

000 001 COOT : LEARNING TO COORDINATE IN-CONTEXT 002 WITH COORDINATION TRANSFORMERS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 009 ABSTRACT 010

011 Effective coordination among artificial agents in dynamic and uncertain environments remains a significant challenge in multi-agent systems. Existing approaches, such as self-play and population-based methods, either generalize poorly to unseen partners or require impractically extensive fine-tuning. To overcome these 012 limitations, we propose Coordination Transformers (COOT), a novel in-context 013 coordination framework that uses recent interaction histories to rapidly adapt to 014 unseen partners. Unlike prior approaches that primarily aim to diversify training 015 partners, COOT explicitly focuses on adapting to new partner behaviors by predicting 016 actions aligned with observed interactions. Trained on trajectories collected 017 from diverse pairs of agents with complementary preferences, COOT quickly learns 018 effective coordination strategies without explicit supervision or parameter updates. 019 Across diverse coordination tasks in Overcooked, COOT consistently outperforms 020 baselines including population-based approaches, gradient-based fine-tuning, and 021 a Meta-RL-inspired contextual adaptation method. Notably, fine-tuning proves 022 unstable and ineffective, while Meta-RL struggles to achieve reliable coordination. 023 By contrast, COOT achieves stable, rapid in-context adaptation and is consistently 024 ranked the most effective collaborator in human evaluations.

025 1 INTRODUCTION

026 Coordination is fundamental to intelligent behavior, enabling individuals to achieve shared goals 027 through joint effort. In dynamic and uncertain environments, such as team sports or traffic navigation, 028 humans adjust their actions based on others' behaviors and intentions, facilitating effective collaboration. 029 Replicating this adaptive coordination in artificial agents remains a core challenge in multi-agent 030 systems (Cao et al., 2012; Zhang et al., 2021), especially in domains like robotics (Yan et al., 2013), 031 gaming (Matignon et al., 2012), and human-AI interaction (Carroll et al., 2019), where an agent's 032 success often depends on effectively responding to its partners.

033 Existing methods for developing agents capable of coordinating with unseen partners have pursued 034 various strategies. Self-play (Tesauro, 1994; Yu et al., 2022a; Hu et al., 2021; Wang et al., 2023) 035 trains agents by having them repeatedly interact with copies of themselves. Although this is effective 036 in coordinating with known partners, it frequently leads to conventions that fail when interacting 037 with unfamiliar collaborators. Population-based methods (Jaderberg et al., 2017) seek to address 038 this by training agents within diverse populations using strategies such as partner randomization (Hu 039 et al., 2020; Lucas & Allen, 2022), reward shaping (Yu et al., 2023), explicit modeling of partner 040 behaviors (Lou et al., 2023), and enhancing behavioral diversity (Zhao et al., 2023; Lupu et al., 041 2021; Xue et al., 2024). However, while these approaches promote robustness, they often lack 042 mechanisms for efficient online adaptation, which limits their applicability in open-ended or real- 043 world scenarios. Attempting to fine-tune multi-agent reinforcement learning (MARL) policies on 044 new partners also proves ineffective, since adaptation often demands thousands or even millions of 045 interaction trajectories to learn effective coordination strategies (Nekoei et al., 2023), thus making 046 few-shot adaptation infeasible.

047 Recent advances in in-context learning (ICL; Brown et al., 2020; Wei et al., 2022; Li et al., 2023) 048 offer a promising alternative by enabling models to condition their behavior on contextual examples, 049 without additional training or fine-tuning. Originally demonstrated in language modeling (Brown 050 et al., 2020), ICL has recently been adapted to sequential decision-making domains, including offline

054 reinforcement learning (Chen et al., 2021; Lee et al., 2023) and distillation of reinforcement learning
 055 policies (Laskin et al., 2023; Kirsch et al., 2023). However, applying ICL to coordination introduces
 056 distinct challenges. Unlike task-focused settings with well-defined rewards, coordination requires
 057 aligning with diverse partner behaviors, often without explicit feedback or well-defined success
 058 metrics. Thus, the primary challenge shifts from generalizing across tasks to effectively interpreting
 059 and adapting to the behaviors of new partners purely based on observed interactions.

060 To address this challenge, we introduce Coordination Transformers (COOT), a framework designed
 061 specifically for in-context partner adaptation. Whereas prior ICL-inspired methods (Chen et al.,
 062 2021; Laskin et al., 2023) primarily target task generalization, COOT emphasizes generalization
 063 across diverse partner behaviors, a challenge less directly addressed in existing work. Specifically,
 064 COOT predicts actions that best align with the observed partner’s behavior to maximize collaboration
 065 effectiveness. To achieve this, we train COOT on trajectories collected from interactions between
 066 pairs of agents whose behaviors reflect distinct underlying preferences. Such agents, which we term
 067 behavior-preferring agents, operate based on event-based hidden reward functions that guide their
 068 actions but are hidden from their partners. These event-based preferences yield diverse and potentially
 069 unpredictable coordination behaviors, even within identical environments. By observing interactions
 070 between these agents and their complementary counterparts, COOT learns context-driven strategies
 071 that enable effective coordination with previously unseen partners.

072 We evaluated COOT across a broad set of coordination methods, including population-based ap-
 073 proaches (Yu et al., 2023; Zhao et al., 2023), gradient-based fine-tuning, and a meta-RL-inspired
 074 baseline (Rakelly et al., 2019) with contextual adaptation, using the Overcooked environment (Car-
 075 roll et al., 2019), a popular multi-agent benchmark requiring precise and adaptive coordination.
 076 Results demonstrate that COOT consistently outperforms these baselines in diverse coordination
 077 tasks involving unseen agents. Notably, gradient-based fine-tuning proved unstable and delivered
 078 limited improvements, while the contextual adaptation Meta-RL baseline performed poorly, failing to
 079 achieve reliable coordination. By contrast, COOT achieves stable, rapid adaptation in context without
 080 parameter updates. Furthermore, human evaluations consistently rank COOT as the most preferred
 081 partner in interactive collaboration. Ablation studies provide additional insights, revealing that COOT
 082 improves coordination by observing more interactions with novel partners and that preserving tempo-
 083 ral structure in interaction contexts is critical for generalization. Overall, these results demonstrate
 084 COOT’s effectiveness for adapting to diverse, unseen partners in cooperative settings.

085 2 RELATED WORK

086 **Learning to Coordinate.** A fundamental challenge in multi-agent reinforcement learning (MARL)
 087 is learning strategies that remain effective when paired with new partners. Self-play (SP) (Tesauro,
 088 1994; Yu et al., 2022a; Wang et al., 2023) can produce strong agents, but independently trained SP
 089 policies often converge to *different conventions*, causing severe failures in cross-play (Carroll et al.,
 090 2019). This observation motivates research on how agents should coordinate with partners they have
 091 never trained with.

092 One line of work, known as zero-shot coordination (ZSC), formalizes this question under the
 093 assumption that all players are *independent instantiations of the same learning algorithm* (Hu et al.,
 094 2020; Treutlein et al., 2021; Hu et al., 2021). ZSC investigates which learning rules lead agents
 095 to adopt *compatible conventions* across separate training runs, especially in environments with
 096 symmetries where independent agents may otherwise diverge.

097 A broader setting is ad-hoc teamwork (AHT) (Stone et al., 2010), where an agent must coordinate
 098 with heterogeneous teammates whose training processes may differ. To improve robustness in
 099 this setting, population-based methods (Jaderberg et al., 2017; Long* et al., 2020; Hu et al., 2020;
 100 Strouse et al., 2021) expose agents to diverse partners, with further extensions based on entropy
 101 maximization (Zhao et al., 2023; Lupu et al., 2021), reward shaping (Lucas & Allen, 2022), structured
 102 population groups (Xue et al., 2024), hidden-utility biases (Yu et al., 2023). Recent work also
 103 explored training agents across large sets of procedurally generated environments (Jha et al., 2025),
 104 encouraging general cooperative behaviors that transfer to new partners and tasks. In parallel, the
 105 rise of large language models has led to LLM-assisted coordination methods (Zhang et al., 2024; Li
 106 et al., 2025), which leverage natural-language reasoning or high-level guidance to improve adaptivity.

108 Beyond cooperative teamwork, related work includes competitive or socially structured settings, see
 109 Appendix F for further details.

110 Despite these advances in ZSC and AHT, a key limitation remains: most approaches rely on large
 111 amounts of training interaction or computational cost to cover diverse partner behaviors. Few-
 112 shot coordination (Nekoei et al., 2023) instead seeks agents that can adapt to novel partners with
 113 minimal experience. Methods such as PACE (Ma et al., 2024) and PECAN (Lou et al., 2023) infer
 114 partner behavior from limited trajectories, while LIAM (Papoudakis et al., 2021) learns partner
 115 representations from local interaction histories to support rapid adaptation.

116 Building on this direction, our method COOT leverages the in-context learning capabilities of
 117 transformers to achieve effective few-shot coordination with diverse, previously unseen partners.
 118 Unlike approaches that first infer a latent partner identity (e.g., PACE, PECAN), COOT learns from
 119 full interaction histories to directly predict actions that best complement the observed partner’s
 120 behavior, enabling efficient adaptation at test time without parameter updates.

121 **In-context Reinforcement Learning.** In-context learning (ICL) (Brown et al., 2020; Wei et al., 2022;
 122 Li et al., 2023) enables models to adapt at inference by conditioning on examples rather than gradient
 123 updates. Beyond its success in language and vision (Brown et al., 2020; Yu et al., 2022b), recent
 124 studies extend ICL to reinforcement learning (Chen et al., 2021; Jing et al., 2023; Laskin et al., 2023;
 125 Lee et al., 2023), showing applications in offline RL, online decision-making, opponent modeling,
 126 and meta-RL. Prior works suggest that transformers may implicitly implement optimization-like
 127 procedures (Von Oswald et al., 2023), with trajectories serving as contextual examples for learning
 128 algorithms or posterior sampling (Laskin et al., 2023; Lee et al., 2023; Jing et al., 2023). Unlike these
 129 task-focused approaches, COOT targets coordination, generalizing to unseen partners by interpreting
 130 prior interaction trajectories as context.

131 **Transfer Learning in Reinforcement Learning.** Transfer learning in reinforcement learning
 132 (RL) (Duan et al., 2016; Gupta et al., 2017; Finn et al., 2017; Tobin et al., 2017; Zhang et al.,
 133 2020; Xing et al., 2021) seeks to reuse knowledge from prior tasks to improve performance on
 134 new ones with minimal training, a key goal when task-specific experience is costly. Approaches
 135 include task-invariant representations (Gupta et al., 2017; Xing et al., 2021), meta-learning for rapid
 136 adaptation (Duan et al., 2016; Finn et al., 2017; Rakelly et al., 2019), and domain randomization (Tobin
 137 et al., 2017). Recent work highlights conceptual links to ICL (Laskin et al., 2023; Lee et al., 2023):
 138 both aim to generalize across conditions, but many transfer RL works rely on explicit parameter
 139 updates, while ICL adapts a fixed model by conditioning on interaction histories. This implicit form
 140 of transfer enables flexible, sample-efficient coordination. Building on this, COOT learns offline
 141 representations and adapts to novel online partners within only a few episodes.

143 3 PRELIMINARY

145 3.1 HIDDEN-UTILITY MARKOV GAME

147 We formulate the in-context coordination problem as a Hidden-Utility Markov Game (HU-MG),
 148 inspired by the framework introduced in Hidden-Utility Self-Play (Yu et al., 2023). The HU-MG
 149 builds on the two-agent decentralized Markov game (Bernstein et al., 2002), defined as the tuple
 150 $(\mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}_t)$, where \mathcal{S} denotes the state space, $\mathcal{A} = \mathcal{A}^i \times \mathcal{A}^w$ is the joint action space, $\mathcal{T} : \mathcal{S} \times \mathcal{A}$
 151 represents the transition function, and \mathcal{R}_t the shared global reward. Both agents, π_i and π_w , aim to
 152 maximize \mathcal{R}_t .

153 A two-agent HU-MG is instead defined as $(\mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}_t, \mathcal{R}_w)$, where \mathcal{R}_w is a hidden reward space
 154 containing functions $r^w \sim \mathcal{R}_w$. The hidden reward r^w , observable only by π_w , is formulated as
 155 linear functions over event features, inducing distinctive behavioral preferences or conventions. Note
 156 that π_w corresponds to the partner policy π_i^p introduced in Section 4, but we adopt the new notation
 157 to better distinguish partner indices in the dataset setting.

