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ABSTRACT

The success of large language models in text processing has inspired their adapta-
tion to speech modeling. However, because speech is continuous and complex, it is
often discretized into tokens derived from self-supervised speech models. These
speech tokens typically focus on the linguistic aspects of speech and neglect its par-
alinguistic content. As a result, autoregressive models trained on these tokens may
generate speech with suboptimal naturalness. Previous methods attempted to ad-
dress this limitation by adding pitch features to speech tokens prior to autoregressive
modeling. However, pitch alone cannot fully represent the range of paralinguistic
attributes, and selecting the right features requires careful hand-engineering. To
tackle this issue, we propose a variational approach that automatically learns to
encode these continuous speech attributes to enhance the speech tokens. Our
proposed approach eliminates the need for manual paralinguistic feature selection
and extraction. Moreover, we demonstrate that our proposed approach maintains
or improves speech language modeling performance and enhances the naturalness
of generated speech compared to baseline approaches.

1 INTRODUCTION

Large language models (LLMs) have achieved tremendous success in text processing (OpenAl| (2024),
offering new ways to interact with machines. This progress has motivated efforts to extend their
capabilities to speech to enable more natural spoken interactions with machines. However, modeling
speech presents unique challenges due to its continuous and complex nature. As a result, previous
works (Lakhotia et al.,[2021; Borsos et al., [2023; [Maiti et al.,[2024) tokenized speech into simpler
discrete units to enable the application of language modeling techniques originally developed for text.
However, these speech tokens are typically derived by performing k-means clustering on features
extracted from self-supervised pre-trained speech models, such as HuBERT (Hsu et al.| 2021). These
models primarily capture the linguistic aspects of speech, such as phonetic information, while often
overlooking paralinguistic features, such as prosody (Weston et al.,|2021)). As a result, training an
autoregressive model solely with such speech tokens restricts the model’s ability to fully capture and
represent the diverse information encoded in speech.

To address this limitation, Kharitonov et al.|(2022) augmented the tokens with extracted fundamental
frequency (Fp, or pitch) to enable prosody-aware modeling. However, augmenting speech tokens
with manually defined paralinguistic attributes can be inherently suboptimal. First, pitch alone cannot
capture the full range of paralinguistic information encoded in speech. For instance, energy-related
(e.g., loudness, zero-crossing-rate) and spectral-related (e.g., mel-frequency cepstral coefficients)
features are also important paralinguistic features (Schuller et al., 2009} [2013; |[Eyben et al., 2015).
Additionally, training an accurate pitch tracker introduces additional complexity (Kim et al.l 2018)).

Instead of relying on hand-engineered paralinguistic features, we propose an approach to learning
these features directly from the input signal, within an autoregressive framework. These learned
features are optimized to simultaneously: 1) reconstruct the input speech and 2) enhance the au-
toregressive modeling process. Our approach allows the learned features to complement discrete
speech tokens, removing the need for pre-extracted paralinguistic features as required in previous
methods. As a result, our method generates more natural-sounding speech compared to baseline
models, without sacrificing the meaningfulness of the syntheses.



Under review as a conference paper at ICLR 2025

2 PRELIMINARIES

In this work, we work on mel-spectrogram, and consider vocoding, the act of turning mel-spectrogram
back to raw waveform, as a problem that has already been addressed. We denote the mel-spectrogram
as X = (z; € R%)T | where d, represents the number of filter-banks, 7" is the total number of time
frames in the spectrogram, and x; is the frame at time ¢. We use X;.; to denote the sub-sequence

(xt){:i, and define X, = (). Our goal is to model p(X) using a generative approach.

Token-based Speech Language Model We describe the general framework of speech language
models that rely on the use of speech tokens, as seen in works like [Lakhotia et al.|(2021); Borsos
et al.|(2023)); Maiti et al.|(2024)). This approach consists of three components: a speech tokenizer, an
autoregressive model, and a decoder. The speech tokenizer maps XE] to a sequence of discrete speech
tokens Z¢ = (28 € N)I |, where Nj, = {1,2,...,k}, and k is the vocabulary size of the speech
tokens. We use p(Z? | X) to denote the implicit distribution of the pre-trained speech tokenizer.
The autoregressive model, parameterized by ), models the probability of token sequences Z? as
py(Z9) = Hz;l py (28 | Z4.,_,). Finally, the decoder, parameterized by 0, is trained to convert
Z? back to X by modeling pp(X | Z¢). However, this framework is limited to the speech tokens
Z<, which primarily capture linguistic information and ignores paralinguistic information. As a
result, the decoder § may struggle with accurate reconstruction, and the autoregressive model ¢ can
have difficulty incorporating paralinguistic information. To address this limitation, we propose to
incorporate the variational autoencoder framework to learn continuous features to complement Z<.

