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ABSTRACT

Self-distillation has become a central paradigm for pretraining vision transformers
without labels. Existing approaches typically operate at the image level and assume
that different augmentations of an image preserve the same semantic content. This
assumption often fails in complex scenes with multiple objects, where random
crops possibly contain different semantic content. To address this, we propose
to enrich the learning signal by incorporating object-level annotations. Using
object bounding boxes as weak-supervision, we introduce ODIS (Object-level
Self-Distillation), a new framework that refines the self-distillation objective to the
level of individual objects. ODIS uses object-aware cropping to ensure that teacher
and student views depict the same object, and employs masked attention to focus
the learning signal on that object. On ImageNet-1K, ODIS learns stronger visual
representations than image-level distillation methods such as iBOT across both
image- and patch-level benchmarks, and its features transfer better to downstream
classification and retrieval tasks. Our results highlight the importance of object-
centric supervision in scalable representation learning and show how object-level
annotations can be integrated into distillation pipelines to enhance generalization.

1 INTRODUCTION

Vision Transformers (ViTs) (Dosovitskiy et al., 2020) trained with self-distillation (Caron et al., 2021;
Oquab et al., 2023) achieve state-of-the-art results across many tasks, from unsupervised segmentation
to dense correspondence and appearance transfer (Amir et al., 2021; Tumanyan et al., 2022; Ofri-
Amar et al., 2023; Hamilton et al., 2022). As with large language models, performance improves
with scaling model size, compute, and pretraining data (Oquab et al., 2023; Siméoni et al., 2025).

However, scaling data alone does not guarantee better representations or downstream performance
(Goyal et al., 2021; Oquab et al., 2023; Siméoni et al., 2024; Vo et al., 2024). For example, DINOv3
shows that pretraining on 17B raw images yields 4.5% lower ImageNet-1K k-NN accuracy than
training the same model on 1.7B curated images (Siméoni et al., 2025, Table 1). As a result, large-
scale visual pretraining often incorporates data curation steps to improve pretraining data, such as
semi-automatic labeling (Dehghani et al., 2023) or filtering low-quality images using embeddings
from pretrained models (Oquab et al., 2023; Siméoni et al., 2025). Inspired by the previous work,
we propose to strengthen the pretraining learning signal, but rather than relying only on image-level
annotations or filtering, we incorporate object-level annotations.

ImageNet label: ox Random Crops
ox barn

Teacher Student

pt ps

Cross-entropy loss

Figure 1: (Left) Multi-object example from Ima-
geNet. Taken from (Yun et al., 2021). (Right).

To see why object-level annotations im-
prove learning signal, we first recall the self-
distillation objective. In self-distillation, pre-
training adopts a teacher-student architecture:
the student is trained to match the mean-
teacher’s outputs rather than dataset labels Tar-
vainen & Valpola (2017); Grill et al. (2020);
Caron et al. (2021) (Fig. 1). At the image level,
this is implemented as single-label classifica-
tion on a global [CLS]embedding. This setup
assumes the teacher and student receive inputs
with the same content. This assumption, how-
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ever, does not always hold: In standard practice, the student and teacher networks see two random
augmentations of an image and these augmentations possibly change the input content, breaking the
assumption. As illustrated in Fig. 1, this issue is common even in ImageNet-1K (IN1K) (Deng et al.,
2009), where roughly 20% of images contain multiple classes (Tsipras et al., 2020).

To address this challenge, we propose using readily available or foundation model generated object
localization in the form of bounding boxes. We treat object bounding boxes as weak-supervision
and introduce Object-level Self-Distillation (ODIS), a pretraining method that shifts self-distillation
granularity from whole images to individual objects (see Fig. 2). This decomposition turns a complex
scene-level task into simpler object-centric subproblems. ODIS focuses computation on semantically
meaningful content via 1 object-aware cropping, which ensures the teacher and student view
different augmentations of the same object, and 2 masked attention, which guides the learning
objective toward object-centric representations useful for downstream tasks such as classification.
We empirically demonstrate that these two innovations exploit the bounding boxes more efficiently
than alternative approaches, such as cropping objects.

While these ideas can also be incorporated into contrastive learning (Chen et al., 2020), masked
image modeling (He et al., 2022), and multi-modal frameworks (Radford et al., 2021), we focus on
object-level self-distillation. As in image-level self-distillation Caron et al. (2021); Zhou et al. (2021);
Oquab et al. (2023), we do not use object labels. Yet, unlike prior work, we perform self-distillation
at the object level.

Across all image- and patch-level benchmarks we evaluate, ODIS consistently outperforms state-of-
the-art image-level distillation baselines trained at the same scale. Beyond image-level classification,
ODIS also improves patch-level performance on in-context scene-understanding and linear segmenta-
tion tasks (Balazevic et al., 2024; Lebailly et al., 2023). The resulting backbone transfers better to
downstream classification datasets than our main baseline, iBOT Zhou et al. (2021). We also show
how to use bounding boxes at inference to enable object-centric predictions: a ViT-Large pretrained
with ODIS achieves 82.6% k-NN accuracy on IN1K when bounding boxes are provided at test time.

Our main assumption is that bounding boxes are available during pretraining. In practice, this can
be satisfied either by using datasets that include them or by applying off-the-shelf box extractors,
which continue to improve. To test robustness of our approach, we also extract boxes from IN1K
using two such extractors and find that ODIS improves over state-of-the-art baselines with either one.
This aligns with recent efforts in data filtering using pretrained models (Dehghani et al., 2023; Oquab
et al., 2023; Siméoni et al., 2025; Vo et al., 2024), which highlight the value of integrating pretrained
models into learning pipelines to obtain stronger backbones.

2 RELATED WORK

Image-level pretraining. Inspired by large-scale NLP pretraining, many vision works adopt similar
strategies. Early methods use tasks such as reconstructing masked patches (He et al., 2022; Bao
et al., 2021), including variants that operate in feature space (Assran et al., 2023). These approaches
improve performance when fine-tuned on downstream tasks.

