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Abstract

In today’s fast-paced information era, logical
fallacies, defined as defective patterns of rea-
soning, inevitably contribute to the growth of
information disorder. However, often fallacies
appear in nuanced forms that complicate auto-
mated identification. In this study, we investi-
gate whether the logical structure of arguments
proves beneficial for fallacy detection. To ad-
dress the inherent variability of logical falla-
cies, we develop an experimental framework
that extracts logical patterns from sentences
via Large Language Models (LLMs) from the
LOGIC dataset. We evaluate the impact of these
patterns across different LLMs and experimen-
tal zero- and one-shot configurations and we
test their robustness on different datasets. Our
generated patterns achieve a significant per-
formance increase on LOGIC, validating the
effectiveness of this structural approach.

1 Introduction

A logical fallacy is an error in reasoning that ren-
ders an argument invalid or unsound. These argu-
ments often appear rational and logically coherent
on the surface, but deeper analysis reveals they are
not (Copi et al., 1953). Fallacies are traditionally
classified into formal and informal types: formal
fallacies violate the rules of logical structure re-
gardless of content, while informal fallacies are
patterns of mistakes that are made in the every-
day uses of language and are related to contextual
meaning (Hamblin, 1970; Bacon et al., 1999; Copi
etal., 1953).

To evaluate the quality of an argument, it is help-
ful to reconstruct it into what is known as logi-
cal form, the structure that emerges when the spe-
cific content of a statement is replaced by vari-
ables (Johnson and Blair, 1977). For example,
the argument If it rains, then the ground will be
wet. It is raining. Therefore, the ground is wet
has the logical form If P, then Q. P. Therefore, Q.

Building on this formalization framework, Jin et al.
(2022) developed a structure-aware model for fal-
lacy detection on the LOGIC dataset that compares
arguments’ and fallacies’ logical forms. However,
this approach may not work effectively for infor-
mal fallacies, where reasoning is often more nu-
anced and context-dependent than abstract repre-
sentations suggest. Fundamentally, a single logical
scheme frequently fails to capture the full spectrum
of ways a particular fallacy can manifest in natural
discourse.

This gap between theory and practice raises a
key question: Is the logical structure of argu-
ments valuable for automated fallacy detection?
To answer this question, we investigate whether
Large Language Models (LLMs) can successfully
extract fallacies’ logical patterns from fallacious
examples and their explanations, attempting to cap-
ture both logical forms and context-aware logical
schemes that reveal the underlying mechanisms of
deception in fallacious arguments. Hereafter, we
refer to these extracted structures collectively as
patterns. While existing supervised approaches
require extensive labeled datasets and computa-
tional resources for fine-tuning (Lei and Huang,
2024; Vijayaraghavan and Vosoughi, 2022; Sourati
et al., 2023), to our knowledge, no prior work has
explored fallacy detection from a structural per-
spective within an unsupervised setting.

We evaluate multiple prompting configurations
to determine which informational components en-
hance performance and examine the impact of
demonstrations on detection capabilities. Our
approach, incorporating the generated patterns,
achieves state-of-the-art results among unsuper-
vised methods on the dataset LOGIC. Finally, to
validate the robustness and transferability of our
patterns, we assess their performance across three
different datasets spanning diverse domains and
argumentative styles.

In summary, our contributions are threefold:



* We examine whether Large Language Models
(LLMs) can successfully extract reasoning
templates for different fallacy types and use
them for fallacy classification.

* We evaluate decoder-only LLMs’ capabilities
in fallacy detection with different prompt de-
signs.

* We validate the generated patterns across
three different datasets, testing their gener-
alizability across different domains and struc-
tures.

2 Related Work

Recent advances in fallacy detection have increas-
ingly turned to LLMs, though few studies have
relied exclusively on prompting-based techniques.
Several works have employed fallacy detection to
probe LLMs’ logical reasoning abilities (Teo et al.,
2025; Hong et al., 2024; Li et al., 2024; Xu et al.,
2025). Among these, Hong et al. (2024) investi-
gated self-verification capabilities and showed that
LLMs face more challenges with structure-based
(formal) fallacies with respect to content-based
(informal) ones, and that fallacy definitions pro-
vide minimal improvements. It is worth noting
that only one study has explored fallacy classifica-
tion using reasoning models, demonstrating supe-
rior performance compared to non-reasoning ones
(Xu et al., 2025). Among studies relying exclu-
sively on prompting techniques, Pan et al. (2024)
designed single-round and multi-round prompting
schemes for zero-shot detection, while Jeong et al.
(2025) introduced contextual prompting incorpo-
rating counterarguments, explanations, and goals
with confidence-based ranking, showing that expla-
nations particularly enhance performance. Lim and
Perrault (2024) assessed detection abilities on the
LOGIC dataset using few-shot prompting, though
their different taxonomy limits direct comparison
with our work. Other research combines genera-
tive LLMs with fine-tuned models, such as Alhindi
et al. (2024) who employed LLMs to generate syn-
thetic training examples for fine-tuning classifica-
tion models. Most notably, Jin et al. (2022) devel-
oped a structure-aware model based on Electra that
distills arguments into logical forms and compares
them against fallacy patterns sourced from logi-
callyfallacious.com. Their approach significantly
outperformed zero-shot experiments, demonstrat-
ing the proven importance of structural information

in fallacy detection systems. Against this scenario,
our work represents the first systematic attempt
to exploit logical structure through inference-only
methods.

3 Datasets

The LOGIC dataset is a collection of 2449 exam-
ples across 13 fallacy types. Instances are sourced
from educational platforms about fallacies such as
Quizziz and study.com. The dataset consists of
brief dialogues and short statements. Given the ed-
ucational intent behind these examples, sentences
tend to have relatively straightforward syntactic
structures, making the dataset particularly well-
suited for pattern recognition and alignment with
logical forms.

Although it contains 13 distinct fallacy types, a
thorough analysis revealed that some of the classes
actually contain instances of different fallacies that
were grouped together. For instance, the class
Hasty Generalization contains examples of actual
Hasty Generalization as well as Slippery Slope (Ta-
ble 1). While these grouped fallacies share com-

Class
Intentional Fallacy

Fallacies included

Intentional Fallacy

Shifting the Burden of Proof
Moving the Goalposts

No True Scotsman

Post Hoc

False Cause

False Cause

Hasty Generalization | Hasty Generalization

Slippery Slope

Table 1: Examples of classes in LOGIC containing in-
stances of different fallacy types. While logically co-
herent, these groupings comprise fallacies with distinct
structural patterns. A detailed breakdown of all classes’
subtypes is provided in the appendix of Jin et al. (2022).

mon logical flaws and thus belong to the same
conceptual group, they manifest through different
structural patterns, which complicates the attempt
to match them all to a single logical scheme.

