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ABSTRACT

In this study, we systematically evaluate the impact of common design choices
in Mixture of Experts on validation performance, uncovering distinct influences
when routing at a token or sequence level. We also present empirical evidence
showing comparable performance between a learned router and a frozen, ran-
domly initialized router, suggesting that learned routing may not be essential. Our
study further reveals that Sequence-level routing can result in topic-specific weak
expert specialization, in contrast to syntax specialization observed with Token-
level routing. The topic understanding is independent of the languages used.

1 INTRODUCTION

The Mixture of Experts (MoEs) has been receiving unprecedented attention in the LLM era. While
initially it has been proposed by Jacobs et al. (1991) to encourage expert specialization when the
model is under-parameterized to fit the whole data domain, the contemporary practices (Fedus et al.,
2022; Shazeer et al., 2017) do not specifically seek for expert specialization aspects, instead, they
use MoE as a tool to scale up model expressiveness at a reduced inference cost. A study by Zoph
et al. (2022a) revealed the existence of expert specialization in encoder blocks, particularly at a
lexicon level. Furthermore, the recent Mistral paper by Jiang et al. (2024) provides evidence that the
router exhibits structured syntactic behavior rather than topic-level understanding. We posit that the
cultivation of fine-grained expert specialization is facilitated by Token-level routing mechanisms. At
the sequence level, the router is compelled to consider contextual information. A natural question
arises: do experts acquire different knowledge bases when routing is performed at a sequence level?

MoEs demonstrate exceptional performance, yet the specific design choices that contribute to this
efficacy remain a subject of inquiry. In particular, the impact of these choices on Sequence-level
routing’s marginal validation performance is not well understood. Jiang et al. (2024) employs a
Layer-wise Token-level Top-2 routing, a prevalent architectural choice in contemporary implemen-
tations. Meanwhile, Fedus et al. (2022) empirically substantiates the potential of Top-1 Token-level
routing. We wish to systematically ablate each of these design choices and discern the extent to
which they contribute to model performance.

In this study, we empirically investigate Mixture of Experts (MoE) training from scratch using GPT2
Small-scale models. While our findings may not generalize to larger Language Model scales due to
computing constraints in academia, we aim to offer insights into MoEs. Our contributions include:

• Ablating common MoE design choices to quantify the marginal impact on validation performance.
• Demonstrating that design choice preferences might differ for Token- and Sequence-level routing.
• Justifying the existence of weak expert specialization in topics when routing at a sequence level.

2 RELATED WORKS

Design Choices Shazeer et al. (2017) proposed Noisy Top-K Gating and required K > 1 in
order to receive gradients for the router network. Fedus et al. (2022) made Top-1 routing work by
multiplying Top-1 gating probability with the corresponding gating output. Both works let the token

Codes available at https://github.com/epfml/towards_understanding_moe
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Topk(K) Design Choices #Parameters Validation Perplexity
Routing Unit Routing Strategy (Total, Active) MultiWiki OpenWebText

2
Token Layer-wise

(295M, 182M)
9.907 22.632

Sequence Layer-wise 10.667 24.980
Sequence Global 11.605 25.689

1
Token Layer-wise

(295M, 124M)
10.188 23.548

Sequence Layer-wise 11.573 26.742
Sequence Global 13.632 30.292

Baseline - 1× FFN Width (124M, 124M) 11.815 26.195
Baseline - 2× FFN Width (182M, 182M) 10.831 24.387
Baseline - 4× FFN Width (295M, 295M) 10.071 22.700

Table 1: Ablation studies of each component of MoE design choices. Number of experts (N ) is set
to 4 in all experiments. Red signifies surpassing the baseline model with the entire parameter count,
while green indicates surpassing the baseline model with an equivalent active parameter count.

itself make a choice on which expert to go to, which usually leads to expert collapse. An auxiliary
loss or special gating mechanism (Lewis et al., 2021) is needed to balance the load of the experts.
While the most popular routing unit is token, some works explore sentence-level routing (Pham
et al., 2023; Kudugunta et al., 2021) and task-level routing (Li et al., 2022; Fan et al., 2021). Task-
level routing is predominantly used in multilingual translation settings, where an extra indicator for
language pairs is used.