159 3.2 IN-CONTEXT LEARNING WITH DECISION-PRETRAINED TRANSFORMERS

161 In-context learning refers to a model’s ability to generalize by conditioning predictions on contextual
 examples at inference time. A Decision-Pretrained Transformer (DPT) (Lee et al., 2023) trains on

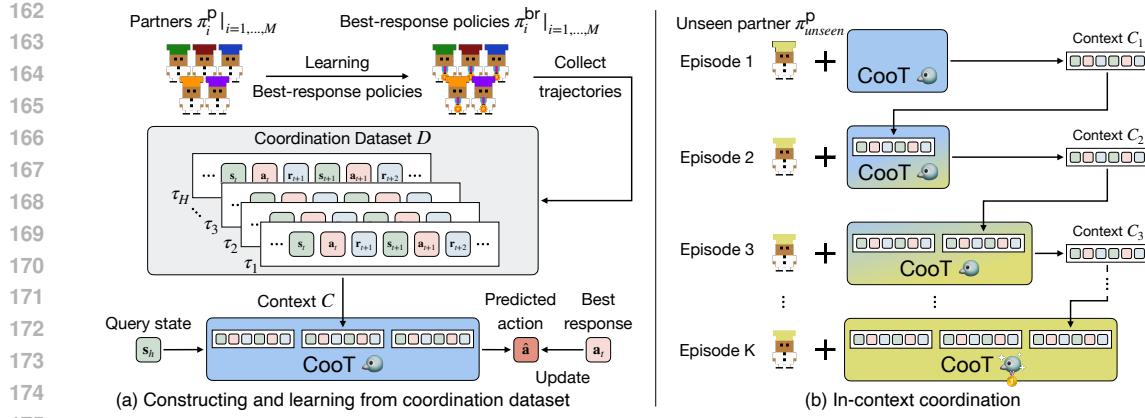


Figure 1: **COOT.** **(a) Training.** We generate a dataset \mathcal{D} of trajectories between behavior-preferring agents and their best-response (BR) policies. For each training instance, COOT receives query states s_h and context C of past interactions, and learns to predict an action a mimicking the BR action \hat{a} . **(b) Evaluation.** At test time, COOT coordinates with unseen partners by continually updating its context from recent episodes, which adapts to the partner online without gradient updates, enabling few-shot generalization through context update alone.

sequences of (s, a, r) triplets, representing states, actions, and returns. At inference, it autoregressively predicts the optimal action for a given state, conditioned on contextual examples. This reframes reinforcement learning as sequence modeling, where task identity is inferred from context. However, standard DPT assumes access to extrinsic rewards and explicit task objectives, limiting applicability in coordination settings with diverse and implicit partner preferences.

4 METHOD

To build agents capable of efficient and adaptive coordination with unseen partners, we propose Coordination Transformer (COOT), a framework that adapts to novel partners by conditioning on past interactions. Our approach involves training a transformer on trajectories collected from diverse partners and their corresponding best responses, i.e., the behavior that yields the highest expected return given a specific partner’s behavior, enabling effective generalization to previously unseen collaborators. We begin by formalizing coordination as a Hidden-Utility Markov Game (HU-MG) in Section 4.1, where agents behave according to hidden, agent-specific reward functions. We then describe the process of generating a diverse dataset of interaction histories in Section 4.2, explain how COOT is trained to predict partner-aligned actions in Section 4.3, and present our deployment protocol for evaluating generalization in Section 4.4. An overview of COOT is illustrated in Figure 1.

4.1 FROM TASK GENERALIZATION TO COORDINATION GENERALIZATION

Recent advances in in-context reinforcement learning enable sequence models to generalize across tasks by conditioning on prior experiences. These methods assume explicit task definitions and observable rewards, which allow models to infer goals or dynamics from context. However, they do not address the challenge of adapting to diverse partners with hidden preferences under the same task.

We reframe this challenge as a two-player Hidden-Utility Markov Game (HU-MG), where one of the agent’s behaviors are driven by a hidden reward function that is unobservable to its partner. We refer to such agents as *behavior-preferring agents*, since their preferences are revealed only through behavior. These hidden utilities induce diverse coordination patterns, even when the environment remains fixed. In this setting, adapting to a partner requires inferring its underlying preferences through observed behavior.

Our approach treats partner adaptation as an in-context learning problem. Rather than relying on explicit task labels or extrinsic rewards, the model conditions on past interactions to infer hidden

216 utilities. In contrast to ICRL, where the goal is to recover the optimal policy for each task, in HU-MG,
 217 the objective becomes learning a *best-response policy* tailored to the inferred partner behavior.
 218

219
 220 **4.2 DATASET GENERATION**
 221

222 To enable in-context adaptation to novel partners, we construct a dataset D containing interaction
 223 histories between behavior-preferring agents and their corresponding best responses. Our data gener-
 224 ation process is grounded in the HU-MG framework as described in Section 3.1, where coordination
 225 challenges arise from agent-specific hidden reward differences.

226 Following ZSC-Eval (Wang et al., 2024), we simulate hidden-utility preferences by first defining a
 227 set of discrete environmental events. We then construct different hidden reward functions using linear
 228 combinations of the environmental events to form a space of reward \mathcal{R}_w . For each hidden reward
 229 function $r_i^w \sim \mathcal{R}_w$, we jointly train a behavior-preferring partner policy π_i^p , which is driven by r_i^w ,
 230 and its best-response policy π_i^{br} using Proximal Policy Optimization (PPO) (Schulman et al., 2017).
 231

232 To ensure diversity among training partners, we compute an event-based diversity score d_i for each
 233 best-response policy π_i^{br} , and then select the top- N diverse pairs to form the training pool Π_{train} . For
 234 each selected pair (π_i^p, π_i^{br}) , we collect T trajectories to form a fixed-length context C . From each
 235 context, we sample query states s_h and construct tuples of the form (s_h, C, \hat{a}) , where $\hat{a} = \pi_i^{br}(s_h)$ is
 236 the best-response action. These tuples are added to the dataset D for training COOT.

237 To construct the evaluation set, we extract behavioral features ϕ_i from trajectories generated by each
 238 π_i^{br} and compute the population diversity. To efficiently select a diverse evaluation set, we then apply
 239 Determinantal Point Process sampling (Kulesza et al., 2012) over \mathbf{K} , a similarity matrix of behavioral
 240 feature set $\{\phi_i\}$, resulting in a behaviorally diverse evaluation set $\Pi_{eval} \subset \Pi_0$. [Further evaluation](#)
 241 [details are provided in Appendix B.6](#).

242
 243 **4.3 TRAINING**
 244

245 Given the dataset of context–query–action tuples, we train the Coordination Transformer (CooT) to
 246 perform best-response prediction via in-context learning. At each training step, the model receives
 247 query states s_h and a context window C , consisting of past interactions between a behavior-preferring
 248 agent and its best response. Conditioned on this context, the transformer predicts the best-response
 249 action distribution $\hat{p}_h(\cdot) = M_\theta(\cdot | s_h, C)$.

250 The model is trained to minimize the cross-entropy loss: $\mathcal{L} = -\log \hat{p}_h(\hat{a})$ where $\hat{a} = \pi_i^{br}(s_h)$ is the
 251 ground-truth best-response action given the query states. This objective encourages the model to map
 252 partner behaviors to effective responses, supporting generalization through in-context adaptation to
 253 unseen collaborators. Further training details are provided in Appendix B.2

254
 255 **4.4 ONLINE DEPLOYMENT**
 256

257 At test time, COOT is deployed with unseen behavior-preferring partner policies $\pi_{unseen}^p \sim \Pi_{eval}$
 258 over multiple episodes of length Z . A fixed-length context C , composed of T previously collected
 259 trajectories $\tau = (s_t, a_t, r_t)_{t=1}^Z$, is initialized before deployment begins.

260 At each timestep t in an episode of length Z , the agent observes the context C , current state s_t , and a
 261 short history of prior states (e.g., $\{s_{t-n}, \dots, s_t\}$), which together form the query state s_h . Based
 262 on this input, COOT predicts an action distribution $\hat{p}_t(\cdot) = M_\theta(\cdot | s_h, C)$ and samples an action
 263 $a_t \sim \hat{p}_t$.

264 After executing action a_t and observing reward r_t , the transition (s_t, a_t, r_t) is recorded. Once the
 265 episode is complete, the resulting trajectory of Z steps is appended to the context buffer. Repeating
 266 this process across E episodes allows COOT to refine its coordination strategy through in-context
 267 adaptation alone. Without parameter updates, it progressively adapts to partner behaviors using recent
 268 interaction histories, demonstrating few-shot generalization in multi-agent coordination.

270

5 EXPERIMENTS

271

5.1 EVALUATION SETUP

272 **Environments.** We evaluate our method in the Overcooked environment (Lauffer et al., 2023), a
 273 cooperative multi-agent benchmark where two agents prepare and deliver soups under a fixed time
 274 limit. Agents can move, wait, or interact with ingredients (e.g., onions, tomatoes) and objects (e.g.,
 275 pots, plates, dispensers), receiving a sparse reward of 20 for each successful delivery. To assess
 276 generality, we test across five layouts—*Asymm.*, *Adv.*, *Bothway Coord.*, *Blocked Coord.*, *Coord.*
 277 *Ring*, and a multi-recipe variant of it. We evaluate these layouts’ performance over 10 episodes per
 278 layout, except for the multi-recipe variant, where we use 15 episodes, as we follow the setup from
 279 ZSC-Eval (Wang et al., 2024). Each layout introduces distinct coordination challenges through
 280 resource distribution and spatial constraints. For example, the *Bothway Coord.* layout spatially
 281 separates work areas, preventing collisions while restricting plate access to a single agent. This
 282 asymmetry enforces a role division, with one agent providing plates and the other delivering soups,
 283 creating a collision-free coordination scenario. By contrast, the *Asymm.* *Adv.* layout distributes
 284 resources more evenly across zones, allowing agents to operate largely independently. This balanced
 285 structure minimizes the need for close coordination, making it a low-interaction scenario.
 286

287 We compare COOT against various baselines.
 288

- 289 • **Behavior cloning (BC)** learns to imitate expert demonstrations via supervised learning; it
 290 lacks mechanisms to adapt to different partners and is used as a non-aware partner baseline.
 291
- 292 • **Maximum entropy population training (MEP; Zhao et al., 2023)** promotes behavioral
 293 diversity by regularizing policies with an entropy objective during population training,
 294 improving robustness to unfamiliar partners.
 295
- 296 • **Hidden-utility self-play (HSP; Yu et al., 2023)** induces behavioral diversity by training
 297 agents with varied hidden reward functions, improving generalization to unseen partners.
 298 Both MEP and HSP are evaluated in dense-reward variants that use reward shaping (e.g.,
 299 credits for ingredient pickups or placements) to stabilize training. While such shaping
 300 is unrealistic in human–AI collaboration, it yields stronger policies and thus provides an
 301 upper-bound comparison, whereas COOT is trained only with sparse rewards.
 302
- 303 • **HSP-fine-tuning (HSP-ft)** fine-tunes HSP agents on novel partners to test whether gradient-
 304 based adaptation can improve coordination. Learning rates and last-layer updates are varied,
 305 following common fine-tuning practices.
 306
- 307 • **HSP-meta** extends HSP with a trajectory encoder inspired by PEARL (Rakelly et al., 2019),
 308 an off-policy meta-RL method that learns to quickly adapt. The encoder, optimized with
 309 reconstruction loss, encodes recent episodes into a latent context appended to the observation,
 310 enabling adaptation to partner behaviors. Since HSP consistently outperforms MEP, this
 311 extension provides a stronger and more representative baseline.
 312

313 **Evaluation pipeline.** Our evaluation follows ZSC-Eval (Wang et al., 2024), which measures **ad-hoc**
 314 **teamwork capability** with unseen partners. Specifically, evaluation partners are policies trained under
 315 diverse hidden reward functions, and a representative subset is selected using Best Response Diversity
 316 (the determinant of the similarity matrix of their best responses). Unlike the original protocol, which
 317 evaluates across multiple training checkpoints, we use only fully converged checkpoints to remove
 318 variability from partially trained behaviors and isolate final performance. [Additional details are](#)
 319 [provided in Appendix B.6.](#)

320 **Evaluation metrics.** We report Best Response Proximity (BR-prox) and average episode reward. BR-
 321 prox (Wang et al., 2024) quantifies how close an agent comes to the ideal best-response performance
 322 when paired with a given evaluation partner. More precisely, BR-prox is defined as the ratio between
 323 the agent’s return when paired with a partner and the return that partner achieves with its own
 324 best-response teammate. A higher ratio indicates stronger coordination and generalization. To avoid
 325 degenerate cases, we exclude partners whose best-response return is zero. Average episode reward
 326 measures overall effectiveness across partners and complements BR-prox. We average both metrics
 327 over 50 rollouts per partner.
 328

324
 325 **Table 1: Benchmark results: COOT outperforms baselines in coordination-heavy layouts.** We
 326 report the average episode reward (\uparrow) and BR-prox (\uparrow), both averaged across different layouts. **For**
 327 **each method, we run three training seeds. Each seed is evaluated with 50 rollouts, and the resulting**
 328 **per-seed averages are used to compute the final mean \pm std reported in the table.** We bold results
 329 that lie within the best method’s standard deviation range for each layout. COOT maintains strong
 330 performance across all settings, with clear advantages in coordination-heavy layouts such as Multi-
 331 recipe and Counter Circ.

Layout	Coord. Ring		Coord. Ring		Counter Circ.	
	Reward	BR-prox	Reward	BR-prox	Reward	BR-prox
BC	26.24 \pm 1.80	0.31 \pm 0.02	8.97 \pm 0.49	0.10 \pm 0.01	10.79 \pm 5.33	0.11 \pm 0.06
MEP	40.30\pm3.45	0.47\pm0.04	16.64 \pm 1.16	0.19 \pm 0.02	1.89 \pm 0.41	0.02 \pm 0.00
HSP	41.10\pm10.03	0.49\pm0.10	29.35 \pm 3.77	0.33 \pm 0.04	21.37 \pm 2.17	0.23 \pm 0.03
HSP-ft	41.30\pm9.85	0.49\pm0.10	29.24 \pm 3.75	0.33 \pm 0.04	21.15 \pm 1.53	0.22 \pm 0.02
HSP-meta	29.84 \pm 3.92	0.35 \pm 0.04	30.21 \pm 1.37	0.34 \pm 0.02	3.28 \pm 0.21	0.03 \pm 0.00
COOT (Ours)	38.30\pm3.71	0.47\pm0.06	45.96\pm3.99	0.50\pm0.04	28.28\pm2.32	0.30\pm0.03

Layout	Asymm. Adv.		Bothway Coord.		Overall	
	Reward	BR-prox	Reward	BR-prox	Reward	BR-prox
BC	108.83 \pm 6.13	0.53 \pm 0.03	98.99 \pm 1.30	0.94 \pm 0.01	50.76 \pm 2.02	0.40 \pm 0.02
MEP	127.44 \pm 5.66	0.61 \pm 0.03	22.76 \pm 5.59	0.20 \pm 0.05	41.81 \pm 0.79	0.30 \pm 0.00
HSP	131.78\pm3.49	0.63\pm0.02	54.99 \pm 3.56	0.53 \pm 0.03	55.72 \pm 2.48	0.44 \pm 0.02
HSP-ft	131.79\pm3.22	0.63\pm0.02	55.81 \pm 2.71	0.54 \pm 0.02	55.86 \pm 2.29	0.44 \pm 0.02
HSP-meta	113.16 \pm 12.72	0.54 \pm 0.06	20.44 \pm 4.59	0.20 \pm 0.05	40.19 \pm 2.28	0.29 \pm 0.01
COOT (Ours)	129.48\pm9.34	0.62\pm0.05	101.93\pm1.00	0.96\pm0.01	68.79\pm2.33	0.57\pm0.02

346 5.2 COORDINATION PERFORMANCE ACROSS BENCHMARKS

347 We next present results with unseen policy partners, comparing COOT against strong baselines across
 348 diverse Overcooked layouts.