Variational Autoencoder (VAE) Latent variable models introduce unobserved latent variables
Z¢ = (zf € R%)T_| that influence the observed variable X. d¢ is the dimension of each z¢, and is a
hyper-parameter chosen prior to training. In a VAE, the likelihood of the observed data given the
latent variable, py(X | Z°), is modeled by a neural decoder, parameterized by 6. The variational
posterior, ¢,(Z°¢ | X), is modeled by a neural encoder, parameterized by ¢. Using this modeling
setup, the log-likelihood of the data, log py(X), can be written as:

Ezqq(ze1x) [l0g po (X | Z°)] = Drer(gs(Z° | X)||p(Z°)) + D2 (g6 (Z° | X)Ipo(Z° | X)), (1)

OELBO

where Dy, is the Kullback—Leibler (KL) divergence between two distributions, and p(Z¢) is a
fixed prior distribution (usually a Gaussian). In Equation|l} Og 1, o is known as the evidence lower
bound (ELBO), which provides a lower bound for log pg(X) since Dx1,(¢4(Z° | X)||pe(Z° | X)) is
always non-negative. Therefore, instead of maximizing Ex [log pg(X)] directly, the VAE maximizes
the tractable lower bound Ex [O g1 po]. Here, we refer to the learned continuous latent Z¢ from the
VAE as the variational features.

3 PROPOSED FRAMEWORK

Figure |I| provides an overview of our proposed framework. This section is organized as follows:
Section [3.1]introduces our setup that combines a VAE with an autoregressive model for the latent
variables. Section [3.2] describes how we integrate speech tokens into the framework. Section [3.3]
discusses how to balance the different loss terms that arise in our setup. Section [3.4]describes the use
of normalizing flows to improve the expressive power of the autoregressive prior. Finally, Section [3.3]
introduces the diffusion decoder and the utterance encoder used in the framework.

3.1 VARIATIONAL AUTOENCODER WITH AUTOREGRESSIVE PRIOR

Our method starts by modeling the prior of the VAE with a trainable autoregressive model p,,(Z¢) =

Hle py (25 | Z§.,_1). We use a diagonal Gaussian distribution to model the variational posterior,
where the statistics are predicted by a neural network:

4o (25 | X) = N (2, (X, 1), 04(X, 1)). 2

!'Speech tokenizers can operate on mel-spectrograms or directly on raw waveforms.
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Figure 1: Overview of our proposed approach. Our method integrates the token-based speech
language model (outlined in Section 2] represented by the lower shaded region) with a variational
autoencoder (VAE with autoregressive prior, shown in the upper shaded region). This setup allows the
model to learn variational features Z¢ that complement the pre-extracted discrete speech token Z<. In
our proposed joint setup, the variational features Z¢ are trained to 1) reconstruct speech X alongside
Z? (by maximizing O,..); 2) facilitate the prediction of the next speech token z¢ (by minimizing
Ez 1); 3) support the sequential prediction of the variational features themselves (by minimizing L£5;).

Since each z{ is conditionally independent given X, we can express the posterior as: ¢ (Z° | X) =

Hle ge(=f | X). With this decomposition, and the parameterized autoregressive prior, the Ogr,Bo
in Equation|l{can be further derive into:

T
OpLo = Bzeng,zex)llogpe(X | Z)] = > Eze, | [Drrlas(zf | X)lIpyp(ef | Z54-1))] -
t=1

Orec

L34
3
By maximizing O po, we maximize the first term, the reconstruction objective O, and minimize
the second term, the variational feature prediction loss £§,. We note that training a model to maximize
Equation [3|is feasible without incorporating discrete speech tokens Z?. This token-free approach
is also depicted as the upper shaded region in Figure 1| (VAE with Autoregressive Prior), and its
properties are explored in Section 3]