However, our focus is on representations that work well without extra fine-tuning, which brings
us closer to discriminative image-level self-distillation (Grill et al., 2020; Caron et al., 2021; Zhou
et al., 2021; Oquab et al., 2023). These methods use a teacher-student framework (Tarvainen &
Valpola, 2017) and avoid the negative pairs used in contrastive learning (Chen et al., 2020). iBOT
(Zhou et al., 2021) combines image-level self-distillation (Caron et al., 2021) with a patch-level loss
inspired by masked language modeling (Devlin et al., 2018). Building on this, Oquab et al. (2023)
add algorithmic improvements for stable large-scale training and scale ViTs to a 142M-image dataset
and a 1B-parameter model, reaching state-of-the-art results on diverse tasks. Our work also builds on
iBOT (Zhou et al., 2021), however we focus on enhancing the learning objective to a finer object-level
granularity instead of scaling the pretraining.

Object-level pretraining. A parallel line of research explores finer-grained pretraining objectives,
ranging from pixel level distillation (O Pinheiro et al., 2020) to patch-level (Wang et al., 2021) and
full object-level formulations (Hénaff et al., 2021; 2022; Xie et al., 2021; Stegmüller et al., 2023;
Wen et al., 2022). These works primarily target dense tasks, such as object detection and semantic
segmentation, defined at the pixel or patch level rather than at the image level. They are evaluated on
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these tasks either with full fine-tuning (Hénaff et al., 2021; 2022; Wen et al., 2022) or with a linear
head (Xie et al., 2021; Stegmüller et al., 2023). Object-centric alignment has also been studied in
vision-language models, where RegionCLIP (Zhong et al., 2022) extends CLIP (Radford et al., 2021)
by aligning region embeddings with text. Instead, we focus on pretraining on images solely.

Closest to our approach are (Hénaff et al., 2021; 2022). Of particular interest, Hénaff et al. (2021)
proposes an object-level contrastive loss using segmentation masks, but forms object embeddings
with average (linear) pooling over dense features, which limits expressivity. In contrast, our masked
attention mechanism uses bounding boxes at each transformer layer, building highly nonlinear
object-level representations. More importantly, while prior work emphasizes fine-tuning for object
detection and segmentation, our goal is to learn general-purpose object-level representations useful
for downstream tasks out of the box.

Object-centric learning methods. Object-centric learning (OCL) (Burgess et al., 2019; Locatello
et al., 2020; Seitzer et al., 2022; Didolkar et al., 2025) aims to discover object-like structure and
is usually evaluated by unsupervised object segmentation. Yet, modern segmentation foundation
models (Kirillov et al., 2023) outperform current OCL methods in zero-shot scenarios (Rubinstein
et al., 2025), raising questions about whether OCL is useful for broad vision tasks. Object-centric
representations are further assumed to capture compositional structures useful for visual reasoning
tasks (Ding et al., 2021; Mamaghan et al., 2024), however it remains unclear how transferable their
learned object-level features are beyond visual reasoning and segmentation, since the quality of their
learned representations is not tested on standard benchmarks.

In contrast, we focus on object-level representations that work directly on standard benchmarks such
as ImageNet k-NN. By coupling object-level distillation with bounding boxes, we connect insights
from OCL and large-scale self-distillation, and we expect the resulting representations to also benefit
OCL-related tasks.

3 PRELIMINARIES

In this section, we briefly review the self-distillation algorithms of DINO (Caron et al., 2021) and
iBOT (Zhou et al., 2021), as our method builds on them.

Input. An input image x ∈ RC×Himg×Wimg is transformed via standard augmentations such as
random cropping followed by a resize in order to obtain two random global views: x(1), x(2) ∈
RC×Hresize×Wresize 1. Two views x(1) and x(2) are divided into H ×W patches and linearly projected to
a D dimensional embedding space: x̃(1), x̃(2) ∈ R(HW )×D. State-of-the-art pretraining approaches
(Caron et al., 2021; Zhou et al., 2021; Oquab et al., 2023) typically concatenate the [CLS]∈ R1×D

token which summarizes the image-level visual information: [[CLS], x̃] ∈ R(1+HW )×D.

Network architecture. The algorithm is implemented using a pair of student and teacher networks:
gs = hs ◦ bs and gt = ht ◦ bt, with ViT backbones bs, bt and the MLP prediction heads hs, ht. The
output activation of the MLP prediction heads hs, ht are softmax with temperatures ts > tt.

Visual representations. Visual representations are the outputs of the ViT backbones. Although both
the teacher and student process both global views in practice, for clarity we illustrate a simplified
scenario where the teacher receives view 1 and the student receives view 2 (using the view color
coding in Fig. 2b).

z
(1)
[CLS],t, z

(1)
patches,t = bt([[CLS]

(1), x̃(1)]), teacher - view 1 (1)

z
(2)
[CLS],s, z

(2)
patches,s = bs([[CLS]

(2), x̃(2)]), student - view 2 (2)

with image-level representation z[CLS] ∈ R1×D and patch-level representations zpatches ∈ RHW×D.

Image-level objective (DINO Loss) (Caron et al., 2021). MLP heads take the representations
z[CLS] as input and produce probability vectors ps, pt, e.g., p[CLS],s = hs(z[CLS]). We take
CrossEntropy (CE) loss between probability vectors ps, pt that correspond to distinct views

1For simplicity, we ignore local crops for now.
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Image x ∼ D

View 1:
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p[CLS]s
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Random Cropping Full Attention

(a) Image-level self-distillation via [CLS]token with Random Cropping and Full Attention.

Image x ∼ D

Object mask y

View 1:
Mask:

Mask:
View 2:

aug.&
patchify

flatten

flatten

[OBJ]

[OBJ]

bt

bs

1 Object-aware Cropping 2 Masked Attention

ht

hs

p[OBJ]t

p[OBJ]s

L[OBJ]

(b) Object-level self-distillation via [OBJ]token with Object-aware Cropping and Masked Attention.