We use LOGIC to extract logical patterns. We
evaluated the generated patterns on LOGIC and on
three other datasets: ARGOTARIO (Habernal et al.,
2017), a general-domain collection of fallacious
arguments annotated with five fallacy classes and
a No Fallacy class; cOVID (Musi et al., 2022),
a dataset of COVID-19-related articles annotated
with ten fallacy classes and a No Fallacy category;
CLIMATE (Alhindi et al., 2023), which contains


https://www.logicallyfallacious.com/
https://www.logicallyfallacious.com/
https://www.logicallyfallacious.com/

text segments from climate change articles and
adopts the same taxonomy as COVID. We pre-
served the original data splits provided by the au-
thors, with the exception of ARGOTARIO, which
we partitioned into a 75/25 train-test split. Datasets’
summary is reported in Table 2 and a description
of each taxonomy is provided in Appendix D.

Data #Examples  # Classes  Genre Domain
Logic 2449 13 Dialogue  Education
ARGOTARIO 1344 6F Dialogue  General
CoviD-19 154 11# News Covid-19
CLIMATE 685 s News Climate

Table 2: Statistics of the four datasets. i indicates that
the No Fallacy class is included.

4 Pattern generation

Natural arguments appear in several different
forms. Such variability manifests itself in LOGIC
dataset as well as many others (Habernal et al.,
2018; Da San Martino et al., 2019). For this rea-
son, we address our research question by model-
ing patterns inductively from the observed text in-
stances. Our pattern generation procedure features
two steps:

Step 1: Explanation Generation Explanations
have been shown to be instrumental in identifying
and discrediting fallacious reasoning, as they make
the logical structure of arguments explicit and open
to scrutiny (Storer, 1949). Furthermore, Jeong et al.
(2025) has demonstrated that providing explana-
tions constitutes valuable contextual information
in zero-shot settings.

Given a sentence from the training set and its
fallacy label, we used LLama 3.3-70B to gener-
ate an explanation that justifies why that sentence
contains the specified fallacy.

Step 2: Pattern Extraction For each fallacy
class, we used OpenAI’s reasoning model 04-mini
(OpenAl, 2025) to extract patterns from the col-
lected sentences and their explanations, requiring
the model to preserve logical connectors such as
prepositions or adverbs and to abstract away from
content words by using placeholders while keeping
the original reasoning form.

You can find the used prompts in Appendix F.1.
In the initial phase of our research, we aimed to
cover two distinct logical aspects from our argu-
ments and explanations, specific to formal and in-
formal fallacies, respectively:

» arguments’ logical forms as defined by for-
mal logic theory;

* recurring reasoning schemes that frequently
appear in both sentences and explanations,
capturing specific information about the rea-
soning behind the fallacy, including frequent
syntactic particles, phrases, and examples that
convey the fallacious intent.

Table 3 shows the patterns relative to the fallacy
class Intention Fallacy. The full list of patterns is
available in Appendix E (Table 17).

The process resulted in approximately 3-6 pat-
terns per fallacy class. Final patterns were obtained
after selecting the best performing subset on the
validation set, in the attempt to retain only useful
information and avoid redundancy.

In some cases, the model is able to detect some
specific types of fallacy that deviate from canon-
ical schemes. For example, the model automati-
cally generates the pattern relative to Tu quoque
(a specific case of Ad Hominem). However, the
model sometimes fails to capture some frequent
fallacy types within mixed classes. This is ex-
pected because we include the fallacy class name
in the prompt, which likely biases the model to-
ward patterns that match its internal knowledge
of that particular class name. To ensure a broader
coverage of fallacies listed in Table 1, we manually
isolated instances of frequent and undetected fal-
lacies (such as Shifting the Burden of Proof) and
repeated the procedure.

Intentional Fallacy Patterns

1. The argument assumes that because X (e.g., someone’s intention, belief, or
lack of counter-evidence), therefore Y is true.

2. Asserting P is true because it has not been disproven.

3. Because the creator intended [interpretation], the work should be understood
as [interpretation].

4. Questions framed to presuppose guilt or a specific intention (e.g., “Have
you stopped X?”), thus assuming what is to be proven.

5. If A does not have trait X, and X is (allegedly) typical of group G, then A is
not a member of G.

Table 3: Patterns for Intentional Fallacy combining
logical forms (5) and reasoning schemes (4) that encode
structure and intent.

S Experiments

This section describes our experiments for fal-
lacy detection, including our patterns produced
by the procedure introduced in Section 4 and
several competing prompting strategies. Addi-
tional experiments are reported in Appendix B.



We used the following LLMs for our experiments:
04-mini, GPT-4.1-mini, LLama-3.3-70B and
Gemma-3-27B-it for a total cost of 45 USD. Our
intent was to test LLMs from different providers
and with different sizes and to compare reasoning
and non-reasoning models.

5.1 Prompt Design

Baselines We compared our approach against
several baselines that vary in the type and amount
of information provided to the model. The simplest
baseline (ZERO-SHOT) provides only the list of
fallacy names in the dataset as a reference, estab-
lishing a minimal information condition. Our sec-
ond baseline incorporates fallacy definitions to pro-
vide more comprehensive background knowledge
(DEF). These definitions were initially sourced
from Lei and Huang (2024) and subsequently re-
fined based on our analysis to ensure clarity and
consistency. Finally, we tested a baseline using
standard logical forms, following the approach of
Jin et al. (2022) and sourcing these forms from logi-
callyfallacious.com. This final baseline (LOGICAL
FORMS) allows us to assess the effectiveness of
expert-made logical representations compared to
our generated pattern-based approach.

LLM-derived Patterns and Definitions Be-
yond generating logical patterns, we leveraged the
explanations from Section 4 to automatically cre-
ate new fallacy definitions based on LOGIC training
samples. We then replicated experiment DEF with
these new definitions (NEW DEF). We also ex-
ploited the patterns extracted by adding them to
the prompt (PATTERNS) and by implementing a
two-step approach where we first ask the LLM to
identify the pattern and then to output the corre-
sponding fallacy (PATTERN MATCHING).

One-shot Prompting We further investigated the
impact of providing examples to the model through
several experimental configurations (Brown et al.,
2020). Initially, we tested a static approach where
one example per fallacy was randomly selected
and shown to all test sentences (ONE-SHOT), es-
tablishing a baseline for example-based learning.
To enhance this approach, we augmented the same
examples with manually crafted explanations fol-
lowing our previously established definitions as
guidelines (ONE-SHOT + DEF). We sampled 5
different example sets and performance across all
configurations was assessed over 5 runs to ensure

Original ar- | Every time I wear this necklace, I pass my exams. Therefore,

gument wearing this necklace causes me to pass my exams.
Masked Every time MSK<0> MSK<2>, MSK<0> MSK<4>. Therefore,
argument MSK<2> causes MSK<0> to MSK<4>.

Table 4: Example of a masked argument in LOGIC. The
distillation algorithm is explained in Jin et al. (2022).
The masked version of the dataset was publicly released
by the authors and was not created by us.

statistical reliability.