3.2 INCORPORATING THE SPEECH TOKENS

With the VAE with autoregressive prior in place, we now integrate speech tokens Z¢ into the
framework. By using these tokens, the model no longer needs to encode as much phonetic information
in Z°¢, allowing Z° to focus on other continuous speech attributes. To this end, we introduce a joint
latent variable Z = (z; € R% x N)Z_,, where z is the concatenation of z¢ and z{. Given that Z¢
and Z¢ are conditional independent given X, we can express the new variational posterior as: ¢4 (Z |
X) = q4(Z° | X)p(Z* | X). Then, we model py (2¢ | Z1:i—1) = py (2 | Zua—1)py (2 | Z1:—1),
assuming conditional independence of z{ and z{ given the past generations. We further discuss this
modeling assumption in Appendix J} This allows us to re-writ Ofrrpo from Equation as:

OrLBo = Ezanp(z4X),2¢~qy(z¢)x) l0g Do (X | ANVASIE 4

Orec

T T
> Bz Drrlas(z | X)py(2f | Zre-1))] = Y Bz, [~ logpy () | Zia-1)].
t=1 t=1

c d
Lkl Lkl

2See Appendix for detailed derivation.

3See Appendix |A.2|for detailed derivation.
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From EquationE], our training objective Og o consists of three terms: Oy, L, and Ezl. Orec
is the reconstruction objective. Maximizing O,.. trains the decoder 6 to reconstruct X from both
Z¢ and Z¢, while encouraging the encoder ¢ to generate Z¢ with helpful information to reconstruct
X. L3, is the variational feature prediction loss. Minimizing L, trains the autoregressive model v
to predict the next variational feature z{ and encourages the encoder ¢ to generate Z¢ that is easier
for 1) to model. ﬁzl is the speech token prediction loss, which trains the autoregressive model ¥ to

predict the next speech token given the previous Z? and Z¢.

3.3 BALANCING THE LOSS TERMS

In Equation E], the terms Oy, Lf;, and E%l can work against each other. For instance, the encoder ¢
optimizes both O,... and Lf;. Maximizing O,... encourages the variational features Z¢ to encode
more information about X, while minimizing £j, regularize Z¢ to be simpler for the autoregressive
model 1) to predict. Similarly, optimizing £f; and ﬁgl with the autoregressive model 1) a multi-task
learning scenario, where 1) learns to predict two different objectives given the same input. Moreover,
these terms may operate on different scales due to how the losses are computed, necessitating a
balancing mechanism. As a result, inspired by Higgins et al.|(2017), we introduce two scalars, /3 and
v, to balance the loss terms as follows:

Oprpo = Opec — B L5 — v - L. (&)

Here, 3 functions similarly to the parameter used in 8-VAE (Higgins et al.,[2017). A larger 3 favors
a simple p(Z€), while a smaller 3 encourages the variational features Z¢ to encode more information
about X. Larger v encourages the autoregressive model 1 to prioritize accurate predictions of
Z< over Z¢. In practice, we employ a linear warm-up strategy for 3, increasing it from zero to
its final value during the early stages of training. This approach, inspired by prior works on text
generation (Bowman et al.,[2016; [Fu et al.}2019), helps mitigate posterior collapse. Empirically, we
find that this strategy allows for higher values of 3 without causing £, to collapse to zero.

3.4 TIME-WISE NORMALIZING FLOW

We employ a lightweight normalizing flow Rezende & Mohamed|(2015)) that is shared across time to
improve the expressive power of the autoregressive prior py (2§ | Z1..—1). Specifically, an invertible
flow network f,, maps each z; to a point in the Gaussian distribution, and sampling can be realized
by running the network in reverse. By using the change of variables, we can write:

Afy(2f)
det R

; (6)

Pw(Zf | Z1:41) = N(fw(ztc),Mw(let—ﬁ,Uw(ZLt—l))

where (1, 0, are modeled by autoregressive neural networks (i.e., transformer). We choose affine
coupling layers |Dinh et al.| (2017) as the backbone of our normalizing flow due to their simple
implementation and efficient computation. We note that similar approaches using normalizing flows
to enhance prior distributions have also been observed in Kim et al.| (2021} [2020) for text-to-speech.

3.5 OTHER COMPONENTS

We describe the modeling of the our decoder py (X | Z) and the utterance encoder designed to capture
static information. While these components are not the main focus of our study, they help ensure a fair
comparison between different methods. We use these components for all methods in our experiments
and focus on how changing the inputs to the autoregressive model affects performance.