Expert Specialization Zoph et al. (2022a) found in an encoder-decoder network, only encoder
experts exhibit specialization while decoder experts lack this ability. This specialization manifests
primarily in syntactic features, encompassing punctuation, conjunctions, articles, and verbs. Jiang
et al. (2024) corroborated the presence of structured syntactic behavior among experts but did not
discern explicit patterns in expert assignments based on the topic. Xue et al. (2023) examined
different levels of specialization and observed only context-independent specialization at a token ID
level. Notably, the routing unit in these studies is at the token level. We want to investigate the
feasibility of inducing context-dependent specialization through Sequence-level routing.

3 EXPERIMENTS

All our experiments are rooted in the GPT2-small (124M)1 model. The MoE component is added to
the feedforward layer (FFN) in every transformer block, with an MLP router network deciding which
expert(s) to route each sequence/token to. Unlike common practices in larger language models, we
drop expert capacity limit in our experiments. We add a load balancing loss with weight (λ = 0.01)
for all our experiments if not specified. See Appendix A.1 for further technical details.

Our experiments were conducted using two different datasets, one is multilingual Wikipedia (Foun-
dation) with documents in English, German, French, and Italian four languages (17B tokens), and
the other is OpenWebText (Gokaslan & Cohen, 2019), which is gathered from scrapping URLs from
Reddit posts and only available in English (9B tokens). We report our experimental results as the
average over the last 100 iterations, to address the inability to conduct multiple runs with different
seeds imposed by our computing resources limitation.

When conducting Sequence-level routing, we simply add up the gating outputs of each token and
subsequently apply a softmax operation. The Global routing is done by letting all later layers follow
the routing outputs of the very first layer, and thus the active gating parameters are only from the
very first layer. While there theoretically exists a variance in the number of routing parameters be-
tween Global and Sequence-/Token-level routing, the relatively small number of gating parameters
compared to other blocks mitigates any substantial disparity in total parameter counts.

3.1 PERFORMANCE IMPACT OF DESIGN CHOICES

Note our Global Top-1 model represents the classic MoE structure from the 90s (Jacobs et al., 1991),
Token-level Layer-wise Top-1 mimics the switch transformer (Fedus et al., 2022) idea, while Token-

1https://github.com/karpathy/nanoGPT
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Figure 1: Expert activation frequency during training for Sequence-level routing. Left: pretraining
without load balancing loss, resulting in validation perplexity 10.674. Right: with load balancing
loss (λ = 0.01), resulting in validation perplexity 10.667.

level Layer-wise Top-2 routing represents the most popular MoE implementation nowadays (Shazeer
et al., 2017; Lepikhin et al., 2020; Jiang et al., 2024).

The baseline methods are selected as the dense model counterparts matching the total number of
parameters or the number of active parameters in the forward pass. To do so, we simply duplicate
FFN blocks. Examining Table 1, it is evident that with the same amount of total parameters, only the
combination of Token-level Layer-wise Top-2 routing surpasses the dense model baselines. Token-
level Layer-wise Top-1 routing outperforms the dense model baseline matching the active parameter
count by a large margin, while Sequence-level Layer-wise Top-2 routing performs comparably to its
dense counterpart with an equivalent number of active parameters. In general, we observe that the
routing unit has the biggest impact on validation performance.

