during inference. Together, they
capture complementary aspects of reasoning quality, failure modes, and hallucination dynamics.

Context Reliance Score (CRS). Attention heads primarily retrieve contextual information from
image and text tokens, while FFNs apply parametric knowledge encoded in weights. To assess
whether hallucinations arise from over-reliance on visual context, we measure whether the generated
answer first emerges through an MHA or an FFN update.

For each example i, let ygen
i denote the generated answer token. We define an indicator M(ygen

i ),
which checks whether the first position in the residual stream r at which the probability of ygen

i
exceeds a threshold α arises from an MHA update rather than an FFN update:

M(ygen
i ) =

{
1, if the first r with pri (y

gen
i ) > α occurs after MHA,

0, if it occurs after FFN.

Let H and C denote hallucinated and correct cases of sizes NH and NC , respectively. We compute

MH =
1

NH

∑
i∈H

M(ygen
i ), MC =

1

NC

∑
i∈C

M(ygen
i ),

and define CRS = MH − MC . A higher CRS indicates hallucinations are more likely to emerge
from attention-based context integration, suggesting that the model over-relies on visual cues rather
than grounding its reasoning in parametric knowledge stored in FFNs.
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First-Step Activation Score (FAS). FAS evaluates whether a model internally activates the first-
hop answer even if the final output is a hallucination. For hallucinated instance i, let y1st

i denote the
first-hop answer. We record whether its probability ever exceeds a confidence threshold β:

FAS =
1

NH

NH∑
i=1

1

[
max

ℓ
pℓi(y

1st
i ) > β

]
.

A higher FAS suggests that the model partially follows the reasoning chain before diverging.

Reasoning Collapse Score (RCS). RCS measures whether a model fails to differentiate between the
two reasoning steps of a two-hop question. If the same token is generated for both the first-hop and
second-hop answers, it indicates that the model bypasses the intended reasoning chain and simply
repeats the same concept twice. Formally:

RCS =
1

NH

NH∑
i=1

1
(
y1st
i = y2nd

i

)
.

A high RCS suggests that the model struggles with two-hop reasoning, producing trivial or circular
answers instead of applying second-hop knowledge.

First Commitment Score (FCS). FCS captures how early the final generated token ygen
i first be-

comes active. For each hallucinated case i, let Li be the first layer where pℓi(y
gen
i ) > α. With N

total layers,

FCS =
1

NH

NH∑
i=1

(
1− Li

N

)
.

A higher FCS indicates early commitment, while a lower FCS indicates delayed emergence.

Answer Persistence Score (APS). APS measures how long the generated answer remains dominant
once it emerges. For each hallucinated case i, let Di be the number of layers where pℓi(y

gen
i ) > β:

APS =
1

NH

NH∑
i=1

Di

N
.

High APS indicates persistent dominance of the final answer across layers, while low APS reflects
unstable reasoning. Together, FCS and APS capture complementary aspects of commitment: when
an answer first appears and how long it persists.

5 MMHOP : A DATASET FOR MULTIMODAL TWO-HOP QUESTIONS

To systematically study hallucinations in two-hop multimodal reasoning, we construct MMHop, a
benchmark designed to probe how VLMs integrate visual grounding with external knowledge. Un-
like prior datasets that primarily emphasize single-hop object recognition or caption-based evalua-
tion, MMHop focuses on compositional reasoning across two steps: (i) extracting factual information
from an image, and (ii) combining it with external commonsense or factual knowledge to answer
a question. By systematically covering diverse knowledge categories and using carefully curated
question designs, MMHop provides a controlled yet challenging testbed for analyzing how VLMs
handle multi-step inference and where hallucinations arise. In this section, we describe our two-
stage automatic data generation pipeline, the knowledge categories we consider, and the dataset
statistics that demonstrate its scalability and diversity.

First-hop data generation. We construct the first hop using images from the COCO 2017 validation
split. For each image, we begin with the provided captions and use an LLM to select a specific
object that is clearly mentioned. To enhance diversity and difficulty, the LLM is encouraged to
choose objects that are easily confusable with plausible but absent alternatives (e.g., “motorcycle”
vs. “bicycle”), so that distinguishing them requires precise grounding. The object must also have
easily differentiable attributes or facts that can be leveraged in the second hop. The resulting first-hop
questions focus on object identification, requiring the model to ground its reasoning in the image.