Figure 2: Image-level vs. Object-level distillation. (a) Standard random cropping have no inherent
mechanism to ensure that the student and teacher receive the same object as input. Hence, the distilled
[CLS]tokens may summarize semantically different entities. (b) Our approach resolves this issue
by 1 Object-aware Cropping that uses object masks. Further, 2 Masked Attention guides the
[OBJ]token to pool information only from object tokens, leading to better representations.

x(1), x(2)2:

p
(1)
[CLS],t = ht(z

(1)
[CLS]), teacher - view 1 [CLS] (3)

p
(2)
[CLS],s = hs(z

(2)
[CLS]), student - view 2 [CLS] (4)

L[CLS] = CrossEntropy(p(1)[CLS],t, p
(2)
[CLS],s), DINO loss (5)

For clarity, we only provided the loss term for the simplified scenario above. The full loss is symmetric
across views: L[CLS] = 1

2 (CE(p
(1)
[CLS],t, p

(2)
[CLS],s) + CE(p(2)[CLS],t, p

(1)
[CLS],s)).

Patch-level objective and iBOT loss (Zhou et al., 2021). iBOT creates an additional masked-image
modeling task. For the student network input, it applies a random binary mask m1 ∈ {0, 1}HW

to the input patch tokens x̃(1), x̃(2) ∈ R(HW )×D. The masking replaces corresponding tokens
by a general [PATCH] token, e.g., x̃(1)[m1] := [PATCH]3. The teacher receives unmasked

2Cross-entropy is defined as the dot product: CrossEntropy(a, b) =
∑

i ai log bi.
3We use torch boolean mask notation in x̃(1)[m1], selecting entries i ∈ [HW ] in x̃(1)[i] when m1[i] = 1.
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patch tokens. Similar to image-level loss, MLP prediction heads produce probability vectors, e.g.,
ppatches,s = hs(zpatches,s). In contrast to the cross-view formulation of the image-level loss, the
patch-level loss is computed as follows for a single patch with patch index i ∈ [HW ] corresponding
to the same views:

p
(1)
patches,t = ht(z

(1)
patches), teacher - view 1 unmask (6)

p
(1)
patches,s = hs(z

(1)
patches), student - view 1 mask (7)

L[PATCH][i] = m1[i] CrossEntropy(p
(1)
patches,t[i], p

(1)
patches,s[i]) patch loss for i ∈ [HW ] (8)

which is summed over all masked patches: L[PATCH] = − 1∑
j m(j)

∑
i∈[HW ] L[PATCH][i]. The iBOT

loss sums up image- and patch-level losses: LiBOT = L[CLS] + L[PATCH].

Optimization. The student network parameters θs are updated at every step via stochastic gradient
descent. The gradients do not flow back to the teacher network, instead the teacher parameters θt
are updated at every epoch as an exponential moving average (EMA) of the student parameters θs:
θt = λθt + (1− λ)θs (Tarvainen & Valpola, 2017).

4 OBJECT-LEVEL SELF-DISTILLATION

Patches Object
Mask

Input
Embed

+

Masked
Multi-Head
Attention

Pos.
Enc.

Add & Norm

Feed
Forward

Add & Norm

Outputs

N×

Figure 3: Masked Attention with
Object Bounding Boxes.

Next, we detail Object-level Self-Distillation (ODIS), our pro-
posed pretraining method that redefines self-distillation at the
object level rather than the conventional image level. ODIS is
built around two key components: 1 object-aware cropping,
which ensures that both student and teacher networks receive dis-
tinct views of the same object, and 2 masked attention, which
focuses the learning objective on objects, illustrated in Figs. 2
and 3. Together, these components guide the model toward learn-
ing richer, object-centric representations that transfer effectively
to downstream tasks such as classification.

1 Object-aware cropping. In addition to an input image x ∈
RC×Himg×Wimg , the model also receives a bounding box y (more
specifically, the coordinates of the top-left and bottom-right cor-
ners of the encapsulating box). While augmenting the input im-
age x to obtain two random views x(1), x(2) ∈ RC×Hresize×Wresize ,
we apply the same spatial transformations to the input box to
obtain two boxes y(1), y(2) aligned with the image views. Sim-
ilar to image views, the box views are patchified, but into binary
matrices ỹ(1), ỹ(2) ∈ {0, 1}HW where 1 denotes a patch falling
inside the bounding box. We ensure that the target object is
present in both global views by randomly cropping up to 20
times and keeping the global views that contain the target object.

When the input includes multiple distinct objects during training,
we sample a single target object and the corresponding box per
forward pass. To sample the target object, we consider two
object sampling strategies: at random or at random proportional
to object areas (see ablations for details). This way, the model
targets a single object per forward pass while being able to see
all objects in an image throughout training epochs.

2 Masked attention. Previous works (Caron et al., 2021; Zhou et al., 2021; Oquab et al., 2023)
concatenate the patch sequence with the global [CLS] token, summarizing image-level information.
Similarly, we introduce a new object-level token [OBJ] ∈ R1×D that represents only the features
of the target object. Using masked attention, [OBJ] only attends to those patches where the object
is present based on the object bounding box views ỹ(1), ỹ(2). Again, we use the scenario where the
teacher network takes view 1 as input and the student network takes view 2:

z
(1)
[OBJ],t, z

(1)
patches,t = bt([[OBJ]

(1), x̃(1)],obj-attn-mask = ỹ(1)), teacher - view 1 (9)

z
(2)
[OBJ],s, z

(2)
patches,s = bs([[OBJ]

(2), x̃(2)],obj-attn-mask = ỹ(2)), student - view 2 (10)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Notice that each transformer layer uses the object bounding box as input to the
MaskedMultiHeadAttention (MaskedMHA) block as in Fig. 3 to update the attention scores
of the [OBJ] token. This leads to object-level representations that are highly nonlinear mixtures of
the corresponding patch tokens, as opposed to works that consider average pooling of the patches
(Hénaff et al., 2021; 2022; Lebailly et al., 2023).