349 COOT delivers consistently strong results across diverse Overcooked layouts, with its advantage
 350 becoming more significant as coordination demands increase. As Table 1 shows, COOT is competitive
 351 in Coord. Ring and establish a clearer lead in Multi-recipe, where agents must balance concurrent
 352 goals. **As layout complexity increases, unseen partners exhibit more diverse behaviors, making**
 353 **trajectory-level context increasingly valuable. Because CooT is pretrained to predict best-response**
 354 **actions conditioned on full interaction histories, it naturally develops an in-context coordination**
 355 **capability: at inference time, it adapts its behavior by conditioning on recent partner cues without**
 356 **learning an explicit partner model or performing gradient updates.**

357 BC performs reasonably in layouts where agents operate in separated zones and collisions are
 358 avoided, such as *Asymm. Adv.* and *Bothway Coord.*. However, it struggles once coordination requires
 359 navigation or adaptation, as it lacks any mechanism to model or respond to partner behavior.

360 MEP and HSP perform well in simpler settings, such as *Asymm. Adv.*, a low-interaction scenario
 361 requiring little coordination, and the compact *Coord. Ring*, which combines navigation and ingredient
 362 handoffs within a constrained space. Yet their reliance on fixed policy pools limits flexibility: they
 363 underperform in *Bothway Coord.*, which requires reliable role coordination, and collapse in multi-
 364 recipe layouts that demand tracking multiple goals. **Population-based methods rely on a fixed,**
 365 **precomputed set of partner policies. As the coordination structure becomes more complex, this finite**
 366 **pool becomes less representative of the behaviors encountered during evaluation, limiting their ad-hoc**
 367 **teamwork ability.** HSP-ft further highlights the limits of gradient-based adaptation. Its performance is
 368 highly sensitive to learning rates and shows little improvement across episodes, sometimes degrading
 369 in more complex scenarios (Table 12, Appendix C.3), underscoring the advantage of context-based
 370 adaptation.

371 Surprisingly, HSP with trajectory conditioning (HSP-meta) underperforms vanilla HSP. Training
 372 the trajectory context encoder jointly with the policy introduces challenges: early in learning, noisy
 373 or uninformative latents can mislead the policy, and the reconstruction loss may not align with
 374 coordination objectives. Subtle partner differences may also be overlooked when reconstructing
 375 raw trajectories, limiting the usefulness of the latent context. These results suggest that although
 376 trajectory-level conditioning is appealing, effective coordination requires more principled context
 377 representations, which are non-trivial to design.

378 Overall, COOT achieves robust coordination with policy-based evaluation partners. But do these
 379 gains transfer to human collaborators, whose behaviors are more varied and less predictable?
 380

381 **5.3 HUMAN-AGENT COLLABORATION STUDY**
 382

383 Unlike trained agents, humans display diverse styles and adapt unpredictably. To assess whether
 384 COOT’s advantages extend beyond controlled benchmarks, we conducted a user study in the *Coord.*
 385 *Ring* layout, which integrates navigation and ingredient coordination within a compact space to elicit
 386 diverse collaboration scenarios. A total of 36 participants each played eight rounds, blindly paired
 387 through random assignment with one of four representative agents: COOT, HSP, MEP, or BC. We
 388 excluded HSP-ft and HSP-meta since preliminary experiments showed they were not competitive
 389 and provided little additional insight; restricting the study to four agents also reduced participant
 390 fatigue. Each successful delivery contributed 20 points to the score. To ensure consistency, we fixed
 391 the time interval between rounds and excluded the top and bottom 10% of participant scores to reduce
 392 variability from fatigue or outliers. All participants provided informed consent, and the study was
 393 conducted in accordance with standard ethical guidelines. Further details on the human evaluation
 394 platform and experimental setup are provided in Appendix D.
 395

395 **Table 2: Human evaluation returns.** Comparison of mean episode reward (after outlier
 396 removal) across methods. COOT achieves the
 397 highest return and consistently outperforms base-
 398 lines, indicating stronger coordination with hu-
 399 man partners.
 400

Method	Mean	Std	25%	50%	75%
BC	51.0	3.8	47.5	52.5	55.0
MEP	53.0	5.1	49.4	53.8	57.5
HSP	40.5	5.2	36.9	40.0	45.0
COOT (Ours)	63.5	9.5	56.9	62.5	68.1

395 **Table 3: Human evaluation ratings.** Human
 396 evaluations (1–6 scale, higher is better) for four
 397 different agents based on two abilities: Collabora-
 398 tive and Adaptive. Each cell contains the score
 399 given by a user. The overall score is the sum of
 400 the two individual scores.
 401

Method	Collab.	Adapt.	Overall
BC	2.0	1.8	3.4
MEP	3.4	2.9	6.3
HSP	2.7	2.2	4.9
COOT (Ours)	4.0	3.1	7.1

402 **Quantitative results.** Table 2 reports average performance across participants after outlier removal.
 403 COOT achieved the highest mean score, outperforming all baselines by a large margin. Table 3
 404 summarizes 1–6 ratings of collaboration and adaptivity, where COOT again achieved the best scores
 405 on both dimensions. Figure 2 further shows that COOT was most frequently selected as the preferred
 406 partner (18 of 36 participants). Together, these results demonstrate that COOT not only delivers the
 407 strongest objective outcomes but is also consistently favored in subjective human evaluations.
 408

409 **Qualitative feedback.** Post-round questionnaires presented in Table 13 in Appendix D.3 highlight
 410 both strengths and limitations of COOT. Participants often noted improvement over time: “Initially it
 411 doesn’t do well, but gradually the performance improves,” and “smoother collaboration over time.”
 412 Others pointed to supportive behaviors, such as “It collaborates with me well, doing work on its own
 413 and helping me with onion preparation.” At the same time, some observed occasional blocking or
 414 rigidity, e.g., “It blocked me in the beginning, but then it adapted.” Overall, COOT was viewed as a
 415 capable collaborator, though not always seamless.
 416

417 **Discussion.** The human study shows that COOT performs strongly not only with policy-based
 418 partners but also with real humans, whose behaviors are more varied and less predictable. Notably,
 419 in the *Coord. Ring* layout where COOT was similar to agent partners, it achieved a clear margin
 420 when paired with human participants. These findings suggest that COOT is particularly effective at
 421 handling the variability and adaptation demands that arise in real interactions. To further investigate
 422 the source of this advantage, the next section analyzes two key properties of COOT: its ability to
 423 adapt rapidly to out-of-distribution behaviors and its robustness to non-stationary partners.
 424

425 **5.4 ANALYSIS OF ADAPTATION DYNAMICS**
 426

427 The human study suggests that COOT can handle the variability of real interactions, but the mecha-
 428 nisms behind this advantage remain unclear. To probe further, we analyze two key properties of COOT
 429 in controlled policy-based settings: its ability to adapt rapidly to new partners and its robustness to
 430 sudden changes in partner behavior.
 431

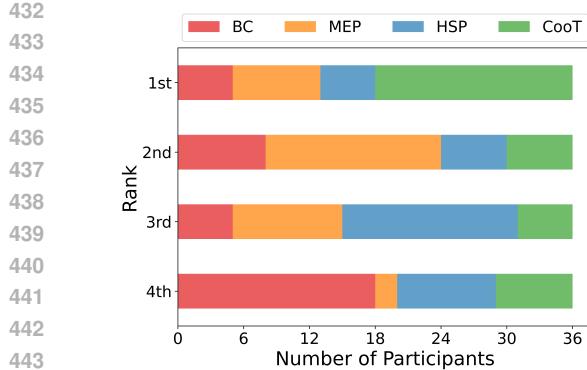


Figure 2: **Human study: agent ranking distribution.** Number of participants who chose each agent at different rankings. CooT received the highest number of first-place rankings, indicating it is the most preferred collaborator.

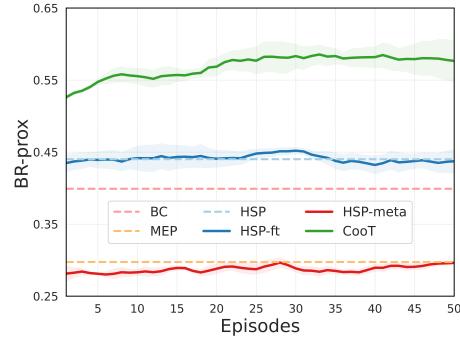


Figure 3: **In-context performance improvement of COOT over episodes.** As more partner trajectories are observed, CooT steadily improves its coordination strategy, highlighting the advantage of context-based adaptation.

Table 4: **Adaptation speed for non-stationary strategies.** Episodes needed for COOT to attain its average performance with the new partner.

	$P_A \rightarrow P_B$	$P_{15} \rightarrow P_{17}$	$P_{17} \rightarrow P_{15}$	$P_{15} \rightarrow P_{31}$	$P_{31} \rightarrow P_{15}$	$P_{17} \rightarrow P_{31}$	$P_{31} \rightarrow P_{17}$
Episodes to adapt	6	2	6	5	2	1	

5.4.1 RAPID ADAPTATION THROUGH CONTEXT

We first measure how COOT adapts over time when paired with previously unseen partners. Figure 3 reports averages across seven layouts, each evaluated with 10–15 partners over 50 episodes.

COOT improves markedly within the first 5–8 episodes and continues to refine more gradually up to episode 50, showing that only a handful of trajectories are sufficient to align with a new partner. In contrast, the baseline methods show minimal improvement: HSP-ft exhibits unstable performance with occasional degradation, while HSP-meta demonstrates a rather slow adaptation.

These results highlight COOT’s ability for rapid context-based adaptation — a crucial property for human–AI collaboration, where effective coordination must be established quickly without prior exposure. Note that COOT performs adaptation at the episode level: the context buffer is updated only after each full trajectory, so the model maintains a consistent behavior within an episode.

5.4.2 ROBUSTNESS TO NON-STATIONARY PARTNERS

Human partners often change strategies mid-task. To test robustness to such non-stationarity, we conduct a controlled partner-swap experiment: COOT first plays several episodes with one HSP biased partner (P_A), accumulates context, and then is suddenly paired with a different biased partner (P_B) that follows a distinct preference. We then measure how many episodes it takes for COOT to recover the level of performance it typically achieves with the new partner when trained from scratch. The procedure is repeated in both directions ($P_A \rightarrow P_B$ and $P_B \rightarrow P_A$).

Results in Table 4 show that COOT adapts within at most six episodes, with an average of 3.67 episodes across partner switches. This demonstrates that COOT can rapidly recalibrate its coordination strategy when faced with abrupt partner changes, relying only on its context buffer without fine-tuning or retraining. Such robustness to non-stationary strategies is essential for real-world human–AI collaboration.

Discussion. Together, these results show that COOT can both adapt quickly to new partners and remain stable under abrupt partner changes—two properties that are essential for real-world coordination. As a final check, we perform ablations to verify which design factors contribute most to these capabilities.

486 While CooT does not update context mid-episode, the partner-swap results show that episode-level
 487 updates are sufficient to handle abrupt changes in partner strategy.
 488

489 **5.5 ABLATION STUDIES**
 490

491 To better understand which design choices are most critical for CooT, we perform small-scale
 492 ablations focusing on two factors: context length and trajectory shuffling.

493 **Context length.** Table 10 in Appendix C.1 shows that performance improves when conditioning on
 494 longer contexts, up to five episodes. Beyond this point, gains diminish while computation increases,
 495 so we adopt five episodes as the default.

496 **Trajectory shuffling.** Table 11 in Appendix C.2 shows that during training, step-wise shuffling
 497 disrupts temporal structure and harms performance, while chunk-wise shuffling has little effect. This
 498 confirms that preserving long-range dependencies in interaction histories is important.

500
 501 **6 CONCLUSION**
 502

503 We introduced Coordination Transformer (CooT , an in-context coordination framework that
 504 enables agents to adapt to unseen partners by conditioning on recent interactions. Unlike prior
 505 approaches emphasizing task generalization or large training populations, CooT targets partner
 506 generalization, predicting best-response actions without fine-tuning. Experiments on Overcooked
 507 show that CooT outperforms strong baselines with both evaluation agents and humans, while
 508 analyses highlight its rapid adaptation and robustness to unseen partners. Our main contributions
 509 are the formulation of partner-centric in-context coordination and extensive empirical validation in a
 510 challenging coordination domain. However, our work is limited by evaluation in a relatively structured
 511 environment and the lack of explicit modeling for mutual adaptation. Future work can address these
 512 limitations by extending CooT to more complex, co-adaptive, and real-world multi-agent settings.

513
 514 **REPRODUCIBILITY STATEMENT**

515 To ensure reproducibility, the Supplementary Material includes the training and evaluation scripts,
 516 together with configuration files and detailed instructions for reproducing the reported results.

