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ABSTRACT

Given a dense shallow neural network, we focus on iteratively creating, train-
ing, and combining randomly selected subnetworks (surrogate functions), towards
training the full model. By carefully analyzing i) the subnetworks’ neural tangent
kernel, ii) the surrogate functions’ gradient, and iii) how we sample and combine
the surrogate functions, we prove linear convergence rate of the training error –
within an error region– for an overparameterized single-hidden layer perceptron
with ReLU activations for a regression task. Our result implies that, for fixed
neuron selection probability, the error term decreases as we increase the number
of surrogate models, and increases as we increase the number of local training
steps for each selected subnetwork. The considered framework generalizes and
provides new insights on dropout training, multi-sample dropout training, as well
as Independent Subnet Training; for each case, we provide corresponding conver-
gence results, as corollaries of our main theorem.

1 INTRODUCTION

Overparameterized neural networks have led to unexpected empirical success in deep learning
(Zhang et al., 2021; Goodfellow et al., 2016; Arpit et al., 2017; Recht et al., 2019; Toneva et al.,
2018), but also have led to new techniques in analyzing neural network training (Kawaguchi et al.,
2017; Bartlett et al., 2017; Neyshabur et al., 2017; Golowich et al., 2018; Liang et al., 2019; Arora
et al., 2018; Dziugaite & Roy, 2017; Neyshabur et al., 2018; Zhou et al., 2018; Soudry et al., 2018;
Shah et al., 2020; Belkin et al., 2019; 2018; Feldman, 2020; Ma et al., 2018; Spigler et al., 2019;
Belkin, 2021; Bartlett et al., 2021; Jacot et al., 2018). While there is literature that focuses a diverse
set of overparameterized neural network architectures (Frei et al., 2020; Fang et al., 2021; Lu et al.,
2020; Huang et al., 2020; Allen-Zhu et al., 2019a; Gu et al., 2020; Cao et al., 2020) and training
algorithms (Du et al., 2018; Zou et al., 2020; Soltanolkotabi et al., 2018; Oymak & Soltanolkotabi,
2019; Li et al., 2020; Oymak & Soltanolkotabi, 2020), most efforts fall under the following sce-
nario: in each iteration, all parameters of the neural network are updated using a version of gradient
descent. Yet, advances in regularization techniques (Srivastava et al., 2014; Wan et al., 2013; Gal
& Ghahramani, 2016; Courbariaux et al., 2015; Labach et al., 2019), computationally-efficient
(Shazeer et al., 2017; Fedus et al., 2021; Lepikhin et al., 2020; LeJeune et al., 2020; Yao et al.,
2021; Yu et al., 2018; Mohtashami et al., 2021; Yuan et al., 2019; Dun et al., 2019; Wolfe et al.,
2021) and communication-efficient distributed training methods (Vogels et al., 2019; Wang et al.,
2021; Yuan et al., 2019; Dun et al., 2019; Wolfe et al., 2021) deviate from this narrative: One would
–explicitly or implicitly– train smaller, randomly-selected, model versions within the large dense
network, in an iterative fashion. This raises the question:

“Can one meaningfully train an overparameterized ML model
by iteratively training and combining together smaller versions of it?”

We provide a positive answer to this question for single-hidden layer perceptrons with ReLU activa-
tions. This is a non-trivial, non-convex problem setting, that has been used extensively in proving the
behavior of training algorithms on neural networks (Du et al., 2018; Zou et al., 2020; Soltanolkotabi
et al., 2018; Oymak & Soltanolkotabi, 2019; Li et al., 2020; Oymak & Soltanolkotabi, 2020).
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Figure 1: Training a single hidden-layer perceptron using multiple randomly masked subnetworks.
Here, f(W,x) denotes the full model with weight W, and fml

k
(W,x) denotes the surrogate model

(subnetwork) with only active neurons dictated by the mask ml
k at k-th iteration for subnetwork l.

Let us first describe briefly the scenario considered here; this is depicted in Figure 1. Given a single
hidden-layer perceptron Fig.1(a), we sample masks within one training step Fig.1(c), each mask
deactivating a subset of the neurons of the original network’s hidden layer. In a way, each mask
defines a surrogate model, as in Fig.1(b), based on the original network, leading to a collection of
subnetworks. These surrogates independently update their own parameters (possibly on different
data shards), by performing a number of (stochastic) gradient descent steps. Lastly, we update the
weights of the original network by aggregating the parameters of the subnetworks, before the next
iteration starts. Note that multiple masks could share active neurons. When aggregating the updates,
we take the mean of the updated values across all subnetworks that have these neurons active.

Motivation and connection to existing methods. Standard gradient descent computes updates over
all the weights per iteration, based on a loss function. The present methodology computes updates
over weight subsets, based on the generated masks: i.e., the weight updates relate to different loss
functions, each depending on the output of a different subnetwork. When the sampled mask leaves
all neurons active, the training scheme is the same as in training the whole model. Yet, the same
framework connects with existing techniques for training deep neural networks.

Dropout regularization. Dropout (Srivastava et al., 2014; Wan et al., 2013; Gal & Ghahramani,
2016; Courbariaux et al., 2015) is a widely-accepted technique against overfitting in deep learn-
ing. In each training step, a random mask is generated from some pre-defined distribution, and
used to mask-out part of the neurons in the neural network. Later variants of dropout include the
drop-connect (Wan et al., 2013), multi-sample dropout (Inoue, 2019), Gaussian dropout (Wang &
Manning, 2013), and the variational dropout (Kingma et al., 2015). Here, we restrict our attention
to the vanilla dropout, and the multi-sample dropout. The vanilla dropout corresponds to our frame-
work, if in the latter we sample only one mask per iteration, and let the subnetwork perform only
one gradient descent update. The multi-sample dropout extends the vanilla dropout in that it sam-
ples multiple masks per iteration. For regression tasks, our theoretical result implies convergence
guarantees for these two scenarios on a single hidden-layer perceptron.

Distributed ML training. Recent advances in distributed model/parallel training have led to variants
of distributed gradient descent protocols. Instead of centrally aggregating gradient updates per it-
eration, distributed local SGD (Mcdonald et al., 2009; Zinkevich et al., 2010; Zhang & Ré, 2014;
Zhang et al., 2016) updates all the model parameters only after several local steps are performed
per compute node. This reduces synchronization and thus allows for higher hardware efficiency
(Zhang et al., 2016). Yet, all training parameters are updated per outer step, which could be com-
putationally and communication inefficient. The Independent Subnetwork Training protocol (Yuan
et al., 2019; Dun et al., 2019; Wolfe et al., 2021) goes one step further: it combines model- and
parallel-training methodologies, with local SGD motions to minimize communication and computa-
tional bottlenecks, simultaneously. In particular, IST splits the model vertically, where each machine
contains all layers of the neural network, but only with a (non-overlapping) subset of neurons be-
ing active in each layer. Multiple local SGD steps can be performed without the workers having to
communicate. Yet, the theoretical understanding of IST is currently missing. Our theoretical result
implies convergence guarantees for IST for a single hidden-layer perceptron, and provides insights
on how the number of compute nodes affects the performance of the overall protocol.

Contributions. The present training framework naturally generalizes the approaches above. Yet,
current literature –more often than not– omits any theoretical understanding for these scenarios,
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even for the case of shallow MLPs. While handling multiple layers is a more desirable scenario (and
is, indeed, considered as future work), our presented theory illustrates how training and combining
multiple randomly masked surrogate models behaves. Our findings can be summarized as follows:

• We provide convergence rate guarantees for i) dropout regularization (Srivastava et al., 2014),
ii) multi-sample dropout (Inoue, 2019), iii) and multi-worker IST (Yuan et al., 2019), given a
regression task on a single-hidden layer perceptron.

• We show that the Neural Tangent Kernel (NTK) (Jacot et al., 2018) of surrogate models stays close
to that with initial weights; this implies that it stays close to the infinite width NTK. Consequently,
our work shows that training over surrogate models still enjoys linear convergence.

• For subnetworks defined by Bernoulli masks with a fixed distribution parameter, we show that
the expectation of aggregated gradient in the first local step is a biased estimator of the gradient
computed on the whole network, with the bias term decreasing as the number of subnetworks
grows. Moreover, the aggregated gradient starting from the second local step stays close to the
aggregated gradient of the first local step. This finding leads to linear convergence of the above
training framework with an error term under Bernoulli masks.

• For masks sampled from categorical distribution, we provide tight bounds i) on the average loss
increase, when sampling a subnetwork from the whole network; ii) on the loss decrease, when
the independently trained subnetworks are combined into the whole model. This finding leads to
linear convergence with a more desirable error term than the Bernoulli mask scenario.

Challenges. Much work has been devoted to analyzing the convergence of neural networks based on
the NTK perspective (Jacot et al., 2018); see the Related Works section below. The literature in this
direction notice that the NTK remains roughly stable throughout training. Therefore, the network
output can be approximated by the linearization defined by the NTK. Yet, training with randomly
masked neurons poses additional challenges: i) With a randomly generated mask, the NTK changes
even with the same set of weights. Thus, analyzing the convergence of neural networks with masked
neurons requires careful treatment of the surrogate models’ NTKs. ii) Each gradient defined by
the subnetwork is a biased estimator of the gradient computed on the whole network, even in the
first step of the subnetwork update. iii) From the objective perspective, the non-linear activation
function and the gradient aggregation makes the function represented by the updated whole network
not necessarily equal to the linear combination of the updated subnetworks. These three challenges
complicate analysis, thus driving us to treat the NTK, gradient, and combined network function with
special care. We will resolve these difficulties in the proof of the three main theorems.

2 RELATED WORKS

The NTK enabled more refined analysis of training overparameterized neural networks (Jacot et al.,
2018; Du et al., 2018; Oymak & Soltanolkotabi, 2020; Song & Yang, 2020; Ji & Telgarsky, 2020;
Su & Yang, 2019; Arora et al., 2019; Mianjy & Arora, 2020; Huang et al., 2021). NTKs can be
viewed as the reproducing kernels of the function space defined by the neural network structure,
and are constructed using the inner product between gradients of pairs of data points. With the
observation that the NTK stays roughly the same with sufficient overparameterization, recent work
has shown that (stochastic) gradient descent achieves zero training loss on shallow neural networks
for regression task, even if when the data-points are randomly labeled (Du et al., 2018; Oymak &
Soltanolkotabi, 2020; Song & Yang, 2020). Later work characterizes the loss update in terms of the
NTK-induced inner-product of the label vector, and notices that, when the label vector aligns with
the top eigenvectors of the NTK, training achieves a faster convergence rate (Arora et al., 2019).

A different line of work explores the structure of the data-distribution in classification tasks, by as-
suming separability when mapped to the Hilbert space induced by the partial application of the NTK
(Ji & Telgarsky, 2020; Mianjy & Arora, 2020). Rather than depending on the stability of NTK, the
crux of these works relies on the small change in the linearization of the network function. This line
of work requires milder overparameterization, and can be easily extended to training stochastic gra-
dient descent without changing the overparameterization requirement. The above literature assumes
all the parameters are updated per iteration.

There is literature devoted to the analysis of dropout training. For shallow linear neural networks,
(Senen-Cerda & Sanders, 2020a) give asymptotic convergence rate by carefully characterizing the
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local minimas. For deep neural networks with ReLU activations, (Senen-Cerda & Sanders, 2020b)
shows that the training dynamics of dropout converge to a unique stationary set of a projected sys-
tem of differential equations. Under NTK assumptions, (Mianjy & Arora, 2020) shows sublinear
convergence rate for an online version for dropout in classification tasks. Our main theorem implies
linear convergence rate of the training loss dynamic for the regression task on a shallow neural
network with ReLU activations.

Theoretical work on Federated Learning (FL) also focuses on the convergence of neural network
training. FL-NTK (Huang et al., 2021) characterize the asymmetry of the NTK matrix due to the
partial data knowledge. For non-i.i.d. data distribution, (Deng & Mahdavi, 2021) proves conver-
gence for a shallow neural network by analyzing the semi-Lipschitzness of the hidden layer. Our
work differs since we consider training a partial model with the whole dataset. Lastly, there is recent
work on training partially masked neural networks (Mohtashami et al., 2021). The authors consider
minimizing a differentiable objective function under Lipschitz assumptions. We consider the more
frequently used setting of a one-hidden layer perceptron with non-differentiable activation.

3 TRAINING WITH RANDOMLY MASKED NEURONS

We use bold lower-case letters (e.g., a) to denote vectors, bold upper-case letters (e.g., A) to denote
matrices, and standard letters (e.g., a) for scalars. ‖a‖2 stands for the `2 (Euclidean) vector norm,
‖A‖2 stands for the spectral matrix norm, and ‖A‖F stands for the Frobenius norm. Unless other-
wise stated, p denotes the number of subnetworks, and l ∈ [p] its index; K denotes the number of
global iterations and k ∈ [K] its index; τ is used for the number of local iterations and t ∈ [τ ] its
index. We use Mk to denote the mask at iteration k, and E[Mk][·] = EM0,...,Mk

[·] to denote the total
expectation over masks M0, . . . ,Mk. We use P(·) to denote the probability of an event, and I{·} the
indicator function. For distributions, we useN (µ,Σ) to denote the Gaussian distribution with mean
µ and variance Σ. We use Bern(ξ) to denote the Bernoulli distribution with P(x = 1) = ξ for
x ∼ Bern(ξ). The categorical distribution over p categories is determined by parameter ξ ∈ Rp and
produces random variables x ∈ [p] such that P(x = i) = ξi. In this paper, we use a one-hot output
of categorical distribution by treating random variables as one-hot vectors x ∼ Categorical(ξ),
with P(xi = 1) = ξi. For a complete clarification of the notations, please refer to Table 1.

3.1 SINGLE HIDDEN-LAYER NEURAL NETWORK WITH RELU ACTIVATIONS

Algorithm 1 RandomlyMaskedTraining

1: Initialize W0,a
2: for k = 0, . . . ,K − 1 do
3: Sample mask Mk ∼ D
4: for l = 1, . . . , p do
5: Wl

k,0 ←Wk

6: for t = 0, . . . , τ − 1 do

7: Wl
k,t+1 ←Wl

k,t − η
∂L

ml
k
(W)

∂wr
8: end for
9: ∆Wl

k ←Wl
k,τ −Wk

10: end for
11: for r = 1, . . . ,m do
12: wk+1,r ← wk,r + ηk,r

∑p
l=1 ∆wl

k,r

13: end for
14: end for

We consider the single hidden-layer neural net-
work with ReLU activations, as in:

f(W,a,x) =
1√
m

m∑
r=1

arσ(〈wr,x〉)

:= f(W,x).

Here, W = [w1, . . . ,wm]
> ∈ Rm×d is

the weight matrix of the first layer, and a =

[a1, . . . , ar]
> ∈ Rm is the weight vector of the

second layer. We assume that each wr is ini-
tialized based onN (0, κ2I). Each weight entry
ar in the second layer is initialized uniformly at
random from {−1, 1}. As in (Du et al., 2018;
Zou et al., 2020; Soltanolkotabi et al., 2018;
Oymak & Soltanolkotabi, 2019; Li et al., 2020;
Oymak & Soltanolkotabi, 2020), a is fixed.

Consider a p-subnetwork computing scheme.
In the k-th global iteration, we consider each binary mask Mk ∈ {0, 1}m×p to be composed of
subnetwork masks ml

k ∈ {0, 1}m for l ∈ [p]. The r-th entry of ml
k is denoted as ml

k,r. Let
Xk,r =

∑p
l=1m

l
k,r denote the number of subnetworks that update neuron r in global iteration k.

Let Nk,r = max{Xk,r, 1} to be the normalizer of the aggregated gradient, N⊥k,r = min{Xk,r, 1} to
be the indicator of whether a neuron is selected by at least one subnetwork. The surrogate function
defined by a subnetwork mask ml

k is given by:
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fml
k
(W,x) =

1√
m

m∑
r=1

arm
l
k,rσ(〈wr,x〉).

With colored text, we highlight the differences between the full model and the surrogate functions.
ξ is a constant to be defined later on, conveniently selected by our theory. We consider training
the neural network using the regression loss. Given a dataset (X,y) = {(xi, yi)}ni=1, the func-
tion output on the whole dataset is denoted as f(W,X) = [f(W,x1), . . . , f(W,xn)]. Then, the
regression loss of a surrogate model is given by:

Lml
k
(W) =

1

2

∥∥∥y − fml
k
(W,X)

∥∥∥2
2
.

The surrogate gradient is computed as:
∂Lml

k
(W)

∂wr
=

1√
m

n∑
i=1

arm
l
k,r

(
fml

k
(W,xi)− yi

)
xiI{〈wr,xi〉 ≥ 0}.

Moreover, we define the global aggregation step size as ηk,r =
N⊥k,r
Nk,r

. Within this setting, the general
training algorithm is given by Algorithm 1.