More sophisticated was our dynamic one-shot
prompting approach (DYNAMIC ONE-SHOT),
which computes embeddings for both training
and test sentences to retrieve the most similar
example per class for each test sentence. We used
sentence-transformers/all-MinilLM-L6-v2
model and cross-encoder/stsb-roberta-base
cross-encoder  from  SentenceTransformers
(Reimers and Gurevych, 2019) to compute
embeddings and employed cosine similarity to
evaluate similarity. We included the previously
generated explanations of examples in the prompt
as well (DYNAMIC ONE-SHOT + EXP).

Furthermore, we explored structure-focused
similarity. Since Jin et al. (2022) released a
version of LOGIC with masked arguments (with
content words replaced by placeholders), we
conducted the same similarity-based procedure
using these masked sentences (example in
Table 4) in an attempt to force the embedding
model to focus on structural rather than lexical
similarities. For this configuration (SYNTAX-
BASED DYNAMIC ONE-SHOT), we used
sentence-transformers/all-MinilM-L6-v2
from SentenceTransformers alongside a syntax-
augmented version of RoBERTa-large extracted
from Sachan et al. (2021) (see Appendix C).

Finally, we incorporated the generated patterns
into our dynamically retrieved examples and their
explanations (ONE-SHOT + EXP + PATTERNS).

Multi-step Classification An alternative ap-
proach involves decomposing the classification
task into three sequential steps within a single
model call (MULTISTEP) using chain-of-thought
prompting (Wei et al., 2023). In the first step, the
model is required to generate a logical form repre-
sentation of the argument according to predefined
structural rules (prompt in Appendix F.2). Sub-
sequently, the model should match the generated
logical form to one from the ones provided and, as
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a result, classify the argument.

5.2 Results and discussion

Table 5 shows a consistent improvement when the
model leverages information about the underlying
logic extracted through the LLMs, suggesting that
models were effectively able to capture the nec-
essary information to detect fallacies, especially
with o4-mini. When using the reasoning model,
the model-generated definitions yield a 4.7% im-
provement over our manually corrected definitions.
In the same way, including our generated patterns
causes a 9.9% increase with respect to the logi-
cal forms extracted by the website logicallyfalla-
cious.com and used in Jin et al. (2022). When
it comes to non-reasoning models, the different
definitions do not really affect the performance,
whereas using our patterns improves the accuracy
by 5.2% on average.

A notable result is the performance increase
achieved through dynamic one-shot prompting. In
particular, DYNAMIC + EXP approach yields an
average 8.1% increase in Micro F; compared to
ONE-SHOT + EXP, despite relying on semantic
similarity for example selection. On the other
hand, adopting a syntax-oriented example selec-
tion strategy (SYNTAX-BASED DYNAMIC ONE-
SHOT) does not produce any improvement. This
may be partially due to inaccuracies in the sentence
masking process, which can negatively impact the
retrieval of similar examples and the classification,
consequently. The MULTISTEP approach shows
significantly weaker performance than PATTERN
MATCHING for 04-mini and 11ama-3.3-70B, im-
plying that generating logical forms without ex-
plicit guidance constitutes the main challenge for
the model in the request.

In summary, performance benefits from
structure-based information, indicating that incor-
porating logical reasoning structure into prompts
enhances fallacy detection and our best model, DY~
NAMIC+EXP+PATTERNS outperforms the state-
of-the-art on LOGIC in an unsupervised setting by
25.5% (Table 7).

5.3 Error analysis

Pattern matching Requesting the model to iden-
tify the closest pattern for each argument provides
insight into the association process between sen-
tences and patterns. For our analysis, we have split
our fallacies into two groups in Table 8: i) group 1,

consisting of informal fallacies whose patterns in-
clude logical forms while still including additional
contextual cues; ii) group 2, consisting of informal
fallacies that lack highly structured patterns and
rely more on contextual and semantic features of
the sentence.

Figure 1 shows consistently superior F; scores
for Group 1, whose classes maintain relatively high
performance across all experimental settings. The
class Circular Reasoning emerges as the most ac-
curately predicted class across all models. For
what concerns Group 2, the overall F; is, on aver-
age, 22.25% lower with respect to Group 1, though
this gap is least pronounced for o4-mini. The
classes Emotional Language, Red Herring and Ex-
tension Fallacy achieve moderate prediction accu-
racy, whereas only Evading the Burden of Proof’s
patterns within the Intentional Fallacy category are
correctly classified, and Equivocation remains en-
tirely undetected by GPT-4.1-mini. In summary,
the models achieve better performance on logical
fallacies that exhibit clearer structural character-
istics but face difficulties with fallacies requiring
more nuanced semantic understanding and contex-
tual analysis.
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Figure 1: Group-wise F; scores for each model, relative
to the PATTERN MATCHING prompt setting.

Furthermore, matching patterns allows us to see
that some instances can be deemed as fitting from
a structural point of view, thus partially explain-
ing the inherent difficulty of the classification task.
While providing guidance through logical struc-
ture proves beneficial for fallacy detection, this
approach does not eliminate all sources of ambi-
guity, as some sentences may conform to multiple
structural patterns. The critical point lies in context-
aware pattern application: models must not only
identify matching logical forms but also evaluate
whether the specific content and contextual factors
make those patterns valid in each specific instance.

To quantify the degree of ambiguity inher-



Method o4-mini gpt-4.1-mini llama-3.3-70B gemma-3-27b-it
Acc. Fy Acc. Fy Acc. Fq Acc. F;

Baselines

ZERO-SHOT 61.7 62.5 57.8 59.3 55.8 57.1 60.5 62.6

DEF 62.1 62.8 57.8 57.7 59.1 59.3 63.5 63.8

LOGICAL FORMS 63.2 65.0 57.8 57.9 60.2 60.3 62.8 63.0

LLM-derived Patterns and Definitions

NEW DEF 66.8 67.3 57.5 57.9 58.8 59.0 64.8 64.9

PATTERNS 72.2 72.7 63.5 63.5 64.5 64.6 68.5 68.5

PATTERN MATCHING 70.1 70.3 65.2 65.2 66.2 66.3 67.2 67.2

One-shot prompting

ONE-SHOT 63.6 63.9 56.2 56.8 56.1 56.3 60.0 60.4

ONE-SHOT + EXP 65.2 65.1 56.8 57.3 56.3 56.5 59.2 59.7

DYNAMIC ONE-SHOT

all-MiniLM-L6-v2 70.2 70.5 65.8 66.1 65.5 65.6 68.5 68.9

roberta-base 69.5 70.1 65.5 66.1 64.8 64.9 66.5 66.8

SYNTAX-BASED DYNAMIC ONE-SHOT

all-MiniLM-L6-v2 68.2 68.5 63.2 63.4 62.8 62.8 64.5 64.6

syntax-augmented roberta-large 65.5 68.9 64.5 65.2 64.2 64.2 63.5 67.2

DYNAMIC + EXP 71.2 72.4 67.8 68.2 67.5 67.6 68.2 68.5

DYNAMIC + EXP + PATTERNS 74.2 75.9 66.8 67.2 67.2 67.3 70.5 71.0

Multi-step classification

MULTISTEP 65.4 64.9 65.8 66.1 62.5 62.6 66.8 67.2

Table 5: Logical fallacy classification performance. Bold: best approach in section per model, Bold: best approach
overall per model. F; score denotes Micro F; score, which accounts for the significant class imbalance in the

dataset.

ent in pattern matching, we instructed the best-
performing model o4-mini to return the five most
similar patterns for each argument. This multi-
candidate approach enables us to analyze whether
lower-ranked patterns might also represent valid
interpretations of the same argument. By exam-
ining the distribution of pattern similarities and
evaluating classification accuracy when consider-
ing alternative matches, we can better understand
the boundaries of pattern-based classification and
identify instances where structural ambiguity gen-
uinely complicates fallacy detection.