518
 519 **BIBLIOGRAPHY**
 520

521 Bowen Baker. Emergent reciprocity and team formation from randomized uncertain social preferences.
 522 *Advances in neural information processing systems*, 33:15786–15799, 2020.

523 Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
 524 decentralized control of markov decision processes. In *Mathematics of operations research*, 2002.

525 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 526 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 527 few-shot learners. In *Neural Information Processing Systems*, 2020.

528 Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of recent progress in the study
 529 of distributed multi-agent coordination. *IEEE Transactions on Industrial informatics*, 9, 2012.

530 Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
 531 Dragan. On the utility of learning about humans for human-ai coordination. In *Neural Information
 532 Processing Systems*, 2019.

533 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
 534 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
 535 modeling. In *Neural Information Processing Systems*, 2021.

536 Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl²: Fast
 537 reinforcement learning via slow reinforcement learning. *arXiv preprint arXiv:1611.02779*, 2016.

540 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
 541 deep networks. In *International Conference on Machine Learning*, 2017.

542

543 Haobo Fu, Ye Tian, Hongxiang Yu, Weiming Liu, Shuang Wu, Jiechao Xiong, Ying Wen, Kai Li,
 544 Junliang Xing, Qiang Fu, et al. Greedy when sure and conservative when uncertain about the
 545 opponents. In *International Conference on Machine Learning*, pp. 6829–6848. PMLR, 2022.

546

547 Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning invariant
 548 feature spaces to transfer skills with reinforcement learning. In *International Conference on
 549 Learning Representations*, 2017.

550

551 Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “other-play” for zero-shot
 552 coordination. In *International Conference on Machine Learning*, 2020.

553

554 Hengyuan Hu, Adam Lerer, Brandon Cui, Luis Pineda, Noam Brown, and Jakob Foerster. Off-belief
 555 learning. In *International Conference on Machine Learning*, 2021.

556

557 Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
 558 Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based training
 559 of neural networks. *arXiv preprint arXiv:1711.09846*, 2017.

560

561 Kunal Jha, Wilka Carvalho, Yancheng Liang, Simon S Du, Max Kleiman-Weiner, and Natasha
 562 Jaques. Cross-environment cooperation enables zero-shot multi-agent coordination. *arXiv preprint
 563 arXiv:2504.12714*, 2025.

564

565 Yuheng Jing, Kai Li, Bingyun Liu, Yifan Zang, Haobo Fu, Qiang Fu, Junliang Xing, and Jian Cheng.
 566 Towards offline opponent modeling with in-context learning. In *International Conference on
 567 Learning Representations*, 2023.

568

569 Louis Kirsch, James Harrison, C. Freeman, Jascha Sohl-Dickstein, and Jürgen Schmidhuber. Towards
 570 general-purpose in-context learning agents. In *NeurIPS 2023 Foundation Models for Decision
 571 Making Workshop*, 2023.

572

573 Alex Kulesza, Ben Taskar, et al. Determinantal point processes for machine learning. *Foundations
 574 and Trends® in Machine Learning*, 2012.

575

576 Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zajac, Olivier Bachem, Lasse Espeholt, Carlos
 577 Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football:
 578 A novel reinforcement learning environment. In *Proceedings of the AAAI conference on artificial
 579 intelligence*, volume 34, pp. 4501–4510, 2020.

580

581 Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
 582 DJ Strouse, Steven Stenberg Hansen, Angelos Filos, Ethan Brooks, maxime gazeau, Himanshu
 583 Sahni, Satinder Singh, and Volodymyr Mnih. In-context reinforcement learning with algorithm
 584 distillation. In *International Conference on Learning Representations*, 2023.

585

586 Niklas Lauffer, Ameesh Shah, Micah Carroll, Michael D Dennis, and Stuart Russell. Who needs to
 587 know? minimal knowledge for optimal coordination. In *International Conference on Machine
 588 Learning*, 2023.

589

590 Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
 591 Brunskill. Supervised pretraining can learn in-context reinforcement learning. In *Neural Informa-
 592 tion Processing Systems*, 2023.

593

594 Lihe Li, Lei Yuan, Pengsen Liu, Tao Jiang, and Yang Yu. Llm-assisted semantically diverse teammate
 595 generation for efficient multi-agent coordination. In *Forty-second International Conference on
 596 Machine Learning*, 2025.

597

598 Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
 599 as algorithms: Generalization and stability in in-context learning. In *International Conference on
 600 Machine Learning*, 2023.

594 Qian Long*, Zihan Zhou*, Abhinav Gupta, Fei Fang, Yi Wu†, and Xiaolong Wang†. Evolutionary
 595 population curriculum for scaling multi-agent reinforcement learning. In *International Conference*
 596 *on Learning Representations*, 2020.

597 Xingzhou Lou, Jiaxian Guo, Junge Zhang, Jun Wang, Kaiqi Huang, and Yali Du. Pecan: Leveraging
 598 policy ensemble for context-aware zero-shot human-ai coordination. In *Proceedings of the 2023*
 599 *International Conference on Autonomous Agents and Multiagent Systems*, 2023.

600 Keane Lucas and Ross E Allen. Any-play: An intrinsic augmentation for zero-shot coordination. In
 601 *Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems*,
 602 2022.

603 Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory diversity for zero-shot
 604 coordination. In *International Conference on Machine Learning*, 2021.

605 Long Ma, Yuanfei Wang, Fangwei Zhong, Song-Chun Zhu, and Yizhou Wang. Fast peer adaptation
 606 with context-aware exploration. In *International Conference on Machine Learning*, 2024.

607 Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Independent reinforcement
 608 learners in cooperative markov games: a survey regarding coordination problems. *The Knowledge*
 609 *Engineering Review*, 27, 2012.

610 Hadi Nekoei, Xutong Zhao, Janarthanan Rajendran, Miao Liu, and Sarath Chandar. Towards few-shot
 611 coordination: Revisiting ad-hoc teamplay challenge in the game of hanabi. In *Conference on*
 612 *Lifelong Learning Agents*, 2023.

613 Georgios Papoudakis, Filippos Christianos, and Stefano Albrecht. Agent modelling under partial
 614 observability for deep reinforcement learning. *Advances in Neural Information Processing Systems*,
 615 34:19210–19222, 2021.

616 Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
 617 meta-reinforcement learning via probabilistic context variables. In *International Conference on*
 618 *Machine Learning*, 2019.

619 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 620 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

621 Peter Stone, Gal Kaminka, Sarit Kraus, and Jeffrey Rosenschein. Ad hoc autonomous agent teams:
 622 Collaboration without pre-coordination. In *Proceedings of the AAAI Conference on Artificial*
 623 *Intelligence*, 2010.

624 DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating with
 625 humans without human data. In *Neural Information Processing Systems*, 2021.

626 Gerald Tesauro. Td-gammon, a self-teaching backgammon program, achieves master-level play.
 627 *Neural computation*, 6, 1994.

628 Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
 629 main randomization for transferring deep neural networks from simulation to the real world. In
 630 *Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems*, 2017.

631 Johannes Treutlein, Michael Dennis, Caspar Oesterheld, and Jakob Foerster. A new formalism,
 632 method and open issues for zero-shot coordination. In *International Conference on Machine*
 633 *Learning*, pp. 10413–10423. PMLR, 2021.

634 Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
 635 Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
 636 *International Conference on Machine Learning*, 2023.

637 Xihuai Wang, Zheng Tian, Ziyu Wan, Ying Wen, Jun Wang, and Weinan Zhang. Order matters:
 638 Agent-by-agent policy optimization. In *International Conference on Learning Representations*,
 639 2023.

648 Xihuai Wang, Shao Zhang, Wenhao Zhang, Wentao Dong, Jingxiao Chen, Ying Wen, and Weinan
 649 Zhang. Zsc-eval: An evaluation toolkit and benchmark for multi-agent zero-shot. In *Neural*
 650 *Information Processing Systems*, 2024.

651

652 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 653 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In *Neural*
 654 *Information Processing Systems*, 2022.

655 Jinwei Xing, Takashi Nagata, Kexin Chen, Xinyun Zou, Emre Neftci, and Jeffrey L Krichmar.
 656 Domain adaptation in reinforcement learning via latent unified state representation. In *Proceedings*
 657 *of the AAAI Conference on Artificial Intelligence*, 2021.

658

659 Ke Xue, Yutong Wang, Cong Guan, Lei Yuan, Haobo Fu, Qiang Fu, Chao Qian, and Yang Yu. Hetero-
 660 geneous multi-agent zero-shot coordination by coevolution. *IEEE Transactions on Evolutionary*
 661 *Computation*, 2024.

662 Zhi Yan, Nicolas Jouandeau, and Arab Ali Cherif. A survey and analysis of multi-robot coordination.
 663 *International Journal of Advanced Robotic Systems*, 10, 2013.

664

665 Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
 666 surprising effectiveness of ppo in cooperative multi-agent games. In *Neural Information Processing*
 667 *Systems*, 2022a.

668 Chao Yu, Jiaxuan Gao, Weilin Liu, Botian Xu, Hao Tang, Jiaqi Yang, Yu Wang, and Yi Wu. Learning
 669 zero-shot cooperation with humans, assuming humans are biased. In *International Conference on*
 670 *Learning Representations*, 2023.

671 Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
 672 Alexander Ku, Yafei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
 673 rich text-to-image generation. *arXiv preprint arXiv:2206.10789*, 2022b.

674

675 Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
 676 invariant representations for reinforcement learning without reconstruction. *arXiv preprint*
 677 *arXiv:2006.10742*, 2020.

678 Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
 679 Zhang, Anji Liu, Song-Chun Zhu, et al. Proagent: building proactive cooperative agents with large
 680 language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
 681 17591–17599, 2024.

682

683 Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
 684 overview of theories and algorithms. *Handbook of reinforcement learning and control*, pp. 321–384,
 685 2021.

686 Rui Zhao, Jinming Song, Yufeng Yuan, Haifeng Hu, Yang Gao, Yi Wu, Zhongqian Sun, and Wei Yang.
 687 Maximum entropy population-based training for zero-shot human-ai coordination. In *Proceedings*
 688 *of the AAAI Conference on Artificial Intelligence*, 2023.

689 Luisa Zintgraf, Sebastian Schulze, Cong Lu, Leo Feng, Maximilian Igl, Kyriacos Shiarlis, Yarin
 690 Gal, Katja Hofmann, and Shimon Whiteson. Varibad: variational bayes-adaptive deep rl via
 691 meta-learning. *J. Mach. Learn. Res.*, 22(1), January 2021. ISSN 1532-4435.

692

693

694

695

696

697

698

699

700

701

702

APPENDIX

703

704

705

Table of Contents

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

A Experiment Environment	14
A.1 Overcooked	14
A.2 Google Research Football	15
B Implementation and Dataset Details	16
B.1 Source and Licensing of Policy Pools and Datasets	16
B.2 COOT Training Details	16
B.3 Baseline and Training Implementation	17
B.4 Hardware Specifications and Training Time	19
B.5 Inference Time Comparison	19
B.6 Evaluation Pipeline Details	19
C Complementary Experiments	20
C.1 Context Length	20
C.2 Context Shuffling	20
C.3 Fine-Tuning	20
C.4 Adaptation	20
D Additional Contexts for Human Experiment	22
D.1 Experiment Setup	22
D.2 Experiment Platform	22
D.3 Qualitative Feedback from Participants	26
E Coordination Beyond Overcooked: Google Research Football	30
F Extended Related Work	30
G Adital Baseline	31
H Algorithm	33
I The Use of Large Language Models	34

A EXPERIMENT ENVIRONMENT**A.1 OVERCOOKED**

We evaluated in the Overcooked environment (Carroll et al., 2019) implemented in ZSC-Eval (Wang et al., 2024)¹. We used five layouts, Bothway Coordination (*Bothway Coord.*), Coordination Ring (*Coord. Ring*), Counter Circuit (*Counter Circ.*), Asymmetric Advantages (*Asymm. Adv.*), and Coordination Ring with Multi-Recipe (*Coord. Ring multi-recipe*). The multi-recipe layouts have onion (O) and tomatoes (T) as ingredients, which expands the range of recipes from just onion soup (3O) to five types of soups, including mix soup (1O1T), less onion soup (2O), tomato-onion soup (2T1O), onion-tomato soup (2O1T), and onion soup (3O). The following are the details and main challenges for each layout.

Bothway Coordination. In this variant, both players can access onions and pots, which broadens the range of feasible strategies and introduces new opportunities for cooperation. This layout helps reduce idle time seen in the Forced Coordination setting and encourages more diverse policies. Still, since plates and the serving station remain confined to one side, effective teamwork is essential to fulfill orders.

¹<https://github.com/sjtu-marl/ZSC-Eval>, with MIT License.

Coordination Ring. The Coordination Ring features a compact, circular layout that facilitates close agent interaction. Ingredients, plates, and the serving station are grouped in the bottom-left area, while cooking pots are placed in the top-right. This spatial arrangement drives continuous movement and requires players to coordinate effectively as they manage shared resources and navigate the kitchen.

Counter Circuit. Similar in shape to Coordination Ring, the Counter Circuit introduces a central, elongated table, creating narrow pathways that often cause congestion. This layout demands careful movement planning, as agents must avoid blocking one another. A common cooperative tactic involves staging onions in the center to streamline ingredient transfer.

Asymmetric Advantages. This layout divides the kitchen into two largely self-contained workspaces while maintaining interdependence through asymmetrically shared resources. Each player has unique access to ingredients and serving stations, while two centrally located pots are jointly accessible. Notably, one player benefits from closer proximity to the serving station, encouraging the development of collaboration strategies to balance workload and improve efficiency.

Coordination Ring with Multi-Recipe. This extended version of Coordination Ring includes tomatoes positioned near the serving area in the bottom-left corner, increasing task complexity. The added ingredient and recipe variety heighten the need for coordinated planning and amplify the importance of cooperation in fulfilling diverse orders.