4 CONVERGENCE ON TWO-LAYER RELU NEURAL NETWORK

We often assume that each entry in the mask ml
k,r ∼ Bern(ξ) is sampled independently, unless

otherwise stated. Here, ξ ∈ (0, 1) represents the Bernoulli distribution parameter. Since the forward
pass of the surrogate function is a linear combination of ξ-proportion of the neurons’ output, we
multiply each neuron output by a factor of ξ to keep the overall output scaling consistent, as in
(Mianjy & Arora, 2020). For notation clarity, we define:

u
(i)
k =

1√
m

m∑
r=1

arξσ(〈wk,r,xi〉) =
ξ√
m

m∑
r=1

arσ(〈wk,r,xi〉).

We focus on the behavior of the following loss, computed on the whole network over iterations k:

Lk = ‖y − uk‖22, where uk =
[
u
(1)
k , . . . , u

(n)
k

]
.

This is the regression loss over iterations k between observations y and the learned model uk.

Properties of subnetwork NTK. Recent works on analyzing the convergence of gradient descent
for neural networks consider approximating the function output uk with the first order Taylor ex-
pansion (Du et al., 2018; Arora et al., 2019; Song & Yang, 2020). For constant step size η, taking
the gradient descent’s –Wk+1 = Wk − η∇WL(Wk)– first-order Taylor expansion, we get:

u
(i)
k+1 ≈ u

(i)
k +

〈
∇Wu

(i)
k ,Wk+1 −Wk

〉
≈ u(i)k − ξη

n∑
j=1

H(k)ij(u
(j)
k − yj), (1)

where H(k) ∈ Rn×n is the finite-width NTK matrix of iteration k, given by

H(k)ij =
ξ

m
〈xi,xj〉

m∑
r=1

I{〈wk,r,xi〉 ≥ 0, 〈wk,r,xj〉 ≥ 0}.

Compared with previous definition of finite-width NTK, we have an additional scaling factor ξ. This
is because based on our later definition of masked-NTK, we would like the masked-NTK to be an
unbiased estimator of the finite-width NTK. In the overparameterized regime, the change of the net-
work’s weights is controlled in a small region around initialization. Therefore, the change of H(k)
is small, staying close to the NTK at initialization. Moreover, the latter can be well approximated
by the infinite-width NTK:

H∞ij = ξ · Ew∼N (0,I) [〈xi,xj〉I{〈w,xi〉 ≥ 0, 〈w,xj〉 ≥ 0}] .

(Du et al., 2018) shows that H∞ is positive definite.
Theorem 1. (Du et al., 2018) Denote λ0 := λmin(H∞), the minimum eigenvalue of H∞. If for any
i 6= j it holds that the points xi,xj are not co-aligned, i.e., xi 6‖ xj , then we have λ0 > 0.
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With H(k) staying sufficiently close to H∞, (Du et al., 2018; Arora et al., 2019; Song & Yang,
2020) show that λmin(H(k)) ≥ λ0

2 > 0. Moreover, Equation 1 implies that
uk+1 − uk ≈ −ξηH(k)(uk − y),

that further leads to linear convergence rate:
Lk+1 ≈ Lk + 〈∇ukLk,uk+1 − uk〉 ≈ Lk − ξη〈uk − y,H(k)(uk − y)〉 ≈ (1− ξηλ0)Lk.

In rigorous NTK analysis, the Taylor expansion for both uk and Lk produces error term that reduces
the convergence rate from ηλ0 to γηλ0 with γ ∈ (0, 1) being a constant.

Yet, for neural networks with randomly masked neurons, the situation is trickier: in each iteration,
due to the different masks, the NTK changes even when the weights stay the same. Since, the NTK
of the masked network changes as i) the mask changes, and ii) the network weight changes, we
define the masked-NTK induced by the network weight in k-th iteration and the mask in the k′-th
iteration as follows:
Definition 1. Let ml

k′ be the mask of subnetwork l in iteration k′. We define the masked-NTK in
global iteration k and local iteration t induced by ml

k′ as:(
ml
k′ ◦ H(k, t)

)
ij

= 1
m 〈xi,xj〉

m∑
r=1

ml
k′,rI{〈wl

k,t,r,xi〉 ≥ 0, 〈wl
k,t,r,xj〉 ≥ 0}.

with wl
k,t,r denoting the rth weight vector in the kth global iteration and tth local iteration.

Here, with colored text we highlight the main differences to the common NTK definition. Note
that although we are only interested in the masked-NTK with k = k′, to facilitate our anal-
ysis on the minimum eigenvalue of masked-NTK, we also allow k 6= k′. Note that we have
EMk

[
ml
k ◦H(k, 0)

]
= H(k). Throughout iterations of the algorithm, the following theorem shows

that all masked-NTKs stay sufficiently close to the infinite-width NTK.
Theorem 2. Suppose the number of hidden nodes satisfies m = Ω (n2 log(Kpn/δ)/ξλ2

0). If for all k, t
it holds that ‖wk,t,r −w0,r‖2 ≤ R := κλ0

8n , then with probability at least 1− δ, for all k, k′ ∈ [K]
and all l ∈ [p], we have:

λmin(ml
k′ ◦H(k, t)) ≥ λ0

2 .

Note that the above theorem relies on the small weight change in iteration (k, t). In order to guar-
antee each subnetwork’s loss decrease, we need to ensure that the i) the weight change is bounded
up to global iteration k (this implies that when a subnetwork is sampled from the whole network, its
weights do not deviate much from the initialization); ii) the weight change during the local training
of the subnetwork is also bounded. This requires an upper bound on the sampled subnetwork’s loss
before the local training starts. The following hypothesis sets up the “skeleton” to construct different
theorems, based on different problems considered.
Hypothesis 1. Assume that for all i ∈ [n] we have ‖xi‖2 = 1. Fix the number of global iterations
K. Suppose the number of hidden nodes satisfies m = Ω (n2 log(Kpn/δ)/ξλ2

0), and suppose we use
a constant step size η = O (λ0/n2). Then, if for all k′ ≤ k the following convergence holds with
convergence rate α ∈ (0, 1) and error term αB1 > 0:

E[Mk′ ],W0,a

[
‖y − uk′+1‖22

]
≤ (1− α)E[Mk′−1],W0,a

[
‖y − uk′‖22

]
+ αB1. (2)

and, further, the weight perturbation before iteration k is bounded by

‖wk,r −w0,r‖2 + 2ητ
√

2nK
mδ

(
1

α
E[Mk−1],W0,a [‖y − uk‖2] + (K − k)B

)
≤ R (3)

with B =
√

B1

α + κ
√
ξ(1− ξ)pn, then, with probability at least 1− 4δ, we have:

‖y − ûlk,t+1‖22 ≤
(

1− ηλ0
2

)
‖y − ûlk,t‖22, (4)

with the surrogate function of the subnetwork function defined by mask l in global iteration k and
local iteration t denoted as

û
l(i)
k,t = fml

k
(Wl

k,t,xi) ûlk,t =
[
û
l(1)
k,t , . . . , û

l(n)
k,t

]
and the local weight perturbation satisfies that for all t ∈ [τ ]:

‖wk,t,r −wk,r‖ ≤ ητ
√
2nK√
mδ

E[Mk−1],W0,a [‖y − uk‖2] + 2ηκn

√
2ξ(1−ξ)pK

mδ (5)

6



Under review as a conference paper at ICLR 2022

The hypothesis above states that, in a given global step k, given the linear convergence of the loss
(Equation 2) and a small weight perturbation guarantee (Equation 3) in previous iterations k′ ≤ k,
each subnetwork’s local loss also decreases linearly (Equation 4), as well as the weight perturbation
remains bounded (Equation 5). Yet, the above hypothesis does not connect the subnetwork’s loss
with the whole network’s loss through the sampling and aggregation process.

This is the goal in the sections that follow. Our aim is to turn Hypothesis 1 into a series of specific
theorems that cover different cases. In particular, we provide a convergence result for Algorithm 1
for i) masks with i.i.d. Bernoulli entries, where we leverage the aggregation of gradients, and prove
the non-decrease property of subnetwork’s loss to bound the difference between the aggregated
gradient at local iteration t and local iteration 1; and ii) masks with i.i.d Categorical rows, where
we leverage the loss change in sampling and aggregating subnetworks, and depend on the linear
convergence to show loss decrease. In both settings, we prove the bound on weight perturbation
of each subnetwork, as hypothesized above, to bound the aggregated weight perturbation. Also, in
both settings, we show that the required condition in Hypothesis 1 can be satisfied.

4.1 MAIN RESULTS

While the local gradient descent for each subnetwork makes progress with high probability, when a
large network is split into small subnetworks, the expected error on the dataset increases. Since the
masks are sampled i.i.d. from the joint Bernoulli distribution, the function of each sub-network is
an unbiased estimation of the function represented by the large network. Therefore, we have:

EMk

[
‖y − ûlk‖22

]
= ‖y − uk‖22 + EMk

[
‖ûlk − uk‖22

]
.

When analyzing the convergence, the last term needs to be carefully dealt with. Moreover, it is not
trivial to show that, when combining the updated network of the local steps, the loss computed on the
whole network is smaller than or equal to the error of each sub-network. Resolving these technical
difficulties, we present our general result for masks sampled from a joint Bernoulli distribution:
Theorem 3. Let the assumption of Theorem 1 hold, i.e., λ0 ≥ 0, and for all i ∈ [n], we have
‖xi‖2 = 1 and |yi| ≤ C − 1 for some C ≥ 0. Fix the number of global iterations to K and the
number of local iterations to τ . Assume for each global iteration k, the mask Mk is generated such
that ml

k,r ∼ Bern(ξ) with ξ ∈ (0, 1]. Let the number of hidden neurons satisfy

m = Ω

(
K

δ
max

{
n4

κ2ξθλ40
,
nK2B1

κ2θλ20
,K2p

})
, (6)

and fix the local stepsize to η = O
(

λ0

max{n,p}nτ

)
. Then with probability at least 1− δ we have

E[Mk′−1]

[
‖y − uk′‖22

]
≤
(
1− 1

4ηθτλ0
)k′ ‖y − u0‖22 +B1, (7)

with θ = 1− (1− ξ)p and

B1 = 64(1−ξ)2n3d
mλ2

0
+ 68ητ(θ−ξ2)n3κ2

pλ0
+ (θ−ξ2)nκ2

6τ2p + (τ−1)2pC1

24τ2

+ 8η2(τ−1)2n4pC1

λ2
0

+ 4η(τ − 1)pnC1,

C1 =
4θ2(1− ξ)nκ2

p
.

Overall, given the overparameterization requirement in Equation 9, the neural network training error,
as expressed in Equation 7, drops linearly within an error region, defined byB1 in Equation 7. While
this theorem seems complicated, we can make mild assumptions and simplify the key messages of
this form. In the following sections, we assume that max{K, d, p} ≤ n and κ = n−

1
2 .

Dropout. The dropout algorithm (Srivastava et al., 2014) corresponds to the case τ = 1, p = 1. For
this assignment, we arrive at the following corollary.
Corollary 1. Under the assumptions in Theorem 3, and the additional assumption that
max{K, d} ≤ n, fix the number of iterations toK, the step size to η = O (λ0/n2), and the number of
hidden neurons satisfies m = Θ (n5K/ξ2λ4

0δ). Suppose we run the dropout algorithm on a two-layer
ReLU neural network. Then, with probability at least 1− δ, we have:

E[Mk′−1]

[
‖y − uk′‖22

]
≤
(
1− 1

4ηξλ0
)k′ ‖y − u0‖22 +O (1− ξ)

7
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Typically, 1 − ξ is usually referred to as the ”dropout rate”. In our result, as ξ approaches 0, which
corresponds to the scenario that no neurons are selected, the convergence rate approaches 1, meaning
that the loss hardly decreases. In the mean time, the error term remains constant. On the contrary,
as ξ approaches 1, which corresponds to the scenario that all neurons are selected, we get the same
convergence rate of 1−O (ηλ0) as in previous literature, and the error term decreases to 0.

Multi-Sample Dropout. The multi-sample dropout (Inoue, 2019) corresponds to the scenario where
τ = 1, p ≥ 1. Our corollary below indicates how increasing p helps the convergence.

Corollary 2. Under the assumptions in Theorem 3, and the additional assumption that
max{K, d} ≤ n, fix the number of iterations to K, the step size to η = O (λ0/n2), and let the
number of hidden neurons satisfy m = Θ (n5K/ξθλ4

0δ). Suppose we run the p-sample dropout algo-
rithm on a two-layer ReLU neural network. Then, with probability at least 1− δ, we have:

E[Mk′−1]

[
‖y − uk′‖22

]
≤
(
1− 1

4ηθλ0
)k′ ‖y − u0‖22 +O

(
(1−ξ)2
nK + θ−ξ2

p

)
.

Based on this corollary, increasing the number of subnetworks p improve the convergence rate since
θ increases as p increases, due to the increasing coverage probability of each neuron. Moreover,
increasing the number of subnetworks help decreasing the error term even when the dropout rate ξ
is fixed. After p is as large as nK, the error term become dominated by the term O ((1− ξ)2/nK).

Multi-Worker IST. The multi-worker IST algorithm (Yuan et al., 2019) is very similar to the general
scheme with p ≥ 1 and τ ≥ 1, but with the additional assumption that max{K, d, p} ≤ n, and a
special choice of initialization κ = n−

1
2 .

Corollary 3. Under the assumptions in Theorem 3, fix the number of iterations toK, the step size to
η = O (λ0/nτ max{n, p}), and let the number of hidden neurons satisfy m = Θ (n5K/ξθλ4

0δ). Suppose
we run the IST algorithm on a two-layer ReLU neural network. Then, with probability at least 1−δ,
we have

E[Mk′−1]

[
‖y − uk′‖22

]
≤
(
1− 1

4ηθτλ0
)k′ ‖y − u0‖22 +O

(
(1−ξ)2
nK + θ−ξ

p + (τ−1)2θ2(1−ξ)
τ2

)
.

While this corollary presents a convergence result for the multi-worker IST, which is missing in
the current literature, it also bears the problem that, when τ > 1, the last error term (τ−1)2θ2(1−ξ)

τ2

potientially increase as the number of workers (subnetworks) increase. This could again be due to
the fact that some neurons are shared among workers and the gradients from the individual workers
are normalized during aggregation. We present an alternative theorem that resolves this issue, by
making another assumption on the masks generated in each global iteration. In particular, we assume
that, for a p-worker scenario, for each neuron, the mask is generated from a categorical distribution,
where each worker uses the same probability. In this way, the masks endorsed by each worker are
non-overlapping (as stated in (Yuan et al., 2019)), and the union of the masks covers the whole set
of hidden neurons. The following theorem presents the convergence result under this setting.

Theorem 4. Suppose the assumption of Theorem 1 holds, i.e. λ0 > 0, and for all i ∈ [n], we have
‖xi‖2 = 1 and |yi| ≤ C − 1 for some C ≥ 1. Fix the number of global iterations to K, and the
number of local iterations to τ . Let ξ = 1/p · 1p, and suppose that for each r ∈ [m], k ∈ [K],
the mask is generated such that mk,r ∼ Categorical(ξ). Let the number of hidden neurons satisfy
m = Ω (τ2n2Kmax{n2, d}/λ4

0δ). Then, with constant local step-size η = (λ0/n2) we have that:

E[Mk−1],W0,a

[
‖y − uk‖22

]
≤
(

1
2 + 1

2

(
1− ηλ0

2

)τ)k
· C2n+O

(
τ(p−1)2n3d

λ2
0m

)
,

holds with probability at least 1− δ.

This theorem has a couple noticeable properties. First, when the number of workers p = 1, i.e.,
the scenario of multi-worker IST reducing to the full-network training, the error term disappears,
driving further connections between regular and IST training. Second, one can arbitrarily increase
the overparameterization parameter m, which further leads to error term decrease: this suggests that
IST training could be benefited by wider models, an observation made in (Yuan et al., 2019; Dun
et al., 2019; Wolfe et al., 2021).

8
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(a) (b) (c)

Figure 2: Validation experiments on a single hidden layer perceptron.

5 EXPERIMENTS

We validate our theory with the Communities and Crime Data Set
(US Department of Commerce, Bureau of the Census, 1992; Dua & Graff, 2017; Redmond &
Baveja, 2002). This dataset has 128 features, and we take a subset of 100 samples from the dataset.
We run Algorithm 1 on a one hidden layer perceptron with 4000 hidden neurons. We fix the number
of global iteration to K = 200 and use a constant step size.

In Figure 2a, we plot the logarithm of the mean and variance of the training error dynamic with
respect to the K (for clarity, we only plot the first 125 iterations), which includes the sampling step,
local training steps, as well as the gradient aggregation step. Notice that there are three types of
dynamics, as annotated in the figure: (1) A smooth decrease of training error: This corresponds to
subnetworks’ local training, which is supported by Hypothesis 1 that each subnetwork makes local
progress. (2) The sudden decrease of training error: This corresponds to the aggregation of locally-
trained subnetworks, and is consistent with our proof in Theorem 4. (3) The sudden increase of
training error: This corresponds to re-sampling subnetworks; according to our theory, the expected
average training error increases after sampling.

