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Abstract

Recent advances in Large Language Models (LLMs) have drawn interest in their capacity
for logical reasoning, an area traditionally dominated by symbolic systems that rely on
complete, manually curated knowledge bases represented in formal languages. This paper
introduces a framework that leverages pretrained LLMs to generate Description Logic (DL)
class expressions from instance-level examples and background knowledge, translated to
natural language. The baseline is Concept Induction, a symbolic learning approach that is
mostly based on formal logical reasoning over a DL theory. Drawing inspiration from the
DL-Learner architecture, our approach replaces traditional symbolic methods with LLM-
based models to generate DL class expressions from instance-level data.

We evaluate our approach using three benchmark ontologies across two LLMs: gpt-4o
and o3-mini. We use a symbolic reasoner, Pellet, to verify the LLM-generated results
and incorporate the reasoner’s feedback into our pipeline to ensure logical consistency,
thereby generating a hybrid neurosymbolic system. By introducing controlled variations to
the background knowledge, we assess the models’ reliance on commonsense versus formal
reasoning. Results show that o3-mini achieves near-perfect accuracy across settings, albeit
with longer runtime. These findings demonstrate that LLMs have the potential to serve as
scalable and flexible DL learners when coupled in a hybrid neurosymbolic setting, offering a
promising alternative to symbolic approaches—particularly in contexts where high-quality
ontologies are incomplete or unavailable.

1. Introduction

Logical reasoning lies at the core of human cognition and artificial intelligence. Traditional
approaches to logical reasoning in AI have relied heavily on formal languages for knowledge
representation and symbolic reasoners for inference. However, these methods often suffer
from brittleness and the well-known knowledge acquisition bottleneck, making them difficult
to scale and apply in real-world scenarios (Musen and Van der Lei (1988)).

With the advent of Large Language Models (LLMs) (Brown et al. (2020); Touvron et al.
(2023); Anil et al. (2023)), there has been increasing interest in evaluating their potential
for reasoning. Several studies have investigated how these generative models perform in
logical reasoning tasks (Xu et al. (2024b)). This paper proposes a framework that leverages
pretrained LLMs to generate logical class expressions based on a semi-structured knowledge
base and instance-level data, all represented in natural language. This approach addresses
several limitations of traditional symbolic systems while offering advantages over end-to-end
neural methods that lack interpretability.

We adopt the setting of Concept Induction, inspired by the DL-Learner framework
(Bühmann et al. (2016)), where a background knowledge base in OWL is provided along
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with sets of individuals categorized as positive and negative examples. The task is to derive
a logical formula, typically an OWL class expression1, that includes all or most of the
positive examples and excludes all or most of the negative ones. In deriving its responses,
DL-Learner invokes a formal logic reasoner many times, i.e. while Concept Induction is
about the learning of class expressions from examples, it is at its core a symbolic reasoning
task. In our case, instead of using a formal OWL ontology, we translate the background
knowledge into a natural language format. This choice is motivated by the scarcity of
high-quality ontologies, as building such ontologies requires significant resources.

We then use an LLM as the reasoning engine to learn from these positive and negative
instances and to generate complex class expressions in Manchester OWL Syntax.2 Using
LLMs as logical reasoners in this setting, we aim to evaluate their effectiveness in deriv-
ing descriptive class expressions from examples. This investigation provides several major
insights:

• This LLM-based method can automate different aspects of ontology engineering.
While the number of knowledge bases in the Semantic Web continues to grow, the
maintenance and creation of ontology schemata remains a challenge. In particular,
creating class expressions constitutes one of the most demanding tasks in ontology
engineering.

• This setting allows us to explore the potential of LLMs to perform deep deductive
reasoning, a task that remains challenging for deep learning systems (Hitzler et al.
(2025)). Deductive reasoning over formal logic remains a key challenge in symbolic AI
(Brachman and Levesque (2004)), and enabling such reasoning in neural models opens
new possibilities for neurosymbolic systems that combine learning and reasoning.