Table 9 shows that, when the model is prompted
to return multiple matching patterns rather than
a single best match, its confidence in the initial
prediction decreases, resulting in a 3.4% drop in
accuracy. However, this apparent degradation is
misleading when viewed in isolation. By incorpo-
rating the second-ranked pattern choice into our
evaluation, performance recovers to 75.1%, and
continues to improve as we expand our candidate
pool to include progressively lower-ranked options.

Table 10 illustrates a representative case where the
model successfully identifies the correct pattern as
its second choice, while its first-ranked selection
remains structurally plausible: the model likely
assigns one of the Ad Populum patterns because
it closely matches the argument’s logic, while the
Irrelevant Authority pattern doesn’t fit the sentence
since it requires discussion of an unrelated topic,
which is not present in the sentence. These sub-
tle distinctions likely make pattern matching more
challenging than direct classification because it
requires strict structural alignment as well as cap-
turing broader content-related features.

Multistep classification The MULTISTEP ap-
proach fails to produce significant results. We
conduct this experiment in a single passage to
force the model to reason using both semantic
and syntactic information. However, classification
performance depends critically on the quality of
the extracted logical forms, which proves inconsis-
tent and model-dependent. For instance, 04-mini
embeds classification-relevant contextual informa-



ARGOTARIO CLIMATE COVID
Accuracy  Micro Fy Accuracy  Micro Fy Accuracy  Micro Fy

ZERO-SHOT 56.6 56.6 26.4 26.4 29.1 29.1
DEF 57.2 57.3 32.1 32.1 33.3 334
LOGICAL FORMS 56.3 56.3 35.7 35.7 45.8 45.9
PATTERNS 56.3 56.3 35.7 35.7 41.6 41.7
PATTERN MATCHING 58.4 58.4 38.4 38.4 29.1 29.1
DYNAMIC ONE-SHOT 61.2 61.2 32.1 32.1 33.3 33.3
DYNAMIC + EXP 62.4 62.4 36.6 36.6 41.6 41.7
DYNAMIC + EXP + PATTERNS 61.5 61.5 36.6 36.6 37.5 37.5

Table 6: Logical fallacy classification performance using o4-mini on ARGOTARIO, CLIMATE and COVID, using
patterns generated for LOGIC dataset. No Fallacy class is included. Bold: best approach per dataset.

tion directly into its generated logical forms (Ta-
ble 11). Furthermore, models demonstrate sub-
stantially weaker performance on Group 2 sen-
tences compared to Group 1, showing an average
decrease of 25% in F; score. Additionally, mod-
els frequently bypass the pattern matching phase
entirely, arbitrarily assigning matches and corre-
sponding classes despite clear misalignment with
the extracted logical forms. For example, given
the argument People nowadays only vote with their
emotions instead of their brains (an instance of
Hasty Generalization), the model o4-mini first ex-
tracts the logical form All A only do B instead of
C. The model then matches this form to the pat-
tern Generalizing from a small sample or single
event to an entire group or population, which cor-
rectly belongs to Hasty Generalization. While this
produces an accurate classification, the assigned
pattern does not precisely correspond to the ex-
tracted logical form. In summary, while humans
naturally decompose pattern matching into multi-
ple cognitive steps, this multi-stage process proves
to be challenging for current LLMs. Models strug-
gle to bridge the gap between abstract logical pat-
terns and their content-dependent instantiations,
often failing to identify the implicit premises and
unstated logical connections that underlie the rea-

Method Acc. Fy
(Jeong et al., 2025) 49.0 37.0
o4-mini 74.2 75.9
gpt-4.1-mini 67.8 68.2
1lama-3.3-70B 67.5 67.6
gemma-3-27b-it 70.5 71.0

Table 7: Comparison of best results per model against
the baseline provided by Jeong et al. (2025) (described
in Appendix A). Bold: best result throughout the whole
experimental framework.

Group 1 Group 2

* Ad Hominem

¢ Ad Populum

* Circular Reasoning

e Irrelevant Authority

* False Cause

¢ Hasty Generalization

¢ Deductive Fallacy

* Black-and-White Fallacy

¢ Red Herring

« Equivocation

* Emotional Language
« Extension Fallacy

« Intentional Fallacy

Table 8: Grouped fallacy classes based on pattern fea-
tures for analytical purposes.

Topl Top2 Top3 Top4 Top5

Fy 66.7 75.1 81.8 86.5 88.5

Table 9: Performance analysis with expanded solution
pool: classification results including top 5 predictions
as correct.

soning chain.

6 Evaluation on Further Datasets

In order to further assess the effectiveness of our ap-
proach, we conducted a subset of the experiments
on additional datasets with varying characteristics
and taxonomy of fallacies. Taxonomy alignment
is reported in Appendix D.4. Although COVID and
CLIMATE are not directly comparable because not
all their fallacies are present in LOGIC, the differ-
ences are small enough to allow for a qualitative
comparison. We have used the model o4-mini af-
ter it demonstrated the highest performance across
all experiments conducted on LOGIC.

Consistent with previous findings, logical pat-
tern incorporation produced superior results for
both COVID and CLIMATE datasets, with the model
achieving optimal results on CLIMATE specifically
through pattern matching (Table 6). However,
for ARGOTARIO, there was no observable differ-



T have no intention of stopping the use of somatostatin on patients suffering from acute pancreatitis. I consider it to be a very reasonable choice. After all, it
has been standard practice in our department for many years and we’ve been quite satisfied with the results we’ve had. Irrelevant Authority

Top 1
Top 2

Because many people [do/ believe/support] X, X must be true/good/right/best/valid. (Ad Populum)
Using [personal trait, experience, past action] as implicit proof of authority on a distinct or unrelated subject. (Irrelevant Authority)

Table 10: Sentence accurately classified by o4-mini with 2" ranked pattern. Although the model fails initially,

the matching can still be deemed reasonable.

Teaching assistant: the homework assignment was much harder than we thought, so I think we should give a few extra points to students who completed it.
Professor: that’s a terrible idea. If we give everyone a perfect score for no reason, students won’t bother working hard in the future. Extension Fallacy

« Fallacy: Hasty Generalization

o4-mini * Form: A proposes: “Because B, we should do X';.” Opponent replies: “If we do X > (an exaggerated version of X ) for no
reason, then C will happen; therefore, we must not do X;.”
« Matched pattern: X proposes Y; response exaggerates Y to an extreme version Y.
« Fallacy: Extension Fallacy
gpt-4.1-mini * Form: A says B was harder than expected, so A suggests giving extra points to those who completed it. B replies: If we give

everyone a perfect score for no reason, then C won’t work hard; therefore, we should not give extra points.
« Matched Pattern: Arguing that taking a minor action will cause a chain of escalating events leading to a disastrous outcome,
even though no strong evidence supports the inevitability of that chain.