In standard ViTs, [CLS]token can attend to any other token, including large, textured, or crop-
overlapping background patches. Our masked-attention design allows [OBJ]token to pool exclu-
sively from tokens that fall inside the bounding box, thereby yielding a cleaner object representation
with a higher signal-to-noise ratio. Importantly, the restriction applies only to the [OBJ]token, i.e.,
the patch tokens belonging to the object still participate in full, unmasked self-attention with the rest
of the patches in the image. Thus they can pull in whatever context is genuinely informative. For
example, barn walls and grass texture in Fig. 1 carry information about the cow tokens; hence, they
may help object tokens to better describe the object.

Object-level objective. MLP prediction heads take the representations z[OBJ] as input and produce
probability vectors ps, pt, e.g., p[OBJ],s = hs(z[OBJ]). For clarity, we again provide a simplistic
example computing the cross-entropy loss only in one direction. We take cross-entropy loss between
probability vectors ps, pt that correspond to distinct views x(1), x(2):

p
(1)
[OBJ],t = ht(z

(1)
[OBJ]), teacher - view 1 [OBJ] (11)

p
(2)
[OBJ],s = hs(z

(2)
[OBJ]), student - view 2 [OBJ] (12)

L[OBJ] = CrossEntropy(p(1)[OBJ],t, p
(2)
[OBJ],s) object-level loss (13)

while the loss is symmetric: L[OBJ] = 1
2 (CE(p

(1)
[OBJ],t, p

(2)
[OBJ],s) + CE(p(2)[OBJ],t, p

(1)
[OBJ],s)).

Final loss. Our final loss sums the object-level loss with the patch-level loss described in Section 3:

LODIS = L[OBJ] + L[PATCH]. (14)

As the patch-level masking strategy, we use random block masking as in (Zhou et al., 2021).

Discussion on the use of object bounding boxes. Modern pretraining approaches adopt weak
supervision signals such as paired text (Radford et al., 2021; Tschannen et al., 2025), yet it still
overlooks the simplest one: the bounding boxes already bundled with datasets such as ImageNet-1k
and COCO. In ODIS we treat these masks as free supervision, feeding object-aware crops during
pre-training for the network to learn spatially grounded features. For pretraining datasets without
bounding boxes, we propose to run off-the-shelf bounding box extractors. Our experiments show that
ODIS pretrained with bounding boxes from off-the-shelf extractors still yields improvements over
not using any boxes in pretraining. Our method does not require object annotations at inference time.
Yet, as we show in our experiments they enhance performance of all methods considered if these
annotations are available in inference time. Our findings suggest that pretraining pipelines should
default to using bounding boxes whenever they are available or can be generated automatically.

Implementation details. We follow the ViT architectures and the pretraining setups in previous
works (Caron et al., 2021; Zhou et al., 2021), as further detailed in Appendix B. We use ViTs of
different sizes, ViT-Small/16, ViT-Base/16 and ViT-Large/16 with patch size equal to 16. We pretrain
our model separately on COCO and IN1K. In COCO, each image has on average ∼ 7 distinct object
instances of ∼ 150 object classes. We convert the provided segmentation masks to bounding boxes.
For IN1k, a single object box is provided for each image, locating the main object. All 50k validation
images in IN1K have a valid box, while only 500k /1.2M training images have one. For the images
missing the box, we assume that the main object covers the whole image. On IN1k, we also ablate
different object boxes produced by off-the-shelf bounding box extraction models: YOLO (Redmon
et al., 2016) and a multi-modal ViT (Maaz et al., 2022, MAVL) provide class-agnostic boxes, possibly
with multiple distinct objects for each image.

5 EXPERIMENTS

We evaluate ODIS through a comprehensive set of experiments to assess its effectiveness at both
image- and patch-level representation learning. Our results show that (i) incorporating ground-truth

6
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Figure 4: ODIS yields superior image-level representations. We report k-NN, linear probing, and
few-shot classification accuracy on IN1K. k-NN and linear probing results for DINO and iBOT are
taken from their result tables. Few-shot classification is run using their official checkpoints.

bounding boxes during pretraining consistently improves image- and patch-level representations
(Secs. 5.1, 5.4); (ii) the resulting backbone transfers more effectively to diverse, out-of-distribution
datasets (Sec. 5.2); (iii) pretraining with bounding boxes automatically extracted by off-the-shelf
detectors still yields clear gains over strong self-supervised baselines (Sec. 5.3). We further show that
using object-level annotations at inference time alleviates the single-label limitations of IN1K and
further improves evaluation accuracy in App. D.1. We provide experimental details in App. C and
ablations in App. E.

5.1 INCORPORATING BOUNDING BOXES IN PRETRAINING YIELDS SUPERIOR IMAGE-LEVEL
REPRESENTATIONS

We first study how incorporating object-level annotations during pretraining improves learning signal,
and hence yields better visual features. To measure the quality of image representations, we follow
previous works (Caron et al., 2021; Zhou et al., 2021; Assran et al., 2022) and evaluate our pretrained
models on a standard vision benchmark: classification on IN1K test set. We focus on off-the-shelf
visual feature quality. Hence, we consider simple classifiers on frozen features: k-NN and linear
classifiers, including n-shot scenarios. We compare our models with strong self-distillation baselines
that are at the same scale: DINO (Caron et al., 2021) and iBOT (Zhou et al., 2021).

We pretrain our models on two different datasets with different characteristics: IN1K (Deng et al.,
2009), that contains object-centric images, and COCO (Lin et al., 2014), that contains scene-centric,
multi-object images. During pretraining, we use readily-available bounding boxes of both datasets.

Pretraining on object-centric data (IN1K). On IN1K, we train three model sizes: ViT-S, ViT-B
and ViT-L. We follow pretraining and evaluation protocols in Caron et al. (2021); Zhou et al. (2021).
We further consider a few-shot learning setup following Assran et al. (2022), where a linear classifier
is trained using 1, 2, or 5 labeled images or 1% of the training data (about ∼13 images per class).
We show results in Fig. 4. ODIS outperforms the baselines in all evaluation setups, implying our
backbone has learned richer in-domain representations. In k-NN classification, ODIS provides
significant performance improvements compared to our main baseline iBOT: +0.7 for ViT-S, +1.2
for ViT-B, and +1.6 for ViT-L. We emphasize that these are significant performance improvements,
especially, considering that iBOT improves +0.7 and +1.0 over DINO for ViT-S and ViT-B. We also
see that scaling the model boosts the gains.