A.2 GOOGLE RESEARCH FOOTBALL

3 vs 1 with Keeper. In the scenario, three controlled left-team players start near the three edges (left, top, and bottom) of the right-team goal area. The player (P_0) standing near the left edge starts with the ball. The two other controlled players (P_1 and P_2) begin in open passing positions. And a right-team defender, attempting to block their attack, stands between P_0 and the goal, along with a right-team goalkeeper. This setup naturally requires multi-agent teamwork among three attackers and introduces longer-horizon coordination compared to Overcooked.

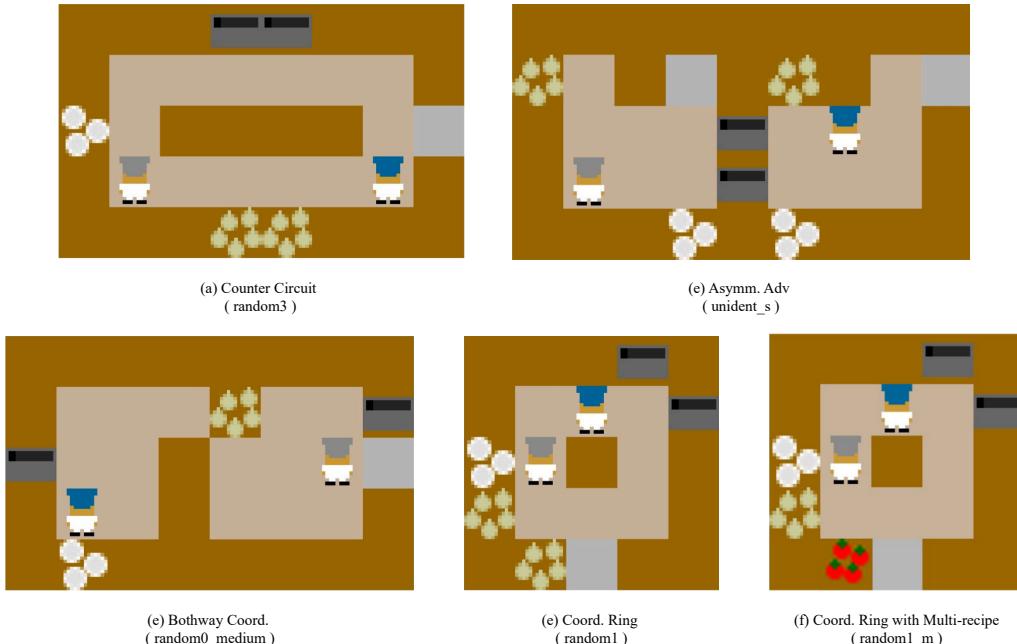


Figure 4: Used layouts in Overcooked.

810 **B IMPLEMENTATION AND DATASET DETAILS**
811812 **B.1 SOURCE AND LICENSING OF POLICY POOLS AND DATASETS**
813

814 **HSP and MEP training datasets.** In our setting, we adopt behavior-preferring rewards, which
815 refer to event-based biased reward functions. These rewards assign credit to specific events, such
816 as picking up onions or put an ingredient into pots. We assume that the behavioral requirements
817 of deployment-time partners can be effectively modeled using this set of reward functions. **Details**
818 about the reward specifications can be found in Table 5. We defined different sets of event-based
819 rewards according to the characteristics of each layout. For example, the biased agent in Bothway
820 Coordination cannot deliver soup, so we shifted the biased reward from delivering soup to picking up
821 onions or dishes in order to obtain sufficient biased agent policies. In contrast, the biased agent in the
822 multi-recipe Coordination Ring can access not only onions but also tomatoes, so some of the events
823 we selected are related to tomatoes.

824 For two-stage algorithms such as HSP (Yu et al., 2023) and MEP (Zhao et al., 2023), while we
825 do not train these policies ourselves, we construct the candidate policy pool by loading pretrained
826 checkpoints from the ZSC-eval repository, which contains a diverse collection of agents trained under
827 different bias reward settings and algorithmic configurations. These policies exhibit varied behaviors
828 and serve as potential partners for training adaptive agents in the second stage. Following the settings
829 in ZSC-eval (Wang et al., 2024), we selected 36 candidate policies as the basis for partner selection.

830 Table 5: **Events and biased reward under different layouts.** Each entry lists all possible biased
831 reward values that can occur for the corresponding event under the given layout type.

Events	Bothway Coord.	Multi-recipe	Others
Pickup onions from dispensers	-20,0,10	0	-20,0,10
Pickup dishes from dish dispensers	0,10	0	-20,0,10
Pickup onion or dish from counters	-20,0	0	0
Pickup soup from counters	-20,0	0	0
Put onions into pots	0	-20,0	0
Put tomatoes into pots		-20,0	
Deliver soup with two ingredients		-5,0,20	
Deliver soup with three ingredients		-15,0,10	
Deliver soup	0	0	-20,0
Stay	-0.1,0,0,1	-0.1,0,0,1	-0.1,0,0,1
Order Reward	x0.1,x1	x1	x0.1,x1

846 **COOT and BC training datasets.** We construct our expert dataset mainly following the same
847 procedure as in HSP. To build a robust and diverse partner pool Π_{train} for training adaptive policies,
848 we include 36 agents sourced from both MEP and HSP. Specifically, we collect 15 MEP agents with
849 final skill levels, and 21 HSP agents greedily selected based on an event-based diversity score d_i ,
850 which measures the expected frequency of key events.

851 For each selected pair $(\pi_i^{\text{p}}, \pi_i^{\text{br}}) \in \Pi_{\text{train}}$, we collect J joint trajectories τ , where $J = 200$ for MEP
852 agents and $J = 250$ for HSP agents (including 220 from final-skill-level and 30 from mid-skill-level
853 checkpoints). While COOT utilizes the current state s_t and the context C to predict \hat{a} , the BC
854 baseline is trained using the same dataset by conditioning only on the state s_t . Further details of
855 implementation and training will be discussed in the upcoming paragraphs.

856 **B.2 COOT TRAINING DETAILS**
857

859 **Generation of training dataset.** To train our Coordination Transformer (COOT), we begin with a
860 set of pretrained policy pairs consisting of biased partner agents and their corresponding best-response
861 policies. For each policy pair, we first select one pair and sample T episodes of rollouts, which
862 we use to construct a context C . This process is repeated K times per policy pair to generate K
863 distinct contexts. For each context C , we then sample L different query states s_h from the rollout
864 trajectories. Each query state, combined with its associated context C and the corresponding optimal

864 action \hat{a} , forms a single training data point of the form (s_h, C, \hat{a}) . Given a total of M policy pairs, this
 865 procedure results in a dataset containing $M \times K \times L$ training examples. More detailed information
 866 can be found in Table 6.

871 **Online deployment.** During online deployment, CooT operates with a dynamically updated
 872 context C to enable in-context adaptation. At the start of the first episode, C is initialized as an empty
 873 context. Since no prior trajectory is available, CooT selects actions based solely on the current state
 874 and the empty context. After completing the first episode, the entire trajectory is stored and used
 875 to construct a new context, which is then appended to C . As a result, C contains one populated
 876 trajectory and $T-1$ empty slots (assuming a fixed context length of T). In subsequent episodes,
 877 CooT utilizes the current buffer to condition its action predictions, allowing it to adapt based on
 878 accumulated experience. The context is managed using a first-in, first-out (FIFO) policy, ensuring that
 879 the most recent T trajectories are always retained. This procedure is repeated iteratively throughout
 880 the evaluation phase to simulate continual adaptation in a coordination setting. The main method
 881 details are provided in Algorithm 1 and Algorithm 2. Algorithm 1 outlines the training process of
 882 CooT, while Algorithm 2 outlines the evaluation process, including how the evaluation partners are
 883 selected.

886 B.3 BASELINE AND TRAINING IMPLEMENTATION

889 Our baseline codebase is primarily based on two open-source frameworks: Imitation², an imitation
 890 learning library built on Stable Baselines³, and ZSC-eval (Wang et al., 2024), a benchmark codebase
 891 for Zero-Shot Coordination (ZSC). We use the original implementation of Behavioral Cloning (BC)
 892 from Imitation, while the implementations and hyperparameter settings of HSP and MEP are directly
 893 inherited from ZSC-eval and HSP (Yu et al., 2023).

894 All models are evaluated in sparse-reward settings under ZSC environments to better reflect real
 895 deployment. To provide a more comprehensive comparison, we additionally report the performance
 896 of HSP and MEP trained with dense rewards, which offer frequent intermediate feedback (e.g.,
 897 picking up onions, placing them in pots) to facilitate more stable and efficient training.

901 **Table 6: Dataset configuration for training the Coordination Transformer (CooT).** It specifies
 902 the number of partner policy pairs, contexts, rollouts, and resulting total dataset size.

904 Dataset	905 Parameter	906 Value
907 CooT Dataset	908 Number of partner policy pairs (M)	909 36
	910 Number of contexts per pair (K)	911 125
	912 Number of rollouts per context (T)	913 5
	914 Number of data per context (L)	915 70 / 200 (GRF)
	916 Total dataset size ($M \times K \times L$)	917 315,000

²<https://github.com/HumanCompatibleAI/imitation>, with MIT license

³<https://github.com/DLR-RM/stable-baselines3>, with MIT license

918
919
920
921 Table 7: **Training hyperparameters for all methods.** We list model settings for CooT, PPO
922 parameters for HSP/MEP, and additional encoder parameters for HSP-meta.

921	922	Method	Hyperparameter	Value
923	BC	BC	Batch size	256
924			Learning rate	0.001
925			Optimizer	Adam
926			Scheduler	CosineAnnealingLR
927			Max Epochs	50
928			Early Stopping Patience	5
929			Validation Split	0.1
930	CooT	CooT	Scheduler η_{\min}	$\frac{\text{lr}}{100} = 3e-6$
931			Batch size	120
932			Learning rate	5e-5
933			Optimizer	Adam
934			Scheduler	LambdaLR
935			Weight decay	1e-3
936			Dropout	0.3
937			Gradient clip norm	0.25
938			Model	GPT-2
939			Hidden layers	4
940	Stage2 of HSP and MEP	Stage2 of HSP and MEP	Attention heads	2
941			Embedding size	128
942			Max Epochs	70
943			Early Stopping Patience	25
944			Entropy coefficient	0.01
945			Gradient clip norm	10.0
946			GAE lambda	0.95
947			Discount factor (γ)	0.99
948			Value loss	Huber loss
949			Huber delta	10.0
950	HSP-meta	HSP-meta	Optimizer	Adam
951			Optimizer epsilon	1e-5
952			Learning rate	5e-4
953			Parallel environment threads	100
954			Environment steps	10M
955			Episode length	200
956			Reward shaping horizon	10M
957			Policy pool size	36
958			Parallel environment threads	50
959			Encoder loss	Reconstruction loss
960			Encoder layers	3
961			Encoder lr	1e-5

962
963
964
965 Table 8: **Computational resources used.** Specifications of the four workstations used for training
966 and evaluation, including CPU, GPU, and memory.

965	Workstation	CPU	GPU	RAM
966	Workstation 1	Intel Xeon W-2255	NVIDIA GeForce RTX 3080	125 GiB
967	Workstation 2	Intel Xeon W-2255	NVIDIA GeForce RTX 3090 x2	125 GiB
968	Workstation 3	Intel Xeon w7-2475X	NVIDIA GeForce RTX 4090	125 GiB
969	Workstation 4	Intel Xeon w7-2475X	NVIDIA GeForce RTX 4090 x2	125 GiB

972 B.4 HARDWARE SPECIFICATIONS AND TRAINING TIME
973

974 We performed the experiments using the workstations listed in Table 8. Our method takes approxi-
975 mately 19 hours to train for each layout. Population-based baselines such as MEP and HSP require
976 per-partner adaptation via online cross-training, which takes approximately 5 hours per partner
977 with 100 parallel environment threads. Reproducing all results, including the baselines, requires
978 approximately 300 GPU hours when run sequentially.

979 Table 9: **Average per-step inference time across model architectures.** Reported times reflect pure
980 model forward pass per action, excluding environment interaction.
981

	CooT	MEP	HSP	BC
Inference Time (ms)	2.41	1.73	1.77	0.54

982
983 B.5 INFERENCE TIME COMPARISON
984
985

986 To complement the training cost reported above, we provide a comparison of pure model inference
987 time, excluding environment interaction, across the architectures used in our experiments. Table 9
988 reports the average per-step inference time. While transformer-based ICL introduces additional
989 overhead compared to lightweight baselines, the runtime remains practical in our multi-agent setting,
990 as CooT requires only 2.41 ms per step, which is acceptable for our simulation-based evaluations.
991

992 B.6 EVALUATION PIPELINE DETAILS
993

994 To evaluate ad-hoc teamwork with unseen partners, we follow the ZSC-Eval framework (Wang et al.,
995 2024), which constructs a diverse partner population and measures how well an ego agent coordinates
996 with them. Below, we provide the implementation details omitted from the main text.
997

1000 **Behavior feature extraction.** For each candidate partner π_w , we compute a high-level behavior
1001 feature vector from event occurrences. We define
1002

$$\phi(s_t, a_t) \in \mathbb{R}^m$$

1003 as an *event-based feature vector*, where each component $\phi_j(s_t, a_t)$ indicates whether the j -th
1004 predefined event occurred at time step t (e.g., pick-up, drop-off, interact-with-object, move-to-
1005 location). The overall behavior feature of the approximate best response is
1006

$$\theta_w = \mathbb{E} \left[\sum_{t=1}^T \phi(s_t, a_t) \right],$$

1007 computed over full episodes with partner π_w and its best response.
1008

1009 **Similarity computation.** Similarity between two partners is defined as the dot product of their
1010 behavior features:
1011

$$K_{ij} = \theta_i^\top \theta_j.$$

1012 **Best Response Diversity.** For a subset of partners \mathcal{S} , we compute the Best Response Diversity as
1013

$$\text{BR-Div}(\mathcal{S}) = \det(K_{\mathcal{S}}),$$

1014 where $K_{\mathcal{S}}$ is the similarity submatrix restricted to \mathcal{S} . Larger determinants correspond to subsets
1015 whose best responses exhibit more diverse behaviors.
1016

1017 **Partner selection via Determinantal Point Process.** The partner subsets are sampled using a
1018 Determinantal Point Process (DPP) with kernel K . Multiple subsets are drawn, and we select the one
1019 with the highest BR-Div as the evaluation partner set. Earlier training checkpoints of the selected
1020 partners are also included to capture a wider range of skill levels.
1021

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 10: Effect of context length on coordination performance in *Coord. Ring*. Performance improves steadily as context length increases from 1 to 5 episodes, but gains diminish when extended to 7 episodes.