1lama-3.3-70B

factors or explanations.
« Fallacy: False Cause

* Form: If we do A (give everyone a perfect score for no reason), then B (students won’t bother working hard in the future).
* Matched Pattern: Presenting a coincidental or correlated event as proof of causation, often ignoring other plausible causal

gemma-3-27b-it

« Fallacy: Deductive Fallacy

* Form: If we do A (give extra points), then B (students won’t work hard). Therefore, we should not do A.
* Matched Pattern: If P then Q; Q is true; therefore, P is true.

Table 11: Comparison of outputs of the four models evaluated in MULTISTEP configuration.

Hasty Generalization examples

LOGIC I know five people from Kentucky. They are all racists.

Therefore, Kentuckians are racist.

ARGOTARIO | Is Turkey ready to join the European Union? just do better

just £00000000000000000000000000000000000000000

CLIMATE Temperatures in the Arctic have soared recently, and scien-

tists are struggling to explain exactly why.

The Biden administration had to "start from scratch" with
a comprehensive COVID-19 vaccine distribution plan be-
cause the Trump administration had no working plan.

COVID

Table 12: Instances of Hasty Generalization across the
four datasets.

ence between these logical forms and our LLM-
generated patterns. In fact, providing illustrative
examples emerged as the most effective approach
overall. Unlike LOGIC, these other datasets con-
tain a No Fallacy class. Our analysis shows that,
when using explicit patterns (especially when the
prompt instructs the model to match them) the
model tends to incorrectly classify non-fallacious
instances as fallacious more frequently compared
to the zero-shot setting. This suggests that the
presence of explicit patterns may bias the model
toward over-identifying fallacies, highlighting its
limitations in accurately matching patterns to sen-
tences with a different structure. Our results across
all datasets are in line with fine-tuned baselines
(Alhindi et al., 2023, 2024; Lei and Huang, 2024),
with the notable exception of Jeong et al. (2025),
which demonstrates superior performance in an
unsupervised way. However, for ARGOTARIO, our

pattern-based approach remains below said super-
vised baselines. It is important to remind that our
patterns were specifically tailored to the data dis-
tribution of LOGIC and the four datasets exhibit
markedly different linguistic and structural charac-
teristics (Table 12). This confirms that LLMs rep-
resent a potentially valuable tool for customizing
logical forms and reasoning schemes to accommo-
date diverse data distributions and domain-specific
requirements.

7 Conclusions and Future Work

Fallacy detection is an important and complex task
to solve. We showed that incorporating logical pat-
terns enhances fallacy detection, marking the first
successful application of this approach in an unsu-
pervised setting. We developed an experimental
framework that captures both the logical form of
fallacies and broader reasoning schemes extracted
from fallacious arguments and their explanations.

Our findings consistently show that incorporat-
ing information about the underlying logical struc-
ture, together with contextual examples, results in
state-of-the-art performance for the unsupervised
setting on LOGIC (F1=75.9).

As future work, since the improvement we ob-
serve on LOGIC does not directly translate to the
other datasets, we plan to implement an adaptive
procedure to extract the patterns and we plan to
combine our approach with Jeong et al. (2025).




8 Limitations

While this work demonstrates the efficacy of large
language models in detecting logical fallacies by
exploiting the underlying logical structure of sen-
tences, it has several limitations. First, we inten-
tionally generated patterns exclusively from the
LOGIC dataset due to the quality and straightfor-
ward structure of its sentences. We are aware, how-
ever, that it does not fully cover the complex and
multi-faceted spectrum of fallacies. Furthermore,
our work is based on a small sample of LLMs. Nev-
ertheless, we selected a diverse and representative
subset, including models from different providers,
with varying sizes and reasoning capabilities.

9 Ethics Statement

Logical fallacies can reinforce societal bias and
facilitate the spread of misinformation, leading
to harmful consequences for society. This work
focuses on leveraging LLMs for detecting logi-
cal fallacies in argumentation and should not be
employed to manipulate discourse by exploiting
identified reasoning patterns. Furthermore, this ap-
proach risks amplifying existing LLM biases, po-
tentially causing unfair detection. We acknowledge
these limitations and encourage future bias mitiga-
tion research. We are aware of the environmental
impact of large-scale LLMs usage. However, this
study exclusively employs inference-only methods,
significantly reducing computational requirements
compared to training approaches. All datasets are
used in accordance with their license and they have
been checked for personally identifying and offen-
sive content.
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LOGIC and provides micro F; for comparability:

* Jeong et al. (2025): it provides implicit con-
textual information such as counterarguments,
explanations and goals in the prompt and rank
such queries based on confidence score. The
reported results was achieved with GPT-4.

B Additional Experiments

We are going to report some other experimental set-
ups that have been explored, including some basic
baselines that we have not included in Section 5.

B.1 Prompt design

* EXP: to investigate whether explicit reason-
ing improves performance, we implemented a
baseline that not only provides fallacy names
but also requests the model to generate a two-
sentence explanation for its classification de-
cision. This approach tests whether forcing
the model to articulate its reasoning leads to
better outcomes and assess the model’s actual
comprehension of fallacious arguments.

GUIDELINES: to leverage the model’s classi-
fication errors for improvement, we develop
guidelines derived from observed mistakes.
We conduct pattern matching evaluation on
the validation set, then systematically collect
misclassified instances. For each class, we
provide the model with its incorrectly clas-
sified examples and prompt it to generate
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Fallacy Irrelevant Authority

A fallacy that treats an individual’s status, title, or
popularity as proof of a claim when their expertise
or relevance to the topic is absent or insufficient.

Core definition

Argument rests on “X says so” without
independent support.

Authority cited has no recognized expertise in the
claim’s domain.

No substantive evidence beyond the authority’s
endorsement.

Key indicators

Ad Populum: group popularity vs. single authority
endorsement.

Appeal to Tradition: ‘has always been done by
experts’ vs. citing irrelevant experts.
Equivocation: shifting word senses vs. relying on
irrelevant credentials.

Typical
confusion
patterns

Table 13: Guideline relative to Irrelevant Authority
fallacy generated by o4-mini.

Method o4-mini  gpt-4.1-mini llama-3.3-70B gemma-3-27b-it
Ace. F; Ace. Fy Acc. Fy Acc. F;

EXP 613 615 575 579 56.1 565 59.1 60.8

GUIDELINES 65.5 657 60.5 606 528 533 588 59.4

Table 14: Logical fallacy classification performance. F;
means Micro F.

comprehensive detection guidelines, given
our generated pattern as reference. These
guidelines include a core definition, key iden-
tifying features, common confusion patterns
with similar fallacies, and a practical checklist
to aid in detecting the specific type of falla-
cious reasoning, as you can see from table 13.
These guidelines are then adopted to evalu-
ate the test set. Notably, while all guidelines
were generated from misclassified patterns,
only those produced by o4-mini and partially
by gpt-4.1-mini incorporate a little struc-
tural and logical information such as common
connectors or logical forms. The majority of
guideline content across models focuses pri-
marily on semantic characteristics rather than
structural patterns.