• An LLM-based Description Logic Learner can be used to generate human-understand-
able class expressions, offering interpretable concept definitions derived from instance
data. This aligns with the goals of explainable AI (XAI), where such expressions
can help explain the behavior of black-box models by linking input instances to their
output classifications through logical descriptions (Dalal et al. (2024)).

Having an LLM-based Description Logic Learner can help alleviate the existing short-
comings of symbolic methods for concept learning. This method investigates the potential
of generating an end-to-end automated system that can perform Concept Induction at scale,
even when quality background knowledge is limited or unavailable, thus addressing a critical
gap in existing methods.

The rest of the paper is organized as follows. In Section 2, we provide a brief overview
of related research. In Section 3, we discuss the current DL-Learner framework and explain
how we adapt it in our approach. Section 4 presents a detailed description of our methodol-
ogy and outlines the steps in our pipeline, illustrating how LLM-based models are employed
to generate Description Logic class expressions. In Section 5, we present and analyze the
evaluation results. Finally, in Section 6, we conclude the paper and propose directions for
future work.

1. https://www.w3.org/TR/owl2-syntax/#Class_Expressions
2. https://www.w3.org/TR/owl2-manchester-syntax/
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2. Related Work

Initial efforts in symbolic reasoning methods relied heavily on Knowledge Representation
and Reasoning (KR) systems, which, although foundational, proved difficult to scale and
required considerable manual effort. Reasoning with formal languages has proven partic-
ularly challenging (Musen and Van der Lei (1988); Cropper et al. (2022)). Such systems
tend to fail when complete knowledge is unavailable, suffer from the knowledge acquisition
bottleneck, and require significant domain expertise for encoding knowledge in formal logic.
These systems also struggle to handle raw, unstructured data such as natural language, are
highly sensitive to labeling errors, and often fail to generalize across symbolically different
but semantically similar concepts (Yang et al. (2023)).

Recent advances in Large Language Models (LLMs) offer promising alternatives. LLMs
contain substantial implicit knowledge (Davison et al. (2019)), enabling them to handle
incomplete information more robustly (Talmor et al. (2020)). They naturally process raw
language data and can leverage massive web corpora to automatically construct rule bases
(Ji (2018)). LLMs are also less sensitive to input errors (Meng et al. (2021)) and can
recognize semantically similar concepts through embeddings (Mikolov et al. (2013)), making
them well-suited for reasoning tasks in real-world settings.

Description Logics (DLs), which are, essentially, decidable fragments of first-order logic,
are central to Semantic-Web-based knowledge representation and reasoning, in particular
the Web Ontology Language OWL is based on them, see Hitzler et al. (2010). To automate
the acquisition of OWL ontologies using machine learning, it is essential to develop tools
capable of learning in description logics (Lehmann and Hitzler (2010)). Traditional symbolic
learners face the limitations outlined above, and recent research shows that transformer-
based models or LLMs have proven to be effective alternatives. LLMs have demonstrated
strong performance across a variety of logical reasoning benchmarks (Liang et al. (2023);
Srivastava et al. (2023); Fan et al. (2024); Wei et al. (2022a)), though it remains unclear
whether they possess generalized logical reasoning abilities and to what extent they are
capable of robust logical inference (Li et al. (2024b); Valmeekam et al. (2022)).