Table 1: k-NN IN1K for scene-centric pre-
training. All model sizes are ViT-S.

Model Epochs Pretrain. k-NN

DINO 300 Coco 36.9
iBOT 300 Coco 41.8
ODIS 300 Coco 43.3 ↑ 1.5

Pretraining on scene-centric data (COCO). Real-
world images often depict scenes with several ob-
jects/entities, which are much more complex than
carefully-curated, object-centric IN1K dataset. While
pretraining on such uncurated data reduces the perfor-
mance (Siméoni et al., 2025), our approach, which
utilizes bounding boxes for distillation and attention, is
expected to be more robust. To validate this hypothesis,
we train our model on COCO dataset. We pretrain a
ViT-S model on the COCO dataset using DINO, iBOT,
and ODIS objectives. We freeze the pretrained models, and build k-NN classifiers on frozen fea-
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Table 2: Transfer learning experiment. Across 10 different datasets, we train a linear head on top
of iBOT and ODIS ViT-L backbones pretrained on IN1K. ODIS outperforms iBOT on 9/10 datasets.

Model Food C10 C100 SUN Cars Aircr DTD Pets Cal101 Flowers Avg.

iBOT 84.8 97.7 88.3 68.0 74.6 67.0 77.7 93.4 95.5 97.3 84.4
ODIS 85.0 98.0 88.5 67.9 75.8 68.3 78.5 94.1 96.5 97.9 86.1 ↑ 1.7

tures for IN1K test set. We see a similar trend: the k-NN performance on IN1k (+1.5) improves
significantly compared to iBOT.

Conclusion. Using bounding boxes during pretraining, ODIS yields better image representations
than strong baselines, such as DINO and iBOT, that do not use these annotations. This indicates
that using bounding boxes in pretraining improves the learning signal, and object-level annotations
should be used when they are readily-available. Our findings consistently hold across two pretraining
datasets (IN1K and COCO), three model sizes (ViT-S, ViT-B, ViT-L), and using different metrics
such as k-NN, linear, and n-shot accuracy on frozen features.

5.2 OUR BACKBONE GENERALIZES BETTER TO OUT-OF-DISTRIBUTION DATASETS

Next, we study how incorporating bounding boxes during pretraining affects transfer learning. For this,
we transfer DINO, iBOT, and ODIS backbones pretrained on IN1K to two new tasks: classification
on out-of-distribution datasets with linear probing (Chen et al., 2020) and image retrieval (Caron
et al., 2021). We again focus on the quality of frozen visual features.

Linear head on downstream datasets The first experiment follows Chen et al. (2020), where a
linear classifier is trained on top of the frozen backbones of iBOT and ODIS ViT-L across 10 natural
image datasets. We follow the evaluation protocol provided in Chen et al. (2020). As shown in
Table 2, ODIS transfers better to 9 out of 10 datasets, resulting in a +1.7 average accuracy increase.

Table 3: Image retrieval experiment. We
report the mean average precision (mAP)
for the medium (M) and hard (H) splits.

Model Oxford Paris

M H M H

DINO 38.79 12.46 62.45 34.34
iBOT 37.34 10.22 61.08 34.72
ODIS 38.01 10.34 62.75 35.37

Image retrieval. Our next task is image retrieval from
the revisited Paris and Oxford datasets (Philbin et al.,
2008; Radenović et al., 2018). We follow the evalua-
tion pipeline in Caron et al. (2021) and use ViT-S. We
retrieve images based on similarities of their frozen em-
beddings. We report the mean average precision (mAP)
for the medium (M) and hard (H) splits. Table 3 shows
that iBOT performs worse than DINO. We conjecture
this is because iBOT’s patch-level objective hurts the
performance on this image-level task. Interestingly, our
improved object-level distillation objective helps close
the gap, making ODIS perform better than iBOT across all data splits and on par with DINO.

Conclusion. Across twelve out-of-distribution datasets, ODIS produces better transferable image-
level representations than our main baseline iBOT. Our findings show that using bounding boxes
during pretraining improves transfer performance.

5.3 AUTO-GENERATED BOUNDING BOXES ALSO YIELD CONSISTENT IMPROVEMENTS

In the previous sections, we assumed that ground-truth bounding boxes are available during pretrain-
ing, an assumption may not apply to all pretraining datasets. Now, we study the case where bounding
boxes are produced by an off-the-shelf extractor. Specifically, we consider YOLO (Redmon et al.,
2016) and a multi-modal ViT (Maaz et al., 2022, MAVL). Neither of these tools was trained on IN1K,
and they provide class-agnostic boxes, possibly with multiple distinct objects for each image. When an
image contains multiple boxes, we sample a single one at random or proportional to box area for each
forward pass. In practice, we found that sampling proportional to object area performed slightly better.
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Figure 5: ODIS yields superior patch-level representations. mIoU results for dense nearest
neighbor retrieval task: (left) PASCAL VOC and (center) ADE 20K. (right) mIoU results with a
linear segmentation head across ADE20K, COCO-Stuff and PASCAL-VOC with model size ViT-B.

Table 4: Ablation on using different
bounding boxes during pretraining.

Model Segmentor k-NN

iBOT - 70.9

ODIS YOLO 71.2
ODIS MAVL 71.3
ODIS Ground-truth 71.9

We ablate the source of bounding boxes by training ODIS
using ground-truth, YOLO-, and MAVL-generated boxes. We
compare these with iBOT. For all methods, we train a ViT-S for
150 epochs on IN1K, and measure k-NN accuracy on IN1K
test set. We show results in Table 4.The results reveal that
regardless of the source of bounding boxes, ODIS produces a
higher k-NN accuracy than iBOT, while using the ground-truth
boxes gives the best performance.

Conclusion. ODIS consistently outperforms training without
boxes, even when the boxes are generated by off-the-shelf tools. This indicates our method is robust
to imperfect or class-agnostic boxes, while access to higher-quality boxes yields the best performance.