B.2 Results

EXP’s results show that requesting the model to
articulate the reasoning does not really cause any
improvement. Specifically, certain classes such as
Intentional Fallacy and Extension Fallacy exhibit
extremely low F; scores under the non-reasoning
models (0.04 and 0.081 respectively on average),
indicating performance deterioration compared to
the ZERO-SHOT baseline. This proves that mod-
els process surface-level semantic patterns without
being able to access the multi-layered intentional
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structures behind reasoning.

Including GUIDELINES yields only modest re-
sults. While these guidelines are designed to pro-
vide comprehensive fallacy knowledge, they ap-
pear to lack the appropriate type of information
from which models can benefit. Indeed, providing
explicit information about the underlying logical
structure proves significantly more beneficial for
model performance.

C Syntax-augmented roBERTa

Sachan et al. (2021) introduces a syntax-
augmented model that incorporates dependency
tree information into pre-trained BERT-based (De-
vlin et al., 2019) transformers through specialized
Graph Neural Networks (GNNs) (Hamilton et al.,
2018) that process dependency trees. The authors
introduce two distinct fusion strategies to inte-
grate syntactic structure into BERT representation.
We adopted specifically roBERT-large (Liu et al.,
2019) in the attempt to perform a syntax-driven
examples selection. Further details about the im-
plementation are available in Sachan et al. (2021).

D Fallacy Datasets

D.1 Logic

The dataset LOGIC (Jin et al., 2022) contains the
following 13 fallacy classes: Faulty Generalization
(Hasty Generalization), Ad Hominem, Ad Populum,
Circular Claim (Circular Reasoning), False Cause
(False Causality), Appeal to Emotion (Emotional
Language), Fallacy of Relevance (Red Herring),
Deductive Fallacy, Intentional Fallacy, Fallacy
of Extension (Extension Fallacy), False Dilemma
(Black-and-White Fallacy), Fallacy of Credibil-
ity (Irrelevant Authority) and Equivocation. The
names in the parentheses are the actual names used
in our experiments.

D.2 Argotario

The dataset ARGOTARIO contains 5 fallacy classes:
Ad Hominem, Appeal to Emotion (Emotional Lan-
guage), Hasty Generalization, Irrelevant Authority
and Red Herring. The names in the parentheses
are the actual names used in our experiments. It
contains the class No Fallacy as well.

D.3 Covid and Climate

The datasets COVID (Musi et al., 2022) and CLI-
MATE (Alhindi et al., 2023) contain the following
10 fallacy classes: Evading the Burden of Proof,



Text

Generated explanation

Gold label

The Bible is true because God exists, and God exists
because the Bible says so.

The argument uses its conclusion as a premise, claiming the Bible is true
because God exists and God exists because the Bible says so. This creates a
logical loop without providing independent evidence for either claim.
Circular Reasoning

Circular Reasoning

My friend said that if you sneeze more than three
times, you have the corona virus.

The argument assumes that sneezing more than three times directly indicates
having the corona virus based on insufficient evidence. It generalizes a specific
symptom without considering other possible causes or medical diagnosis.
Hasty Generalization

Irrelevant Authority

Table 15: Examples from GPT-4.1-mini in EXP setting: the first sentence is correctly classified with a well-
grounded explanation; the second argument is misclassified because, while its explanation appears coherent in
isolation, it fails to capture the underlying fallacious reasoning.

Cherry Picking, Red Herring, Strawman (Exten-
sion Fallacy), False Authority (Irrelevant Author-
ity), Hasty Generalization, False Cause, Post Hoc,
False Analogy (Deductive Fallacy) and Vagueness.
It contains a No Fallacy class. The names in the
parenthesis are the actual names used in our exper-
iments.

D.4 Taxonomy alignment

The dataset ARGOTARIO contains exactly a subset
of LOGIC’s fallacy classes, so the learned knowl-
edge is easily transferable. For what concerns
CoVID and CLIMATE, the class Cherry Picking
is excluded altogether, whereas Post Hoc and False
Cause are fairly represented by LOGIC’s broader
False Cause category that contains instances of
both. Similarly, the class Evading the Burden
of Proof is included in LOGIC’s Intentional Fal-
lacy class and has a dedicated logical form within
our framework. Same applies for the class False
Analogy which is included in LOGIC’s Deductive
Fallacy. The class Vagueness is associated with
LOGIC’s Equivocation.

E LLM-derived Patterns and Definitions

The logical patterns presented in Table 17 were
extracted following the process described in Sec-
tion 4 from LOGIC. These patterns form the basis
of our evaluation of how structural features con-
tribute to LLMs’ performance in logical fallacy
detection, assessing the role of logical patterns in
model reasoning capabilities. Table 18 illustrates
the LL.M-made fallacies’ definitions used in the
experimental setting NEW DEF.

F Prompts Templates

F.1 Pattern Generation

Step 1 You will be given a fallacious argument and
the name of the logical fallacy it contains. Your
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task is to explain what is happening in the argu-
ment and why it is fallacious. Do not include defi-
nitions, labels or general commentary: focus only
on describing the flaw in reasoning specific to the
example in a concise way.

Step 2 You will be given a list of arguments con-
taining a {fallacy_name} fallacy and an explana-
tion of why it is fallacious. Your task is to provide
the following information, returning a JSON object
with the following fields:

{{

"summary": Write a concise summary (max 2 sen-
tences) that captures the common logical pattern
behind these explanations. The summary should
start with the name of the fallacy.
"syntactic_patterns": Identify common syntactic
or structural patterns in how the arguments are
phrased.

- Derive the abstract logical structure following for-
mal logic principles. Use abstract placeholders like
A, B, C to replace specific nouns or phrases, but
ensure the pattern closely mirrors the logical struc-
ture and progression of the original sentence.

- Find recurring sentence structures, phrases, or
ways in which the fallacious reasoning is intro-
duced, including typical linguistic markers and il-
lustrative cases that signal the flawed reasoning.
1

Your explanation should help someone recognize
new examples of {fallacy_name} by highlighting
the shared reasoning mistake across all cases.

F.2 Classification

system_prompt: You are a logical reasoning ex-
pert. Your task is to carefully examine the given
argument and classify it into one of the following
classes: {fallacies }.

* ZERO-SHOT: Given an argument, classify the
fallacy it contains. Choose one of the follow-
ing labels: {fallacies}. Respond only with the



Fallacy

Definition

Logical Form

Ad Hominem

The text attacks a person instead of arguing against the claims.

Person 1 is claiming Y. Person 1 is a moron.
Therefore, Y is not true.