To address this gap, several recent studies have focused on enhancing the reasoning
capabilities of LLMs (Li et al. (2024a); Morishita et al. (2024); Tong et al. (2024)). For
instance, Hua et al. (2024) show that an LLM’s performance can vary significantly depending
on the context or domain of the task. Hong et al. (2024) evaluates the self-verification
abilities of LLMs using a verification loop to improve LLM performance in logical reasoning
problems. Techniques such as Chain-of-Thought (CoT) prompting (Wei et al. (2022b))
emulate human-like reasoning and have inspired further strategies such as Logic-of-Thought
(Liu et al. (2025)), RATT (Zhang et al. (2025)), and others (Wang et al. (2023); Zhou
et al. (2023); Li et al. (2023); Lightman et al. (2024)). These approaches aim to align
LLM reasoning with human cognitive processes. Structured reasoning techniques like these
have been applied in tasks involving logical inference and symbolic reasoning (e.g., Xu
et al. (2025); Luo et al. (2023); Parmar et al. (2024)). They typically involve long chains
of thought (Long CoT), incorporating reflection, backtracking, and validation. However,
training LLMs for Long CoT reasoning is resource intensive, often relying on proprietary
methods (Jaech et al. (2024)) or expensive to reproduce (Guo et al. (2025)). To mitigate
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this, Li et al. (2025) propose a more efficient strategy using supervised fine-tuning (SFT)
and parameter-efficient techniques like LoRA to train LLMs for Long CoT reasoning.

Some frameworks, such as Logic-LM (Pan et al. (2023)) and LINC (Olausson et al.
(2023)), use LLMs as translators to convert natural language into symbolic representations,
which are then processed by external reasoners. These approaches do not fully explore
the internal reasoning capability of LLMs. To overcome this, Symbolic Chain-of-Thought
(Xu et al. (2024a)) proposes a fully LLM-based reasoning framework that breaks tasks into
modular substeps. Similarly, Cumulative Reasoning (CR) (Zhang et al. (2023)) adopts a
collaborative multi-agent LLM framework that decomposes complex problems into subtasks
and incrementally builds a solution by validating intermediate steps.

However, these approaches have not thoroughly investigated how LLMs perform in real-
world reasoning scenarios, particularly when dealing with large sets of instance-level ex-
amples to produce inferred class expressions. Barua et al. (2024) discusses an LLM-based
concept induction system in which the LLMs produce only simple concept descriptions
(i.e., word sets that distinguish positive from negative examples). It this approach it only
identifies distinguishing concepts rather than constructing a full logical definition and does
not account for negations. In this work, we investigate whether an LLM can generate De-
scription Logic class expressions from input instances, using DL-Learner (Bühmann et al.
(2016)) as our baseline. We provide background knowledge in natural-language format to
offer context and aim to achieve results comparable to DL-Learner.

Deng et al. (2024) demonstrated improvements in the reasoning capabilities of LLMs
using an iterative feedback module, which passes unsuccessful execution results from an ex-
ternal solver back to the LLM, thereby improving its translation reliability and correctness.
In our pipeline, we incorporate a similar fact checking mechanism using the Pellet reasoner,
creating a feedback loop in which incorrect or invalid outputs from the LLM are passed
back for refinement, enhancing output quality, and improving the overall reliability of the
LLM.

3. DL-Learner framework

We use DL-Learner3 as our baseline to replicate Description Logic (DL) class expressions
using a Large Language Model (LLM). DL-Learner is a flexible framework designed for
solving learning problems in OWL, offering a component-based architecture with support
for various knowledge base formats, reasoner interfaces, and machine learning algorithms.

It consists of four main component types. For each type, multiple implementations are
available, each with its own configurable options, as illustrated in Figure 1.

Knowledge Sources integrate background knowledge from standard OWL formats
(e.g., RDF/XML, Turtle, Manchester OWL Syntax) and SPARQL endpoints. Multiple
sources can be combined, allowing DL-Learner to scale to large and distributed knowledge
bases.

Reasoner Components provide connections to both external and internal reasoners.
DL-Learner offers DIG 1.1.5 and OWL API interfaces, enabling connections to standard
OWL reasoners. Additionally, DL-Learner includes its own approximate reasoner, which

3. See official DL-Learner documentation at https://www.researchgate.net/publication/228877947_

DL-Learner_Manual
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Figure 1: DL-Learner components

uses Pellet for bootstrapping and loading the inferred model into memory. Afterwards,
instance checks are performed efficiently using a local closed world assumption (Badea and
Nienhuys-Cheng (2000)).