5.4 INCORPORATING BOUNDING BOXES IN PRETRAINING ALSO YIELDS SUPERIOR
PATCH-LEVEL REPRESENTATIONS

Finally, we shift our focus to patch-level representations, from image-level. We investigate whether
our approach also improves patch-level representations on out-of-domain datasets: PASCAL VOC,
ADE20K and Coco-Stuff. We follow previous works (Balazevic et al., 2024; Lebailly et al., 2023;
Pariza et al., 2024), and choose two patch-level tasks that are designed for frozen features: dense
nearest neighbor retrieval and linear segmentation. We report mean intersection over union (mIoU)
for both tasks. Dense nearest neighbor retrieval is similar to k-NN classification, where each test
patch is assigned a label as a weighted sum of the labels of its close training neighbor patches. We
summarize findings in Fig. 5, and provide detailed results in Table 6, including comparisons with
additional baselines.

For both tasks, we consistently see mIoU gains for ODIS patch representations compared to iBOT
across all datasets and model sizes. In linear segmentation, ODIS slightly improves iBOT, while
the gains are more substantial on dense nearest neighbor retrieval: On PASCAL VOC, performance
gains compared to iBOT are (i) +1.2 for ViT-S, (ii) +2.2 for ViT-B and +4.0 for ViT-L. On ADE20k,
performance gains compared to iBOT are (i) +1.0 for ViT-S, (ii) +2.6 for ViT-B and +2.0 for ViT-L.

Conclusion. In addition to superior image-level features, using object annotations during pretraining
also yields better patch-level features, compared to not using these annotations.

6 CONCLUSION

In this work, we explore object-level self-distillation (ODIS) for pretraining vision foundation models.
Our approach utilizes bounding boxes encapsulating objects in an image for object-aware cropping
(to ensure that inputs to teacher and student contain the same object) and masked attention (to
focus the learning signal on objects). We empirically demonstrate that ODIS learns superior image-
and patch-level representations that also transfer better to new datasets. ODIS relies on bounding
boxes during pretraining. This assumption can be relieved by exploiting off-the-shelf bounding box
extractors as we showed that incorporating them improves the backbone over baselines such as iBOT.
In future work, we plan to scale our method to larger model sizes and datasets.
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A CONNECTIONS WITH OTHER MASKED MODELING FRAMEWORKS AND
GRAPH LEARNING

Connection to BERT, Masked Image Modeling, Masked Autoencoders. Masked image modeling
with vision transformers draws inspiration from masked language modeling in NLP (Devlin et al.,
2018), where masked words are predicted from their surrounding context. In vision, similar strategies
have been applied: models predict masked image patches (He et al., 2022, Masked Autoencoders)
or discrete visual tokens (Bao et al., 2021, BEiT) based on neighboring content, leading to highly
effective generative frameworks. Self-supervised approaches such as iBOT (Zhou et al., 2021) and
DINOv2 (Oquab et al., 2023) extend this idea using masked patch prediction combined with a
distillation objective.

Despite their empirical success, these vision models diverge fundamentally from their textual coun-
terparts: while language models predict meaningful and discrete units like words or subword tokens,
masked vision models typically predict arbitrary patches, which are often unidentifiable parts of
objects or even background. Moreover, whereas text tokenizers increasingly align with linguistic
units (syllables or words), vision lacks such semantically grounded units. In this work, we address
this gap by proposing objects, which are the natural semantic units of visual scenes, as prediction
targets. Analogous to words in language, objects in images offer coherent, interpretable units for
representation learning.

Connection to Graph and Subgraph Pooling. We can view each image as a fully-connected graph,
where nodes represent patches and node representations correspond to patch embeddings. In this
view, image-level distillation via [CLS] token corresponds to pooling a graph-level representation
from all nodes. This is a hard task to solve. Object-level distillation via [OBJ] token corresponds to
pooling a subgraph-level representation where the subgraph is located via segmentation maps. This is
a simpler sub-task, that is aligned better with cross-entropy loss for scene-centric images.

B IMPLEMENTATION DETAILS

ViT. We follow previous works (Caron et al., 2021; Zhou et al., 2021) and use vision transformers
(Dosovitskiy et al., 2020) in different sizes ViT-Small/16, ViT-Base/16 and ViT-Large/16 as the visual
backbone b(·) with patch size equal to 16. We build on the code base of iBOT (Zhou et al., 2021). As
commonly done, we use 2 global crops of size 224× 224 with 10 local crops of size 96× 96. The
teacher only processes 2 global crops as input, while the student processes all crops. We use shared
MLP heads for predicting the image- and patch-level probability vectors, with output dimension 8192.

Pretraining setup. We pretrain our models on COCO (Lin et al., 2014) and ImageNet-1k (IN1k)
(Deng et al., 2009). To keep our results comparable, we follow the training setups used for COCO
in (Lebailly et al., 2023) and for IN1k in (Zhou et al., 2021). For the COCO dataset, we pretrain
ViT-S/16 for 300 epochs. For the IN1k dataset, we pretrain ViT-S/16 for 800 epochs, ViT-B for 400
epochs and ViT-L for 250 epochs. We use random block masking that masks p ∼ U [0.1, 0.5] of the
patches for the 50% of the global crops (Zhou et al., 2021).
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C EXPERIMENTAL DETAILS

C.1 TRANSFER LEARNING: LINEAR CLASSIFICATION

We use the setup proposed in Chen et al. (2020). As in the original paper, we use LBFGS optimizer,
the same train/test splits, and mean accuracy or mean accuracy per class metrics for corresponding
datasets (please see Sec B.8 of Chen et al. (2020) for all details).

C.2 OFF-THE-SHELF BOUNDING BOX EXTRACTORS

External bounding boxes. We generate object bounding boxes using two modern segmentation
models: YOLO (Redmon et al., 2016) and MAVL (Maaz et al., 2022). They are both trained on
COCO dataset and provide multi-object, class-agnostic bounding boxes. We sample objects with
probabilities proportional to their areas for each forward pass.

C.3 DENSE NEAREST NEIGHBOR RETRIEVAL

This task extends the standard image-level SSL benchmark to patches (Balazevic et al., 2024).