Diffusion Decoder We model the decoder pyg(X | Z) with Denoising Diffusion Probabilistic Model
(DDPM) (Ho et al., 2020). We choose DDPM due to its flexibility in modeling complex distributions.
We condition the diffusion process on Z. For back-propagation through the encoder ¢, we use the
reparameterization trick (Kingma & Welling, 2019) to sample from g, (Z¢ | X), and combine it with
embedded speech tokens Z¢. The outcome is then concatenated with each intermediate layer of the
diffusion decoder for conditional diffusion. We train all diffusion decoders with 1000 DDPM steps.
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Utterance Encoder Static features, such as speaker information and recording environments,
often vary little across a given utterance. In our current modeling approach, this static information
would be redundantly encoded at each time step. To address this issue, we introduce an additional
utterance-level feature encoder that encourages Z to focus on time-varying signals. Specifically, we
randomly segment a portion of the mel-spectrogram X and feed it to the utterance encoder to produce
an utterance-level embedding. This embedding is then concatenated with Z before being provided to
the diffusion decoder. The utterance encoder is trained end-to-end with the entire system.

4 EXPERIMENTAL SETUP

4.1 DATASETS

We use two datasets in our experiments: LibriSpeech (Panayotov et al.,2015) and Libri-light (Kahn
et al.,2020), consisting of audiobooks narrated in English. LibriSpeech contains 960 hours of speech,
while Libri-light contains 60k hours of speech. For speech token extraction, we follow |Hassid et al.
(2023); [Maiti et al.| (2024) and use tokens derived from HuBERT representations (Hsu et al., [2021]).
We use the official HUBERT checkpoints, pre-trained on LibriSpeeclﬂ and Libri—ligh We run
k-means clustering with £ = 200 on the output of the last transformer layer of HuBERT using
10% of data randomly sampled from the training set. We pick & = 200 after testing values from
{50,200, 1000} and choosing the one that produced the best language modeling performance The
result is also consistent with Maiti et al.| (2024). More details on the choice of k are provided in

Appendix [
4.2 METHODS

We compare our proposed approach to methods that use only speech tokens in the autoregressive
model, as well as methods that use speech tokens with added pitch features in the autoregressive
model. To ensure a fair comparison, we fix the autoregressive model architecture to be the same for
all methods, varying only the input and output layers. We also use the same configuration for the
diffusion decoder and utterance encoder across all methods. For the neural vocoder (i.e., mapping the
mel-spectrogram back to waveform), we train HiFi-GAN (Kong et al., [2020) on LibriSpeech and use
it for all of the methods. We leave the detailed configuration of model architectures in Appendix
Below, we provide further details on the three approaches.

Token-LM We adopt the token-based speech language model (described in Section [2)) as our
baseline, representing approaches such as|Lakhotia et al.|(2021); Borsos et al.| (2023); Maiti et al.
(2024), which apply only discrete speech tokens to the autoregressive model.

Token-LM + Pitch In this baseline approach, we augment the speech tokens of token-based
speech language model (described in Section [2)) with log pitch features before passing them into the
autoregressive model. The pitch features are extracted using CREPE (Kim et al.| [2018)). Additionally,
we introduce a pitch regression task alongside the standard next-token prediction task, optimizing
it with L1 loss. This method incorporates hand-engineered paralinguistic features, similar to the
approach used by |[Kharitonov et al.[(2022)).

Variational speech modeling approach (Proposed) This is our proposed approach introduced in
Section[3] In this approach, we learn to extract variational features that supplement the speech tokens
while jointly training the autoregressive model. The learned variational features are used by both
the autoregressive model and the decoder. This approach removes the need for a hand-engineered
paralinguistic feature selection and extraction. Additionally, we set our latent dimension df = 4.
While we observed performance improvements with larger d5, we opted for a smaller value to ensure
a fairer comparison, as it results in less variation in parameter size. Our additional experiments on the
latent dimension d is in Appendix [E]

For inference, we use temperature-based sampling similar to|Lakhotia et al.|(2021). Specifically, we
set the temperature to 0.85 for both speech tokens Z¢ and continuous variational features Z¢. For

*https://huggingface.co/facebook/hubert-base-1s960
>https://huggingface.co/facebook/hubert-large-1160k
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variational features, the temperature is the scalar multiplied to the standard deviation of the normal
distribution in Equation [6] before sampling, as done in [Kim et al.| (2020). For the diffusion decoder,
we use denoising diffusion implicit models (DDIM) from |Song et al.|(2021) with = 0.5 and 100
diffusion steps. Training details are provided in Appendix [C]

4.3 EVALUATION METRICS

We evaluate the comparison methods on both reconstruction and speech continuation. The recon-
struction metrics, introduced in Sectiond.3.1] involve only the encoder-decoder pair and indicate
how much information is preserved in the extracted representations. The remaining metrics focus on
speech continuation, which is our primary objective, where the performance of the autoregressive
model is also assessed.