Learning Problems specify the type of inference task to be solved, such as learning
from positive and negative examples, positive-only learning, or class axiom learning. These
components also incorporate efficient coverage check strategies for evaluating candidate
expressions.

Learning Algorithms implement methods to solve the learning problems using a
variety of strategies. Notably, refinement-operator-based algorithms iteratively construct
more expressive class expressions through multiple refinement loops. In each loop, candidate
concepts are extended or modified using syntactic transformations, guided by heuristics or
stochastic methods to better fit the training examples. The framework includes algorithms
based on genetic programming (Lehmann (2007)), refinement operators for ALC (Lehmann
and Hitzler (2007)), and extended operators that support OWL features and datatypes (e.g.,
Class Expression Learning for Ontology Engineering (CELOE), Refexamples (OCEL)), all
optimized for generating concise, human-readable class expressions.

Together, these components enable DL-Learner to generate accurate and interpretable
DL class expressions over complex and large-scale ontologies (for detailed description, see the
official manual).4 However, like other symbolic reasoners, it has certain limitations. It relies
heavily on complete and high-quality background knowledge, which can cause failures when
such knowledge is incomplete. It also cannot automatically recognize semantically similar
concepts and does not scale well when the complexity of the background knowledge or the
volume of instance examples increases. For example, in the top-down refinement approach,
if a perfect solution does not exist, the algorithm may have very long run times—or run
until it exhausts system memory.

4. https://www.researchgate.net/publication/228877947_DL-Learner_Manual
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To overcome these challenges, we propose replacing the traditional learning algorithm
with an LLM, which can analyze the learning problem based on the given instance examples
and apply its own commonsense knowledge—along with the provided background informa-
tion—to generate reasonable DL class expressions. This can break the infinite refinement
loop and significantly improve scalability. Moreover, LLMs may be able to produce accurate
and meaningful class expressions even when the background knowledge is incomplete or not
available in a well-structured ontology format. Motivated by this, we developed a pipeline
using LLMs to generate DL class expressions in a setting similar to that of DL-Learner.

4. Methodology

We create an end-to-end pipeline to generate DL class expressions using LLMs, as illustrated
in Figure 2.5

Figure 2: LLM-based DL-Learner framework. Key inputs to the LLM are: (1) background knowledge in natural
language, (2) positive and negative examples, and (3) a sample class expression in Manchester OWL
Syntax. These inputs construct a prompt that is passed to the LLM. Based on the prompt instructions,
the LLM generates up to five candidate class expressions. The fact-checker module evaluates each
candidate using a symbolic reasoner: if one is valid, it is returned; otherwise, feedback is sent back to
the LLM for up to three refinement iterations. The full prompt is in Appendix A.

4.1. Preprocessing

The first step transforms the background ontology from OWL format into a natural language
representation. We use a Python script built with the rdflib library6 to extract classes,
subclasses, individuals (instances of classes), object properties, and their domain/range
information. This information is then expressed in natural language and stored in a .txt

file. For example, if the ontology specifies that an individual Anna is an instance of the class

5. See https://github.com/AdritaBarua/DL-learner-using-LLMs for source code, input data, raw result
files, and parameter settings for replication.

6. https://pypi.org/project/rdflib/4.0/
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Female, and Anna has a hasChild relationship with another individual Dino, the script
extracts and formats the following lines:

• ’Anna’ is an instance of class ’Female’.
• ’Anna’ has a relationship ’hasChild’ with ’Dino’.

4.2. DL Class Generation Using LLMs

After converting the ontology to natural language, the content is saved in a .txt file and
passed to the LLM as background knowledge.

We use two GPT models: gpt-4o (Hurst et al. (2024)) and o3-mini,7 invoked via the
OpenAI API. gpt-4o is OpenAI’s flagship model optimized for speed and cost, making
it suitable for simple reasoning tasks. In contrast, o3-mini is a reasoning model trained
using reinforcement learning to solve more complex problems. It generates internal chains
of thought before responding, offering better reasoning capabilities at the cost of slower
performance. For gpt-4o, we set the temperature to 0 and top p to 1. For o3-mini, we
set the reasoning effort to "high". Both models are prompted with the system message:
"You are a helpful Description Logic learner."