Knowledge categorizations and second-hop data generation. Once the first-hop object is iden-
tified, we generate second-hop questions that require reasoning over knowledge not visible in the
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COCO Image

COCO Image LLM

≈

Object 
Identification Identified Object: 

  Motorcycle

First-Hop Question: 
  What is the vehicle in the image?

Possible Answers: 
  Motorcycle, Motorbike

LLM

≈

External 
Knowledge 
Integration

First-Hop Generation Second-Hop Generation

General Two-Hop Knowledge

Perceptual Co-Occurrence Knowledge

Temporal Knowledge

Cultural and Regional Knowledge

Bias and Prior Knowledge

Two-Hop Questions 
and Possible Answers

Caption 1: A person riding a motorcycle 
down a dirt road near trees.
Caption 2: The motorbike travels the dirt 
road with a beautiful view.
Caption 3: A motorcycle sitting in the 
middle of a road next to a forest.

Figure 3: Data generation pipeline for MMHop. From COCO images and captions, an LLM selects an object
and forms a first-hop question. Then we instruct the LLM to integrate external knowledge to build two-hop
questions across 5 categories, producing diverse question–answer pairs grounded in both vision and knowledge.

image. Each two-hop question is aligned with one of the following five knowledge categories, de-
signed to capture distinct reasoning requirements and potential failure modes. (1) General Two-Hop
Knowledge serves as an umbrella category, where the second hop requires commonsense or factual
knowledge beyond the image. (2) Perceptual Co-Occurrence Knowledge focuses on distinguishing
between what co-occurs visually in the image and what is factually true, preventing models from
relying on shortcuts based on co-occurring visual context. (3) Temporal Knowledge requires rea-
soning over historical changes in objects, technologies, or practices, testing whether the model can
differentiate past from present contexts. (4) Cultural and Regional Knowledge highlights ques-
tions whose answers differ across cultural or geographic contexts, testing whether models can avoid
defaulting to globally averaged responses. (5) Bias and Prior Knowledge targets questions where
stereotypical or overgeneralized associations can mislead the model, requiring it to override spurious
priors with contextually accurate reasoning.

For each first-hop object, we use an LLM to retrieve facts aligned with these categories and to
construct corresponding two-hop questions. To avoid trivial formulations, the second-hop question
must not be directly answerable from the image alone, and it must clearly separate the correct object
from its plausible alternatives. The LLM is also instructed to generate complete sets of acceptable
answers: for instance, numerical answers must include both word-form and Arabic-form variants
(e.g., “two” and “2”).

This pipeline balances scalability with quality control: questions are automatically generated but
constrained by prompts enforcing diversity, difficulty, and category coverage. The resulting dataset
spans a wide range of multimodal reasoning questions, grounded in images but requiring reasoning
beyond perception. Each instance includes an image, a first-hop question with possible answers, a
second-hop question with possible answers, and a combined two-hop question. Dataset statistics are
provided in Table 3 in Section A.

6 EXPERIMENTS

Experimental setup. We evaluate MMHop across 8 open-weight VLMs that span different architec-
tures, backbone LLMs, series versions, and parameter scales. We also cover 2 API-based models:
Claude 3.5 Haiku and GPT-4.1 mini. For each model, we independently ask the first-hop ques-
tion, the second-hop question, and the combined two-hop question. To probe the internal reasoning
process, we instruct the model to directly output the answer without any verbal illustrations. To ex-
plicitly assess knowledge availability, the second-hop question is asked without providing the image,
ensuring that the answer depends solely on the model’s internal or parametric knowledge.

For each instance in MMHop, we consider a model correct only if it answers all three questions ac-
curately, measured by exact match. We define this as Full-Chain Accuracy (FCA), which captures
the end-to-end success rate across perception, knowledge retrieval, and reasoning.

For hallucination analysis, we focus on two specific error modes: (1) Knowledge Insufficiency Rate
(KIR) — the proportion of cases where the model correctly answers the first-hop question but fails on
both the second-hop and the combined two-hop question. This indicates that the model can ground
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the object in the image but lacks the external knowledge needed for the second step. (2) Reasoning
Failure Rate (RFR) — the proportion of cases where the model correctly answers both the first-
hop and second-hop questions in isolation but fails to answer the combined two-hop question. This
reveals that, while the model has access to the relevant perceptual and factual knowledge, it struggles
to integrate them into a coherent reasoning chain.