3.1.1 DOES EXPERT COLLAPSE HURT IN SEQUENCE-LEVEL ROUTING?

As previously reported in Fedus et al. (2022); Zoph et al. (2022b), expert collapse is always ob-
served without adding an auxiliary loss. Does expert collapse indeed hurt a model’s validation
performance? For the experimental setup described in Section 3, without an auxiliary loss, we wit-
nessed expert collapse in early and late layers for Sequence-level routing. This is shown in the left
panel of Figure 1. Nonetheless, the validation perplexities with or without load balancing loss are
almost identical, confirming the findings in Nie et al. (2022); Yang et al. (2021) for Token-level rout-
ing. This could indicate that we do not necessarily need the same amount of experts in every layer,
as in Du et al. (2022). It should be emphasized that none of our experiments involved the utilization
of an expert capacity factor. When an expert capacity factor is applied, imbalanced expert load can
potentially result in some tokens not being allocated to any expert, thereby deteriorating validation
performance. A more detailed analysis of expert activation is available in Appendix A.4.

3.1.2 DOES MORE EXPERTS AND MORE ACTIVATED EXPERTS ALWAYS HELP?

(N,K) Validation Perplexity
Sequence Token

( 2 , 2 ) 10.648 10.761
( 4 , 2 ) 10.667 9.907
( 6 , 2 ) 10.674 9.467
( 4 , 1 ) 11.573 10.188
( 4 , 3 ) 10.107 9.711

Table 2: The impact of number of ex-
perts (N ) and number of activated ex-
perts (K). Pretrained on Multilingual
Wikipedia dataset.

We ablate the design choices for the number of activated
parameters beyond Top-1 and Top-2, i.e. Top-K routing.
In fact, for every sequence or token at each layer, there
exist

(
N
K

)
combinations of experts to which activations

can be directed, resulting in 12(
N
K) distinct path config-

urations for each routed unit. An increase in the value
of N expands the range of routing options for each se-
quence, while a larger value of K leads to the activation
of more neurons within a layer. To investigate the effects,
we replicate FFN block N times, indicating N experts.
Our findings reveal that increased activated experts (K)
improve performance for sequence-level routing, whereas
token-level routing benefits more from a greater number
of experts (N ).
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Additionally, routing at a sequence level shows that the (4, 1) combination significantly underper-
forms compared to (4, 2), likely because it lacks dominant experts, as further elaborated in Sec-
tion 3.2. In contrast to Token-level routing, we see the most performance gain for Top-1 routing and
diminishing return for larger K’s. This is consistent with the findings of Clark et al. (2022); Yang
et al. (2021). It is noteworthy that the small performance gap between Top-1 and Top-2 routing does
not seem to extend to larger models as found by Yang et al. (2021); Lewis et al. (2021), where the
expert capacity factor is applied.

3.2 DOES EXPERT SPECIALIZATION EXIST?

3.2.1 WHAT DOES A ROUTER LEARN?

Frozen routing. To understand if the learned routers (Learned) have learned something meaning-
ful, we design experiments where the routing parameters were either frozen at initialization (Frozen)
or re-initialized randomly (Random) at each iteration. It is noteworthy that frozen routing shares a
conceptual similarity with hash routing. However, the routing result is embedding dependent in-
stead of token id dependent as in Roller et al. (2021). That is, in our frozen routing setup, expert
specialization can still be learned by letting embedding layers adapt to a frozen router head. Layer-
wise frozen routing almost gives the same performance as Layer-wise learned routing, as shown in
Table 3, supporting this assumption. This finding aligns with Dikkala et al. (2023).

Dataset Routing Level Routing Strategy Validation Perplexity
Sequence Token

Multilingual Global Language 11.716 -
Global Learned 11.605 -
Layer-wise Frozen 10.601 9.810
Layer-wise Random 11.685 11.752
Layer-wise Learned 10.666 9.907

OpenWebText Layer-wise Frozen 24.590 22.687
Layer-wise Random 26.429 26.879
Layer-wise Learned 24.980 22.632

Table 3: Comparison of different routing strategies.