We use three small to moderately sized benchmark ontologies: Trains, Basic Family,
and Family Benchmark (Lehmann and Hitzler (2010)). After preprocessing, these ontolo-
gies are passed to the LLMs as background knowledge. We employ few-shot prompting,
where each prompt includes: (1) background knowledge in natural language, (2) positive
and negative examples, and (3) a sample class expression in Manchester OWL Syntax.

Given these inputs, the LLM is instructed to generate a complex class expression that
includes all positive examples and excludes all negative ones. For instance, to define the
concept Brother, the LLM may generate: Male and (hasSibling some Thing). This
expression is inferred from the background knowledge, where positive examples are instances
of Male with hasSibling relations, while negative examples are either Female or don’t have
sibling relationships. We provide a step-by-step prompt structure, as shown in Appendix A,
and instruct the LLM to return up to five candidate class expressions of minimal length.

4.3. Fact-Checking Using a Reasoner

To validate the class expressions generated by the LLM, we use a symbolic reasoner. Specif-
ically, we use the same reasoner component integrated into the DL-Learner framework
(Bühmann et al. (2016)). This module is implemented in Java and uses Pellet as the base
reasoner. Pellet loads the inferred model into memory and performs instance checks under a
closed-world assumption. Each of the five candidate expressions is evaluated for correctness
using this reasoner.

4.4. Refinement Using a Feedback Loop

If at least one candidate expression is found to be 100% accurate—i.e., it correctly includes
all positive examples and excludes all negative ones—the process terminates, and the result
is saved. If none of the expressions are valid or sufficiently accurate, feedback from the
reasoner is appended to the original prompt and sent back to the LLM for refinement. This

7. https://openai.com/index/o3-o4-mini-system-card/
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loop continues for up to three iterations or until a valid class expression is found. If all the
attempts are failed, the result is noted as invalid. Appendix B illustrates an example of the
feedback given to the LLM after an unsuccessful attempt.

5. Evaluation Results

Two variations of the prompt were used to verify reasoning in different contexts, to check
if the LLM models perform commonsense reasoning when obvious interpretations exist—
thereby generating the DL class expressions without requiring logical inference from the
input data. We evaluated three ontologies (Trains, Family Benchmark, and Basic Family)
under two core prompt-engineering conditions for both GPT models (gpt-4o and o3-mini):

• With basename prompt: “Give me the complex class expression for the relation
(e.g., Brother) based on the given examples.”

• Without basename prompt: “Give me the complex class expression based on the
given examples.”

For the Basic Family ontology, we also tested two additional variations:
• Changed gender: The underlying ontology flips the genders of all individuals while
keeping the relation names unchanged. Thus, when the prompt asks to generate the
class expression for “Brother,” it should produce the expression for “Sister” based on
the modified ontology.

• Changed relations: The ontology remains the same, but the prompt intentionally
renames the target relation to a misleading term.

For the Trains ontology, no simple concept name is available to use as a commonsense
hint, so only the “without basename prompt” was used in that case. All outputs were then
verified using the same reasoner module employed by DL-Learner, ensuring consistency
with DL-Learner’s results. All the results are shown in Table 1. Here, the success rate
indicates the ratio of logically valid results produced by the LLMs across the sample set, as
determined by the reasoner’s feedback (see Section 4.4). The DL learner achieves a 100%
success rate on these benchmark ontologies.