Figure 2b and Figure 2c provide heatmap results that demonstrate the change of the error term
as we vary the number of subnetworks, number of local steps, and the selection probability. In
Figure 2b, the subnetworks are generated using Bernoulli masks, and training process with a fixed
number of local steps. Note that, as we fix the number of subnetworks and increase the selection
probability, the error decreases (lighter colors in heatmap). Moreover, if we fix the number of
selection probability and increase the number of subnetworks, the training error also decreases. This
is consistent with Theorem 3. In Figure 2c, the subnetworks are generated using categorical masks.
Since for categorical masks, the selection probability is determined by the number of subnetworks,
we instead vary the number of local steps. Note that the training error increases both when we
increase the number of subnetworks (and thus resulting in a smaller subnetwork for each worker)
and increasing the number of local steps. This is consistent with our theoretical result in Theorem 4.

6 CONCLUSION

We prove linear convergence up to an error region when training and combining subnetworks in
a single hidden-layer perceptron scenario. Our work extends results on dropout, multi-sample
dropout, and the Independent Subnet Training, and has broad implications on how the sampling
method, the number of subnetworks, and the number of local steps affect the convergence rate and
the error region. While our work focus on the single hidden-layer perceptron, we consider multi-
layer perceptrons as an interesting direction: we conjecture that a more refined analysis of each
layer’s output is required (Du et al., 2019; Allen-Zhu et al., 2019b). Moreover, focusing on the
convergence of a stochastic algorithm for our framework is a different research direction.

9
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7 REPRODUCIBILITY STATEMENT

In the theorectical results of this paper, we make assumptions on the dataset similar to previous
work (Du et al., 2018; Song & Yang, 2020; Arora et al., 2019), where i) no two input data points
are co-aligned, ii) the input data points are normalized, and iii) the value of the labels are bounded.
We point out that i) is a standard assumption in machine learning settings, since co-aligned data
points with different labels cannot be fitted to zero training error, and ii) and iii) can ba achieved by
normalizing the dataset. Moreover, the additional assumption of fixing the number of global itera-
tions K is also common in previous literature (Su & Yang, 2019; Allen-Zhu et al., 2019a). Although
increasing K requires a larger overparameterization, we note that, since the learning rate is inde-
pendent of K, achieving an ε-error near the error region requires K = Ω ( log n/ε/log(1− ηθτλ0/4)

−1).
This shows that K typically do not affect the overparameterization much. Lastly, we provide proof
of Theorem 2, Hypothesis 1, Theorem 3 and Theorem 4 in section B, C D, and F in the appendix,
respectively. We also provide code for running the experiments as supplementary material.
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A PRELIMINARY AND DEFINITION

In the proofs of our theorems, we use extensively the following tools.
Definition 2. (Sub-Gaussian Random Variable) A random variable X is κ2-sub-Gaussian if

E[etx] ≤ eκ
2t2

2

Definition 3. (Sub-Exponential Random Variable) A random variable with mean E[X] = µ is
(κ′, α)-sub-exponential if there exists non-negative (κ′, α) such that for all t ≤ α−1

E[et(X−µ)] ≤ e− t
2κ′2
2

Property 1. (Sub-Exponential Tail Bound) For a (κ′, α)-sub-exponential random variable X with
E[X] = µ, then we have

P(X > µ+ t) ≤

{
e−

t2

2κ′2 if 0 ≤ t ≤ κ′2

α

e−
t2

2α if t > κ′2

α

Property 2. (Markov’s Inequality) For a non-negative random variable X , we have

P(X ≥ a) ≤ 1

a
E[X]

Property 3. (Hoeffding’s Inequality for Bounded Random Variables) Let X1, . . . , Xn be indepen-
dent random variables bounded by |Xi| ≤ 1 for all i ∈ [n]. Then we have

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ e−2nt

2

Property 4. (Berstein’s Inequality) Let X1, . . . , Xn be random variables with E[Xi] = 0 for all
i ∈ [n]. If |Xi| ≤M almost surely, then

P

(
n∑
i=1

Xi > t

)
≤ e
− t2/2∑n

j=1
E[X2

j
]+Mt/3

Property 5. (Jensen’s Inequality for Expectation) For a non-negative random variable X , we have

E
[
X

1
2

]
≤ (E[X])

1
2

Apart from the properties above, we also need the following definitions to facilitate our analysis.
First, we note that, in the following proofs, we let R = κλ0

192n . Define

Air = {∃w ∈ B(w0,r, R) : I{〈w,xi〉 ≥ 0} 6= I{〈w0,r,xi〉 ≥ 0}}
to denote the event that for sample xi, the activation pattern of neuron r may change through training
if the weight vector change is bounded in the R-ball centered at initialization. Moreover, let

Si = {r ∈ [m] : ¬Air}
S⊥i = [m] \ Si

(8)

to be the set of neurons whose activation pattern does not change for sample xi if the weight vector
change is bounded by the R-ball centered at initialization. Moreover, since we are interested in the
loss dynamic computed on the following function

u
(i)
k =

ξ√
m

m∑
r=1

arσ(〈wk,r,xi〉).

we denote the full gradient of loss with respect to each weight vector wr as

∂L(Wk)

∂wr
=

ξ√
m

n∑
i=1

arxi(u
(i)
k − yi)I{〈wk,r,xi〉 ≥ 0}

15
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B PROOF OF THEOREM 2

Recall the definition of masked-NTK

(ml
k′ ◦H(k, t))ij =

1

m
〈xi,xj〉

m∑
r=1

ml
k′,rI{

〈
wl
k,t,r,xi

〉
≥ 0,

〈
wl
k,t,r,xj

〉
≥ 0}

To start with, we fix k′ ∈ [K], l ∈ [p], and i, j ∈ [n]. In this case, let

hr = ml
k′,r 〈xi,xj〉 I{〈w0,r,xi〉 ≥ 0, 〈w0,r,xi〉 ≥ 0}

Then we have

(ml
k′ ◦H(0, 0))ij =

1

m

m∑
r=1

hr

Also we have

EMk,W [hr] = Ew∼N (0,I) [EMk
[hr]] = H∞ij

Note that for all r we have |hr| ≤ 1. Thus we apply Hoeffding’s inequality for bounded random
variables and get

P
(∣∣(ml

k′ ◦H(0, 0))ij −H∞ij
∣∣ ≥ t) = P

(∣∣∣∣∣ 1

m

m∑
r=1

hr −H∞ij

∣∣∣∣∣ ≥ t
)
≤ 2e−2mt

2

Apply a union bound over i, j gives that with probability at least 1− 2n2e−2mt
2

it holds that∣∣(ml
k′ ◦H(0, 0))ij −H∞ij

∣∣ ≤ t
for all i, j ∈ [n]. Therefore,

‖ml
k′ ◦H(0, 0)−H∞‖22 ≤ ‖ml

k′ ◦H(0, 0)−H∞‖2F

≤
n∑

i,j=1

∣∣(ml
k′ ◦H(0, 0))ij −H∞ij

∣∣2
≤ n2t2

Let t = λ0

4n gives

‖ml
k′ ◦H(0, 0)−H∞‖2 ≤

λ0
4

holds with probability at least 1− 2n2e−
mλ20
8n2 . Next we show that for all k ∈ [k] and t ∈ [τ ], as long

as ‖wk,t,r −w0,r‖2 ≤ R for all r ∈ [m], then it holds that

‖ml
k′ ◦H(k, t)−ml

k′ ◦H(0, 0)‖2 ≤ 2nκ−1R

Following the argument of (Song & Yang, 2020), lemma 3.2, we have

‖ml
k′ ◦H(k, t)−ml

k′ ◦H(0, 0)‖2F ≤
1

m2

n∑
i,j=1

(
m∑
r=1

sr,i,j

)2

with

sr,i,j = ml
k′,r

(
I{〈w0,r,xi〉 ≥ 0; 〈w0,r,xj〉 ≥ 0} − I{

〈
wl
r,k,t,xi

〉
≥ 0;

〈
wl
r,k,t,xj

〉
≥ 0}

)
Then sr,i,j = 0 if ¬Air and ¬Ajr happend. In other cases we have |sr,i,j | ≤ 1. Thus we have that
for all i, j ∈ [n]

EMk,W0 [sr,i,j ] = ξP (Air ∪Ajr) ≤
4ξR

κ
√

2π
≤ 2ξκ−1R

16
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and

EMk,W0

[
(sr,i,j − EMk,W0

[sr,i,j ])
2
]
≤ EMk,w0,r

[s2r,i,j ] ≤
4ξR

κ
√

2π
≤ 2ξκ−1R

Thus applying Bernstein inequality with t = ξκ−1R gives

P

(
1

m2

m∑
r=1

sr,i,j ≥ 3ξκ−1R

)
≤ exp

(
−mξR

10κ

)
Therefore, taking a union bound gives that, with probability at least 1− n2e−

mξR
10κ we have that

‖ml
k′ ◦H(k, t)−ml

k′ ◦H(0, 0)‖2 ≤ ‖ml
k′ ◦H(k, t)−ml

k′ ◦H(0, 0)‖F ≤ 3ξnκ−1R

Using R ≤ κλ0

12n gives ‖ml
k′ ◦ H(k, t) −ml

k′ ◦ H(0, 0)‖2 ≤ ξλ0

4 ≤ λ0

4 with probability at least

1− n2e−
mξλ0
12n . Therefore, we have

‖ml
k′ ◦H(k, t)−H∞‖2 ≤

λ0
2

which implies that λmin

(
ml
k′ ◦H(k, t)

)
≥ λ0

2 holds with probability at least 1 −

n2
(
e−

mξλ0
12n − 2e−

mλ20
8n2

)
for a fixed k′ ∈ [K] and l ∈ [p]. Taking a union bound over all k′

and l and plugging in the requirement m = Ω
(
n2 log Kpnδ

ξλ0

)
gives the desired result.

C PROOF OF HYPOTHESIS 1

In this proof, we follow the idea of (Du et al., 2018). However, the difference is that i) we use
our masked-NTK during the analysis, and ii) we use a different technique for bounding the weight
perturbation. We repeat the requirement stated in the theorem here:

Suppose that, for all k′ < k, the expected network loss enjoys a linear convergence with and addi-
tional error term

E[Mk],W0,a

[
‖y − uk′+1‖22

]
≤ (1− α)E[Mk−1],W0,a

[
‖y − uk′‖22

]
+ αB1

for some α ≤ 1, and

‖wk,r −w0,r‖2 + 2ητ

√
2nK

mδ

(
1

α
E[Mk−1],W0,a [‖y − uk‖2] + (K − k)B

)
≤ R

for all r ∈ [m] with

B =

√
B1

α
+ κ
√
ξ(1− ξ)pn

We start focusing on local iteration t ∈ [τ ]. We also assume that ‖wk,t′,r − w0,r‖2 ≤ R, and the
probability bound of Lemma 23 holds, and show the local convergence. As in previous works, we
will show that this assumption actually holds by induction after we show the local convergence. For
the local convergence, we are interested in

‖y − ûlk,t+1‖22 = ‖y − ûlk,t‖22 − 2
〈
y − ulk,t, û

l
k,t+1 − ûlk,t

〉
+ ‖ûlk,t+1 − ûlk,t‖22

Again we define ûl(i)k,t+1 − û
l(i)
k,t = I

l(i)
1,k,t + I

l(i)
2,k,t with

I
l(i)
1,k,t =

1√
m

∑
r∈Si

arm
l
k,r

(
σ
(〈

wl
k,t+1,r,xi

〉)
− σ

(〈
wl
k,t,r,xi

〉))
I
l(i)
2,k,t =

1√
m

∑
r∈S⊥i

arm
l
k,r

(
σ
(〈

wl
k,t+1,r,xi

〉)
− σ

(〈
wl
k,t,r,xi

〉))

17
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with the definition of Si as defined in equation (8), and notice that, with the 1-Lipchitzness of ReLU,∣∣∣I l(i)2,k,t

∣∣∣ ≤ 1√
m

∑
r∈S⊥i

∣∣σ (〈wl
k,t+1,r,xi

〉)
− σ

(〈
wl
k,t,r,xi

〉)∣∣
≤ 1√

m

∑
r∈S⊥i

∥∥wl
k,t+1,r −wk,t,r

∥∥
2

≤ η√
m

∑
r∈S⊥i

∥∥∥∥∥∥
∂Lml

k

(
Wl

k,t

)
∂wr

∥∥∥∥∥∥
2

≤ η
√
n

m

∑
r∈S⊥i

∥∥y − ûlk,t
∥∥
2

≤ 4ηκ−1
√
nR‖y − ûlk,t‖2

where the last inequality uses |S⊥i | ≤ 4mκ−1R from Lemma 16. Therefore,

∣∣〈y − ûlk,t, I
l
2,k,t

〉∣∣ ≤ √nmax
i∈[n]

∣∣∣I l(i)2,k,t

∣∣∣ · ‖y − ûlk,t‖2 ≤ 4ηκ−1nR‖y − ûlk,t‖22

Similarly, we have

(
û
l(i)
k,t+1 − û

l(i)
k,t

)2
≤ 1

m

(
m∑
r=1

∥∥wl
k,t+1,r −wk,t,r

∥∥
2

)2

≤
m∑
r=1

∥∥wl
k,t+1,r −wk,t,r

∥∥2
2

≤ η2
m∑
r=1

∥∥∥∥∥∥
∂Lml

k

(
Wl

k,t

)
∂wr

∥∥∥∥∥∥
2

2

≤ η2n2‖y − ûlk,t‖22

Lastly, we define ml
k ◦H(k, t)⊥ with

(
ml
k ◦H(k, t)⊥

)
ij

=
1

m
〈xi,xj〉

∑
r∈S⊥i

ml
k,rI{〈wk,r,xi〉 ≥ 0, 〈wk,r,xj〉 ≥ 0}

and we have

I
l(i)
1,k,t =

1√
m

∑
r∈Si

arm
l
k,r

〈
wl
k,t+1,r −wk,r,xi

〉
I{〈wk,r,xi〉 ≥ 0}

= − η√
m

∑
r∈Si

arm
l
k,r

〈
∂Lml

k
(Wk,r)

∂wr
,xi

〉
I{〈wk,r,xi〉 ≥ 0}

=
η

m

∑
r∈Si

n∑
j=1

ml
k,r

(
yj − ûl(j)k,t

)
〈xi,xj〉 I{〈wk,r,xi〉 ≥ 0, 〈wk,r,xj〉 ≥ 0}

= η

n∑
j=1

(
ml
k ◦H(k, t)−ml

k ◦H(k, t)⊥
)
ij

(
yj − ûl(j)k,t

)
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Therefore,〈
y − ûlk,t, I

l
1,k,t

〉
= η

n∑
i,j=1

(
yi − ûl(i)k,t

) (
ml
k ◦H(k, t)−ml

k ◦H(k, t)⊥
)
ij

(
yj − ûl(j)k,t

)
= η

〈
y − ûk,t,

(
ml
k ◦H(k, t)−ml

k ◦H(k, t)⊥
)

(y − ûk,t)
〉

≥ ηλ0
2
‖y − ûlk,t‖22 − η‖ml

k ◦H(k, t)⊥‖2‖y − ûlk,t‖22

≥
(
ηλ0
2
− 4ηκ−1nR

)
‖y − ûlk,t‖22

where the last inequality follows from the fact that

‖ml
k ◦H(k, t)⊥‖22 ≤ ‖ml

k ◦H(k, t)⊥‖2F

=
1

m2

n∑
i,j=1

〈xi,xj〉 ∑
r∈S⊥i

I{〈wk,r,xi〉 ≥ 0, 〈wk,r,xj〉 ≥ 0}

2

≤ n2

m2
|S⊥i |2

= 16n2κ−2R2

Putting things together gives

‖y − ûlk,t+1‖22 ≤
(
1− ηλ0 + 16ηκ−1nR+ η2n2

)
‖y − ûlk,t‖22

Choose R ≤ κλ0

64n and η ≤ λ0

4n2 gives

‖y − ûlk,t+1‖22 ≤
(

1− ηλ0
2

)
‖y − ûlk,t‖22

Therefore, for all t ∈ [τ ] we have

‖y − ûlk,t‖22 ≤
(

1− ηλ0
2

)t
‖y − ûlk‖22

Next we bound the weight change during the local steps. We have

‖wk,t,r −wk,r‖2 ≤ η
t−1∑
t′=0

∥∥∥∥∥∥
∂Lmk

(
Wl

k,t

)
∂wr

∥∥∥∥∥∥
2

≤ η
√
n√
m

t−1∑
t′=0

‖y − ûlk,t′‖2

≤ ητ
√
n√
m
‖y − ûlk‖2

≤ ητ
√
n√
m

(
‖y − uk‖2 + ‖uk − ûlk‖2

)

Applying Markov’s inequality to the global convergence, with probabiltiy at least 1 − δ
2K , it holds

that

‖y − uk‖2 ≤
√

2K/δE[Mk−1],W0,a [‖y − uk‖2]

By Lemma 25, we have

EMk

[
‖uk − ûlk‖22

]
≤ 4ξ(1− ξ)nκ2

Thus with probability at least 1− δ
2pK it holds that

‖uk − ûlk‖2 ≤ 2κ
√

2ξ(1− ξ)npK/δ
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Plugging in gives

‖wk,t,r −wk,r‖ ≤
ητ
√

2nK√
mδ

E[Mk−1],W0,a [‖y − uk‖2] + 2ητκn

√
2ξ(1− ξ)pK

mδ

Since for iterations k′ ≤ k, we have

‖wk,r −w0,r‖2 + 2ητ

√
2nK

mδ

(
1

α
E[Mk−1],W0,a [‖y − uk‖2] + (K − k)B

)
≤ R

Since k < K and α ≤ 1, and

B =

√
B1

α
+ κ
√
ξ(1− ξ)pn ≥ κ

√
ξ(1− ξ)pn

we have that

‖wk,t,r −w0,r‖2 ≤ ‖wk,r −w0,r‖2 + ‖wk,t,r −wk,r‖2 ≤ R
which completes the proof.