Context length	Reward (\uparrow)
1 episode	33.87
3 episodes	34.36
5 episodes	41.11
7 episodes	36.04

Table 11: Average episode reward and BR-prox under different shuffle strategies on *Coord. Ring*. Preserving temporal structure results in better coordination and improved adaptation performance.

Shuffle strategy	Reward (\uparrow)	BR-prox (\uparrow)
No Shuffling	37.47 ± 5.67	0.44 ± 0.094
Step-wise	29.41 ± 5.23	0.36 ± 0.084
Chunk-wise	38.30 ± 3.71	0.47 ± 0.056

C COMPLEMENTARY EXPERIMENTS

C.1 CONTEXT LENGTH

Performance improves steadily as context length increases up to 5 episodes, reaching the best mean reward of 41.1. Beyond this point, gains diminish and even drop slightly at 7 episodes, indicating that overly long contexts may dilute relevant information while adding computational overhead. We therefore adopt 5 episodes as the default setting, balancing effectiveness and efficiency.

C.2 CONTEXT SHUFFLING

While COOT demonstrates robust performance in unseen partner coordination, we investigate whether its generalization ability can be further enhanced through improved training-time augmentation strategies. Specifically, we explore whether trajectory augmentation can help the model acquire more robust coordination behaviors. Motivated by Decision Pretrained Transformers (DPT) (Lee et al., 2023), where step-wise trajectory shuffling enhanced generalization in partially observable navigation tasks, we examine whether similar augmentation methods benefit our multi-agent coordination setting. To this end, we evaluate two trajectory-shuffling strategies, step-wise and chunk-wise, in the *Coord. Ring* layout over 50 rollouts each. Although step-wise shuffling has shown benefits in simple navigation environments such as Dark-Room (Zintgraf et al., 2021), where agents operate under short horizons and limited observability, we observe a performance decline when applying this strategy in Overcooked. Unlike Dark-Room’s short-horizon navigation tasks, Overcooked requires tight coordination over extended horizons. In such settings, preserving temporal structure remains critical, as effective coordination in Overcooked requires agents to act in a tightly timed relation to one another to avoid unnecessary delays or idle time.

As shown in Table 11, chunk-wise permutation, which shuffles multi-step segments while preserving key temporal dependencies, shows a slight improvement over step-wise shuffling and no augmentation. Interestingly, step-wise shuffling disrupts essential temporal continuity despite increasing data diversity and performs worse than unaugmented data. These findings emphasize the importance of preserving long-range temporal structure in trajectory augmentation, especially for multi-agent tasks that rely on temporally extended interactions.

C.3 FINE-TUNING

Table 12 illustrate the instability of gradient-based adaptation in coordination settings. While large learning rates (e.g., 10^{-4}) consistently destabilized training, leading to sharp performance drops, smaller learning rates (10^{-7} and 10^{-8}) yielded slight improvement. Partial fine-tuning (p-ft) often underperformed full updates, suggesting that restricting adaptation to the actor head fails to capture the dynamics needed for partner alignment. Overall, the limited and unstable gains from fine-tuning highlight the contrast with COOT.

C.4 ADAPTATION

Figure 5 further highlights the performance gap between COOT and the HSP-Meta baseline. Across all five layouts, COOT generally improves with additional episodes, while HSP-Meta remains largely

Table 12: **Comparison of online fine-tuning baselines (MAPPO with different learning rates against COOT.** Each model was evaluated with 50-episode interactions across 9 partner seeds. “p-ft” denotes updating only the actor head. Fine-tuning remains unstable: large learning rates cause collapse, while small rates yield no consistent gains.

Partner	no ft	1e-8	1e-7	1e-6	1e-5	1e-8 p-ft	1e-7 p-ft	1e-6 p-ft
2	8.0	7.6	6.8	6.4	1.6	8.0	8.0	6.8
12	6.8	6.8	7.2	8.0	5.2	6.8	6.8	6.4
15	39.2	38.4	39.6	41.6	32.0	39.2	39.2	38.4
16	36.8	38.4	38.4	37.2	32.4	36.8	36.8	36.0
17	28.4	26.4	30.4	28.4	16.8	28.4	28.0	28.4
20	41.2	40.8	44.0	38.0	31.2	41.2	41.2	40.0
27	37.2	37.6	35.6	32.4	32.4	37.2	38.0	38.8
31	47.6	47.6	46.4	43.2	31.6	47.6	47.6	46.4
50	21.2	20.8	20.8	19.6	15.6	21.2	20.8	20.8
Avg.	29.6	29.4	29.9	28.3	22.1	29.6	29.6	29.1

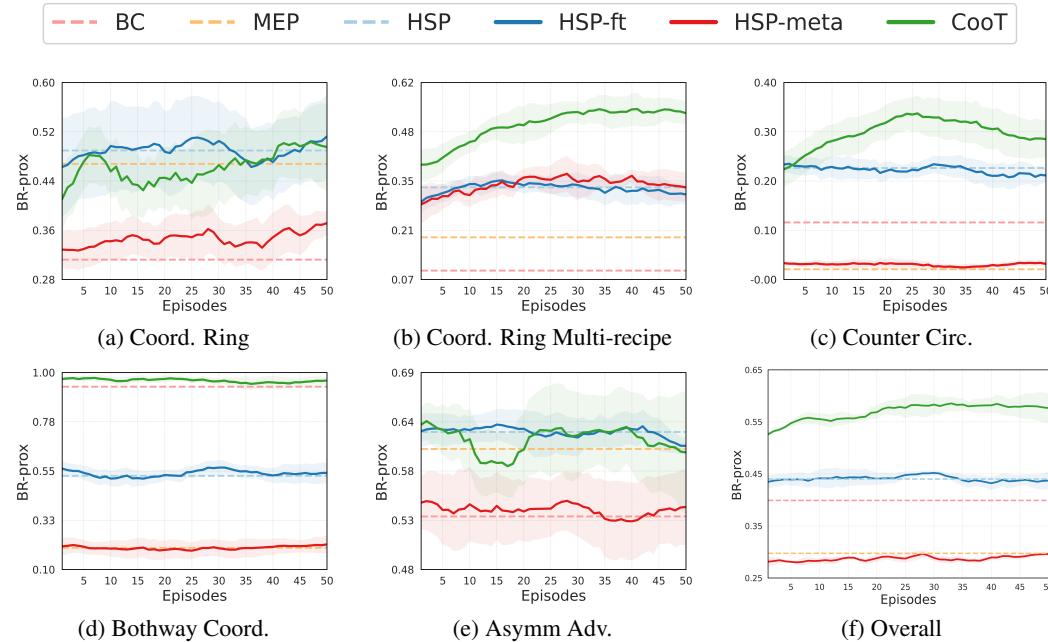


Figure 5: **COOT performance across layouts.** Learning curves on six evaluation layouts: Coord. Ring, Coord. Ring Multi-recipe, Counter Circ., Bothway Coord., Asymm Adv., and the aggregate result across all layouts (Overall).

flat. In *Coord. Ring*, COOT rises from initial BR-prox values around 0.4 to over 0.5. The difference is most striking in the *Coord. Ring Multi-recipe* layout: COOT continues to improve over the full 50 episodes, yet HSP-Meta stagnates early and even falls below the HSP baseline.

These results suggest that the trajectory encoder introduced in HSP-Meta does not produce useful latent representations for coordination. One likely reason is that the reconstruction loss does not align with coordination objectives: subtle behavioral cues are either smoothed out or misrepresented, leaving the policy unable to differentiate between partners. By contrast, COOT conditions directly on observed interactions and learns to map them to best-response actions, leading to consistent adaptation across all layouts.

1134 **D ADDITIONAL CONTEXTS FOR HUMAN EXPERIMENT**
11351136 **D.1 EXPERIMENT SETUP**
11371138 We recruited and verified 36 participants, with a gender distribution of 27 males and 9 females, for
1139 the human experiment. Seven participants have prior experience in playing the actual Overcooked!.
1140 To mitigate learning effects among the subjects, the order of the agents was randomized. The
1141 participants are required to play 200 per episode, 1600 timesteps in total, with 8 episodes for each
1142 agent (approximately 5.3 minutes). This leads to a total time of around 30 minutes. The names of the
1143 algorithms used by the agents were not visible during the experiments. Agents were differentiated
1144 solely by color. Participants were asked to rank the agents after each round, and their trajectories
1145 were recorded. All data collection was conducted with the consent of the participants.
11461147 **D.2 EXPERIMENT PLATFORM**1148 We built our human evaluation platform on top of the ZSC-Eval benchmark (Wang et al., 2024)^{A.1},
1149 which provides a standardized environment for testing human-AI coordination in Overcooked. To
1150 adapt it to our setting, we modified the system to support repeated interactions with the same agent,
1151 enabling context accumulation over multiple episodes.1152 During the experiment, participants controlled one character using keyboard inputs, while the partner
1153 was controlled by one of the four agents under evaluation: COOT, MEP, HSP, or BC. To reduce
1154 potential bias, agent identities were hidden and replaced with randomized colors. The interface
1155 presented real-time feedback, and all trajectories were automatically recorded for later analysis.
1156 Figures 6 to 9 show the platform’s interface and experiment flow.
11571158 **Table 13: Human feedback comments for different agents.** This table reports representative
1159 free-form comments collected from participants during the human–AI evaluation. All comments are
1160 anonymized and shown exactly as written, without further editing.

1161 USER	1162 CooT
1163 1	1164 It didn’t put onion to the pot which already had onion inside. Sometimes it didn’t 1165 manage to get the onion put on the middle table.
1166 2	1167 It can understand basic gaming strategy but cannot understand my intention
1167 3	1168 Do not take onions. More predictable.
1168 4	1169 better than first
1169 5	1170 It would block me at first, but it improves collabing with me. I put the onion, and 1171 he would take the soup. It would also do my work as well. Generally, it just feels 1172 smoother and better along the play.
1170 6	1171 Disappointed. I found that agent3 is good at the game. However, he refused to adapt 1172 to my strategy so waste a lot of time stucking thogather.
1171 7	1172 agent1 know how to use middle table but often block my way
1172 8	1173 has some strategies, but some behaviors are meaningless
1173 9	1174 not very smart
1174 10	1175 He performs well when playing on his own, so he would take three onions and a plate 1176 in the beginning. If I stole his soup, he would freak out and do nothing for a while. 1177 However, he walks really fast on his own.
1175 11	1178 It finds in the begining, I will put onion in the middle table, so it waits for me. Smart! 1179 BUT it likes to hold the plate and wait in front of the pot. But this robot is the best to 1180 collaborate.
1176 12	1181 better collaborative, sometime will be at right position
1177 13	1182 it doesn’t put onion into the pot with more onions
1178 14	1183 A stubbern model. S/he just didn’t know how to change the route. However, s/he 1184 found my behavior pattern and tried to change his/her behavior.
1179 15	1185 The agent is smart and sometimes provide hints to me.
1180 16	1186 often block the road, but seldon hesitate
1181 17	1187 Agnet4 play well. We play our own rules and get the highest grade.
1182 18	1188 He keeps take the plate when there is no onion soup ready.