Ad Populum

The text affirms something is true because the majority thinks so.

A lot of people believe X.Therefore, X must be
true.

Black-and-White Fallacy

The text presents two alternative options as the only possibilities yet more
exist.

Either X or Y is true.

False Cause

The text assumes two correlated events must also have a causal relation.

X occurred after Y. Therefore, Y caused X
(although X was also a result of A,B,C.... etc)

Circular Reasoning

The text tries to prove a point by simply repeating the point in different
words.

X is true because of Y. Y is true because of X.

Deductive Fallacy

The text presents a conclusion that doesn’t logically follow from the
premises.

If A is true, then B is true. B is true. Therefore,
A'is true.

Emotional Language

The text arouses non-rational emotions.

Claim X is made without evidence. In place of
evidence, emotion is used to convince the
interlocutor that X is true.

Equivocation

The text uses a key term in multiple senses, leading to ambiguous
conclusions.

Term X is used to mean Y in the premise. Term
X is used to mean Z in the conclusion.

Extension Fallacy

The text attacks an exaggerated version of the opponent’s claim.

Person 1 makes claim Y. Person 2 restates person
12019s claim (in a distorted way). Person 2
attacks the distorted version of the claim.
Therefore, claim Y is false.

Hasty Generalization

The text draws a broad conclusion based on a limited sample.

Sample S is taken from population P. Sample S is
a very small part of population P. Conclusion C
is drawn from sample S and applied to
population P.

Intentional Fallacy

The text relies on the author’s intent instead of focusing on the meaning
within the text itself.

Person 1 knows claim X is incorrect. They still
claim that X is correct using an incorrect
argument

Irrelevant Authority

The text cites an authority, but the authority lacks relevant expertise.

According to person 1, who is an expert on the
issue of Y, Y is true. Therefore, Y is true.

The text introduces an irrelevant topic to divert attention from the main

Argument A is presented by person 1. Person 2

Red Herring argument

introduces argument B. Argument A is
abandoned.

Table 16: LOGIC class taxonomy: class names, definitions and logical form representations used in baseline

experiments.

name of the fallacy, with no additional text.
Argument: {text}
Fallacy:

* EXP: Given an argument, classify the fallacy
it contains. Choose one of the following la-
bels: {fallacies}. Respond in the format:
Fallacy: [fallacy label]

Reasoning: [brief explanation justifying the
choice]

The reasoning must be exactly two sentences
long.

Argument: {text}

Fallacy:

Reasoning:

* DEF, NEW DEF: Given an argument, classify
the fallacy it contains. Choose one of the fol-
lowing labels: {fallacies}. Use the following
definitions to guide your classification: {defi-
nitions}. Respond only with the name of the
fallacy, with no additional text.

Argument: {text}
Fallacy:
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e LOGICAL FORMS, PATTERNS: Given an ar-
gument, your task is to classify the type of
logical fallacy it contains. Choose one of the
following labels: {fallacies}. To assist you
in this task, common patterns associated with
each fallacy are also provided. {patterns}.
Carefully compare the argument to these pat-
terns and select the fallacy that best matches.
Provide only the name of the fallacy.
Argument: {text}

Fallacy:

PATTERN MATCHING: Given an argument,
your task is to classify the type of logical fal-
lacy it contains. Choose one of the following
labels: {fallacies}. To assist you in this task,
you are provided with common reasoning pat-
terns associated with each fallacy: {patterns}
Return:

- The specific pattern that best matches the
logical reasoning in the argument.

- The name of the fallacy.

Don’t add any additional text.

Argument: {text}




Fallacy:

ONE-SHOT, DYNAMIC ONE-SHOT,
SYNTAX-BASED DYNAMIC ONE-SHOT:
Given an argument, your task is to classify
the type of logical fallacy. Choose the correct
fallacy from the following list: {fallacies}.
Use the following examples to guide your
classification: {examples}

Argument: {text}

Fallacy:

ONE-SHOT + EXP, DYNAMIC + EXP: Given
an argument, your task is to classify the type
of logical fallacy. Choose the correct fallacy
from the following list: {fallacies}. Use the
following examples to guide your classifica-
tion. Each example includes both the fallacy
and a brief explanation of why it applies: {ex-
amples}

Argument: {text}

Fallacy:

DYNAMIC + EXP + PATTERNS: Given an
argument, your task is to classify the type of
logical fallacy in a given text. Choose the
correct fallacy from the following list: {falla-
cies}. Use the examples below to guide your
classification — each example includes both
the fallacy and a brief explanation of why it
applies. {definitions} You will be provided
with a list of common patterns associated with
each fallacy. {patterns} Carefully compare
the argument to these patterns and select the
fallacy that best matches. Provide only the
name of the fallacy.

Argument: {text}

Fallacy:

GUIDELINES: Given an argument, your
task is to classify the type of logical fallacy.
Choose one of the following: {fallacies}. To
assist you in this task, you are provided with
useful guidelines. These include typical rea-
soning patterns for each fallacy, common mis-
takes that often lead to misclassification and
a quick practical checklist for classification:
{guidelines}. Return only the name of the fal-
lacy.

Argument: {text}

Fallacy:

MULTISTEP: Given an argument, your task
is to process it in three steps:
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Step 1 (Form Extraction):

When given a sentence, extract its underlying
syntactic logical form. Use abstract placehold-
ers like A, B, C to replace specific nouns or
phrases, but ensure the pattern closely mirrors
the logical structure and progression of the
original sentence. Preserve logical connectors
and adverbs such as ‘therefore’, ‘because’,
‘if’, ‘then’, etc. The goal is to abstract away
from surface wording while preserving the
sentence’s original reasoning form.

Step 2 (Pattern Matching): From the list of
known fallacy patterns provided below, return
the one that most closely matches the pattern
you extracted in Step 1.

Step 3 (Fallacy Classification): Based on the
extracted and matched pattern, classify the
argument into one of the logical fallacy types
from the list: {fallacies}

Choose the most appropriate category based
on the structure of the reasoning.

Use the following reasoning patterns as refer-
ence: {patterns}

Analyze the following argument: {text}

Step 1 (Form Extraction):

Step 2 (Matching Pattern):

Step 3 (Fallacy):



Fallacy class

Patterns

Deductive Fallacy

The argument assumes that because X is true, Y must also be true, without establishing a necessary connection between X and Y.
Because X shares a characteristic with Y, therefore Y must also have characteristic Z (unique to X).

If P then Q; Q is true; therefore, P is true.

All A are B; all B are C; therefore, all C are A.

The argument compares X to Y as if they are equivalent, ignoring relevant differences.

Ad Hominem

Dismisses someone’s argument by accusing the opponent of similar behavior, avoiding the argument itself.
Argues that because X has characteristic Y, X’s views or claims must be invalid/false.

Uses a personal insult or irrelevant fact about X to discredit X without addressing the core issue.

Focuses on unrelated personal factors (e.g., age, profession, habits) to attack the person instead of the argument.

Emotional Language

Appeals that highlight personal circumstances or potential consequences without addressing the core issue, e.g., "I haven’t done
X, but... [appeal to emotion]’.