D PROOF OF THEOREM 3

Before we start the proof, we introduce several notations. Define

I
(i)
1,k =

ξ√
m

∑
r∈Si

ar (σ(〈wk+1,r,xi〉)− σ(〈wk,r,xi〉))

I
(i)
2,k =

ξ√
m

∑
r∈S⊥i

ar (σ(〈wk+1,r,xi〉)− σ(〈wk,r,xi〉))

Let
I1,k =

[
I
(1)
1,k , . . . , I

(n)
1,k

]
and similarly,

I2,k =
[
I
(1)
2,k , . . . , I

(n)
2,k

]
Then we have u(i)k+1−u

(i)
k = I

(i)
1 + I

(i)
2 and uk+1−uk = I1,k + I2,k. Also, we define H(k)⊥ to be

H(k)⊥ij =
ξ

m

∑
r∈S⊥i

〈xi,xj〉 I{〈wk,r,xi〉 ≥ 0, 〈wk,r,xj〉 ≥ 0}

For k-th global iteration, first local iteration, we define the mixing gradient as

gk,r = ηk,r

p∑
l=1

∂Lml
k

(
Wl

k,0

)
∂wr

= ηk,r

p∑
l=1

∂Lml
k

(Wk)

∂wr

=
ηk,r√
m

p∑
l=1

n∑
i=1

ml
k,r(û

l(i)
k − yi)arxiI{〈wk,r,xi〉 ≥ 0}

=
1√
m

m∑
i=1

(f
(i)
k,r −N

⊥
k,ryi)arxiI{〈wk,r,xi〉 ≥ 0}

where we define the mixing function as

f
(i)
k,r = ηk,r

p∑
l=1

ml
k,rû

l(i)
k
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As usual, we let fk,r =
[
f
(1)
k,r , . . . , f

(n)
k,r

]
. We note that f (i)k,r has the form

f
(i)
k,r = ηk,r

p∑
l=1

ml
k,rû

(l(i)
k

=
1√
m

m∑
r′=1

ar

(
ηk,r

p∑
l=1

ml
k,rm

l
k,r′

)
σ(〈wk,r,xi〉)

Let νk,r,r′ = ηk,r
∑p
l=1m

l
k,rm

l
k,r′ . The mixing function reduce to the form

f
(i)
k,r =

1√
m

m∑
r=1

arνk,r,r′σ(〈wk,r,xi〉)

Also, note that if N⊥k,r = 0, we have νk,r,r′ = 0.

We prove Theorem 3 by a fashion of induction. Assume that for k′ < k, we have

E[Mk′ ],W0,a

[
‖y − uk′+1‖22

]
≤ (1− α)E[Mk′−1],W0,a

[
‖y − uk′‖22

]
+B1

for some α ≤ 1, and the weight perturbation before iteration k is bounded by

‖wk,r −w0,r‖2 + 2ητ

√
2nK

mδ

(
1

α
E[Mk−1] [‖y − uk‖2] + (K − k)B

)
≤ R

with α = 1
4ηθτλ0, R = O

(
κλ0

n

)
and

B1 =
64(1− ξ)2n3d

mλ20
+

68ητ(θ − ξ2)n3κ2

pλ0
+

(θ − ξ2)nκ2

6τ2p
+

(τ − 1)2pC1

24τ2
+

8η2(τ − 1)2n4pC1

λ20
+ 4η(τ − 1)pnC1

and

B =

√
B1

α
+ κ
√
ξ(1− ξ)pn

With such conditions, we have that with probability at least 1− 4δ, Hypothesis 1 holds. We start by
showing

EMk
[‖y − uk+1‖22] ≤ (1− α)‖y − uk‖22 + αB1

After that, we show that

‖wk+1,r −w0,r‖2 + 2ητ

√
2nK

mδ

(
1

α
E[Mk] [‖y − uk+1‖2] + (K − k)B

)
≤ R

to complete the proof. Throughout this proof, we assume that
n∑
i=1

m∑
r′=1

〈w0,r,xi〉2 ≤ 2mnκ2 −mnR2

and that

‖W0‖F ≤
√

2md−
√
mR

Note that Lemma 22 and Lemma 23 shows that, as long as m = Ω
(
log n

δ

)
, the above assumption

holds with probability at least 1− δ over initialization. Moreover, Lemma 16 shows that as long as
m =

(
n log nδ
ξλ0

)
, with probability at least 1− δ over initialization we have

|S⊥i | ≤ 4mκ−1R
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To start, expanding the loss at iteration k + 1 gives

EMk

[
‖y − uk+1‖22

]
= ‖y − uk‖22 − 2 〈y − uk,EMk

[uk+1 − uk]〉+ EMk

[
‖uk+1 − uk‖22

]
= ‖y − uk‖22 − 2 〈y − uk,EMk

[I1,k]〉 − 2 〈y − uk,EMk
[I2,k]〉+

EMk

[
‖uk+1 − uk‖22

]
Following previous work, we bound the second, third, and fourth term separately. However, the
second term requires a more detailed analysis. In particular, we let

I′1,k = I1,k − ηθτH(k)(y − uk)

Then the loss at iteration k + 1 has the form

EMk

[
‖y − uk+1‖22

]
= ‖y − uk‖22 − 2ηθτ 〈y − uk,H(k)(y − uk)〉+ EMk

[
‖uk+1 − uk‖22

]
−

2
〈
y − uk,EMk

[
I′1,k
]〉
− 2 〈y − uk,EMk

[I2,k]〉
≤ (1− ηθτλ0)‖y − uk‖22 + 2

∣∣〈y − uk,EMk

[
I′1,k
]〉∣∣+

2 |〈y − uk,EMk
[I2,k]〉|+ EMk

[
‖uk+1 − uk‖22

]
where in the last inequality we use λmin(H(k)) ≥ λ0

2 from (Du et al., 2018), Assumption 3.1.
Moreover, Lemma 6, Lemma 9, and Lemma 10 shows that under the given assumption, with η =

O
(

λ0

nτ max{n,p}

)
we have

∣∣〈y − uk,EMk

[
I′1,k
]〉∣∣ ≤ 1

8
ηθτλ0‖y − uk‖22 +

16ηθτξ2(1− ξ)2κ2n3d
mλ0

+
2η3ξ2τ(τ − 1)2n4pC1

θλ0

|〈y − uk,EMk
[I2,k]〉| ≤ 1

8
ηθτλ0‖y − uk‖22 +

ηλ0ξ
2(θ − ξ2)nκ2

24pτ
+
ηλ0ξ

2(τ − 1)2pC1

96τθ

EMk

[
‖uk+1 − uk‖22

]
≤ 1

4
ηθτλ0‖y − uk‖22 +

17η2ξ2τ2θ(θ − ξ2)n3κ2

p
+ η2ξ2λ0(τ − 1)2pnC1

Putting things together gives

EMk

[
‖y − uk+1‖22

]
≤
(

1− 1

4
ηθτλ0

)
‖y − uk‖22 +

16ηθτξ2(1− ξ)2n3d
mλ0

+
2η3ξ2τ(τ − 1)2n4pC1

θλ0

ηλ0ξ
2(θ − ξ2)nκ2

24τp
+
ηλ0ξ

2(τ − 1)2pC1

96τθ
+

17η2ξ2τ2θ(θ − ξ2)n3κ2

p
+

η2ξ2λ0τ(τ − 1)pnC1

≤
(

1− 1

4
ηθτλ0

)
‖y − uk‖22 +

1

4
ηθτλ0B1

Therefore, we have

E[Mk−1]

[
‖y − uk‖22

]
≤
(

1− 1

4
ηθτλ0

)k
‖y − u0‖22 +B1

This completes the first part of the proof. To show the second part, using Jensen’s inequality, we

have EMk
[‖y − uk+1‖2] ≤ EMk

[
‖y − uk+1‖22

] 1
2 . With α = 1

4ηθτλ0, we have

EMk
[‖y − uk+1‖2] ≤

(
1− α

2

)
‖y − uk‖2 +

√
αB1

and thus by taking total expectation, we have

E[Mk],W0,a [‖y − uk+1‖2] ≤
(

1− α

2

)
E[Mk−1],W0,a [‖y − uk‖2] +

√
αB1

Next, we bound the weight perturbation using induction. Recall our induction hypothesis

‖wk,r −w0,r‖2 + 2ητ

√
2nK

mδ

(
1

α
E[Mk−1],W0,a [‖y − uk‖2] + (K − k)B

)
≤ R

22



Under review as a conference paper at ICLR 2022

We would like to show that

‖wk+1,r −w0,r‖2 + 2ητ

√
2nK

mδ

(
1

α
E[Mk],W0,a [‖y − uk+1‖2] + (K − k − 1)B

)
≤ R

Using the convergence above and the fact that

‖wk+1,r −w0,r‖2 ≤ ‖wk,r −w0,r‖2 + ‖wk+1,r −w0,r‖2
it suffice to show that

‖wk+1,r −wk,r‖2 ≤ ητ
√

2nK

mδ
E[Mk−1],W0,a [‖y − uk‖2] + 2ητ

√
2nK

mδ
B − 2ητ

√
2nKB1

mδα

Recall the definition of B as

B =

√
B1

α
+ κ
√
ξ(1− ξ)pn

It then suffice to show that

‖wk+1,r −w0,r‖2 ≤ ητ
√

2nK

mδ
E[Mk−1],W0,a [‖y − uk‖2] + 2ητκn

√
2ξ(1− ξ)pK

mδ

By Hypothesis 1 we have

‖wl
k,t,r −wk,r‖2 ≤ ητ

√
2nK

mδ
E[Mk−1],W0,a [‖y − uk‖2] + 2ητκn

√
2ξ(1− ξ)pK

mδ

for all l ∈ [p] and t ∈ [τ ]. Then we have

‖wk+1,r −wk,r‖2 ≤ ηk,r
p∑
l=1

ml
k,r‖wl

k,τ,r −wk,r‖2

≤ ητ
√

2nK

mδ
E[Mk−1],W0,a [‖y − uk‖2] + 2ητκn

√
2ξ(1− ξ)pK

mδ

which completes the proof of the second part. Next, we use over-paramterization to show that the
base case also satisfies the condition above. In particular, we want to show that

2ητ

√
2nK

mδ

(
1

α
EW0,a [‖y − u0‖2] +KB

)
≤ R ≤ κλ0

144n

Equivalently, we want

κλ0
ητ

√
mδ

n3K
= Ω

(
max

{
1

α
EW0,a [‖y − u0‖2] +KB

})
We use Lemma 26 to get that

EW0,a

[
‖y − u0‖22

]
≤ C2n

Plugging in the bound above and α = 1
4ηθτλ0, and solving for

κλ0
ητ

√
mδ

n3K
= Ω

(
1

α
‖y − u0‖2

)
gives that

m1 = Ω

(
n4K

κ2θ2λ40δ

)
Solving for

κλ0
ητ

√
mδ

n3K
= Ω(KB)
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gives that

m2 = Ω

(
n3K3B2η2τ2

κ2λ20δ

)
Using the requirement of η gives

m2 = Ω

(
ηnK3B2τ

κ2λ0δ

)
Plugging in the definition of B gives

m2 = Ω

(
nK3B1

θκ2λ20δ
+
ξ(1− ξ)K3p

δ

)
Combining the three requirements above gives

m = Ω

(
K

δ
max

{
n4

κ2ξθλ40
,
nK2B1

κ2θλ20
,K2p

})

E LEMMAS FOR THEOREM 3

Lemma 1. The expectation of the mixing function satisfies

EMk

[
f
(i)
k,r

]
= θu

(i)
k +

θ(1− ξ)√
m

arσ(〈wk,r′ ,xi〉)

Proof. Note that if N⊥k,r = 0, then we have f (i)k,r = 0 for all i ∈ [n]. Thus

EMk

[
f
(i)
k,r | N

⊥
k,r = 0

]
= 0

Moreover, if N⊥k,r = 1, the expectation can be computed as

EMk

[
f
(i)
k,r | N

⊥
k,r = 1

]
= EMk

[
ηk,r√
m

p∑
l=1

m∑
r′=1

ml
k,rm

l
k,r′arσ(〈wk,r,xi〉) | N⊥k,r = 1

]

=
1√
m

m∑
r′=1

EMk

[
ηk,r

p∑
l=1

ml
k,rm

l
k,r′ | N⊥k,r = 1

]
ar′σ(〈wk,r′ ,xi〉)

=
ξ√
m

m∑
r′=1

ar′σ(〈wk,r′ ,xi〉) +
1− ξ√
m
arσ(〈wk,r′ ,xi〉)

by using Lemma 20. Combining the two conditions above gives that

EMk

[
f
(i)
k,r

]
= P(N⊥k,r = 1)EMk

[
f
(i)
k,r | N

⊥
k,r = 1

]
+ P(N⊥k,r = 0)EMk

[
f
(i)
k,r | N

⊥
k,r = 0

]
=

θξ√
m

m∑
r′=1

ar′σ(〈wk,r′ ,xi〉) +
θ(1− ξ)√

m
arσ(〈wk,r′ ,xi〉)

= θu
(i)
k +

θ(1− ξ)√
m

arσ(〈wk,r′ ,xi〉)

Lemma 2. The expectation of the mixing gradient satisfies

EMk
[gk,r] =

θ

ξ

∂L(Wk)

∂wr
+
θ(1− ξ)
m

n∑
i=1

xiσ(〈wk,r,xi〉)
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Proof. With the result from Lemma 1, we have

EMk
[gk,r] =

1√
m

n∑
i=1

(
EMk

[
f
(i)
k,r

]
− yiEMk

[
N⊥k,r

])
arxiI{〈wk,r,xi〉 ≥ 0}

=
θ√
m

n∑
i=1

(
u
(i)
k − yi +

1− ξ√
m
arσ(〈wk,r,xi〉)

)
arxiI{〈wk,r,xi〉 ≥ 0}

=
θ

ξ

∂L(Wk)

∂wr
+
θ(1− ξ)
m

n∑
i=1

xiσ(〈wk,r,xi〉)

Lemma 3. Suppose m ≥ p. If for some R > 0 and all r ∈ [m] the initialization satisfies
m∑
r=1

〈w0,r,xi〉2 ≤ 2mnκ2 −mnR2

and for all r ∈ [m], it holds that ‖wk,r −w0,r‖2 ≤ R, the expected norm of the difference between
the mixing function and u(i)k satisfies

EMk

[
‖fk,r − uk‖22 | N⊥k,r = 1

]
≤ 8(θ − ξ2)nκ2

p

Proof. Since EMk

[
νk,r,r′ | N⊥k,r = 1

]
= ξ for r′ 6= r, we have for r1 6= r2, there is at least one of

r1, r2 that is not r. Thus

EMk

[
(νk,r,r1 − ξ)(νk,r,r2 − ξ) | N⊥k,r = 1

]
= 0

and for r 6= r′

VarMk

(
νk,r,r′ | N⊥k,r = 1

)
= EMk

[
(νk,r,r′ − ξ)2 | N⊥k,r = 1

]
Moreover, for r = r′, Lemma 19

EMk

[
(νk,r,r, − ξ)2

]
≤ θ − ξ2

Therefore, using Lemma 21 we have

EMk

[(
f
(i)
k,r − u

(i)
k

)2
| N⊥k,r = 1

]
=

1

m
EMk


 m∑
r′ 6=r

ar(νk,r,r′ − ξ)σ(〈wk,r′ ,xi〉)