4.3.1 OBIJECTIVE METRICS

Reconstruction Metrics We use F,-RMSE, mel-ceptral distortion (MCD), and character error
rate (CER) to measure the quality of the reconstructed signal. F)-RMSE measures the root mean
squared difference between the pitch contour of the ground-truth signal and the reconstructed one.
We use CREPE Kim et al.| (2018]) to extract pitch and only consider the voiced parts of the signal
when computing the difference. MCD measures the Euclidean distance between the 23 mel-cepstral
coefficients (MCEPs) extracted from the ground-truth and reconstructed signals. For calculating CER,
we use a pre-trained Whisper Radford et al.| (2022} automatic speech recognition modelE] We use
the dev-clean and dev-other subsets of LibriSpeech for evaluating reconstruction. To ensure
deterministic results, instead of sampling each z{ from g4 (zf | X), we directly use the Gaussian
mean 4u4(X, ) from Equation[2] In practice, we observed that the stochastic noise of ¢y (zf | X) has
little effect on the reconstructed syntheses.

ZeroSpeech Metrics We adopt the commonly-used metrics (Borsos et al., 2023} [Hassid et al.}
2023} Maiti et al., [2024) from the ZeroSpeech challenge (Nguyen et al.| [2020): sWUGGY and
sBLIMP to measure language capability objectively. For these two metrics, speech utterances are
given in positive-negative pairs, with each model scoring both utterances. The model’s accuracy
is the percentage of instances where the positive example receives a higher score than the negative
one. sWuggy measures if the model scores a real word higher than a phonetically similar non-word
(e.g., “brick” v.s. “blick”). sBLIMP measures if a model scores a grammatically correct sentence
higher than a similar but incorrect one (e.g., “the dogs sleep” vs. “the dog sleep”). Both metrics use
text-to-speech to generate the examples. In line with Borsos et al.|(2023), we evaluate sWUGGY
using only words existing in LibriSpeech (referred as the “in-vocab” version). We use the test split for
evaluation. See Appendix [G|for detailed description on how we estimate the scores for the methods.

Perplexity Metric We use perplexity to evaluate the language modeling capability of our methods.
Specifically, perplexity measures the average negative log-likelihood of a test sequence generated
by the language model. We use the dev-clean and dev-other subsets of LibriSpeech for
computing perplexity.

4.3.2 SUBJECTIVE METRICS

We use subjective human evaluations to assess the naturalness and meaningfulness of the generated
speech. We randomly sampled 100 utterances from the LibriSpeech dev—-clean and dev-other
subsets, cropping the first three seconds to use as prompts. Each audio sample was rated by seven
annotators. For naturalness, annotators rated how human-like the generated speech sounded on a
five-point Likert scale, where one corresponds to “Very unnatural” and five to “Very natural.” For
meaningfulness, they rated the grammar and content of the speech on a five-point Likert scale,
where one corresponds to “Very Poor” and five to “Excellent.” Additional details on the subjective
evaluations are provided in Appendix

Shttps://huggingface.co/openai/whisper-medium
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Table 1: Results of speech reconstruction evaluation (Fy-RMSE, MCD, CER) for the models
discussed in Section[4.2] The evaluation metrics are detailed in Section[4.3] ‘# Param.’ refers to the
number of parameters used during inference. All models were trained on the Libri-light dataset.

Method # Param. Fp-RMSE(]) MCD({) CER()
Ground-truth n/a n/a n/a 2.35
Token-LM 219M 43.90 7.55 10.19
Token-LM + Pitch 219M 25.46 6.90 6.59
Proposed 221M 16.56 543 4.35

Table 2: Results of speech continuation evaluation for the models discussed in Section[4.2] The
evaluation metrics are detailed in Section[4.3] M-MOS refers to the meaningfulness mean opinion
score. N-MOS refers to the naturalness mean opinion score. Both M-MOS and N-MOS are evaluated
on speech continuation, which are presented along with 95% confidence intervals. All models were
trained on the Libri-light dataset.