1188		
1189	19	not a speedy start...but I think we'll become a great partner in a near future
1190	20	so-so
1191	21	good.
1192	22	it stop at the first time and it will take the plate at the first time
1193	23	kinda stupid
1194	24	Doing well on placing egg, but worse whiling placing dish
1195	25	hehehe
1196	26	Pretty good
1197	27	I think the agent performs best at the beginning. It starts to become confusing after rounds.
1198	28	Seems not to care much about my play style. Always wanted to achieve its purpose no matter what. Meaning that it would block my way and would not back the fuck off.
1199	29	The agent can wait me to put onions.
1200	30	This agent often block my way. We often stood there and look as each other for a long while. It seems that this agent doesn't quite understand maximizing throughput. It usually fill in only one cook and wait there with a plate in hand, leaving the other cook idle.
1201	31	not helpful
1202	32	I won't recognize this agent as an AI if I collaborate with it in the real game. As time passed by, the agent tends to be more adative and it won't block my way often. the only point is that he won't put the onion on the oven that already had one or two onion, since it might be more effective and efficient for us to give our meal faster.
1203	33	At the begining we don't have a good strategy, but we become more efficient and the agent is pretty collaborative
1204	34	It responded quickly and knowed how to cooperate with me well..
1205	35	The agent sometimes block my way. However, it seems to know my playing style and can collaborate with me to some extent.
1206	36	not bad
1215	USER	MEP
1216	1	it helps me take the onions to the stove.
1217	2	It can coorperate with me a little bit in the early episode, but not in the later one
1218	3	Move with initiative.
1219	4	quite silimilar to first
1220	5	The performance is not bad. But it gets a little bit worse over time. The agent performs well, but it can't compromise to my plan.
1221	6	Agent2 kind of understand my strategy at later runs however the as the score gets higher some unseen situation still confuse him.
1222	7	agent4 can walk around and not stock traffic
1223	8	Quick guy, but seems to have some prefer pattern, didn't adapt very much
1224	9	also not very smart
1225	10	He seems to be thinking about every step I do, and then think about what he should do. This takes up a lot of time and causes inefficiency. Moreover, I think he loves me and likes to block in my way.
1226	11	I think this robot play the game itself but this one is smart.
1227	12	Although it play bad, it improve a lot at the end
1228	13	i expect it to take a plate when i took the third plate but it didn't
1229	14	S/he is faster than the former one. However. I tried to collaborate with him/her, but nothing happened.
1230	15	The agent sometimes blocks me but sometimes is clear and follows my strategy.
1231	16	doesn't follow the same route, block the way sometimes,
1232	17	Agent1 is smart sometimes but is also stubid sometimes.
1233	18	He didn't know that he could take the onion from the middle(which I just put there before).
1234	19	non-improving partner; always work in an averaged level
1235	20	not good at all
1236	21	can trace me step but sometimes missed
1237	22	like a human, but it does not learn my work model

1242		
1243	23	not the best, but not that bad
1244	24	Always block my way to go.
1245	25	hahaha
1246	26	Co-work good, but not learning
1247	27	It would help me take the soup, so for the cooperation, i think it performs good, similar to agent 1.
1248	28	Blocked my path sometimes, but helped me served onion soup)
1249	29	Single mode agent
1250	30	This agent seems to know how to collaborate. Behaviors such as filling the cook with onions in it first and taking the onions I put on the table are observed.
1251	31	keep bump into me
1252	32	I think this guy is performing better and better and he seems to learn how to use the central block. It performs bad at first, too, but it just become better over time.
1253	33	At the starting rounds, it seems that we developed a good strategy. However, the agent starts to violate the strategy and frequently results in conflict
1254	34	Sometimes I was blocked by the agent 1.
1255	35	It performs well at the begining, so I feel like it can really collaborate with me. However, it didn't seem to adapt to my playing style and seem to became stupid over time.
1256	36	better
1261	USER	HSP
1262	1	Sometimes it would help me pick up onions but I think we collaborate well. It even put the soup on the table instead of sending it.
1263	2	It can understand some parts of the rule but lack of the ability to make right decisions, and it can barely coorperate with me.
1264	3	spin around for no reason. lack sense of the goal.
1265	4	useless
1266	5	Not bad. It's slightly self-centered. It can read my intention in some tasks, but it would also do what it wants in some other scenarios. The adaptation over time is not obvious.
1267	6	very stubben. I use the same strategy every run but agent1 still do stuffs against me. :(
1268	7	agent3 can only do deliver well
1269	8	A little bit dumb, seems to know what I try to do sometime, but slow
1270	9	becomes worse
1271	10	He seems to be thinking what he should do and what I've done the same time. This causes difficulties in collaboration because human would decide whether to first observe or first perform action, not doing it in the same time. Eventually, he is blocking my way and doing nothing.
1272	11	this robot find I prefer to put one onion on the table in the middle first and it did it in the last round. Good. BUT it is stupid than first one.
1273	12	The performance is set betwwen 1 and 4
1274	13	doesn't put onion into the pot with two onions in
1275	14	S/he seems to block my path several times.
1276	15	The agent always blocks me and do not follow my action.
1277	16	follow the same route, but delay a little bit
1278	17	Agnet2's behavier is wired. In the beginning he know how to collaborate with me putting the onion to the stove, but later he forgot and didn't improve.
1279	18	He is smart but keeps being in front of me.
1280	19	clumsy guy; I think he's new in kitchen
1281	20	not good at first, but imporve after that
1282	21	faster than me
1283	22	i think better than the green one, but sometime it will stop and does not work.
1284	23	such a retard
1285	24	agent seems like walking in circle.
1286	25	wuuuuu
1287	26	Pretty bad
1288	27	It stops moving sometimes and it also blocks my way. i dont think it actually improve over time.

1296		
1297	28	Blocking my path and wouldn't back down, and do not like to serve the onion soup.
1298		But over time, it learns to back off when I want to move and serve onion soup.
1299	29	place onion some where other than oven
1300	30	This agent seems to be "less confident" on what should do. Hesitations are observed.
1301		Path blockage still happens but less frequent than agent 1..
1302	31	okay
1303	32	This AI is quite similar as agent 2, I found it quite confused. Sometimes it respond to my action well sometimes it just put things randomly. Agent 2 often block my way but this guy seems that it is a newbie. Overall the Agent 2 and Agent3 are quite similar. Besides, i have tried to take advantage of the block at the center of the map but both of them can't use it properly.
1307	33	Sometimes it will block my way and do conflict actions
1308	34	It seems that agent 2 is a bit stupid that it didn't know how to adjust the order of making dish. Moreover, it often blocked me.
1309	35	The agent performs pretty bad, and it didn't adapt to my playing style at all! It often blocked my way and did nothing when I was busy.
1311	36	bad
1313	USER	BC
1314	1	It always blocks my way and it would pick up plate when the pot is empty.
1315	2	It only understand a little bit of the game's rule but being very bad at it
1316	3	Move with less pattern.
1317	4	great
1318	5	The agent is more self centered. It can't really adapt to my behavior and read my intentions. Although there are some improvements along the way, yet it gets worse in the end.
1321	6	Nice guy.
1322	7	agent2 often do something weird
1323	8	has diverse behaviors, but some are meaningless
1324	9	such an idiot, keep blocking my way
1325	10	Agent1 performs well when I do new moves like take an onion, but performs bad on deciding actions with the oven.
1326	11	Although in the beginning, this robot did nothing useful for example, it prefer to put the onion in the different pot and hold the plate in front of an unfilled pot, in the last round it figures out I would like to put onion in the middle table therefore, it will wait for onion near the pot.
1330	12	Not very collaborative
1331	13	sometimes block my way but not always
1332	14	S/he didn't block my path and utilized the middle table.
1333	15	The agent always blocks my strategy and takes the wrong items. It doesn't collaborate with me well.
1334	16	make the wrong step often
1335	17	Agent3 can learn how to use the middle area. However, I don't know what it likes to take the plate when nothing is cooking.
1337	18	He acts stupid at first but learns very fast.
1338	19	a very speedy partner; I think I didn't leverage his strategy of putting stuff on the middle island
1339	20	better than agent1
1341	21	bad
1342	22	sometime the direction for agent1 will be different for me.
1343	23	the smartest one
1344	24	always stand on the cooking area.
1345	25	yayaya
1346	26	DOESN'T IMPROVE
1347	27	It sometimes blocked my way, for the adaptive ability, I think it performs similarly.
1348	28	Very bad player. At first, would help to change from onion to plate to serve. But over time, it became brain damaged and would block my way and would not do anything.
1349	29	The agent does not know how to use plates.

1350	30	It seems that we are working separately. This agent has neither help me nor undo my work. It seems to adapt a little bit but not apparent.
1351	31	keep learning but not really good
1352	32	It is more stupid and i can easily distinguish that it is an AI. Sometimes it did weird behavior, sometimes it just idle and didn't do anything. In the round 7 the AI guy just stop in front of the ai for about 15 mins, while both ovens are filled with soup. I can't do anything then. I didn't see that he improve by any means. It sometimes block my way, more often then agent 1.
1353	33	Very bad at collaboration. Can hardly develop a playing strategy. Seems to be playing by itself
1354	34	It responded quickly.
1355	35	The agents often block my way. It's not really helpful.
1356	36	Very bad

D.3 QUALITATIVE FEEDBACK FROM PARTICIPANTS

To complement the quantitative rankings, we also collected qualitative feedback from participants after each interaction session. These open-ended comments provide insight into subjective impressions of each agent's behavior, including adaptiveness, blocking tendencies, and responsiveness. We organize these comments in Table 13, aligned with the BC, MEP, HSP, COOT order based on participant rankings.

To validate that the observed advantages were behaviorally grounded and not attributable to a halo effect, we conducted a qualitative analysis of all 144 participant responses. This manual coding process categorized comments along two independent dimensions: Explicit Adaptation, defined as evidence of progression or successful strategy modification using the method; and Negative Behaviors, which analyzed mentions of actions such as blocking and obstruction. To ensure mutual exclusivity, responses coded for Explicit Adaptation were exempt from inclusion in the Negative Behaviors dimension, reflecting the difference between demonstrating successful strategy use and focusing solely on obstacles and failures within the qualitative data. The resulting distribution of codes, which is itemized by participant ID in Table 14, supports the findings derived from the quantitative rankings.

Table 14: **Qualitative coding distribution.** N is the number of comments.

(a) Negative Behaviors			(b) Explicit Adaptation		
Agent	N	Participant IDs	Agent	N	Participant IDs
BC	19	1, 2, 3, 5, 6, 9, 12, 13, 15, 16, 21, 24, 26, 28, 29, 32, 33, 35, 36	BC	3	11, 18, 31
MEP	11	9, 10, 11, 14, 16, 18, 19, 20, 24, 31, 34	MEP	4	6, 21, 30, 32
HSP	21	2, 3, 4, 6, 8, 10, 14, 15, 17, 20, 22, 23, 24, 26, 27, 31, 32, 33, 34, 35, 36	HSP	5	5, 8, 11, 20, 28
CooT	12	1, 2, 7, 8, 9, 10, 14, 22, 23, 28, 30, 31, 35	CooT	9	5, 11, 12, 14, 29, 32, 33, 34, 35

1404

1405

1406

1407

1408

1409

1410

1411

Layout Game Length (sec) Game number Agent ID
 random1 400 3 of 4 3 of 4

When playing, please make sure to pay attention to the hat colors of your partners!
 You will be asked to rank the agents (identified by their hat colors) according to their performance.

Figure 6: **Main experiment layout for human study.** *Coord. Ring* is chosen since it requires both navigation and ingredient coordination. Thus, it can observe more coordination situations.

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

Questionnaire

1440

Please rank the agents by dragging the corresponding figures based on your feelings of the agents' cooperation ability.

1441

Please rank the agents from best to worst, from top to bottom.

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

Figure 7: **Human subjective perception ranking system.** Interface used in the user study for collecting participants' subjective rankings of agents. After each round, participants were asked to compare all agents they interacted with and select which partner they preferred most. This ranking procedure complements quantitative metrics by capturing human impressions of collaboration quality.

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

Experimental Statement

1. Purpose

You have been asked to participate in a research study that studies human-AI coordination. We would like your permission to enroll you as a participant in this research study.

The instruments involved in the experiment are a computer screen and a keyboard. The experimental task consisted of playing the computer game Overcooked and manipulating the keyboard to coordinate with the AI agent to cook and serve dishes.

2. Procedure

In this study, you should read the experimental instructions and ensure that you understand the experimental content. The whole experiment process lasts about 30 minutes, and the experiment is divided into the following steps:

- (1) Read and sign the experimental statement, and you need to fill in a questionnaire ;
- (2) Test the experimental instrument, and adjust the seat height, sitting posture, and the distance between your eyes and the screen. Please ensure that you are in a comfortable sitting position during the experiment ;
- (3) You will first try out the game actions you learned in the tutorial within a simple layout to familiarize yourself with the game mechanics;
- (4) Start the formal experiment. Please cooperate with the AI agents to get as much scores as possible. You will play with 4 agents in 1 layout. You need to rank the performance of these four agents. After each round, we will ask you to add the current agent to the ranking. After the game ends in each layout, we need to confirm your ranking of the agents.

3. Risks and Discomforts

The only potential risk factor for this experiment is trace electron radiation from the computer. Relevant studies have shown that radiation from computers and related peripherals will not cause harm to the human body.

4. Compensation

Each participant who completes the experiment will be paid around 6~7 USD.

5. Confidentiality

The results of this study may be published in an academic journal/book or used for teaching purposes. However, your name or other identifiers will not be used in any publication or teaching materials without your specific permission. In addition, if photographs, audio tapes or videotapes were taken during the study that would identify you, then you must give special permission for their use.

I confirm that the purpose of the research, the study procedures and the possible risks and discomforts as well as potential benefits that I may experience have been explained to me. All my questions have been satisfactorily answered. I have read this consent form. Clicking the button below indicates my willingness to participate in this study.

Figure 8: **Statements for human study.** Consent and instruction form provided to participants before the experiment. It outlines the purpose of the study (human–AI coordination in Overcooked), the procedure (tutorial, gameplay with four agents, and post-round rankings), potential risks and discomforts, compensation details, and confidentiality terms. This ensured that participants were fully informed and agreed to the study protocol before beginning the human–agent collaboration tasks.

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Instructions

1520

Please read the following instructions carefully.

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

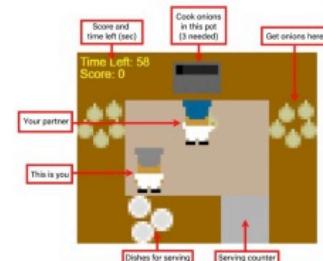
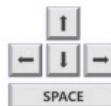
1545

1546

In this task, you will play in a cooking game as one of the two chefs in a restaurant that serves onion soup. The chef in you control wearing a gray hat.

One of the game layouts looks like:

There are a number of objects in the game, labeled here:

**Movement and interactions**

You can move up, down, left, and right using the **arrow keys**, and interact with objects using the **spacebar**.

You can interact with objects by facing them and pressing **space bar**.

Note that you and your partner cannot occupy the same location.

Cooking

Once 3 onions are in the pot, the soup begins to cook. After the timer gets to 20, the soup will be ready to be served. To serve the soup, bring a dish over and interact with the pot.

Goal

Your goal in this task is to serve as many of the orders as you can before each level ends. The current score and time left for you are shown in the upper left of game.

After clicking "Start Playing", you will first play in a warmup trial, where scores will not be recorded.