5.1. Discussion

Including the relation name in the prompt (“Basename=Yes”) generally improves accuracy
for both models. The general model (gpt-4o) fails in most cases when the relation name
is omitted, indicating that it relies heavily on commonsense cues rather than pure logical
inference (Figure 3). The failure rate is particularly high for the Family Benchmark dataset,
where the ontology and example sets are larger. The reasoning model (o3-mini) achieves
an almost perfect success rate regardless of whether the basename is provided (Figure
4). However, its processing time is high. It mainly fails on a few cases in the Family
Benchmark, suggesting that o3-mini also struggles when ontology complexity and example-
set size increase. Interestingly, when a wrong relation name is given (the “changed relation”
prompt) to confuse the model, o3-mini still succeeds. Although this misleading relation
name should confuse gpt-4o, its success rate in that scenario remains higher than when
using the default ontology without a basename hint. The general model (gpt-4o) also
struggles with the Trains ontology, despite that the ontology and its example sets being
smaller than those in the Family Benchmark.
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Table 1: Success rate of gpt-4o and o3-mini across different ontology datasets and prompt
variations. The success rate is the ratio of logically valid results produced by the
LLM across the sample set.

Sample
size

Dataset/Ontology Variation Model
Basename
Prompt

Success
Rate (%)

9 basic family.owl default gpt-4o No 67
9 basic family.owl default gpt-4o Yes 100
9 basic family.owl default o3-mini No 100
9 basic family.owl default o3-mini Yes 100
17 family benchmark.owl default gpt-4o No 18
17 family benchmark.owl default gpt-4o Yes 59
17 family benchmark.owl default o3-mini No 59
17 family benchmark.owl default o3-mini Yes 94
5 trains.owl default gpt-4o No 40
5 trains.owl default o3-mini No 100
9 basic family.owl changed gender gpt-4o No 56
9 basic family.owl changed gender gpt-4o Yes 78
9 basic family.owl changed gender o3-mini No 100
9 basic family.owl changed gender o3-mini Yes 100
9 basic family.owl changed relations gpt-4o Yes 78
9 basic family.owl changed relations o3-mini Yes 100

(a) Without Basename (b) With Basename

Figure 3: Success rate of gpt-4o

(a) Without Basename (b) With Basename

Figure 4: Success rate of o3-mini
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5.2. Qualitative Analysis

We evaluate success and failure rates using the reasoner; however, the output class ex-
pressions do not exactly match DL-Learner’s, since multiple valid class expressions can
satisfy the same set of examples. DL-Learner’s learning component finds the shortest valid
class expression, whereas the LLM—despite being instructed to produce the shortest ex-
pression—does not always do so (see Table 2). In some cases, the LLM reasoning model
generates a valid expression by trivially excluding all negative examples, rather than find-
ing the minimal generalization that covers all positives and excludes negatives (e.g., in the
Family Benchmark ontology). This suggests the prompt does not explicitly force the model
to find a truly generalized class expression. Future work should refine the system to improve
the quality of LLM-generated expressions.

Table 2: Average shortest class expression lengths for DL-Learner and o3-mini (without
basename prompt) across three datasets in their default setting

Dataset DL-Learner Avg Length o3-mini Avg Length
trains.owl 3 5
basic family.owl 4 5
family benchmark.owl 7 10

6. Conclusions and Future Work

This paper discusses how LLMs can be used to learn DL class expressions from instance ex-
amples. We introduced an LLM-based DL-Learner framework in which the model processes
background knowledge in natural-language format, mitigating reliance on formal knowledge
bases for description logic reasoning. We evaluated whether the models rely on common-
sense cues, pure logical inference, or a mixture of both. The results indicate that, even
though the reasoning model (o3-mini) achieves near-perfect accuracy for most dataset vari-
ations, the quality of the generated class expressions can still be improved. However, these
findings demonstrate the potential of using LLMs to learn logical class expressions from
example data points when high-quality background knowledge is not available.