2

| N⊥k,r = 1


=

1

m

m∑
r′=1

VarMk

(
νk,r,r′ | N⊥k,r = 1

)
σ(〈wk,r′ ,xi〉)2+

1

m
EMk

[
(νk,r,r, − ξ)2

]
σ(〈wk,r,xi〉)2

≤ θ − ξ2

pm

m∑
r′ 6=r

〈wk,r′ ,xi〉2 +
θ − ξ2

m
σ(〈wk,r,xi〉)2

≤ 2(θ − ξ2)

pm

(
m∑
r′=1

〈w0,r,xi〉2 +mR2

)
+

2(θ − ξ2)

p

(
〈wk,r,xi〉+R2

)
≤ 8(θ − ξ2)κ2

p

Plugging this in gives

EMk

[
‖fk,r − uk‖22 | N⊥k,r = 1

]
≤ 8(θ − ξ2)nκ2

p

25



Under review as a conference paper at ICLR 2022

Lemma 4. Under the condition of Lemma 3, the expected norm and squared-norm of the mixing
gradient is bounded by

EMk

[
‖gk,r‖22

]
≤ 2nθ

m
‖y − uk‖22 +

16θ(θ − ξ2)n2κ2

pm

EMk
[‖gk,r‖2] ≤

√
nθ√
m
‖y − uk‖2 + 4nκ

√
θ(θ − ξ2)

pm

Proof. Using Lemma 3, we have

EMk

[
N⊥k,r‖fk,r − uk‖22

]
= P (N⊥k,r = 1)EMk

[
‖fk,r − uk‖22

]
≤ 8θ(θ − ξ2)nκ2

p

According to Jensen’s inequality, we also have

EMk

[
N⊥k,r‖fk,r − uk‖2

]
≤ 2κ ·

√
2θ(θ − ξ2)n

p

Moreover, we have
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m
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i=1

(
f
(i)
k,r − yi

)
arN

⊥
k,rxiI{〈wk,r,xi〉 ≥ 0}

=
1√
m

n∑
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(
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(i)
k

)
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⊥
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ξ
· ∂L(Wk)
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Therefore,

EMk

[
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]
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2EMk

[
N⊥k,r

]
ξ2

∥∥∥∥∂L(Wk)

∂wr

∥∥∥∥2
2

+
2

m
EMk

∥∥∥∥∥
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(
f
(i)
k,r − u

(i)
k

)
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⊥
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∥∥∥∥∥
2

2


≤ 2n

m
EMk
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i=1

(
f
(i)
k,r − u

(i)
k
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+

2nθ

m
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≤ 2n

m

(
EMk

[
N⊥k,r‖fk,r − uk‖22

]
+ θ‖y − uk‖22

)
≤ 2nθ

m
‖y − uk‖22 +

16θ(θ − ξ2)n2κ2
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This shows the first inequality. To show the second, similarly we have

EMk
[‖gk,r‖2] ≤

EMk

[
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]
ξ

∥∥∥∥∂L(Wk)
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∥∥∥∥
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+
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m
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[∥∥∥∥∥
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(
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(i)
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⊥
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∥∥∥∥∥
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]
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m
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[
N⊥k,r
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i=1

∣∣∣f (i)k,r − u(i)k ∣∣∣
]

+

√
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m
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≤
√
n

m
EMk

[
N⊥k,r‖fk,r − uk‖2
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+

√
nθ√
m
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≤
√
nθ√
m
‖y − uk‖2 + 4nκ

√
θ(θ − ξ2)
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Lemma 5. Under the condition of Theorem 3, we have∣∣∣ûl(i)k,t − û
l(i)
k

∣∣∣ ≤ ηt√n‖y − ûlk‖2
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and therefore, ∣∣∣ûl(i)k,t − û
l(i)
k

∣∣∣ ≤ ηt√n (‖y − uk‖2 + ‖uk − ûlk‖2
)

(
û
l(i)
k,t − û

l(i)
k

)2
≤ 2η2t2n

(
‖y − uk‖22 + ‖uk − ûlk‖22

)
Proof. We have∣∣∣ûl(i)k,t − û
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∣∣∣ =
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m

∣∣∣∣∣
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l
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(
σ
(〈

wl
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)
Lemma 6. Under the condition of Lemma 3, with η ≤ λ0

16(τ−1)n2 , we have∣∣〈y − uk,EMk

[
I′1,k
]〉∣∣ ≤ 1

8
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ηk,r p∑
l=1

τ−1∑
t=0
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Therefore

EMk

[
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]
. Then we have
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According to Lemma 7 and Lemma 8, we have the bound of E(i)1,k and E(i)2,k as
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Therefore, we have
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Lemma 7. Under the assumption of Theorem 3 we have that for all k ∈ [K], i ∈ [n], it holds that
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where for the bound of ‖W0‖F we use Lemma 22.

Lemma 8. Suppose ‖wk,t,r −w0,r‖2 ≤ R for all r ∈ [m]. Then we have
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Proof. Since r ∈ Si, the difference between the surrogate gradients of a sub-network has the form∥∥∥∥∥∥
∂Lml

k

(
Wl

k,t

)
∂wr

−
∂Lml

k
(Wk)

∂wr

∥∥∥∥∥∥
2

=
1√
m

∥∥∥∥∥∥
n∑
j=1

arm
l
k,rxj

(
û
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l(j)
k

∣∣∣


≤ ηξn
3
2

m

τ−1∑
t=1

t
∑
r∈Si

EMk

[
ηk,r

p∑
l=1

mk,r

(
‖y − uk‖2 + ‖y − ûlk‖2
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Lemma 9. Under the condition of Theorem 3, we have
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Proof. To start, we notice that Using the 1-Lipschitzness of ReLU, we have
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where in the last inequality we use |S⊥i | ≤ 4mκ−1R. Therefore,
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Therefore we have
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Lemma 12.
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k,r‖y − ûlk,t‖22

]

≤ 2η2τnθ

m
|S⊥i |‖y − uk‖22 +

8η2θ(θ − ξ2)τn2κ2

pm
|S⊥i |+

2η2θτ(τ − 1)np

m
|S⊥i |‖y − uk‖22+

2η2τ(τ − 1)np

m
|S⊥i |EMk

[
η2k,r

p∑
l=1

ml
k,r‖uk − ûlk‖22
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F PROOF OF THEOREM 4

As in previous theorem, we start by studying ‖y − uk+1‖22. In the case of a categorical mask, we
have the nice property that the average of the sub-networks equals to the full network
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We start by assuming the condition of Hypothesis 1 holds. We proceed by proving the convergence,
then we prove the weight perturbation bound with a fashion of induction. Hypothesis 1 implies that
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Using the fact that EMk
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‖uk − ûlk‖22

]
Therefore, we have

EMk

[
‖y − uk+1‖22

]
=

1

p

p∑
l=1

EMk

[
‖y − ûlk‖22
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′

k,τ‖22
]

Let

ιk =
1

p2

p∑
l=1

l∑
l′=1

EMk

[
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Lemma 15 shows bound of the expectation of ιk with respect to the initialization. In particular,
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Using this result, we have that
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]
+

γηλ0
2p

p∑
l=1

τ−1∑
t=0

(
1− ηλ0

2

)t
EMk

[
‖y − ûlk‖22

]
+

32ητ(p− 1)2κ2n3d

γλ0m
+

1

p2

p∑
l=1

l−1∑
l′=1

EMk

[
ιl,l
′

k

]
= ‖y − uk‖22 −

(1− γ)ηλ0
2p

p∑
l=1

τ−1∑
t=0

(
1− ηλ0

2

)t
EMk

[
‖y − ûlk‖22

]
+

32ητ(p− 1)2κ2n3d

γλ0m
+

1

p2

p∑
l=1

l−1∑
l′=1

EMk

[
ιl,l
′

k

]
≤ ‖y − uk‖22 −

(1− γ)ηλ0
2

τ−1∑
t=0

(
1− ηλ0

2

)t
‖y − uk‖22+

32ητ(p− 1)2κ2n3d

γλ0m
+

1

p2

p∑
l=1

l−1∑
l′=1

EMk

[
ιl,l
′

k

]
=

(
γ + (1− γ)

(
1− ηλ0

2

)τ)
‖y − uk‖22 +

32ητ(p− 1)2κ2n3d

γλ0m
+

1

p2

p∑
l=1

l−1∑
l′=1

EMk

[
ιl,l
′

k

]
Therefore,

EMk,W0,a

[
‖y − uk+1‖22

]
≤
(
γ + (1− γ)

(
1− ηλ0

2

)τ)
‖y − uk‖22 +

32ητ(p− 1)2κ2n3d

γλ0m

Also,

E[Mk]

[
‖y − uk‖22

]
≤
(
γ + (1− γ)

(
1− ηλ0

2

)τ)k
‖y − u0‖22 +

32ητ(p− 1)2κ2n3d(
1−

(
1− ηλ0

2

)τ)
γ(1− γ)λ0m

+

1

p2

p∑
l=1

k∑
k′=0

l−1∑
l′=1

E[Mk′ ]

[
ιl,l
′

k

]
and therefore,

E[Mk],W0,a

[
‖y − uk‖22

]
≤
(
γ + (1− γ)

(
1− ηλ0

2

)τ)k
EW0,a‖y − u0‖22 +

32ητ(p− 1)2κ2n3d(
1−

(
1− ηλ0

2

)τ)
γ(1− γ)λ0m

≤
(
γ + (1− γ)

(
1− ηλ0

2

)τ)k
C2n+

64τ(p− 1)2κ2n3d

λ20γ(1− γ)m

Next we bound the weight perturbation. Similar to the proof of Theorem 3, it suffice to show that

‖wk+1,r −w0,r‖2 ≤ ητ
√

2nK

mδ
E[Mk−1],W0,a [‖y − uk‖2] + 2ητ

√
2nK

mδ
B − 2ητ

√
2nKB1

mδα
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where in our circumstance, we have ξ = 1
p . Again, we recall the definition of B as

B =

√
B1

α
+ κ
√
ξ(1− ξ)pn

with

B1 =
32ητ(p− 1)2κ2n3d(

1−
(

1− ηλ0

2

)τ)
γ(1− γ)mλ0

It then suffice to show that

‖wk+1,r −w0,r‖2 ≤ ητ
√

2nK

mδ
E[Mk−1]h,W0,a [‖y − uk‖2] + 2ητκn

√
2ξ(1− ξ)pK

mδ

By Hypothesis 1 we have

‖wl
k,t,r −wk,r‖2 ≤ ητ

√
2nK

mδ
E[Mk−1],W0,a [‖y − uk‖2] + 2ητκn

√
2ξ(1− ξ)pK

mδ

for all l ∈ [p] and t ∈ [τ ]. Then we have

‖wk+1,r −wk,r‖2 ≤ ηk,r
p∑
l=1

ml
k,r‖wl

k,τ,r −wk,r‖2

≤ ητ
√

2nK

mδ
E[Mk−1],W0,a [‖y − uk‖2] + 2ητκn

√
ξ(1− ξ)pK

mδ

In the end we use overparameterization to show for k = 0. In particular, we show

2ητ

√
2nK

mδ

(
1

α
EW0,a [‖y − u0‖2] +KB

)
≤ R = O

(
κλ0
n

)
With

α = (1− γ)

(
1−

(
1− ηλ0

2

)τ)
≥ (1− γ)ηλ0

2

As before, using Lemma 26, we have

EW0,a [‖y − u0‖2] ≤
(
EW0,a

[
‖y − u0‖22

]) 1
2 = C

√
n

Using the same technique as in Theorem 3, we have

m = Ω

(
τ2K max{n4, n2d, pK2}

(1− γ)2κ2λ40δ
√
γ

)

G LEMMAS FOR THEOREM 4

Lemma 13. The kth global step produce the squared error satisfying

‖y − uk+1‖22 =
1

p

p∑
l=1

‖y − ûlk,τ‖22 −
1

p2

p∑
l=1

l−1∑
l′=1

‖ûlk,τ − ûl
′

k,τ‖22
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Proof. We have

‖y − uk+1‖22 =

∥∥∥∥∥y − 1

p

p∑
l=1

ûlk,τ

∥∥∥∥∥
2

2

=
1

p2

p∑
l=1

p∑
l′=1

〈
y − ûlk,τ ,y − ûl

′

k,τ

〉
=

1

p

p∑
l=1

‖y − ûlk,τ‖22 −
1

p

p∑
l=1

‖y − ûlk,τ‖22 +
1

p2

p∑
l=1

p∑
l′=1

〈
y − ûlk,τ ,y − ûl

′

k,τ

〉
=

1

p

p∑
l=1

‖y − ûlk,τ‖22−

1

2p2

(
p∑
l=1

p∑
l′=1

(
‖y − ûlk,τ‖22 + ‖y − ûl

′

k,τ‖22
)
−

p∑
l=1

p∑
l′=1

〈
y − ûlk,τ ,y − ûl

′

k,τ

〉)

=
1

p

p∑
l=1

‖y − ûlk,τ‖22 −
1

2p2

p∑
l=1

p∑
l′=1

‖ûlk,τ − ûl
′

k,τ‖22

=
1

p

p∑
l=1

‖y − ûlk,τ‖22 −
1

p2

p∑
l=1

l−1∑
l′=1

‖ûlk,τ − ûl
′

k,τ‖22

Lemma 14. We have

p∑
l=1

‖uk − ûlk‖22 =
1

p

p∑
l=1

l−1∑
l′=1

‖ûlk − ûl
′

k ‖22
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Proof. Using uk = 1
p

∑p
l=1 ûlk we have

p∑
l=1

‖uk − ûlk‖22 =

p∑
l=1

∥∥∥∥∥1

p

p∑
l′=1

ûlk − ûlk

∥∥∥∥∥
2

2

=
1

p2

p∑
l=1

∥∥∥∥∥
p∑

l′=1

(
ûl
′

k − ûlk

)∥∥∥∥∥
2

2

=
1

p2

p∑
l=1

p∑
l1=1

p∑
l2=1

〈
ûl1k − ûlk, û

l2
k − ûlk

〉
=

1

p

p∑
l1=1

p∑
l2=1

〈
ûl1k , û

l2
k

〉
− 1

p

p∑
l=1

p∑
l1=1

〈
ûl1k , û

l
k

〉
− 1

p

p∑
l=1

p∑
l2=1

〈
ûlk, û

l2
k

〉
+

p∑
l=1

‖ûlk‖22

=

p∑
l=1

‖ûlk‖22 −
1

p

p∑
l=1

p∑
l′=1

〈
ûlk, û

l′

k

〉
=

1

2p

(
p∑
l=1

p∑
l′=1

(
‖ûlk‖22 + ‖ûl

′

k ‖22
)
−

p∑
l=1

p∑
l′=1

2
〈
ûlk, û

l′

k

〉)

=
1

2p

p∑
l=1

p∑
l′=1

‖ûlk − ûl
′

k ‖22

=
1

p

p∑
l=1

l−1∑
l′=1

‖ûlk − ûl
′

k ‖22

Lemma 15. If the network initialization satisfies ‖W0,r‖2 ≤ κ
√

2md −
√
mR for some R ≥ 0,

and the weight perturbation is bounded by ‖wl
k,r −w0,r‖2 ≤ R for all r ∈ [m] then for all γ > 0

we have

ιk ≤
ηγλ0

2p

p∑
l=1

τ−1∑
t=0

EMk

[
‖y − ulk,t‖22

]
+ ι′k

with

EW0,a [ι′k] ≤ 32ηκ2τ(p− 1)2n3d

γλ0m

Proof. First, we have

‖Wl
k‖F = ‖W0‖F + ‖Wl

k −W0‖F

= κ
√

2md− κR
√
m+

(
m∑
r=1

‖wl
k,r −w0,r‖22

) 1
2

= κ
√

2md− κR
√
m+R

√
m

= κ
√

2md

For convenience, denote

σ
l,(i)
k,r = σ

(〈
wl
k,r,xi

〉)
; σ

l,(i)
k+1,r = σ(

〈
wl
k,τ,r,xi

〉
)
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Note that

‖ûlk − ûl
′

k ‖22 − ‖ûlk,τ − ûl
′

k,τ‖22 =

n∑
i=1

((
u
l,(i)
k − ûl

′,(i)
k

)2
−
(
û
l,(i)
k,τ − û

l′,(i)
k,τ

)2)

=

n∑
i=1

(
û
l,(i)
k − ûl

′,(i)
k + û

l,(i)
k,τ − û

l′,(i)
k,τ

)(
û
l,(i)
k − ûl

′,(i)
k − ûl,(i)k,τ + û

l′,(i)
k,τ

)
=

p

m

n∑
i=1

(
m∑
r=1

ar

(
ml
k,r

(
σ
l,(i)
k,r − σ

l,(i)
k+1,r

)
−ml′

k,r

(
σ
l′,(i)
k,r − σ

l′,(i)
k,r

)))
·(

m∑
r=1

ar

(
ml
k,r

(
σ
l,(i)
k,r + σ

l,(i)
k+1,r

)
−ml′

k,r

(
σ
l′,(i)
k,r + σ

l′,(i)
k,r

)))