Method sWUGGY(T) sBLIMP(T) Perplexity(]) \ M-MOS(1) N-MOS(1)
Ground-truth n/a n/a n/a 3.92+0.08 3.94+0.09
Token-LM 61.75 58.31 1.42 324 £0.09 3.01 £0.10
Token-LM + Pitch 60.75 56.92 1.40 3.17+£0.09 292 +0.11
Proposed 60.48 56.56 1.39 \ 3.35+0.09 3.37 £0.10

5 EXPERIMENTAL RESULTS

5.1 MAIN RESULTS

Tables|[I] and 2] present the results for the three methods described in Section[d.2] Table ] reports both
objective and subjective metrics for speech reconstruction, while Table 2] provides the corresponding
results for speech language modeling. We discuss our observations below.

Speech generated by our proposed approach is more natural—both objectively and
subjectively—compared to the speech generated from the baselines. The results in Table [I]
show that our proposed approach improves the reconstruction of the original signal, as measured
by three objective metrics: Fy-RMSE, MCD, and CER. These findings highlight three key points:
1) discrete speech tokens alone are insufficient to capture all the components necessary for faithful
reconstruction, 2) incorporating only pitch information is not enough, and 3) the learned variational
features Z° in our approach effectively complement the discrete speech tokens Z<, leading to bet-
ter reconstruction of speech signal. Furthermore, the subjective results of speech continuation, as
measured by naturalness mean opinion score (N-MOS) in Table[2] show that the syntheses produced
by our proposed approach exhibit higher naturalness compared to baselines. This finding further
substantiates our hypothesis that the variational features Z¢ learned by our approach contributes to
improved synthesis. Additionally, Table[I] provides comparison of the number of parameters for each
method. The result indicates that the overhead of the proposed method is relatively small (< 1% of
the total parameters), while still achieving noticeably better performance.

Speech generated using our proposed approach preserves subjective meaningfulness (as mea-
sured by M-MOS) comparable to the baselines, even though it shows a slightly higher likelihood
of syntactic or grammatical errors in the objective sWUGGY and sBLIMP scores. The results
in Table 2| show that our proposed approach produces comparable or better syntheses, as reflected by
its higher meaningfulness mean opinion score (M-MOS), compared to the baselines. This claim is
further supported by our method achieving the lowest Perplexity, suggesting that it can better predict
the next speech token when the variational features Z¢ are present. However, we also observe that
both our approach and Token-LM + Pitch result in lower sSWUGGY and sBLIMP scores compared
to Token-LM. We speculate that encoding excessive information might introduce noise, potentially
degrading performance on linguistic tasks like sSWUGGY and sBLIMP. For example, factors such
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Table 3: Results showing the impact of varying the 3 parameter (as described in Section and
the effect of removing discrete tokens from our proposed approach on both language modeling and
speech reconstruction performance. The - parameter (as described in Section [3.3) for the proposed
methods is fixed to 0.5. All models were trained on the LibriSpeech dataset.

Method 153 sWUGGY(1) sBLIMP(1) Fp-RMSE() MCD() CER(®)
Token-LM n/a 67.32 52.46 35.41 6.23 5.40
Token-LM + Pitch n/a 66.49 51.65 21.08 6.05 5.08
0.03 65.56 51.12 16.76 5.19 5.06
Proposed 0.04 65.96 51.40 16.88 5.53 5.43
0.05 66.46 51.77 17.20 5.75 5.45
0.03 67.79 51.76 16.86 5.24 10.83
Proposed (—tokens) 0.04 69.33 51.85 17.47 5.48 13.02
0.05 71.11 51.86 18.64 5.84 16.51

as speech loudness, which have low correlation with phonetic content, could add variability that
negatively impacts likelihood estimation in these tasks. However, it is important to note that while
sWUGGY and sBLIMP evaluate the likelihood of generating syntactically and grammatically correct
sentences, they don’t necessarily reflect the perceived meaningfulness for human listeners. The
results indicate that our approach preserves subjective meaningfulness, even if it has a higher chance
of syntactic or grammatical errors according to objective metrics.

5.2 ADDITIONAL ANALYSIS

We explore two additional experiments in this section. First, we study the effect of varying the
balancing hyper-parameters, 5 and ~y (described in Section[3.3). Second, we evaluate the utility of
speech tokens in our proposed approach by training a model that uses only variational features Z°.
This removal corresponds to training with Equation [3|instead of training with Equation [ The results
from these additional experiments are presented in Tables [3|and @] and we discuss our observations
below.