Language guided routing versus learned Global routing. In the multilingual setup, as languages
are naturally different, we examine if our learned router can group languages as expected when rout-
ing at a sequence level. One interesting baseline we compared to here is hard-coded per-language
routing (Language), where we assign the tokens to experts based on the language category instead
of a learned gating. To our surprise, this model does not perform as well as expected. One might
intuitively anticipate that each expert, assigned a more uniform task (arguably simpler), would learn
more rapidly and proficiently. The result could indicate that tokens from a specific language are not
clustered in the embedding space. Instead, they are grouped by some other latent features. This
seems to align with the findings by Fan et al. (2023) that languages from the same language group
can be helpful in learning a low-resource language. Given our learned Global routing gives a roughly
similar performance, we conclude that more routing path possibilities are needed, i.e. Layer-wise
routing. The learned router also does not show an ability to differentiate languages as discussed in
the next Section 3.2.2.

3.2.2 THE EXISTENCE OF WEAK EXPERTS?

To validate the presence of expert specialization in Sequence-level routing, we assess our pre-trained
model’s performance on unseen tasks. We examine whether there is a discernible pattern in expert
activation for distinct tasks. Six tasks from the MMLU dataset (Hendrycks et al., 2021) and four
languages from the XNLI dataset (Conneau et al., 2018) and X-stance dataset (Vamvas & Sennrich,
2020) were selected to determine if experts acquired domain- or language-specific knowledge.

Regardless of whether the model underwent pre-training on English-only or multilingual datasets,
the evaluation of various tasks in English consistently demonstrates similar patterns in expert as-
signment, depicted in the left and middle plots of Figure 2. For instance, there appears to be a
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Figure 2: Layer-wise expert assignment results (Sequence-level Top2 routing). From left to right:
(1) pretrained on OpenWebText dataset, evaluated on 6 categories of MMLU dataset; (2) pre-trained
on Multilingual Wikipedia dataset, evaluated on 6 categories of MMLU dataset; (3) pre-trained on
Multilingual Wikipedia dataset, evaluated on 4 languages from XNLI dataset and X-Stance Dataset.

Figure 3: Layer-wise expert assignment results (Token-level Top2 routing) Left: pre-trained on
Multilingual Wikipedia dataset, evaluated on 6 categories of MMLU dataset; Right: pre-trained on
Multilingual Wikipedia dataset, evaluated on 4 languages from XNLI dataset and X-Stance Dataset.

comparable routing trend for both global facts and management. The uneven distribution of tasks
also suggests experts have different specializations in task categories. Expert assignments exhibit
language-agnostic characteristics, as showcased in the rightmost panel of Figure 2, hinting at poten-
tial benefits in concurrently learning concepts across related languages.

A pre-trained model with Token-level routing shows very different routing behaviors, as shown in
Figure 3. Clearly, there is no distinction in experts’ ability to handle different tasks, as evidenced by
roughly equal assignment of tokens to experts. However, we observe uneven assignments of various
languages to different experts, likely stemming from differences in language tokenization.

4 CONCLUSION

This study delves into the training and design choices of Mixture of Experts (MoEs), focusing on
their impact on model performance and expert specialization. Our results demonstrate that sequence-
level routing can incorporate context information during routing and foster weak expert specializa-
tion related to topics. Yet it does not yield improved performance, as evidenced by validation per-
plexity. The resulting performance on downstream tasks from sequence-level routing remains an
interesting future direction to explore.

In terms of preferred design choices, distinctions arise between routing at the token or sequence
level: enhanced activated experts (K) enhance performance for sequence-level routing, while token-
level routing benefits from a higher number of experts (N ). Ultimately, the conventional Token-level
Layer-wise Top2 routing should consistently be favored based on validation perplexity. Practically,
we demonstrate that achieving expert specialization during MoE training is attainable by randomly
initializing router weights. We hope these observations can contribute to a better understanding of
MoE design choices for practitioners.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

We run our experiments based on the publicly available LoRA extension (Grittner, 2023) of the
nanoGPT library (Karpathy, 2023) on a single A100-SXM4-40GB GPU. We use the default setup,
but with dropout 0.2, learning rate 9.6e-4, minimum learning rate 9.6e-5, weight decay 0.5 and
enabled biases for 6K iterations. Every iteration 1’048’576 tokens are passed through the network
(gradient accumulation 128, batch size 8, sequence length 1024), resulting in roughly 6B tokens
being seen by the model. For our default set up with 4 experts this follows the Chinchilla scaling
law from Hoffmann et al. (2022) to train on approximately 20 tokens per parameter.