=
p

m

n∑
i=1

m∑
r=1

(
ml
k,r

(
σ
l,(i)
k,r − σ

l,(i)
k+1,r

)
−ml′

k,r

(
σ
l′,(i)
k,r − σ

l′,(i)
k,r

))
·(

ml
k,r

(
σ
l,(i)
k,r + σ

l,(i)
k+1,r

)
−ml′

k,r

(
σ
l′,(i)
k,r + σ

l′,(i)
k,r

))
+ ιl,l

′

k

where

ιl,l
′

k =
p

m

n∑
i=1

m∑
r=1

∑
r′ 6=r

arar′
(
ml
k,r

(
σ
l,(i)
k,r − σ

l,(i)
k+1,r

)
−ml′

k,r

(
σ
l′,(i)
k,r − σ

l′,(i)
k,r

))
·

(
ml
k,r′

(
σ
l,(i)
k,r′ + σ

l,(i)
k+1,r′

)
−ml′

k,r′

(
σ
l′,(i)
k,r′ + σ

l′,(i)
k,r′

))

Using independence between ar and ar′ we can see that EW0,a

[
ιl,l
′

k

]
= 0. Moreover, since for

l 6= l′ we have ml
k,r 6= ml′

k,r, it is obvious that ml
k,rm

l′

k,r = 0 for l 6= l′. Therefore,

‖ûlk − ûl
′

k ‖22 − ‖ûlk,τ − ûl
′

k,τ‖22 =
p

m

n∑
i=1

m∑
r=1

(
ml
k,r

(
σ
l,(i)2
k,r − σl,(i)2k+1,r

)
−ml′

k,r

(
σ
l′,(i)2
k,r − σl

′,(i)2
k+1,r

))
+ ιl,l

′

k

≤ p

m

n∑
i=1

m∑
r=1

(∣∣∣σl,(i)2k,r − σl,(i)2k+1,r

∣∣∣+
∣∣∣σl′,(i)2k,r − σl

′,(i)2
k+1,r

∣∣∣)+ ιl,l
′

k

For all l ∈ [p], r ∈ [m], and all q > 0 we have

m∑
r=1

∣∣∣σl,(i)2k,r − σl,(i)2k+1,r

∣∣∣ ≤ m∑
r=1

∣∣∣σl,(i)k,r − σ
l,(i)
k+1,r

∣∣∣ · ∣∣∣σl,(i)k,r + σ
l,(i)
k+1,r

∣∣∣
≤

m∑
r=1

∥∥wl
k,r −wl

k+1,r

∥∥
2
·
(∥∥wl

k,r

∥∥
2

+
∥∥wl

k+1,r

∥∥
2

)

where the second inequality uses the 1-Lipschitzness of ReLU and the fact that ‖xi‖2 = 1. Since
we have for all r ∈ [m], it holds that

∥∥wl
k,r −wl

k+1,r

∥∥
2
≤ η

τ−1∑
t=0

∥∥∥∥∥∥
∂LMk

(
Wl

k,t

)
∂wr

∥∥∥∥∥∥
2

≤ η
√
n√
m

τ−1∑
t=0

‖y − ûlk,t‖2
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Then
m∑
r=1

∣∣∣σl,(i)2k,r − σl,(i)2k+1,r

∣∣∣ ≤ √n√
m

τ−1∑
t=0

‖y − ûlk,t‖2

(
m∑
r=1

(∥∥wl
k,r

∥∥
2

+
∥∥wl

k+1,r

∥∥
2

))

≤ η
√
n

τ−1∑
t=0

‖y − ûlk,t‖2
(
‖Wl

k,r‖F + ‖Wl
k+1,r‖F

)
≤ 4ηκ

√
mnd

τ−1∑
t=0

‖y − ûlk,t‖2

≤ 4ηκ
√
mnd

q

τ−1∑
t=0

‖y − ûlk,t‖2 + 4ηκqτ
√
mnd

Also, in the last inequality we use 2ab ≤ a2

q + qb2 for all q > 0. Plugging in the choice

q =
8(p− 1)κ

√
n3d

γλ0m

with some γ > 0 gives

m∑
r=1

∣∣∣σl,(i)2k,r − σl,(i)2k+1,r

∣∣∣ ≤ ηγλ0m

4n(p− 1)

τ−1∑
t=0

‖y − ûlk,t‖22 +
16ηκ2τ(p− 1)n2d

γλ0

Therefore

EMk

[
‖ûlk − ûl

′

k ‖22 − ‖ûlk,τ − ûl
′

k,τ‖22
]
≤ ηγλ0p

4(p− 1)

τ−1∑
t=0

(
EMk

[
‖y − ûlk,t‖22

]
+ EMk

[
‖y − ûl

′

k,t‖22
])

+

16ηκ2τp(p− 1)n3d

γλ0m
+ EMk

[
ιl,l
′

k

]
Therefore

ιk =
1

p2

p∑
l=1

l−1∑
l′=1

EMk

[
‖ûlk − ûl

′

k ‖22 − ‖ûlk,τ − ûl
′

k,τ‖22
]

=≤ ηγλ0
4p(p− 1)

p∑
l=1

l−1∑
l′=1

(
EMk

[
‖y − ûlk,t‖22

]
+ EMk

[
‖y − ûl

′

k,t‖22
])

+
32ηκ2τ(p− 1)2n3d

γλ0m
+

1

p2

p∑
l=1

l−1∑
l′=1

EMk

[
ιl,l
′

k

]
=
ηγλ0

2p

p∑
l=1

τ−1∑
t=0

EMk

[
‖y − ulk,t‖22

]
+

32ηκ2τ(p− 1)2n3d

γλ0m
+

1

p2

p∑
l=1

l−1∑
l′=1

EMk

[
ιl,l
′

k

]

H AUXILIARY RESULTS

Lemma 16. With probability at least 1− ne−mκ−1R we have |Si| ≤ 4mκ−1R for all i ∈ [n].

Proof. Note that I{r ∈ S⊥i } = I{I{Air} 6= 0} = I{Air}. Therefore, we have

|S⊥i | =
m∑
r=1

I{r ∈ S⊥i } = I{Air}.
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Since Ew0,r
[I{Air}] = P (Air) ≤ 2R

κ
√
2π
≤ κ−1R, we also have

Ew0,r

[(
I{Air} − Ew0,r

[I{Air}]
)2] ≤ Ew0,r

[
I{Air}2

]
=

2R

κ
√

2π
≤ κ−1R

Again apply Bernstein inequality over the random variable I{Air} − Ew0,r [I{Air}] with t =

3mκ−1R gives

P
(
|S⊥i | ≤ 4mκ−1R

)
= P

(
m∑
r=1

I{Air} ≥ 4mκ−1R

)
≤ exp

(
−mκ−1R

)

Lemma 17. Define H⊥ ∈ Rn×n such that

H⊥ij =
ξ

m
〈xi,xj〉

∑
r∈S⊥i

I{〈wr,xi〉 ≥ 0; 〈wr,xi〉 ≥ 0}

If |S⊥i | ≤ 4mκ−1R, then we have

‖H⊥‖2 ≤ 4nξκ−1R

Proof. We note that

‖H⊥‖22 ≤ ‖H⊥‖2F =

n∑
i,j=1

|H⊥ij |2

For each i, j pair we have

|H⊥ij | ≤
ξ

m
|S⊥i | = 4ξκ−1R

Thus

‖H⊥‖2 ≤
(
‖H⊥‖2F

)− 1
2 ≤

(
16n2κ−2∆2

)− 1
2 = 4nξκ−1R

Lemma 18. For i.i.d Bernoulli masks with parameter ξ, N⊥k,r ∼ Bern(θ) with

θ = P(N⊥k,r = 1) = 1− (1− ξ)p

Proof. We have

P(N⊥k,r = 1) = 1− P(N⊥k,r = 0)

= 1−
p∏
l=1

P(ml
k,r = 0)

= 1− (1− ξ)p

Lemma 19. We have

EMk

[
(νk,r,r − ξ)2

]
≤ θ − ξ2

Proof. To start, we notice that νk,r,r = ηk,r
∑p
l=1m

l2
k,r = ηk,r

∑p
l=1m

l
k,r = N⊥k,r. Therefore

EMk
[νk,r,r] = EMk

[
N⊥k,r

]
= θ. Moreover, since N⊥2k,r = N⊥k,r, we have EMk

[
ν2k,r,r

]
= θ. Thus,

using θ ≥ ξ, we have

EMk

[
(νk,r,r − ξ)2

]
= EMk

[
ν2k,r,r

]
− 2ξEMk

[νk,r,r] + ξ2

= θ − 2ξθ + ξ2

≤ θ − ξ2
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Lemma 20. For i.i.d Bernoulli masks with parameter ξ, we have

EMk

[
νk,r,r′ | N⊥k,r = 1

]
=

{
ξ if r 6= r′

1 if r = r′

Proof. If r = r′, we have

EMk

[
νk,r,r′ | N⊥k,r = 1

]
= EMk

[
ηk,r

p∑
l=1

ml
k,r | N⊥k,r = 1

]

= EMk

[
Xk,r

Nk,r
| N⊥k,r = 1

]
= EMk

[
N⊥k,r | N⊥k,r = 1

]
= 1

If r′ 6= r, then we have that ml
k,r′ is independent from ml

k,r and Nk,r. Therefore,

EMk

[
νk,r,r′ | N⊥k,r = 1

]
= EMk

[
ηk,r

p∑
l=1

ml
k,r | N⊥k,r = 1

]
EMk

[
ml
k,r′
]

= ξEMk

[
Xk,r

Nk,r
| N⊥k,r = 1

]
= ξ

Lemma 21. The variance follows

VarMk

(
νk,r,r′ | N⊥k,r = 1

)
=

{
θ−ξ2
p if r 6= r′

0 if r = r′

Proof. For r 6= r′, the expectation of ν2k,r,r′ given N⊥k,r = 1 is

EMk

[
ν2k,r,r′ | N⊥k,r = 1

]
= EMk

[∑p
l=1

∑p
l′=1m

l
k,rm

l′

k,rm
l
k,r′m

l′

k,r′

Xk,r
| N⊥k,r = 1

]

=

p∑
l=1

∑
l′ 6=l

EMk
[ml

k,r′ ]EMk
[ml′

k,r′ ]EMk

[
ml
k,r

Xk,r
| N⊥k,r = 1

]
EMk

[
ml′

k,r

Xk,r
| N⊥k,r = 1

]
+

p∑
l=1

EMk
[ml

k,r′ ]EMk

[
ml
k,r

X2
k,r

| N⊥k,r = 1

]

= ξ2
p∑
l=1

∑
l′ 6=l

EMk

[
ml
k,r

Xk,r
| N⊥k,r = 1

]
EMk

[
ml′

k,r

Xk,r
| N⊥k,r = 1

]
+

ξ

p∑
l=1

EMk

[
ml
k,r

X2
k,r

| N⊥k,r = 1

]

= ξ2 + ξEMk

[
1

Xk,r
| N⊥k,r = 1

]
− ξ2

p∑
l=1

EMk

[
ml
k,r

Xk,r
| N⊥k,r = 1

]2
Therefore, the variance of νk,r,r′ given N⊥k,r = 1 has the form

Var
(
νk,r,r′ | gN⊥k,r = 1

)
= EMk

[
ν2k,r,r′ | N⊥k,r = 1

]
− EMk

[
νk,r,r′ | N⊥k,r = 1

]2
= ξEMk

[
1

Xk,r
| N⊥k,r = 1

]
− ξ2

p∑
l=1

EMk

[
ml
k,r

Xk,r
| N⊥k,r = 1

]2
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Let X(p) =
∑p
l=1m

l
· ∼ B(p, ξ), then we have

EMk

[
1

Xk,r
| N⊥k,r = 1

]
= EMk

[
1

1 +X(p− 1)

]
EMk

[
ml
k,r

Xr
| N⊥k,r = 1

]
= P(ml

k,r = 1 | N⊥k,r = 1)EMk

[
1

1 +X(p− 1)

]
=
ξ

θ
EMk

[
1

1 +X(p− 1)

]
Moreover, using reciprocal moments we have

EMk

[
1

1 +X(p− 1)

]
=

θ

pξ

Therefore

VarMk

(
νk,r,r′ | N⊥k,r = 1

)
= ξEMk

[
1

1 +X(p− 1)

]
− ξ4

θ2
pEMk

[
1

1 +X(p− 1)

]2
=
θ − ξ2

p

If r = r′, the variance is
VarMk

(νr,r | gr = 1) = VarMk
(gr | gr = 1) = 0

Lemma 22. Suppose κ ≤ 1, R ≤ κ
√

d
32 . With probability at least 1− emd/32 we have that

‖W0‖F ≤ κ
√

2md−
√
mR

Proof. For all r ∈ [m], d1 ∈ [d], we have

EMk

[
w2
rd1

]
= κ2

Moreover, each w2
rd1

is a (2κ2, 2κ2)-sub-exponential random variable

E
[
et(w

2
rd1
−κ2)

]
=

1

κ
√

2π

∫ ∞
−∞

et(w
2
rd1
−κ2

e−
w2
rd1
2κ2 dwrd1

=
1

κ
√

2π

∫ ∞
−∞

e−(
1

2κ2
−t)w2

rd1
−tκ2

dwrd1

=
1

κ
√

2π
·
√

π

(2κ)−1 − t
· e−tκ

2

=
e−tκ

2

√
1− 2tκ2

≤ e2t
2κ4

with t ≤ 1
2κ2 . Thus, using independence between entries of W0 gives

E
[
et(‖W0‖2F−mdκ

2)
]
≤

m∏
r=1

d∏
d1=1

E
[
et(w

2
rd1
−κ2)

]
≤ e2mdt

2κ4

Invoking the tail bound of sub-exponential random variable gives

P
(
‖W0‖2F ≥ mdκ2 + t

)
≤

{
e−

t2

8mdκ4 if 0 ≤ t ≤ 2mdκ2

e−
t2

4κ2 if t > 2mdκ2

Let t = mdκ2 − 2mκR
√

2d+mR2. Then
‖W0‖2F ≤ 2mdκ2 +mR2 − 2mκR

√
2d = (κ

√
2md−

√
mR)2

with probability at least 1−e−
t2

8mdκ4 . UsingR ≤ κ
√

d
32 we have t ≥ 1

2mdκ
2. Thus with probability

at least 1− e−md32 we have
‖W0‖F ≤ κ

√
2md−

√
mR
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Lemma 23. Assume κ ≤ 1 and R ≤ κ√
2

. With probability at least 1− ne−m32 over initialization, it
holds for all i ∈ [n] that

m∑
r=1

〈w0,r,xi〉2 ≤ 2mκ2 −mR2

and thus
n∑
i=1

m∑
r=1

〈w0,r,xi〉2 ≤ 2mnκ2 −mnR2

Proof. To begin, we show that each 〈w0,xi〉 are Gaussian with zero mean and variance κ2. Using
independence between entries of w0,r, we have

E
[
e−t〈w0,r,xi〉

]
= E

 d∏
j=1

e−tw0,r,jxi,j


=

d∏
j=1

E
[
e−tw0,r,jxi,j

]
=

d∏
j=1

e−t
2x2
i,jκ

2

= e−t
2κ2 ∑d

j=1 x
2
i,j

= e−t
2κ2

where the last equality follows from our assumption that ‖xi‖2 = 1. Next, we treat each ωr,i =

〈w0,r,xi〉2 as a random variable. First, we compute the mean of ωr,i

E[ωr,i] = EW0

[
〈w0,r,xi〉2

]
= EW0

( d∑
d1=1

w0,r,dxi,d

)2


=

d∑
d1=1

EW0

[
w2

0,r,d

]
x2i,d

= κ2
d∑

d1=1

x2i,d

= κ2

Then, we show that each ωr,i is sub-exponential with parameter (2κ2, 2κ2).

E
[
et(ωr,i−κ

2)
]

=
1

κ
√

2π

∫ ∞
−∞

et(ωr,i−κ
2)e−

ωr,i

2κ2 d
√
ωr,i

=
1

κ
√

2π

∫ ∞
−∞

e−(
1

2κ2
−t)(√ωr,i)2−tκ2

d
√
ωr,i

=
1

κ
√

2π
·
√

π

(2κ2)−1 − t
· e−tκ

2

=
e−tκ

2

1− 2tκ2

≤ e2tκ
4

45



Under review as a conference paper at ICLR 2022

for t ≤ 1
2κ2 . Since each w0,r is independent, we have that each ωr,i is independent for a fixed i.

Thus

E
[
et

∑m
r=1(ωr,i−κ

2)
]

=

m∏
r=1

E
[
et(ωr,i−κ

2)
]
≤ e2mtκ

4

Thus we have

P

(
m∑
r=1

ωr,i ≥ mκ2 + t

)
≤

{
e−

t2

8mκ4 if 0 ≤ t ≤ 2mκ2

e−
t2

2κ2 if t ≥ 2mκ2

We choose t = mκ2 −mR2. Since R ≤ κ√
2

, we have that mκ
2

2 ≤ t ≤ mκ2. Thus

P

(
m∑
r=1

ωr,i ≥ 2mκ2 −mR2

)
≤ e−m8

Apply a union bound over all i ∈ [n] gives that with probability at least 1 − ne−m32 , it holds for all
i ∈ [n] that

m∑
r=1

ωr,i ≤ 2mκ2 −mR2

Sum over n gives that
n∑
i=1

m∑
r=1

〈w0,r,xi〉2 ≤ 2mnκ2 −mnR2

with probability at least 1− ne−m32 .