Varying 5 Table[3|shows that, for reconstruction metrics (F,-RMSE, MCD, CER), lower values of
[ result in smaller errors, indicating better reconstruction. However, for the sWUGGY and sBLIMP
metrics, performance decreases as 3 increases. This finding aligns with our discussion in Section [3.3]
where we discussed how lower 3 values encourage better reconstruction, but make it harder for the
autoregressive model to effectively model Z°.

Removing the discrete speech tokens Table[3|shows the impact of removing the discrete speech to-
kens from our proposed approach. We find that excluding speech tokens leads to a slight improvement
in the sSWUGGY metric compared to including them. However, this exclusion significantly worsens
the CER, indicating poorer phonetic reconstruction. These results suggest that without discrete speech
tokens, our approach struggles to effectively encode abstract phonetic information in the variational
features (Z°) but still performs well on sSWUGGY, possibly by leveraging other cues. One possible
explanation is that the synthesized non-existent words in sSWUGGY, being out-of-domain for the
text-to-speech system, may exhibit subtle prosodic irregularities that our model is able to detect.
On the other hand, the best reconstruction results are obtained when speech tokens are included,
as removing them leads to worse reconstruction metrics. Finally, we observe that varying the 3
parameter produces similar performance trends regardless of whether speech tokens are used.

Varying v Table [4|shows that increasing -y leads to worse pitch reconstruction, as measured by
F5-RMSE, but improves CER. This result indicates that y governs the type of information captured
in the variational feature Z°. With a higher +, the system prioritizes the prediction of speech tokens.
Therefore, the variational feature Z¢ is encouraged to encode more phonetic information, resulting in
lower CER and MCD. Conversely, a lower  encourages Z° to focus more on encoding pitch-related
information, as indicated by the lower F)-RMSE. Then, we analyze the subjective measures and
observe that both M-MOS and N-MOS favor a lower . We attribute the decline in performance
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Table 4: Results showing the impact of varying the - parameter (as described in Section [3.3)) in
our proposed approach on both language modeling and speech reconstruction performance. The 3
parameter (as described in Section [3.3)) is fixed to 0.04. M-MOS denotes the meaningfulness mean
opinion score, and N-MOS denotes the naturalness mean opinion score, both presented with 95%
confidence intervals. All models were trained on the Libri-light dataset. Due to space constraints,
sBLIMP and MCD results are presented in Appendix [H| sBLIMP shows a similar trend to sWUGGY,
while MCD mirrors the trend observed in CER.

v sWUGGY(1) Perplexity(!) Fo-RMSE(}) CER(}) | M-MOS(t)  N-MOS(1)

0.5 60.48 1.39 16.56 4.35 3.35+0.09 3.37+0.10
1.0 59.41 1.34 17.06 4.05 3.13+£0.09 3.27£0.10
2.0 58.19 1.32 17.41 3.75 3.02+0.09 3.09+£0.10

to the increased difficulty of autoregressive generation of Z¢. By increasing the weight of £¢,, the
model sacrifices its focus on minimizing £f;, which in turn compromises its ability to model Z¢.

Benefit of trainable encoder We compare the reconstruction metrics of Table [I] and Table [3]
Interestingly, our proposed method benefits from more data, showing better reconstruction quality
when trained on Libri-light than on LibriSpeech, whereas the baseline methods do not. For Token-LM,
the reconstruction relies entirely on the quality of extracted speech tokens. If these tokens lack
sufficient phonetic information, the decoder cannot reconstruct accurate content, even with more data.
In contrast, our approach allows the encoder to extract necessary information directly from the input
speech, leveraging additional data to improve generalizability of both the encoder and decoder.

6 RELATED WORK

Emerging speech language models typically use discrete speech tokens for autoregressive modeling.
These tokens are often obtained by k-means clustering of features extracted from self-supervised
pre-trained models (Hsu et al. 2021} |Chen et al.,|2022). |Lakhotia et al.| (2021) used discrete speech
tokens for generative spoken language modeling (GSLM). subsequently, |Kharitonov et al.| (2022)
enhanced this approach by incorporating pitch information alongside speech tokens as joint inputs
to the autoregressive model. Our proposed approach improves upon this line of research by using a
variational autoencoder to automatically learn paralinguistic speech attributes in conjunction with the
autoregressive model. Borsos et al.|(2023) proposed a two-stage approach for the decoder that used
acoustic tokens (Zeghidour et al.,|2022; Défossez et al.,[2022). This type of framework is also widely
used in text-to-speech systems (Wang et al., 2023 |Chen et al., [2024). In contrast, our approach
focuses on the joint modeling of linguistic and paralinguistic features by enhancing the inputs to the
autoregressive model rather than improving the decoder.