Table 1: Performance of different models on
MMHop. FCA: Full-Chain Accuracy, KIR:
Knowledge Insufficiency Rate, RFR: Reasoning
Failure Rate, ↑/↓: higher/lower the better.

Model FCA ↑ KIR ↓ RFR ↓

Llava-1.5-7B 53.12 16.29 18.03
Llava-1.6-Vicuna-7B 56.00 16.73 15.35
Llava-1.6-Mistral-7B 58.96 16.17 13.71
Llava-1.6-Llama3-8B 60.74 15.15 12.73
Qwen2-VL-2B 5.52 28.71 10.72
Qwen2-VL-7B 53.98 18.57 15.03
Qwen2.5-VL-3B 45.32 23.05 17.11
Qwen2.5-VL-7B 41.16 22.51 10.30

Claude 3.5 Haiku 70.01 5.15 11.04
GPT-4.1 mini 76.74 4.36 5.06

Evaluation results. The performance of all models
on MMHop is reported in Table 1. Since the dataset is
constructed with GPT-5, API-based models achieve
relatively high scores and are shown primarily for
reference. Among the open-weight models, how-
ever, FCA remains modest: even the strongest model
reaches only about 60%, meaning that failures oc-
cur on nearly half of the examples for most models.
Larger models generally perform better, reflecting
the benefits of scale, but the improvements remain
insufficient to overcome the challenges of multi-step
reasoning beyond the first hop.

For hallucinated cases, both KIR and RFR appear
consistently in the 10–20% range. KIR reflects cases
where models correctly identify objects in the image
but lack the external knowledge needed for the sec-
ond hop. RFR is particularly striking: even when models succeed on both hops individually, they
frequently fail on the combined two-hop question, underscoring difficulties in integrating perceptual
grounding with factual knowledge into a coherent reasoning chain. Taken together, these results
demonstrate that hallucinations are not isolated to specific architectures or backbones, but instead
represent a systematic limitation shared across model families and sizes.

7 WHY DO VLMS HALLUCINATE?

In Section 3, we examined how VLMs process different stages of reasoning beyond the first hop.
Building on these insights, we now take a step further to investigate the hallucination patterns that
emerge within VLMs. Using MMHop as a benchmark, we inspect model internal states with the tech-
niques introduced in Section 4. For hallucination analysis, we focus exclusively on the reasoning
failure cases defined in Section 6, where the model correctly answers both the first-hop and second-
hop questions in isolation but fails on the combined two-hop question. This isolates hallucinations
that arise not from perceptual grounding errors or missing knowledge, but from failures to integrate
available information into a coherent reasoning chain. All reported results are averaged across the 8
open-weight VLMs evaluated in the previous section.

VLMs are prone to visual distractions and shortcut reliance. Across general and perceptual
co-occurrence questions, models show high CRS. This indicates that VLMs are easily distracted by
visual cues that are correlated but factually irrelevant, often defaulting to shortcut strategies such as
selecting co-occurring objects instead of reasoning through the two-hop chain. These failures reveal
that models overweight visual grounding at the expense of logical integration, leading to answers
that appear plausible from the image alone but are incorrect when external knowledge is required.

VLMs struggle to carry out step-by-step reasoning in temporal knowledge questions. Tem-
poral questions expose a different weakness: models frequently bypass intermediate reasoning, as
reflected in low FAS. Instead of explicitly reasoning through the first-hop object and then apply-
ing temporal knowledge, models often attempt to recall an answer directly from internal parametric
memory. This pattern suggests that VLMs lack robust mechanisms for chaining temporal informa-
tion, defaulting to shallow recall rather than structured reasoning.

VLMs show weak grounding in cultural and regional reasoning. When cultural or region-
specific knowledge is required, VLMs often fail to incorporate it into their reasoning chain. While
they may successfully resolve the first hop, as indicated by high FAS, their high RCS reveals that
they frequently repeat the first-hop answer, ignoring the required cultural or regional specificity.
This reveals a systematic weakness in grounding second-hop reasoning beyond generic or globally
averaged priors.
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Figure 4: Hallucination analysis across five metrics. Each plot reports results averaged over 8 open-weight
VLMs on MMHop. CRS (top left) shows reliance on visual context, FAS (top middle) captures whether first-hop
answers are activated, RCS (top right) measures collapse into repeated answers, FCS (bottom left) indicates how
early models commit to a final answer, and APS (bottom right) quantifies how persistently answers dominate
across layers. Together, these metrics reveal distinct failure modes across knowledge categories.