Task description.. For the training set, each image is split into HW patches, and patch-label
pairs (pi, yi)

HWNtrain
i=1 are recorded, where yi is obtained by average pooling the pixel labels within

patch pi. We encode each patch pi into a feature vector ki = bt(pi) using the frozen ViT backbone
bt(·), and store a subset of these feature-label pairs in a memory bank M = {(ki, yi)} with different
subsampling factors {1, 8, 64, 128}.

At test time, for each query patch pj in the validation set, we:

1. encode pj to obtain qj = bt(pj),

2. compute similarities between qj and all features in M using cross-attention (softmax-
normalized),

3. predict the patch label ŷj by a weighted average of the top-k matching labels in M, where
each label is weighted by its attention score.

The predicted labels ŷj for all patches of a test image are concatenated and then upsampled to the
original image size via bilinear interpolation, yielding a final segmentation map.

Evaluation setup.. Following Balazevic et al. (2024); Lebailly et al. (2023), we pretrain ODIS
and iBOT on both a scene-centric dataset, COCO (118k images), and an object-centric dataset, IN1k
(1.28M images). We fix the maximum memory bank size |M| to 10,240,000 and sweep k ∈ {30, 50}.

C.4 LINEAR SEGMENTATION

We follow the evaluation setups used in (Lebailly et al., 2023; Pariza et al., 2024). We use publicly
available code repository of Pariza et al. (2024) to run the evaluations for DINO, iBOT and ODIS.
We use official checkpoints for DINO and iBOT.

D ADDITIONAL RESULTS

D.1 USING OBJECT-LEVEL ANNOTATIONS AT INFERENCE TIME IMPROVES MODEL
EVALUATION

In this section, we shift our focus to using object-level annotations at inference time. We study
whether using them at inference time improves visual features, when these annotations are available.

Issues with single-label assumption in IN1K. Our motivation comes from Tsipras et al. (2020),
who demonstrated that more than 20 percent of IN1K images contain objects from multiple classes.
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Figure 6: Using bounding boxes in inference for k-NN, linear probing, and few-shot classification
accuracy on IN1K. To obtain “DINO/iBOT (Masked)” results, we use publicly available checkpoints.

Such examples might confound the previous analysis in Section 5.1 since the class of an input image
is not always obvious. For example, Figs. 7 and 8 present examples in which NN retrieval based
on [CLS]or [OBJ]token fails when the input image contains multiple potential target objects. In
all cases, the retrieved image is semantically similar but labeled differently, leading to an incorrect
match under the IN1K single-label protocol. Last-layer attention maps reveal that the model attends
to multiple salient objects, highlighting that the embedding captures mixed object semantics. This
entanglement undermines retrieval evaluation, especially when multiple plausible objects exist in the
scene. To address this, we advocate the use of bounding boxes during inference to isolate individual
object representations, enabling more faithful and interpretable evaluation of pretrained models.

Our proposed remedy. As IN1K test set comes with readily-available bounding boxes, we use
IN1K test set as our benchmark. We consider utilizing bounding boxes in three different ways: (i)
blacking out non-object patches in input images (Rubinstein et al., 2025), (ii) cropping out the object
from input images and reshaping the resulting crop back to the image size, and (iii) our approach:
masked attention where bounding boxes indicate which patches to mask.

Results. We summarize the masked attention results for each model in Fig. 6, and show detailed
results for iBOT and ODIS including all box-usage approaches in Fig. 9. As expected, accuracies of
all backbones increase thanks to our improved evaluation pipeline. Strikingly, for all metrics, the gap
between ODIS and iBOT grows. For k-NN, the performance gains compared to iBOT are (i) +2.3
for ViT-S, (ii) +2.3 for ViT-B, and (iii) +2.7 for ViT-L (we note that iBOT improves over DINO
by an average of only +0.9). Figure 10 shows a visual demonstration where even giving the object
location as input to iBOT does not lead to correct classification, unlike ODIS.

While using masks via (ii) cropping or (iii) masked attention improves performance for all models,
blacking out the background hurts performance. For iBOT, cropping provides the best results, closely
followed by masked attention. For ODIS, masked-attention significantly increases the performance
and provides the best results. This shows that the best approach to use boxes at inference time depends
on whether the model used masked attention during training or not.

Conclusion. Using bounding boxes at inference time improves performance for all models
considered. Therefore, we suggest using them whenever available for better model evaluation.
Furthermore, ODIS benefits the most from using these boxes and enjoys significant performance
improvements, since it learns to use bounding-box annotations during its pretraining.

E ABLATIONS

Next, we list the findings of our ablation studies. We mainly ablate our method on COCO due to
computational constraints, where pretrain a ViT-S for 300 epochs as in Lebailly et al. (2023). We
report these results in Table 5. Additionally, we ablate using external masks for pretraining in IN1k
and report the results in Table 4.

Loss components. We experimented with including an auxiliary image-level term Li or not. Remov-
ing it improved patch-level accuracy and left object-level metrics more or less unchanged, so Li is
omitted in the final objective.
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Table 5: Effect of pretraining design choices. We test object representations with k-NN on IN1k
and test patch representations with mIoU on PASCAL VOC. PMLC: Patch masking for local crops.
OALC: Object-aware local cropping. MALC: Masked-attention for local crops using object attention
masks. ‘Use Masks’ and ‘M.’ refer to using the object segmentation masks at inference time for
k-NN classification on IN1k.