After the warmup trial, the official experiments will be conducted in 3 layouts. You will complete 7 games with 7 different agents in each layout.

When playing, please make sure to pay attention to the hat colors of your partners! You will be asked to rank the agents (identified by their hat colors) according to their performance.

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566 Table 15: **Goal score on Google Research Football.** We report the goal rate (\uparrow), defined as the
 1567 number of goals achieved within the 200-step evaluation horizon. Results compare COOT, HSP, and
 1568 MEP against 10 evaluation partners selected for maximum behavioral diversity (Appendix B.6). Each
 1569 method is trained with three seeds, and each trained model is evaluated with 50 rollouts. The reported
 1570 mean \pm std is computed from the per-seed averages. Higher scores indicate stronger coordinated
 1571 play.

Method	Goal Rate
MEP	0.75 ± 0.12
HSP	0.90 ± 0.10
CooT (Ours)	1.35 ± 0.26

E COORDINATION BEYOND OVERCOOKED: GOOGLE RESEARCH FOOTBALL

The previous sections focus on Overcooked, a compact two-agent domain that highlights rapid adaptation and robustness to partner shifts. To examine whether COOT’s advantages extend to more complex multi-agent settings, we benchmark it against HSP and MEP, the strongest Overcooked baselines, in Google Research Football (GRF) (Kurach et al., 2020), using the ZSC-Eval evaluation protocol (Wang et al., 2024). HSP and MEP are trained with 10M online RL steps, whereas COOT is trained purely from a 5M offline dataset, making the comparison conservative in favor of the baselines (further details in Appendix 6 and Table 7).

Environments. We utilize the "3 vs 1 with Keeper" scenario from GRF. In this setting, three cooperative offensive agents work together to score against one defender and a goalkeeper. We denote the three attackers as P_0 , P_1 , and P_2 , which allows us to specify their roles and behavior preferences precisely (see Appendix A.2 for details).

Behavior-preferring agents and best response. We define two sets of discrete events for P_0 and P_2 , and generate 144 biased reward functions through linear combinations of these events. Using these rewards, we train P_0 and P_2 jointly with P_1 , producing diverse partner behaviors. After training, we collect the trajectories of P_1 acting as the best response to each pair of partners. These best-response trajectories serve as the training data for COOT.

Setup and metrics. In our configuration, each episode lasts up to 200 steps and resets when a goal is scored or when the environment terminates prematurely (e.g., due to out-of-bounds or a change in ball possession). Agent performance is measured by the goal rate, defined as the number of successful goals achieved within each episode. Our implementation closely follows the GRF integration in ZSC-Eval. Specifically, the evaluation partners are constructed using two components: the hidden-utility biased rewards we design (as detailed in Table 16), and the MAPPO training procedure employed in ZSC-Eval’s GRF module. We then select a behaviorally diverse evaluation subset of size 10 using feature embeddings and determinantal point process sampling (further details in Appendix B.6).

Results. GRF presents a substantially larger and more continuous coordination space than Overcooked, and COOT achieves competitive goal scores across diverse evaluation partners (Table 15). Consistent with our observations in Overcooked, COOT’s advantage becomes more pronounced when the coordination demands increase: tasks that require multi-agent spacing, multi-step passing, or maintaining offensive formations benefit from its ability to absorb interaction histories and quickly infer partner tendencies. These results indicate that COOT’s in-context adaptation mechanism generalizes beyond structured grid-based settings and remains effective in high-coordination, continuous multi-agent environments.

F EXTENDED RELATED WORK

Opponent Modeling. The development of competitive agents in multi-agent scenarios, especially against unknown and nonstationary opponents, presents a significant challenge. One effective strategy for addressing this is to equip the agent with the ability to model its opponent. This approach, known as opponent modeling, involves conditioning the agent’s policy not only on its environment

1620 Table 16: **Events and biased reward under different layouts.** Each entry lists all possible biased
 1621 reward values that can occur for the corresponding event under the given layout type.
 1622

Events	P_0	P_2
pass	-1,1	0
shot	0	-1,1
possession	-0,1,0,0,1	-0,1,0,0,1
score	1,5	1,5

1629
 1630 observation but also on predictions about relevant properties of the opponent, such as their policies
 1631 and goals. Greedy when Sure and Conservative when Uncertain about the Opponents (GSCU) (Fu
 1632 et al., 2022) solves this by selecting between a real-time greedy policy and a fixed conservative policy
 1633 using an adversarial bandit algorithm.

1634 **Social Dilemmas.** The concepts of cooperation and competition are fundamental to the study
 1635 of social systems in both nature and artificial intelligence. Multi-agent reinforcement learning
 1636 (MARL) has achieved notable success in settings like Go and Starcraft, which are complex but
 1637 typically fixed-team and zero-sum. However, the real world often involves mixed-motive interactions
 1638 that are neither purely zero-sum nor defined by fixed teams. In these settings, agents constantly
 1639 face social dilemmas, where their individual interests conflict with the collective well-being of the
 1640 group. Randomized Uncertain Social Preferences (RUSP) (Baker, 2020) solves this by expanding
 1641 the distribution of environments the agents are trained in, specifically by introducing randomized,
 1642 uncertain, and asymmetric prosocial preferences. This novel environment augmentation pressures
 1643 agents to learn socially reactive policies, such as reciprocity and team formation, which are necessary
 1644 for cooperation.

1645 G ADDITIONAL BASELINE

1646 We acknowledge that several context-based meta-RL approaches could be applied to the ad-hoc
 1647 teamwork (AHT) setting. Using only HSP-meta to represent this series of methods may therefore be
 1648 incomplete. To strengthen our empirical results, we additionally adapt Fast Peer Adaptation with
 1649 Context-aware Exploration (PACE) (Ma et al., 2024) into our cooperative setting. The resulting base-
 1650 line, which we call HSP-PACE, enables us to more directly compare COOT against a representative
 1651 context-based approach designed for fast adaptation from recent interaction history.

1652 **Method Overview.** PACE is a context-aware meta-RL method designed to identify and adapt to
 1653 different peers in multi-agent environments. It uses a context encoder to summarize recent interaction
 1654 episodes into a latent context, similar to the encoder used in our HSP-meta baseline. On top of
 1655 this encoding, a peer classifier predicts the identity or type of the peer and produces an intrinsic
 1656 exploration reward based on the posterior probabilities of the actual peer agents. The classifier is
 1657 further trained with an auxiliary loss between the predicted peer distribution and the true peer ID. By
 1658 conditioning the policy on the inferred peer embedding and using uncertainty-driven intrinsic rewards
 1659 to encourage informative interactions, PACE enables fast adaptation across diverse peer strategies.

1660 **Adapting PACE into HSP.** To construct a fair comparison, we integrate PACE’s core mechanisms
 1661 into HSP-meta, resulting in HSP-PACE. Specifically, we add a peer-identifier trained to classify
 1662 partner policies from the latent context produced by HSP-meta’s encoder. The identifier produces
 1663 a posterior distribution over partner IDs, which we use following PACE’s design in two ways: (i)
 1664 as the target for an auxiliary classification loss, and (ii) to compute an intrinsic exploration reward
 1665 that encourages the agent to collect interactions that help disambiguate partner identities. During
 1666 training, this intrinsic reward is combined with the environment reward; at test time, only the latent
 1667 context (without the exploration reward) conditions the policy. These modifications preserve PACE’s
 1668 identity classification and uncertainty-driven exploration mechanisms while adapting them to the
 1669 AHT setting.

1670 **Results.** As shown in Table 17, HSP-PACE demonstrates highly inconsistent performance that
 1671 collapses under increased task complexity. In the less demanding Coord. Ring layout, HSP-PACE
 1672 achieves a moderate reward of 33.94, outperforming HSP-meta (29.84). This suggests that in simple

1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727

Table 17: **Additional baseline: HSP-PACE (added during rebuttal).** We include HSP-PACE as an extra baseline following the reviewer’s suggestion. HSP-PACE performs slightly above HSP-meta on Coord. Ring but remains below the strongest baselines (MEP, HSP/HSP-ft) and COOT. On the other hand, HSP-PACE suffers a significant failure in the Coord. Ring Multi-recipe layout. In this demanding environment, HSP-PACE records the lowest mean reward of 4.43 with a high standard deviation (± 9.02), indicating a fundamental breakdown of the coordination mechanism. All results report mean \pm std over 3 training seeds, with 50 evaluation rollouts per seed.

Layout	Coord. Ring		Coord. Ring Multi-recipe	
	Reward	BR-prox	Reward	BR-prox
BC	26.24 \pm 1.80	0.31 \pm 0.02	8.97 \pm 0.49	0.10 \pm 0.01
MEP	40.30 \pm 3.45	0.47 \pm 0.04	16.64 \pm 1.16	0.19 \pm 0.02
HSP	41.10 \pm 10.03	0.49 \pm 0.10	29.35 \pm 3.77	0.33 \pm 0.04
HSP-ft	41.30 \pm 9.85	0.49 \pm 0.10	29.24 \pm 3.75	0.33 \pm 0.04
HSP-meta	29.84 \pm 3.92	0.35 \pm 0.04	30.21 \pm 1.37	0.34 \pm 0.02
HSP-PACE	33.94 \pm 3.21	0.40 \pm 0.03	4.43 \pm 9.02	0.05 \pm 0.10
COOT (Ours)	38.30 \pm 3.71	0.47 \pm 0.06	45.96 \pm 3.99	0.50 \pm 0.04

layouts, the method can achieve a baseline level of coordination, although it still lags behind the top-performing methods like CooT (38.30) and other HSP variants (\approx 41.0). In the complex Coord. Ring Multi-recipe layout, HSP-PACE achieves an extremely low reward of 4.43.

Analysis. The failure of HSP-PACE in Coord. Ring Multi-recipe might come from two compounding issues: policy-pool mismatch and the intrinsic exploration reward. In PACE’s original PO-Overcooked environment, agents have access to several ingredients and recipes, and the “diverse” policy pool is constructed by assigning each peer an ingredient-oriented preference, which makes the peer agent ignore everything other than the target ingredients. These non-overlapping preferences make partners cleanly distinguishable, which fits the design of PACE’s peer-identifier. In our setting, however, biased partners are trained with an RL algorithm under biased rewards rather than explicit behavior restrictions, so partners do not completely avoid non-preferred behaviors. This difference makes peer identification substantially harder and could cause the classifier to overfit. This weakness is critically exposed in the complex environment, where the demand for high-precision, collision-free coordination is high. Furthermore, PACE’s intrinsic exploration reward may encourage the agent to deviate from cooperative behavior to gather identity-revealing signals, which is counterproductive under fixed training timesteps. As a result, HSP-PACE fails to stabilize an effective cooperative policy and is outperformed by other context-based methods like HSP-meta and CooT.

1728 **H ALGORITHM**
17291730
1731**Algorithm 1** Agent Pool Construction and Training

1: // Generating agent pool
2: Initialize empty pool Π_0
3: **for** i in P **do**
4: Sample hidden reward function r_i^w from reward space R
5: Train π_i^p and its best response π_i^{br} using PPO
6: Add (π_i^p, π_i^{br}) to Π_0
7: **end for**
8: // Partner selection for training
9: Initialize empty training pool Π_{train}
10: **for** (π_i^p, π_i^{br}) in Π_0 **do**
11: Rollout trajectories and Compute event-based diversity d_i of π_i^{br}
12: **end for**
13: Select top-M agents with highest d_i values as \mathcal{S}
14: Add corresponding agents to Π_{train}
15: Remove corresponding agent from Π_0
16: // Construct training dataset
17: Initialize empty dataset D
18: **for** (π_j^p, π_j^{br}) in Π_{train} **do**
19: **for** k in K **do**
20: Rollout T trajectories as context C
21: **for** l in L **do**
22: Sample query state $s_h \sim C$
23: Let $a^* = \pi_j^{br}(s_h)$
24: Add data (s_h, C, a^*) to D
25: **end for**
26: **end for**
27: **end for**
28: // Model training
29: Initialize model M_θ
30: **while** not converged **do**
31: Sample (s_h, τ_j, a^*) from D
32: Predict action distribution $\hat{p} = M_\theta(\cdot | s_h, \tau_j)$
33: Compute loss \mathcal{L} given \hat{p} and Update θ
34: **end while**

1762
1763
1764
1765**Algorithm 2** Evaluation and Online Deployment (Wang et al., 2024)

1: // Evaluation partner selection
2: **for** (π_i^p, π_i^{br}) in Π_0 **do**
3: Rollout trajectories τ_i
4: Embed features of τ_i into ϕ_i
5: **end for**
6: Compute similarity matrix \mathbf{K} from $\{\phi_i\}_{i=1}^K$
7: Sample subset \mathcal{S} from top-N candidates of \mathbf{K}
8: Define evaluation set $\Pi_{eval} = \{\pi_s^p\}_{s \in \mathcal{S}}$
9: // Online deployment
10: Sample unseen partner $\pi_s^p \sim \Pi_{eval}$
11: Initialize fixed-length context $C = \{\}$
12: **for** episode = 1 to E **do**
13: **for** timestep t = 1 to Z **do**
14: Observe s_t , predict $a_t \sim M_\theta(\cdot | s_t, C)$
15: Execute a_t with partner, observe (s_t, a_t, r_t)
16: **end for**
17: Append episode trajectory to context C
18: **end for**

1782 **I THE USE OF LARGE LANGUAGE MODELS**
17831784 We used large language models (LLMs) in limited ways that did not affect the scientific contributions
1785 of this work. Specifically, LLMs were employed to (1) polish and improve the clarity of writing
1786 without altering the technical content, (2) help organize and summarize qualitative feedback collected
1787 from human study participants, and (3) assist in designing and refining figures for presentation
1788 purposes. All conceptual, methodological, and analytical contributions, including study design, data
1789 analysis, and interpretation of results, were carried out solely by the authors.
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835