VLMs rely heavily on internal biases and stereotypical priors. Bias-driven questions present
another severe failure mode. Models rarely consult visual grounding signals, as indicated by low
CRS, but instead commit early to biased answers, reflected in high FCS. Once these answers emerge,
they dominate across layers, leading to the highest APS. This shows that hallucinations driven by
stereotypes and priors are not only early but also persistent, with little chance of correction dur-
ing reasoning. Such reliance on stereotypes illustrates a mode of hallucination where reasoning is
replaced by memorized patterns.

Summary. Together, these findings illustrate that hallucinations in multimodal reasoning are not
uniform, but arise from diverse failure modes: shortcut reliance on visual context, shallow recall in
temporal reasoning, weak incorporation of cultural knowledge, and persistent bias-driven errors. By
disentangling these categories, our analysis provides a finer-grained understanding of why VLMs
hallucinate and where progress is most urgently needed.

8 ADDITIONAL FINDINGS

Table 2: Performance of different models on
MMHop. FCA: Full-Chain Accuracy, TTS:
Test-time scaling.

Model FCA + TTS ∆ FCA

Llava-1.5-7B 57.06 3.94
Llava-1.6-Vicuna-7B 61.38 5.38
Llava-1.6-Mistral-7B 63.81 4.86
Llava-1.6-Llama3-8B 65.21 4.48
Qwen2-VL-2B 2.78 -2.74
Qwen2-VL-7B 58.58 4.60
Qwen2.5-VL-3B 53.10 7.78
Qwen2.5-VL-7B 35.83 -5.34

Claude 3.5 Haiku 73.41 3.40
GPT-4.1 mini 78.60 1.85

Test-time scaling slightly mitigates reasoning fail-
ures. In Section 6, we restricted models to produce
direct answers, measuring their internal reasoning ca-
pacity. To assess the effect of test-time scaling (TTS),
we now allow models to generate free-form responses.
Table 2 reports Full-Chain Accuracy (FCA) with and
without TTS. Across most models, FCA improves by
3–6 points, showing that TTS helps models articulate
intermediate reasoning steps and reach more accurate
two-hop answers. However, gains remain modest and
uneven: while some Qwen variants even degrade un-
der TTS, larger open-weight models like LLaVA con-
sistently benefit. This suggests that TTS can alleviate,
but not eliminate, systematic reasoning failures in mul-
timodal two-hop tasks.

Linear probing reveals that VLMs encode question
complexity. Linear probing provides a simple yet powerful lens into the internal representations
of VLMs. Using MMHop, we investigate whether models internally distinguish between single-hop
and two-hop questions. We split the dataset into training and test sets and train linear probes on
hidden states from different layers of Llava-1.5-7B. The results, shown in Figure 5, demonstrate
that probing accuracy rapidly improves in early layers and remains near-perfect across later layers.

8
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This indicates that VLMs encode the complexity of input questions very early in their processing
pipeline, and that this information is robustly preserved throughout the network.

9 RELATED WORK
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Figure 5: Probing accuracy in Llava-1.5-7B. A
linear probe is trained on hidden states from each
layer to classify whether the input is a single-hop
or two-hop question. Accuracy rises sharply in the
early layers and remains high across depth, show-
ing that question complexity is encoded early and
preserved throughout the network.

Hallucinations in Vision–Language Models. Hal-
lucinations are prevalent in VLMs, spanning visu-
ally ungrounded mentions, attribute errors, and rea-
soning failures where outputs are fluent yet unsup-
ported by visual evidence or external facts (Huang
et al., 2025). Most prior work concentrates on ob-
ject hallucinations in single-hop settings, such as
captioning or simple VQA (Li et al., 2023; Chen
et al., 2024). Recent work has begun to connect
such errors to specific internal mechanisms. Fer-
rando et al. (2024) use sparse autoencoders to reveal
directions encoding knowledge awareness in LMs,
showing causal effects on refusal or hallucination.
Yang et al. (2025) perform modular ablations to at-
tribute hallucination propensity to particular compo-
nents. DAMO (Wang et al., 2025b) and DeCo (Wang
et al., 2025a) trace layer-wise probability trajectories
and show that models may internally recognize cor-
rect objects earlier, then drift in deeper layers. Our
work complements these efforts by shifting the focus beyond the first hop: rather than only di-
agnosing object presence errors, we analyze multimodal reasoning hallucinations that arise when
models must integrate grounded visual facts with external knowledge, and we relate these errors to
module-level dynamics through layerwise attribution and logit-lens probing.