Model Backbone Epochs Pretrain. Use Masks k-NN mIoU

DINO ViT-S 300 COCO ✗ 36.9 30.5
iBOT ViT-S 300 COCO ✗ 41.8 51.0
iBOT+Masks ViT-S 300 COCO ✓ 43.9 51.0

Loss components
ODIS + Masks + Li ViT-S 300 COCO ✓ 44.5 51.0
ODIS + Masks ViT-S 300 COCO ✓ 46.0 54.9

Local Crop Configuration
ODIS+PMLC+OALC+MALC ViT-S 300 COCO ✗ 39.1 54.8
+Masks ViT-S 300 COCO ✓ 40.1 54.8
- PMLC ViT-S 300 COCO ✓ 41.4 54.0
- OALC ViT-S 300 COCO ✓ 42.6 54.6
- MALC (=ODIS+Masks) ViT-S 300 COCO ✓ 46.0 54.9

Object Sampling
ODIS+Masks+ random sampl. ViT-S 300 COCO ✓ 45.3 54.9
ODIS+Masks+ random area sampl. ViT-S 300 COCO ✓ 46.0 54.9

Figure 7: Examples showing how iBOT fails in retrieving a nearest neighbor with the correct class
label in the presence of multiple objects. We propose to resolve this by using segmentation masks
that specify the target object of interest.

Local-crop configuration. The best object representations arise when (i) tokens from local crops
attend to all crop patches and (ii) the crops themselves are drawn from general, context-rich regions
rather than object-aware windows.

Object sampling. On COCO, sampling objects with probability proportional to their area yields
a small but consistent advantage over uniform sampling on object-level evaluations with a similar
performance on patch-level evaluations.
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(a) Anchors (row #1), iBOT NNs (row #2, correct labels), and ODIS NNs (row #3, wrong labels)

(b) Anchors (row #1), iBOT NNs (row #2, wrong labels), and ODIS NNs (row #3, correct labels)

Figure 8: Qualitative examples showing the label noise in the nearest neighbor retrieval task. In the
upper/lower panels, nearest neighbors retrieved by ODIS/iBOT have incorrect labels, respectively.
For all retrieved items, a SOTA vision-text model (Tschannen et al., 2025, Siglip-2) queried with the
input image and two potential labels decides that the retrieved item, which has an originally incorrect
label, is actually of the same class as the anchor. While some images are clearly mislabeled during
IN1K data curation, we also notice some images with multiple labels: computer keyboard and home
theater in (a); sunglass and rapeseed in (b).
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Table 6: Dense nearest neighbor retrieval task. We predict in-context segmentation labels and
report mIoU. The models are pretrained on a Scene-centric dataset, COCO, or an Object-centric
dataset, IN1k. The models are divided into two groups: (i) Patch-level group contains Hummingbird
and CRIBO whose objectives primarily focus on increasing cross-image patch-level correspondence,
specialized for the dense nearest neighbor retrieval task, (ii) Higher-level group contains MAE, DINO,
iBOT and ODIS whose objectives focus on image- or object-level representations.

PASCAL VOC ADE 20k

Model Back. #Par. Pretrain. Epochs 1/128 1/64 1/8 1/1 1/128 1/64 1/8 1/1

Scene-c.
Patch-lvl
CRIBO ViT-S 21M Coco 300 39.1 44.0 52.8 58.1 10.9 12.8 18.4 23.4

Higher-lvl
DINO ViT-S 21M Coco 300 16.2 18.4 25.5 31.9 6.1 6.9 9.7 13.0
MAE ViT-S 21M Coco 300 8.5 9.3 12.2 15.9 3.7 4.1 5.4 6.8
iBOT ViT-S 21M Coco 300 37.3 39.5 47.3 54.7 10.2 12.2 16.7 21.3
ODIS ViT-S 21M Coco 300 42.7 43.6 51.8 57.7 ↑ 3.0 11.2 13.1 17.7 22.4 ↑ 1.1

Object-c.
Patch-lvl
CRIBO ViT-S 21M IN1K 800 52.7 59.3 69.3 73.2 13.7 16.5 23.2 28.3

Higher-lvl
DINO ViT-S 21M IN1K 800 24.5 28.7 38.7 46.1 9.4 10.6 14.6 18.4
iBOT ViT-S 21M IN1K 800 34.6 41.1 54.7 62.1 11.9 13.9 18.8 23.1
ODIS ViT-S 21M IN1K 800 35.5 41.6 55.6 63.3 ↑ 1.2 12.1 14.2 19.3 24.1 ↑ 1.0

Patch-lvl
Humming. ViT-B 85M IN1K 300 50.5 57.2 - 70.5 11.7 15.1 - 28.3
CRIBO ViT-B 85M IN1K 400 50.5 60.3 70.8 74.9 13.2 16.5 23.6 30.0

Higher-lvl
DINO ViT-B 85M IN1K 400 29.2 34.7 47.2 54.9 11.1 12.6 17.6 22.0
MAE ViT-B 85M IN1K 1600 6.0 6.5 8.9 13.8 2.7 3.0 4.0 5.3
iBOT ViT-B 85M IN1K 400 41.1 47.4 60.6 67.8 14.8 17.1 22.9 27.4
ODIS ViT-B 85M IN1K 400 43.1 49.7 63.1 70.0 ↑ 2.2 16.2 18.8 25.1 30.0 ↑ 2.6

iBOT ViT-L 307M IN1K 250 41.1 46.7 60.8 68.6 15.8 18.3 24.4 29.0
ODIS ViT-L 307M IN1K 250 44.6 51.2 65.4 72.6 ↑ 4.0 17.1 19.7 26.1 31.0 ↑ 2.0

Figure 9: k-nn accuracies in different inference settings. The panels show the top-1 and top-5 NN
accuracies as proposed by Tsipras et al. (2020) to tackle the multi-label nature of IN1K. In addition to
the standard setting without any masks, we experiment with three ways of exploiting bounding boxes:
(i) blacking out the area outside of the box, (ii) cropping the object inside the box and reshaping to
the image size, and (iii) our proposed masked inference. Across both metrics, masked inference with
ODIS significantly outperforms the alternatives. For iBOT, object cropping seems to perform slightly
better than masked inference.
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Figure 10: An example input, ODIS and iBOT attention maps using inference-time masks, and
retrieved nearest neighbors. Without object masks, the class identity is unclear. Despite using the
object mask, iBOT mistakenly attends to the hand, while ODIS attends to the correct target object,
the rugby ball, demonstrating superior object-level representations.

Figure 11: An extended version of Fig. 10, where all attention heads are visualized.
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Figure 12: Additional examples showing iBOT’s failure despite masked attention.
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