For both datasets, we use the OpenAI GPT-2 tokenizer, which gives a slight disadvantage to the non-
English languages. However, we observe that the model can still learn the non-English languages,
in close language groups for next token prediction.

Assume gating network Wg produces logits h(x) = Wgx. Expert blocks are denoted as Eis. Our
Top-1 gating follows the implementation of switch transformer (Fedus et al., 2022).

pi(x) =
ehi(x)∑
j e

hj(x)
y =

∑
i∈T

pi(x)Ei(x) (1)

Top-2 gating implementation follows the implementation of Jiang et al. (2024), except for Sequence-
Level routing we apply the softmax operation twice, as shown below:

pi(x) =
ehi(x)∑
j e

hj(x)
y =

∑
i∈T

epi(x)∑
j∈T epj(x)

Ei(x) (2)

Note T in the formulas denote the set of Top-K index/indices.

A.2 ON ROUTER CHOICES

Empirically, using one-layer MLP or two-layer MLP as the router network does not make a differ-
ence with regard to validation performances, as shown in Figure 4.

Figure 4: Validation perplexity versus training iterations.

A.3 EXPERT ASSIGNMENTS

We visualize expert assignments when routing with our pre-trained model (Top-2 Layer-wise
Sequence-level routing) on OpenWebtext data in Figure 5. Frozen routing and learned routing gave
similar routing results, indicating weak expert specialization in topics. In the middle panel of Fig-
ure 5, we notice the co-existence of a common expert and weak specialized experts, aligning the
design choice of shared experts in Dai et al. (2024).
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Figure 5: Expert assignment results when evaluating on MMLU dataset using different pre-trained
models on OpenWebText dataset. From left to right: (1) learned routing; (2) frozen routing; (3)
random routing (Sequence-level routing is performed).

A visualization of expert assignments when routing with our pre-trained model (Top-2 Layer-wise
Token-level routing) on Multilingual Wikipedia dataset is shown in Figure 3. In contrast to weak
topic specialization (Left panel of Figure 2) when routing at a sequence level, Token-level routing
does not bring any expert specialization in topic domains, as suggested in the left plot of Figure 3.
The almost even expert assignment indicates the lack of expert specialization, similar to the observa-
tions in random routing illustrated in Figure 5. The main difference arises from the balanced expert
load in random routing, as opposed to the uneven distributions found in learned routing.

A.4 LAYER WISE EXPERT ACTIVATION

We visualize Layer-wise expert activation when routing at a sequence level without load balancing
loss in Figure 6. When we refer to expert activation, we are describing the frequency at which
each expert is activated. For each iteration (x-axis), there should be N = 4 points denoting the
corresponding activated frequency of each expert. We observe the following interesting aspects:

• Experts exhibit the ability to recover from collapsing.
• Early and late layers demonstrate a tendency to experience more expert collapse.

To provide readers with a clear visualization of layer-wise expert activations under the application
of load balancing loss (with λ = 0.01), we additionally plot the Top-2 and Top-3 routing results
respectively in Figure 7 and Figure 8.
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Figure 6: Expert activations from Layer-wise Sequence-level Top-2 routing when no load balancing
loss is applied.
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Figure 7: Expert activations from Layer-wise Sequence-level Top-2 routing when load balancing
loss is applied.
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Figure 8: Expert activations from Layer-wise Sequence-level Top-3 routing when load balancing
loss is applied.
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