Lemma 24. If for some R > 0 and all r ∈ [m] the initialization satisfies
m∑
r=1

〈w0,r,xi〉2 ≤ 2mnκ2 −mnR2

and for all r ∈ [m], it holds that ‖wk,r −w0,r‖2 ≤ R. Then we have

EMk

[
η2k,r

p∑
l=1

ml
k,r‖uk − ûlk‖22

]
≤ C1

and

EMk

[
ηk,r

p∑
l=1

ml
k,r‖uk − ûlk‖2

]
≤
√
pC1

with

C1 =
4θ2(1− ξ)nκ2

p

Proof. Using reciprocal moments, we have

EMk
[ηk,r] = P

(
N⊥k,r = 1

)
EMk

[
ηk,r | N⊥k,r = 1

]
=
θ2

pξ

To start, we compute that for r 6= r′. Using the independence of ml
k,r and ml

k,r′ , we have

EMk

[
η2k,r

p∑
l=1

ml
k,r(ξ −ml

k,r′)
2

]
=

p∑
l=1

EMk

[
η2k,rmk,r(ξ −mk,r′)

2
]

=

p∑
l=1

EMk

[
η2k,rm

l
k,r

]
EMk

[
(ξ −ml

k,r′)
2
]

= ξ(1− ξ)EMk

[
η2k,r

p∑
l=1

ml
k,r

]
= ξ(1− ξ)EMk

[ηk,r]
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For r = r′, we use the idempotent

EMk

[
η2k,r

p∑
l=1

ml
k,r(ξ −ml

k,r)
2

]
= (1− ξ)2EMk

[
η2k,r

p∑
l=1

ml
k,r

]
= (1− ξ)2EMk

[ηk,r]

Therefore

EMk

[
η2k,r

p∑
l=1

ml
k,r

(
u
(i)
k − û

l(i)
k

)2]
≤ 1

m
EMk

η2k,r p∑
l=1

ml
k,r

(
m∑
r′=1

ar(ξ −ml
k,r′)σ(〈wk,r′ ,xi〉)

)2


≤ 1

m
EMk

[
η2k,r

p∑
l=1

ml
k,r

m∑
r′=1

(ξ −ml
k,r′)

2σ(〈wk,r′ ,xi〉)2
]

≤ 1

m

m∑
r′=1

EMk

[
η2k,r

p∑
l=1

ml
k,r(ξ −ml

k,r′)
2

]
σ(〈wk,r′ ,xi〉)2

≤ ξ(1− ξ)
m

EMk
[ηk,r]

m∑
r′=1

σ(〈wk,r′ ,xi〉)2+

(1− ξ)(1− 2ξ)

m
EMk

[ηk,r]σ(〈wk,r,xi〉)2

≤ θ2(1− ξ)
mp

m∑
r′=1

〈wk,r′ ,xi〉2 +
(1− ξ)2θ2

mpξ
〈wk,r,xi〉2

≤ 2θ2(1− ξ)κ2

p
+

2θ2(1− ξ)2κ2

mpξ

≤ 4θ2(1− ξ)κ2

p

where in the last inequality we use m ≥ ξ−1. Thus, we have

EMk

[
η2k,r

p∑
l=1

ml
k,r‖uk − ûlk‖22

]
=

n∑
i=1

EMk

[
η2k,r

p∑
l=1

ml
k,r

(
u
(i)
k − û

l(i)
k

)2]
≤ C1

Also, we have

EMk

[
ηk,r

p∑
l=1

ml
k,r‖uk − ûlk‖2

]
≤ EMk

(ηk,r p∑
l=1

ml
k,r‖uk − ûlk‖2

)2
 1

2

≤ √pEMk

[
η2k,r

p∑
l=1

ml
k,r‖uk − ûlk‖22

] 1
2

Plugging in the previous bound gives the desired result.

Lemma 25. If for some R > 0 and all r ∈ [m] the initialization satisfies

m∑
r=1

〈w0,r,xi〉2 ≤ 2mnκ2 −mnR2

and for all r ∈ [m], it holds that ‖wk,r −w0,r‖2 ≤ R. Then we have

EMk

[
‖uk − ûlk‖22

]
≤ 4ξ(1− ξ)nκ2
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Proof. To start, we have

EMk

[(
u
(i)
k − û

l(i)
k

)2]
=

1

m
EMk

( m∑
r=1

ar(ξ −ml
k,r)σ(〈wk,r,xi〉)

)2


≤ 1

m

m∑
r=1

EMk

[
(ξ −ml

k,r)
2
]
σ(〈wk,r,xi〉)2

≤ ξ(1− ξ)
m

m∑
r=1

〈wk,r,xi〉2

≤ 2ξ(1− ξ)
m

m∑
r=1

〈w0,r,xi〉2 + 2ξ(1− ξ)R2

≤ 4ξ(1− ξ)κ2

Therefore,

EMk

[
‖uk − ûlk‖22

]
=

n∑
i=1

EMk

[(
u
(i)
k − û

l(i)
k

)2]
≤ 4ξ(1− ξ)nκ2

Lemma 26. Assume that for all i ∈ [n], yi satisfies |yi| ≤ C − 1 for some C ≥ 1. Then, we have

EW0,a

[
‖y − u0‖22

]
≤ C2n

Proof. It is easy to see that

EW0,a

[
u
(i)
0

]
= 0

Note that

EW0,a

[(
u
(i)
0

)2]
=
ξ2

m
EW0,a

( m∑
r=1

arσ(〈w0,r,xi〉

)2


=
ξ2

m

m∑
r=1

EW0

[
〈w0,r,xi〉2

]

=
ξ2

m

m∑
r=1

EW0

( d∑
d′=1

w0,r,d′xi,d′

)2


=
ξ2

m

m∑
r=1

d∑
d′=1

EW0

[
w2

0,r,d′x
2
i,d′
]

=
ξ2

m

m∑
r=1

d∑
d′=1

x2i,d′

= ξ2

Therefore,

EW0,a

[(
yi − u(i)0

)2]
= y2i − 2yiEW0,a

[
u
(i)
0

]
+ EW0,a

[(
u
(i)
0

)2]
= y2i + ξ2

Thus,

EW0,a

[
‖y − u0‖22

]
=

n∑
i=1

EW0,a

[(
yi − u(i)0

)2]
=

n∑
i=1

y2i + ξ2n ≤ C2n
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Table 1: Notations

SYMBOL DESCRIPTION MATHEMATICAL DEFINITION

K Number of global iterations K ∈ N+

k Index of global iterations k ∈ [K]

τ Number of local iterations τ ∈ N+

t Index of local iterations t ∈ [τ ]

p Number of subnetworks p ∈ N+

l Index of subnetworks l ∈ [p]

ξ
Probability of selecting a

neuron ξ ∈ (0, 1]

ξ

Vector probability of
selection a neuron by each

worker
ξ ∈ (0, 1]p

η
Constant step size for local

gradient update η ∈ R

Mk
Binary mask in iteration k Mk ∈ {0, 1}p×m

mk,r

Binary mask for neuron r in
iteration k mk,r ∈ {0, 1}p, the vector of rth column of Mk

ml
k

Binary mask for subnetwork
l in iteration k ml

k ∈ {0, 1}m, the vector of lth row of Mk

ml
k,r

Binary mask for neuron r in
subnetwork l in iteration k ml

k,r ∈ {0, 1} the (l, r)th entry of Mk

Xk,r

Number of subnetworks
selecting neuron r in

iteration k
Xk,r =

∑p
l=1m

l
k,r

Nk,r

Aggregated gradient
normalizer for neuron r in

iteration k
Nk,r = max{Xk,r, 1}

N⊥k,r

Indicator of gradient
existing for neuron r in

iteration k
N⊥k,r = min{Xk,r, 1}

ηk,r

Global gradient aggregation
step size for neuron r in

iteration k
ηk,r = N⊥k,r/Nk,r

u
(i)
k

Output of the whole
network at global iteration k

for sample i
u
(i)
k = ξ√

m

∑m
r=1 arσ(〈wk,r,xi〉

uk

Output of the whole
network at global iteration k

for all X
uk =

[
u
(1)
k , . . . , u

(n)
k

]
û
l(i)
k,t

Output of subnetwork l at
iteration (k, t) for sample i û

l(i)
k,t = 1√

m

∑m
r=1 arm

l
k,rσ(

〈
wl
k,t,r,xi

〉
ûlk,t

Output of subnetwork l at
iteration (k, t) for all X ûlk,t =

[
û
l(1)
k,t , . . . , û

l(n)
k,t

]
û
l(i)
k

Output of subnetwork l at
iteration (k, 0) for sample i û

l(i)
k = û

l(i)
k,0

ûlk
Output of subnetwork l at
iteration (k, 0) for all X

ûlk = ûlk,0

Lk Global loss at iteration k Lk = ‖y − uk‖22

Lml
k
(Wl

k,t)
Local loss for subnetwork l

at iteration (k, t)
Lml

k
(Wl

k,t) = ‖y − fml
k
(Wl

k,t)‖22

49



Under review as a conference paper at ICLR 2022

I GENERALIZATION ERROR

In this section, we provide bound on the generalization error for the scenario in Theorem 3.

Theorem 5. Suppose the assumption of the dataset in Theorem 3 holds, and suppose p ≤ n. Fix
some failure probability δ, total number of global iterations K = Ω

(
log n

δ

)
, and use the initializa-

tion scale κ = O(
√
δ
n ) and step size η = O

(
λ0

√
δ

τ
√
n3 max{n,K2}

)
. If the number of hidden neurons

satisfies

m = Ω

(
K

δ
max

{
n4

κ2λ40
,
nK2

κ2λ20

}
· poly(θ, ξ)

)
, (9)

Then with probability at least 1 − δ, we have that for any 1-Lipschitze loss function ` such that
`(yi, yi) = 0, it holds that

LD(f(WK , ·)) := E(x,y)∼D [`(f(Wk,x), y)] ≤ O

δ−1√y(H∞)−1y

n
+

√
log n

λ0δ

nδ



I.1 GENERAL STRUCTURE

For the simplicity of the proof, we treat ξ as constant and use O(·) analysis. For a third order
tensor A ∈ Rn1×n2×n3 , we denote its mode-i matricization as mati(A) ∈ Rnj1nj2×ni with
i, j1, j2 ∈ {1, 2, 3} being different elements. For a matrix A′ ∈ Rn1×n2 , we denote its vector-
ization as vec(A′) ∈ Rn1×n2 . To start, we fix K = Ω

(
log n

δ

)
. In this way, based on our learning

rate, we have that‖uK − y‖2 = O
(

1√
δ

)
. Thus, for a 1-Lipschitz loss function `(·), we have

LS(f(Wk, ·)) =
1

n

n∑
i=1

(
`(u

(i)
K , yi)− `(yi, yi)

)
≤ 1√

n
‖uK − y‖2 = O

(
1√
nδ

)

We define the partial derivative tensor Z(k) and the masked partial derivative tensor ml
k ◦Z(k, t) ∈

Rm×d×n as

Z(k)r,:,i =
1√
m
arxiI {〈wk,r,xi〉 ≥ 0}(

ml
k ◦ Z(k, t)

)
r,:,i

=
1√
m
arm

l
k,rxiI

{〈
wl
k,t,r,xi

〉
≥ 0
}

Therefore, we have that

Wl
k,t+1 −Wl

k,t = −η
(
ml
k ◦ (Z(k, t)

)
(ûlk,t − y)

Let

ηk =

ηk,1 . . .
ηk,m

 ∈ Rm×m
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then we have

Wk+1 −Wk =

τ−1∑
t=0

p∑
l=1

ηk
(
Wl

k,t+1 −Wl
k,t

)
= −η

τ−1∑
t=0

p∑
l=1

ηk
(
ml
k ◦ (Z(k, t)

)
(ûlk,t − y)

= −η
τ−1∑
t=0

(
p∑
l=1

ηk
(
ml
k ◦ (Z(k, t)

))
(uk − y)− η

τ−1∑
t=0

p∑
l=1

ηk
(
ml
k ◦ (Z(k, t)

)
(ûlk,t − uk)

= −ηθτZ(0)(uk − y)− η
τ−1∑
t=0

(
p∑
l=1

ηk
(
ml
k ◦ (Z(k, t)

)
− θZ(0)

)
(uk − y)−

η

τ−1∑
t=0

p∑
l=1

ηk
(
ml
k ◦ (Z(k, t)

)
(ûlk,t − uk)

We denote

∆gk,r = ηk,r

τ−1∑
t=0

p∑
l=1

ml
k,r

∂Lml
k

(
Wl

k,t

)
∂wr

− θ

ξ

∂L(Wk)

∂wr


With this definition, the update of each weight vector can be written as

wk+1,r −wk,r = −ηηk,r
τ−1∑
t=0

p∑
l=1

∂Lml
k

(
Wl

k,t

)
∂wr

= −ηθτ
ξ

∂L(Wk)

∂wr
− η∆gk,r

Then we have

u
(i)
k+1 − u

(i)
k = I

(i)
1,k + I

(i)
2,k

=
ξ√
m

∑
r∈Si

ar 〈wk+1,r −wk,r,xi〉 I{〈wk,r,xi〉 ≥ 0}+ I
(i)
2,k

= − ηξ√
m

∑
r∈Si

ar

〈
θτ

ξ

∂L(Wk)

∂wr
+ ∆gk,r,xi

〉
I{〈wk,r,xi〉 ≥ 0}+ I

(i)
2,k

= −ηθξτ
m

∑
r∈Si

n∑
j=1

(u
(i)
k − yi) 〈xi,xj〉 I{〈wk,r,xi〉 ≥ 0, 〈wk,r,xj〉 ≥ 0}

− ηξ√
m

∑
r∈Si

ar 〈∆gk,r,xi〉 I{〈wk,r,xi〉 ≥ 0}+ I
(i)
2,k

= −ηθτ
n∑
j=1

(
H(k)ij −H(k)⊥ij

)
(u

(i)
k − yi)

− ηξ√
m

∑
r∈Si

ar 〈∆gk,r,xi〉 I{〈wk,r,xi〉 ≥ 0}+ I
(i)
2,k

Letting εk ∈ Rn be defined as

εk,i = − ηξ√
m

∑
r∈Si

ar 〈∆gk,r,xi〉 I{〈wk,r,xi〉 ≥ 0}

Then we have

uk+1 − uk = −ηθτH(k)(uk − y) + ηθτH(k)⊥(uk − y)− εk + I2,k

= −ηθτH∞(uk − y)− ηθτ(H(k)−H∞)(uk − y) + ηθτH(k)⊥(uk − y)− εk + I2,k
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and thus
uk+1 − y = (I− ηθτH∞) (uk − y)− ηθτ(H(k)−H∞)(uk − y) + ηθτH(k)⊥(uk − y)−

εk + I2,k

= (I− ηθτH(0)) (uk − y) + ε′k
by denoting

ε′k = −ηθτ(H(k)−H(0))(uk − y) + ηθτH(k)⊥(uk − y)− εk + I2,k
Then

uk − y = (I − ηθτH∞)k(u0 − y) +

k−1∑
k′=0

(I − ηθτH∞)k−k
′+1ε′k′

Thus we have
Wk+1 −Wk = ηθτZ(0)(I − ηθτH∞)ky − ηθτZ(0)(I − ηθτH∞)ku0−

ηθτZ(0)

k−1∑
k′=0

(I − ηθτH∞)k−k
′+1ε′k′−

η

τ−1∑
t=0

(
p∑
l=1

ηk
(
ml
k ◦ (Z(k, t)

)
− θZ(0)

)
(uk − y)−

η

τ−1∑
t=0

p∑
l=1

ηk
(
ml
k ◦ (Z(k, t)

)
(ûlk,t − uk)

Therefore, the weight matrix difference can be bounded as
‖Wk −W0‖F ≤ Q1 +Q2 +Q3 +Q4 +Q5

with

Q1 =

∥∥∥∥∥ηθτ
k−1∑
k′=0

Z(0)(I − ηθτH∞)k
′
y

∥∥∥∥∥
F

Q2 =

∥∥∥∥∥ηθτ
k−1∑
k′=0

Z(0)(I − ηθτH∞)k
′
u0

∥∥∥∥∥
F

Q3 =

∥∥∥∥∥ηθτ
k−1∑
k1=0

k1−1∑
k2=0

Z(0)(I − ηθτH∞)k1−k2+1ε′k2

∥∥∥∥∥
F

Q4 =

∥∥∥∥∥η
k−1∑
k′=0

τ−1∑
t=0

(
p∑
l=1

ηk′
(
ml
k′ ◦ (Z(k′, t)