Multi-hop Reasoning in Vision–Language Models. Multi-hop reasoning in text-only LLMs has
been extensively explored through datasets requiring intermediate facts (Yang et al., 2018) and
prompting strategies such as chain-of-thought (Wei et al., 2022). For VLMs, however, benchmarks
isolating multi-hop composition and hallucination remain limited. GQA (Hudson & Manning, 2019)
and A-OKVQA (Schwenk et al., 2022) emphasize compositional questions over attributes and spa-
tial relations, but primarily require image-grounded chains with limited external knowledge. We-
bQA (Chang et al., 2022) integrates images with retrieved web snippets, yet answers are typically
contained in the retrieved context, making external knowledge explicit in the input rather than latent
in the model. By contrast, our benchmark targets reasoning beyond single hop: the first hop ex-
tracts an image-grounded fact, while the second hop requires external or commonsense knowledge
absent from the image, spanning perceptual co-occurrence, temporal, cultural/regional, and prior-
knowledge dimensions. This design enables controlled diagnosis of where hallucinations originate
within the reasoning chain and how they map to internal computations, thereby complementing prior
datasets with explicit links between error types and interpretable model behavior.

10 CONCLUSION

In this work, we presented MMHop, a new benchmark for studying hallucinations in multimodal
reasoning beyond single-hop object recognition. By spanning five categories of external knowledge
and analyzing eight diverse VLMs, we revealed systematic patterns in how models process two-hop
questions, including a two-stage inference process with distinct roles for attention and feed-forward
modules and category-specific failure modes such as shortcut reliance, weak temporal reasoning,
poor cultural grounding, and bias-driven errors. Our interpretability-driven approach sheds light on
the internal dynamics of hallucinations and offers a principled framework for diagnosing multimodal
reasoning failures, though it is limited by its reliance on the non-zero logit lens, which may not
generalize to specific model architectures or decoding schemes. We hope that MMHop and our
findings inspire future work on both more robust benchmarks and new mechanistic methods that
broaden the scope of hallucination analysis, ultimately paving the way toward more trustworthy and
reliable vision-language models.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Yingshan Chang, Mridu Narang, Hisami Suzuki, Guihong Cao, Jianfeng Gao, and Yonatan Bisk.
Webqa: Multihop and multimodal qa. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16495–16504, 2022.

Zhaorun Chen, Zhuokai Zhao, Hongyin Luo, Huaxiu Yao, Bo Li, and Jiawei Zhou. Halc: Object
hallucination reduction via adaptive focal-contrast decoding. arXiv preprint arXiv:2403.00425,
2024.

Yeongjae Cho, Keonwoo Kim, Taebaek Hwang, and Sungzoon Cho. Do you keep an eye on what i
ask? mitigating multimodal hallucination via attention-guided ensemble decoding. arXiv preprint
arXiv:2505.17529, 2025.

Javier Ferrando, Oscar Obeso, Senthooran Rajamanoharan, and Neel Nanda. Do i know this entity?
knowledge awareness and hallucinations in language models. arXiv preprint arXiv:2411.14257,
2024.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information
Systems, 43(2):1–55, 2025.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6700–6709, 2019.

Fushuo Huo, Wenchao Xu, Zhong Zhang, Haozhao Wang, Zhicheng Chen, and Peilin Zhao.
Self-introspective decoding: Alleviating hallucinations for large vision-language models. arXiv
preprint arXiv:2408.02032, 2024.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
object hallucination in large vision-language models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 292–305, 2023.

Zhuowei Li, Haizhou Shi, Yunhe Gao, Di Liu, Zhenting Wang, Yuxiao Chen, Ting Liu, Long Zhao,
Hao Wang, and Dimitris N Metaxas. The hidden life of tokens: Reducing hallucination of large
vision-language models via visual information steering. arXiv preprint arXiv:2502.03628, 2025.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892–34916, 2023.

Meta. Llama 3.2: Revolutionizing edge AI and vision with
open, customizable models. https://ai.meta.com/blog/
llama-3-2-connect-2024-vision-edge-mobile-devices/, 2024.

Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi.
A-okvqa: A benchmark for visual question answering using world knowledge. In European
conference on computer vision, pp. 146–162. Springer, 2022.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Chenxi Wang, Xiang Chen, Ningyu Zhang, Bozhong Tian, Haoming Xu, Shumin Deng, and Huajun
Chen. Mllm can see? dynamic correction decoding for hallucination mitigation. In The Thirteenth
International Conference on Learning Representations, 2025a.

10

https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kaishen Wang, Hengrui Gu, Meijun Gao, and Kaixiong Zhou. Damo: Decoding by accumulating
activations momentum for mitigating hallucinations in vision-language models. In The Thirteenth
International Conference on Learning Representations, 2025b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Tianyun Yang, Ziniu Li, Juan Cao, and Chang Xu. Understanding and mitigating hallucination in
large vision-language models via modular attribution and intervention. In The Thirteenth Inter-
national Conference on Learning Representations, 2025.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Ce Zhang, Zifu Wan, Zhehan Kan, Martin Q Ma, Simon Stepputtis, Deva Ramanan, Russ Salakhut-
dinov, Louis-Philippe Morency, Katia Sycara, and Yaqi Xie. Self-correcting decoding with gen-
erative feedback for mitigating hallucinations in large vision-language models. arXiv preprint
arXiv:2502.06130, 2025.

Xin Zou, Yizhou Wang, Yibo Yan, Yuanhuiyi Lyu, Kening Zheng, Sirui Huang, Junkai Chen,
Peijie Jiang, Jia Liu, Chang Tang, et al. Look twice before you answer: Memory-space vi-
sual retracing for hallucination mitigation in multimodal large language models. arXiv preprint
arXiv:2410.03577, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Table 3: Statistics of the MMHop dataset. We report the number of examples in each category.

Category General Co-Occur Temporal Cultural Bias Total

Size 2212 1184 737 493 376 5002

A MMHOP STATISTICS AND IMPLEMENTATION DETAILS

We show the statistics of MMHop in Table 3. The LLM in Figure 3 we use to generate the dataset
is GPT-5. We collect 5, 002 two hop questions across 5 different knowledge categories. We also
provide the prompt we use to generate data below.

Prompts for data generation

You will be given an image and a list of captions describing the
image. Your task is to generate two-hop questions based on the
provided image and captions. These questions will be used to study
hallucinations in vision-language models.

Guidelines for generating the questions:
- Each two-hop question consists of two sub-questions ("hops"):
1. First-Hop Question: This should be a question about a specific
object in the image and mentioned in the captions. Identify
the object and rephrase the combined information into a concise
question, avoiding excessive modifiers. The selected object
should have characteristics similar to other common objects not
mentioned in the captions. It’s preferable to choose objects and
their potential incorrect alternatives that have unique, easily
distinguishable differences or different facts.
2. Second-Hop Question: Ask a question about factual knowledge
related to the identified object that cannot be directly answered
from the image or captions. This question should differentiate the
correct object from its incorrect alternatives, requiring external
or common knowledge.

For the given image, generate one two-hop question per category
listed below. If the image doesn’t contain relevant content for
a particular category, skip it. Prioritize generating fewer,
high-quality questions rather than attempting all categories at
the expense of clarity. Note that for most cases, only the first
category is applicable.

{CATEGORY DEFINITION}

Format your responses as JSON objects (one JSON object per line)
with these keys:

- question type: (int) Category number of the question type.
- first hop question: The first-hop question about the identified
object.
- first hop answer: List of correct names or synonyms of the
selected object.
- first hop wrong answers: List of plausible but incorrect
alternative objects similar to the correct answer.
- second hop question template: A template for the second-hop
question that involves factual knowledge about the object without
information from the captions. The template should include a
placeholder for the object name.
- full question: The full question that combines the first-hop
question and the second-hop question template.
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Prompts for data generation (cont.)

- second hop answer: The correct answer to the second-hop question
based on the identified object.
- second hop wrong answers: A list of incorrect answers to the
second-hop question based on the incorrect alternatives.

When generating questions and answers, it’s preferable to generate
answers with only one word. For the "first hop answer" and
"second hop answer", provide possible names of the selected object
and potential correct names. For the incorrect alternatives,
provide a list of objects similar to the correct answer.

Now, provide your response in the same JSONL format using the
following image and captions. Only include the JSON objects (one
per line) in your response, ensuring each answer includes synonyms
or related keywords where applicable.
{IMAGE}
Captions: {CAPTION}
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