Our goal here is to leverage LLMs in a real-world scenario so that they can function as
standalone tools for ontology engineering, data learning, and certain XAI tasks at scale with
high-quality output. Further modifications—using fine-tuning and reinforcement learning
methods—can produce an agentic system capable of reliable, large-scale description logic
learning.
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ji2018ménez-Ruiz, Roberto Confalonieri, Pranava Madhyastha, and Benedikt Wagner,
editors, Neural-Symbolic Learning and Reasoning - 18th International Conference, NeSy
2024, Barcelona, Spain, September 9-12, 2024, Proceedings, Part II, volume 14980 of
Lecture Notes in Computer Science, pages 132–148. Springer, 2024. URL https://doi.

org/10.1007/978-3-031-71170-1_13.

Ronald Brachman and Hector Levesque. Knowledge representation and reasoning. Elsevier,
2004. URL https://www.google.com/books/edition/Knowledge_Representation_

and_Reasoning/ln6Ux-EZm6YC?hl=en&gbpv=0.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Lorenz Bühmann, Jens Lehmann, and Patrick Westphal. Dl-learner - A framework for
inductive learning on the semantic web. J. Web Semant., 39:15–24, 2016. URL https:

//doi.org/10.1016/j.websem.2016.06.001.

Andrew Cropper, Sebastijan Dumancic, Richard Evans, and Stephen H. Muggleton. In-
ductive logic programming at 30. Mach. Learn., 111(1):147–172, 2022. URL https:

//doi.org/10.1007/s10994-021-06089-1.

Abhilekha Dalal, Rushrukh Rayan, Adrita Barua, Eugene Y. Vasserman, Md. Kamruz-
zaman Sarker, and Pascal Hitzler. On the value of labeled data and symbolic meth-
ods for hidden neuron activation analysis. In Tarek R. Besold, Artur d’Avila Garcez,
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Appendix A. First Appendix

The few shot prompt for generating DL class expressions is shown in Figure 5. This is the
“with basename” prompt for the Basic Family ontology, where the name of the relation
is explicitly mentioned. The line mentioning the basename is omitted in the “without
basename” prompt.

Appendix B. Second Appendix

An example of the feedback from the reasoner after an unsuccessful attempt, fed to the
LLM for refinement, is shown in Figure 6.
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Figure 5: Prompt
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Reasoner feedback :
Previous attempt :
1 : hasCar some (OpenCar and ShortCar )
2 : Train and ( hasCar some (OpenCar and ShortCar ) )
3 : ( not ( ClosedCar ) ) and ( hasCar some (OpenCar and ShortCar ) )
Reasoner output :
Reasoner : P e l l e t
−−− Expr 1 −−−
LLM expr : hasCar some (OpenCar and ShortCar )
Po s i t i v e ex . ea s t2 −> t rue
Po s i t i v e ex . ea s t3 −> t rue
Po s i t i v e ex . ea s t1 −> t rue
Negative ex . west9 −> t rue
Negative ex . west7 −> t rue
Reasoner accuracy f o r expr 1 : 60.00% (3/5 c o r r e c t )
Expr 1 i s INVALID .
−−− Expr 2 −−−
LLM expr : Train and ( hasCar some (OpenCar and ShortCar ) )
Po s i t i v e ex . ea s t2 −> t rue
Po s i t i v e ex . ea s t3 −> t rue
Po s i t i v e ex . ea s t1 −> t rue
Negative ex . west9 −> t rue
Negative ex . west7 −> t rue
Reasoner accuracy f o r expr 2 : 60.00% (3/5 c o r r e c t )
Expr 2 i s INVALID .
−−− Expr 3 −−−
LLM expr : ( not ( ClosedCar ) ) and ( hasCar some (OpenCar and ShortCar ) )
Po s i t i v e ex . ea s t2 −> t rue
Po s i t i v e ex . ea s t3 −> t rue
Po s i t i v e ex . ea s t1 −> t rue
Negative ex . west9 −> t rue
Negative ex . west7 −> t rue
Reasoner accuracy f o r expr 3 : 60.00% (3/5 c o r r e c t )
Expr 3 i s INVALID .
=== Overa l l accuracy : 0.00%
Please r e f i n e based on the Reasoner feedback .

Figure 6: Feedback from the reasoner
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