)
− θZ(0)

)
(uk′ − y)

∥∥∥∥∥
F

Q5 =

∥∥∥∥∥η
k−1∑
k′=0

τ−1∑
t=0

p∑
l=1

ηk′
(
ml
k′ ◦ (Z(k′, t)

)
(ûlk′,t − uk′)

∥∥∥∥∥
F

Based on next section, we have

E[Mk],a [Q1] = O

(√
y>(H∞)−1y +

n (log(n/δ))
1
4

m
1
4λ0

)

E[Mk],a [Q2] = O

(
nκλ0√
δ

)
E[Mk],a [Q3] = O

(
ητ

λ0

(√
n3

δ
+
κn2K

p
+K

√
npC1

))

E[Mk],a [Q4] = O

(
ητnK

λ0
√
δ

)
E[Mk],a [Q5] = O(ητ

√
nκ)

52



Under review as a conference paper at ICLR 2022

Then, as long as κ = O
(√

δ
n

)
and η = O

(
λ0

√
δ

τ
√
n3 max{n,K2}

)
, we have that

EMk,a [‖Wk −W0‖F ] = O

(√
y>(H∞)−1y + 1

)
Thus, with probability at least 1− δ we have

‖Wk −W0‖F = O

(
δ−1

(√
y>(H∞)−1y + 1

))
Moreover, the row-wise weight perturbation is bounded as

‖wk,r −w0,r‖2 ≤
k−1∑
k′=0

‖wk,τ −wk,0‖2

= O

(
ητn
√
K

δ
√
m

)
k−1∑
k′=0

(1− 1

8
ηθτλ0)k

′
+O

(
ητκn

√
pK3

mδ

)

≤ O

(
n
√
K

λ0δ
√
m

)
Consider the functional class

F = {f(W, ·) | ‖wk,r −w0,r‖2 ≤ R; ‖Wk −W0‖F ≤ R}
with

R = O

(
n
√
K

λ0δ
√
m

)

R = O

(
δ−1

(√
y>(H∞)−1y + 1

))
Then the Rademacher complexity of this functional class is

Rad(F) ≤ R√
2n

1 +

(
2 log 2

δ

m

) 1
4

+
2R2
√
m

κ
+R

√
2 log

2

δ

≤ O

(
δ−1

(√
y(H∞)−1y

n
+

1√
n

))
Thus, with probability at least 1− δ we have that

sup
f∈F

(LD(f)− LS(f)) ≤ 2Rad(F) +

√
log n

λ0δ

n
= O

δ−1√y(H∞)−1y

n
+

√
log n

λ0δ

n


which implies that

LD(f) ≤ LS(f) +O

δ−1√y(H∞)−1y

n
+

√
log n

λ0δ

n

 = O

δ−1√y(H∞)−1y

n
+

√
log n

λ0δ

nδ


I.2 BOUND OF Q1, Q2, Q3, Q4 AND Q5

We bound each of the terms separately. We first note that

mat3(Z(0)) =
1√
m

[
a1x1I{〈w0,1,x1〉} . . . a1xnI{〈w0,1,xn〉}

. . . . . .
amx1I{〈w0,m,x1〉} . . . amxnI{〈w0,m,xn〉}

]
∈ Rmd×n

and therefore mat3(Z(0))>mat3(Z(0)) = 1
ξH(0). Let T = ηθτ

∑k−1
k′=0(I− ηθτH∞)k

′
.
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I.2.1 BOUND OF Q1

For Q1, we have

Q2
1 =

∥∥∥∥∥ηθτ
k−1∑
k′=0

Z(0)(I − ηθτH∞)k
′
y

∥∥∥∥∥
2

F

=

∥∥∥∥∥ηθτvec
(
k−1∑
k′=0

Z(0)(I − ηθτH∞)k
′
y

)∥∥∥∥∥
2

2

=

∥∥∥∥∥ηθτ
k−1∑
k′=0

mat3(Z(0))(I − ηθτH∞)k
′
y

∥∥∥∥∥
2

2

= y>T>mat3(Z(0))>mat(Z(0))Ty

=
1

ξ
y>T>H(0)Ty

≤ 1

ξ
y>T>H∞Ty +

1

ξ
‖H(0)−H∞‖2 ‖T‖

2
2‖y‖22

≤ 1

ξ
y>T>H∞Ty +O

(
n2
√

log(n/δ)√
mλ20

)
where the last inequality follows from the fact that

‖T‖2 ≤ ηθτ
k−1∑
k′=0

(1− ηθτλ0)k = λ0; ‖H(0)−H∞‖2 ≤
ξn
√

log(n/δ)√
m

; ‖y‖2 = n

Also, consider the eigen-decomposition H∞ =
∑n
i=1 λiviv

>
i . Note that T and H∞ has the same

eigenvectors. Therefore,

T = ηθτ

n∑
i=1

k−1∑
k′=0

(1− ηθτλi)k
′
vv> �

n∑
i=1

λ−1i viv
>
i = (H∞)−1

Thus

Q2
1 ≤ ξ−1y>(H∞)y +O

(
n2
√

log(n/δ)√
mλ20

)
which implies that

Q1 ≤ ξ−
1
2

√
y>(H∞)−1y +O

(
n (log(n/δ))

1
4

m
1
4λ0

)

I.2.2 BOUND OF Q2

For Q2, we have
Q2 = ‖Z(0)Tu0‖F ≤ ‖Z(0)‖F ‖T‖2‖u0‖2

Note that with probability at least 1− δ we have that ‖u0‖2 ≤
√

n
δ κ. Also, we can bound ‖Z(0)‖F

as

‖Z(0)‖2F =

n∑
i=1

m∑
r=1

‖Z(0)r,:,i‖22

=
1

m

n∑
i=1

m∑
r=1

‖arxiI{〈w0,r,xi〉 ≥ 0}

≤ n
Thus we have

Q2 ≤
√
nλ0 ·

√
n

δ
κ =

nκλ0√
δ
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I.2.3 BOUND OF Q3

We start with giving a bound on ‖ε′k‖2. We have that

‖ε′k‖2 ≤ ηθτ
(
‖H(k)−H(0)‖2‖uk − y‖2 + ‖H(k)⊥‖2‖uk − y‖2

)
+ ‖I2,k‖2 + ‖εk‖2

Among all the terms, ‖I2,k‖2 can be bounded using the bound on EMk

[∣∣∣I(i)2,k

∣∣∣]
EMk

[‖I2,k‖2] ≤
√
nmax
i∈[n]

EMk

[∣∣∣I(i)2,k

∣∣∣]
≤ O

(
ητnκ−1R

)
‖uk − y‖2 +O

(
ηn

3
2R
√
p

+ ητκ−1nR
√
pC1

)
Moreover, since we have that

‖H(k)⊥‖2 = O
(
nκ−1R

)
; ‖H(k)−H(0)‖2 = O

(
nκ−1R

)
Therefore

EMk
[‖ε′k‖2] ≤ O

(
ητnκ−1R

)
‖uk − y‖2 + EMk

[‖εk‖2] +

O

(
ηn

3
2R
√
p

+ ητκ−1nR
√
pC1

)
What remains is to bound EMk

[‖εk‖2]. To do this, we first bound the norm of ∆gk,r. We write

∆gk,r = ηk,r

τ−1∑
t=0

p∑
l=1

ml
k,r

∂Lml
k

(
Wl

k,t

)
∂wr

−
∂Lml

k
(Wk)

∂wr

+

ηk,r

τ−1∑
t=0

p∑
l=1

∂Lml
k

(Wk)

∂wr
− τ

ξ

∂L(Wk)

∂wr

= ηk,r

τ−1∑
t=0

p∑
l=1

∂Lml
k

(
Wl

k,t

)
∂wr

−
∂Lml

k
(Wk)

∂wr

+

τ

(
gk,r −

1

ξ

∂L(Wk)

∂wr

)
The second term has norm

EMk

[∥∥∥∥gk,r − 1

ξ

∂L(Wk)

∂wr

∥∥∥∥
2

]
= θEMk

[
1√
m

n∑
i=1

(
f
(i)
k,r − u

(i)
k

)
arxiI{〈wk,r,xi〉 ≥ 0} | N⊥k,r = 1

]
+

P (N⊥k,r = 0)

∥∥∥∥1

ξ

∂L(Wk)

∂wr

∥∥∥∥
2

≤ θ
√
n√
m

EMk

[
‖fk,r − uk‖2 | N⊥k,r = 1

]
+

(1− θ)
√
n√

m
‖uk − y‖2

= O

(√
n

m

)
‖uk − y‖2 +O

(
nκ
√
mp

)
For the first term, in previous proof, we have∥∥∥∥∥∥EMk

ηk,r p∑
l=1

∂Lml
k

(
Wl

k,t

)
∂wr

−
∂Lml

k
(Wk)

∂wr

∥∥∥∥∥∥
2

≤ EMk

 ηk,r√
m

p∑
l=1

mk,r

n∑
j=1

∣∣∣ûl(j)k,t − û
l(j)
k

∣∣∣


with ∣∣∣ûl(i)k,t − û
l(i)
k

∣∣∣ ≤ ηt√n (‖y − uk‖2 + ‖uk − ûlk‖2
)
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Combining the result above, we have

EMk

[
‖∆gk,r‖2

]
≤ η

√
n

m

τ−1∑
t=0

t

(
‖uk − y‖2 + EMk

[
ηk,r

p∑
l=1

ml
k,r‖uk − ûlk‖2

])
+

O

(
τ

√
n

m

)
‖uk − y‖2 +O

(
τnκ
√
mp

)
≤ O

(
τ

√
n

m
(ητ + 1)

)
‖uk − y‖2 +O

(
τnκ
√
mp

+
ητ2
√
pC1n√
m

)
Now we bound EMk

[‖εk‖2]

EMk
[‖εk‖2] ≤ ηξ√

m

∑
r∈Si

EMk

[
‖∆gk,r‖2

]
≤ O

(
ητ
√
n (ητ + 1)

)
‖uk − y‖2 +O

(
ητκ

√
n3

p
+ η2τ2n

√
pC1

)

Combining the bound above, with the assumption that R ≤ κ
n and η ≤ 1

τn , we have

EMk
[‖ε′k‖2] = O(ητ

√
n)‖uk − y‖2 +O

(
ητ

(
κ

√
n3

p
+
√
pC1

))

Using the convergence rate of E[Mk−1] [‖uk − y‖2], since B1 = O(1) we have that

E[Mk] [‖ε′k‖2] ≤ O(ητ
√
n)(1− 1

8
ηθτλ0)k‖u0 − y‖2 +O(ητ

√
n)(1− 1

8
ηθτλ0)k+

O

(
ητ

(
κ

√
n3

p
+
√
pC1

))

≤ (1− 1

8
ηθτλ0)kO

(
ητn√
δ

)
+O

(
ητ

(
κ

√
n3

p
+
√
pC1

))

As in the bound of Q2, we have

E[Mk] [Q3] =E[Mk]

∥∥∥∥∥ηθτ
k−1∑
k1=0

k1−1∑
k2=0

Z(0)(I − ηθτH∞)k1−k2+1ε′k2

∥∥∥∥∥
F


≤ ηθτ ·

√
n

k−1∑
k1=0

k1−1∑
k2=0

(1− ηθτλ0)k1−k2+1E[Mk2
]

[
‖ε′k2‖2

]
≤ O

(
η2τ2

√
n3

δ

)
θ

k∑
k1=1

(1− 1

8
ηθτλ0)k1+

O

(
η2τ2

(
κn2

p
+
√
npC1

))
θ

k−1∑
k1=0

k1−1∑
k2=0

(1− ηθτλ0)k1−k2+1

≤ O

(
ητ

λ0

(√
n3

δ
+
κn2K

p
+K

√
npC1

))
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I.2.4 BOUND ON Q4

First, we bound
∥∥∑p

l=1 ηk
(
ml
k ◦ Z(k, t)−ml

k ◦ Z(0, 0)
)∥∥
F

. In particular, we have∥∥∥∥∥
p∑
l=1

ηk
(
ml
k ◦ Z(k, t)−ml

k ◦ Z(0, 0)
)∥∥∥∥∥

2

F

=
1

m

m∑
r=1

n∑
i=1

p∑
l=1

∥∥ηk,rarximl
k,rsr,i

∥∥2
2

≤ 1

m

m∑
r=1

n∑
i=1

ηlk,r

p∑
l=1

ml
k,r |sr,i|

=
1

m

m∑
r=1

n∑
i=1

N⊥k,r|sr,i|

with

sr,i = I
{〈

wl
k,t,r,xi

〉}
− I{〈w0,r,xi〉}

Then sr,i = 0 if ¬Air, and |sr,i| ≤ 1 otherwise. Thus

EW0,Mk

[
N⊥k,r|sr,i|

]
= θP (Air) ≤

2θR

κ
√

2π
≤ θκ−1R

Also, its variance follows

V arW0,Mk
(sr,i) ≤ EW0,Mk

[
s2r,i
]

= θκ−1R

Thus, applying Berstein inequality gives

P

(
m∑
r=1

n∑
i=1

N⊥k,r|sr,i| ≥ 2mnθκ−1R

)
≤ exp

(
−mnθR

10κ

)
Thus, with probability at least 1− exp

(
−mnθR10κ

)
we have that∥∥∥∥∥

p∑
l=1

ηk
(
ml
k ◦ Z(k, t)−ml

k ◦ Z(0, 0)
)∥∥∥∥∥

2

F

≤ nθκ−1R

Take a union bound over all k, t, and apply overparameterization gives that with probability at least
1− δ, it holds that ∥∥∥∥∥

p∑
l=1

ηk
(
ml
k ◦ Z(k, t)−ml

k ◦ Z(0, 0)
)∥∥∥∥∥
F

≤
√
nθκ−1R

Then we bound
∥∥∑p

l=1 ηk
(
ml
k ◦ Z(0, 0)

)
− θZ(0)

∥∥
F

. We have∥∥∥∥∥
p∑
l=1

ηk
(
ml
k ◦ Z(0, 0)

)
− θZ(0)

∥∥∥∥∥
2

F

=
1

m

m∑
r=1

n∑
i=1

∥∥∥∥∥
(
ηk,r

p∑
l=1

ml
k,r − θ

)
arxiI{〈w0,r,xi〉 ≥ 0}

∥∥∥∥∥
2

2

=
1

m

m∑
r=1

n∑
i=1

(
N⊥k,r − θ

)2
Since we have EMk

[
N⊥k,r

]
= θ, and V arMk

(N⊥k,r) = θ−θ2 we can again apply Berstein inequality
to get that

P

(
m∑
r=1

n∑
i=1

(N⊥k,r − θ)2 ≥ 2mnθ(1− θ)

)
≤ exp

(
−mnθ(1− θ)

10

)
Thus, with probability at least 1− exp

(
−mnθ(1−θ)10

)
we have that∥∥∥∥∥

p∑
l=1

ηk
(
ml
k ◦ Z(0, 0)

)
− θZ(0)

∥∥∥∥∥
2

F

≤ 2nθ(1− θ)
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Take a union bound over all k and apply overparameterization gives that with probability at least
1− δ, it holds that ∥∥∥∥∥

p∑
l=1

ηk
(
ml
k ◦ Z(0, 0)

)
− θZ(0)

∥∥∥∥∥
F

≤
√
nθ(1− θ)

Thus, we have that∥∥∥∥∥
p∑
l=1

ηk
(
ml
k ◦ Z(k, t)

)
− θZ(0)

∥∥∥∥∥
F

≤

∥∥∥∥∥
p∑
l=1

ηk
(
ml
k ◦ Z(0, 0)

)
− θZ(0)

∥∥∥∥∥
F

+∥∥∥∥∥
p∑
l=1

ηk
(
ml
k ◦ Z(k, t)−ml

k ◦ Z(0, 0)
)∥∥∥∥∥
F

≤ O
(√
n
)

with R ≤ κ
n . Therefore,

Q4 ≤ η
k−1∑
k′=0

τ−1∑
t=0

∥∥∥∥∥
p∑
l=1

ηk
(
ml
k ◦ Z(k, t)

)
− θZ(0)

∥∥∥∥∥
F

‖uk′ − y‖2

≤ O(ητ
√
n)

k−1∑
k′=0

((
1− 1

8
ηθτλ0

)k′
O

(√
n

δ

)
+O(1)

)

= O

(
ητnK

λ0
√
δ

)
I.2.5 BOUND ON Q5

To bound Q5, we first note that∥∥∥∥∥
p∑
l=1

ηk
(
ml
k ◦ Z(k, t)

)
(ûk,t − uk)

∥∥∥∥∥
2

F

≤ 1

m

m∑
r=1

n∑
i=1

p∑
l=1

ηk,rm
l
k,r(û

l(i)
k,t − u

(i)
k )2

And, we have

Ea

[
(û
l(i)
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we have
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