Use of emotionally charged or loaded terms in place of neutral language, e.g., calling something an "outrage’, *dangerous
militants’, or using phrases like "taking our freedom away’.

Rhetorical questions or statements designed to evoke feelings of guilt, sympathy, or fear, e.g., 'If we don’t do X, disaster Y will
happen’.

Evocation of pity or sympathy to distract from the logical evaluation of claims, e.g., 'I studied during my grandmother’s funeral’.
Use of vivid imagery or emotionally provocative examples to bypass critical analysis, e.g., showing suffering animals or invoking
dramatic suffering stories.

False Cause

Inferring causation from correlation expressed as "X happened when Y happened’ or "Every time X occurs, Y follows,” without
evidence of a causal link.

Attributing a complex outcome to a single factor due to temporal proximity or repeated coincidence (e.g., 'Because of X, Y
happened,” ignoring other influences).

Using phrases implying causality based on timing, such as ’therefore’, "must have caused’, ’is the reason’, or ’is the cause of”,
without supporting evidence.

Presenting a coincidental or correlated event as proof of causation, often ignoring other plausible causal factors or explanations.
Statements that simplify multi-factor phenomena to a single cause (e.g., 'Because of single action/event X, complex result Y
occurred’).

Irrelevant Authority

The argument assumes that because [authority figure] says/believes [X], therefore [X] must be true/reliable/effective.

Relying on the opinion or endorsement of [famous/unqualified person] outside their field of expertise to support
[claim/conclusion].

Because [person/role/title] holds a position or is respected, their statement on [irrelevant topic] is presented as evidence.

Using [personal trait, experience, past action] as implicit proof of authority on a distinct or unrelated subject.

The argument presents [authority]’s position as the sole justification without providing independent reasons or evidence.

Extension Fallacy

X proposes Y; response exaggerates Y to an extreme or total version (e.g., ’So you want to [extreme claim]?’)

Assuming that because someone holds a position on A, they must also hold an extreme or unrelated position B (e.g., "If you
believe A, then you must believe B’)

Misinterpreting a specific statement as implying a much broader or more negative attitude (e.g., 'Because you said X, you must
hate Y”)

Responding to a moderate or specific claim by substituting a more extreme or absurd claim that is easier to criticize (e.g., *You
think that... [absurd extension]’)

Framing a preference or partial stance as a wholesale endorsement or rejection of a related but distinct issue (e.g., ’Preferring X
means you hate Y’)

Hasty Generalization

Because a particular instance or individual showed Z, therefore all instances or individuals must be Z.

Arguing that taking a minor action will cause a chain of escalating events leading to a disastrous outcome, even though no strong
evidence supports the inevitability of that chain.

If we allow [event A], then [event B] will happen, then [event C], and eventually [event Z] will occur—so we must not allow
[event A].

Generalizing from a small sample or single event to an entire group or population.

Jumping from some instances to "everyone’ or ’all’ without acknowledging exceptions or diversity.

Equivocation

The reasoning equivocates by shifting from a literal to a figurative meaning (or vice versa) of a term to create a false equivalence.
One premise employs TERM with one definition/context, while another premise or conclusion uses the same TERM but with a
distinctly different meaning, unacknowledged by the arguer.

Intentional Fallacy

The argument assumes that because X (e.g., someone’s intention, belief, or lack of counter-evidence), therefore Y is true.
Asserting P is true because it has not been disproven.

Because the creator intended [interpretation], the work should be understood as [interpretation].

Questions framed to presuppose guilt or a specific intention (e.g., "Have you stopped X?”), thus assuming what is to be proven.
If A does not have trait X, and X is (allegedly) typical of group G, then A is not a member of G.

Ad Populum

Because many people [do/ believe/support] X, X must be true/good/right/best/valid.

Everyone/Most people [do/believe] X, so you/one should do X too.

The popularity of X is used as evidence for X’s quality, validity, or truth, rather than providing objective reasons.

Appealing to the desire to belong to a group, suggesting that conformity implies correctness or value.

Using phrases like "everyone knows,” "the majority thinks,” *most people do,’ to justify a conclusion without addressing actual
evidence

Red Herring

Instead of addressing [original issue], the argument shifts focus to [irrelevant topic], which distracts from the main discussion.
The argument attempts to justify/explain/defend by referencing [irrelevant detail], ignoring the original issue of [main topic].
A shift from the initial question or problem to a secondary topic that does not logically follow, e.g., *You asked about X, but I will
tell you about Y.

Black-and-White
Fallacy

Either [option A] or [option B], with no other alternatives considered.
You are either [extreme position A] or [extreme position B].

You are either with me or against me.

[Action A] or else [negative consequence], ignoring intermediary options.

Circular Reasoning

X is true/better/good because X is true/better/good.

X is Y because X has property Y (where property Y is essentially restating X).
"Because" + restatement or synonymous phrasing of the claim as the reason.
The argument claims/assumes X to prove/justify X.

Table 17: List of logical patterns extracted in our LLM-based experimental framework from LOGIC dataset.
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Fallacy

LLMs-derived definition

Ad Hominem

Ad Hominem occurs when an argument targets a person’s character or traits instead of engaging with the actual issue or evidence
presented.

Ad Populum

Ad Populum occurs when a claim is deemed true or good simply because many people believe or endorse it, without examining the
actual reasoning.

Black-and-White Fallacy

Black-and-White Fallacy occurs when only two extreme options are presented, ignoring the existence of middle ground or
alternative solutions.

False Cause

False Cause occurs when a causal relationship is assumed based on correlation alone, without sufficient evidence or consideration
of other factors.

Circular Reasoning

Circular Reasoning occurs when the conclusion is assumed in the premises, creating a loop that provides no independent support for
the argument.

Deductive Fallacy

Deductive Fallacy occurs when conclusions do not logically follow from the premises, often due to assuming unsupported
relationships, oversimplifying, misapplying analogies, or improperly reversing conditions.

Emotional Language

Emotional Language occurs when persuasion relies on appeals to emotion rather than logical reasoning or factual evidence.

Equivocation

Equivocation occurs when a key term is used ambiguously in an argument, shifting meaning and creating an illusion of logical
connection.

Extension Fallacy

Extension Fallacy occurs when an argument exaggerates or distorts an opponent’s claim to make it easier to attack, rather than
addressing the actual position.

Hasty Generalization

Hasty Generalization occurs when a broad conclusion is drawn from an insufficient or unrepresentative sample of evidence.

Intentional Fallacy

Intentional Fallacy occurs when arguments are judged based on the speaker’s intentions or characteristics rather than the content
and evidence or when asserting that something is true only because it has not been disproven.

Irrelevant Authority

Irrelevant Authority occurs when an argument cites an authority whose expertise is not relevant to the subject matter being
discussed.

Red Herring

Red Herring occurs when attention is diverted from the main issue by introducing irrelevant or emotionally charged distractions.

Table 18: List of definitions extracted in our LLM-based experimental framework from LOGIC dataset.
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