Recently, a line of research has emerged focusing on improving speech language models through
the integration of text-based models. Hassid et al.| (2023)) initialized their speech language model
using a pre-trained text-based large language model (LLM). Similarly, Rubenstein et al.| (2023); |[Maiti
et al.| (2024) expanded the vocabulary of pre-trained text-based LLMs by integrating discrete speech
tokens.Building on this, [Yang et al.| (2023)); Du et al.| (2024) further explored multi-task training
involving text-conditioned generative speech tasks, combining text and audio within a single LLM.
We note that our proposed approach takes a different direction but can still be integrated with these
approaches. For example, one could initialize the transformer in our autoregressive model using
parameters from a text-based LLM.

7 CONCLUSION

In this work, we proposed an approach that combines a variational autoencoder with existing token-
based speech language models. We conducted experiments to evaluate its effectiveness in terms
of language capability and synthesis naturalness. Empirical evaluations suggest that our proposed
approach, in contrast with other recent techniques, is capable of producing synthesis with better
subjective meaningfulness and naturalness. Additionally, we examined the effects of the weights of
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different loss terms, 8 and -y, on performance. Our findings indicate that 5 governs the amount of
information encoded from the mel-spectrogram into the variational feature, whereas ~ controls the
type of information encoded within the variational feature.

8 LIMITATIONS AND FUTURE WORK

Our results indicate that the performance of our proposed approach is sensitive to the choice of
hyperparameters 3 and . In future work, we plan to explore automated methods for tuning these
parameters. Additionally, this study does not examine how our method can be leveraged for other
downstream speech tasks. To address this, we plan to evaluate our pre-trained autoregressive
transformer on downstream tasks using the SUPERB benchmark (Yang et al., 2024)). Finally, our
model has a relatively small number of parameters and requires less training data compared to many
existing frameworks (Hassid et al.| [2023; Rubenstein et al., 2023)). We plan to scale our methods to
assess whether the same conclusions hold with increased computational resources and larger datasets.

Broader Impact We proposed an approach that improves the naturalness of speech language models
without compromising their language proficiency, which can be leveraged by existing paradigms in
this literature. While a model that generates more natural speech can enhance the user experience in
conversational agents, it can also be exploited for harmful purposes, such as creating fake videos or
conducting spam phone calls.

Reproducibility Statement We provide detailed information about the model architecture in
Appendix [B] and the training details in Appendix [C} Additionally, we include the audio samples used
in human listening tests (M-MOS and N-MOS), along with a detailed setup of these evaluations in
Appendix D] All datasets used are available for research purposes. We plan to open-source our code
upon acceptance of the paper.
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A MATHEMATICAL DERIVATIONS

A.1 EQUATION[3]

For notation simplicity, we drop the superscript ¢ of Z€ into Z in this proof.

With the parameterized prior, the modeling distribution of X now also depends on ):
puo(X) = [ (X | Z)po(2)a2,

Poy(X,2Z)  po(X | Z)py(Z
p9,¢(Z|X)= w( ): (X17) w( )

po,p(X) P,y (X)
Following a similar proof in Kingma & Welling (2019):

Proof.
log po,y(X) = Ezg,(z/x) [l0g Po,y (X)]
[ [ pouw(X,Z)
=K. I —r
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Therefore,
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= Eznqu(zi%) {log [WH
= Ezq,(z1x) logpo(X | Z)] + Ez~q,(zx) [log {qﬁ%(lzgi)”

= Ezq,(zix) logpo(X | Z)] — Drc1.(45(Z | X)|[py(2))-
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With g4(Z | X) = [T,_; 49 (2 | X), and py(Z) = TTi_, py (21 | Zaaa):

D108 | 2~ Eae [ 22X

T, a6(2 | X) H
1 po(ze | Ziaon)

Py(2t | Z1:e—1)

=Ezq¢,z1x) [log l

Ez~qs(zix) [log [

1+ 1D+

IEZ1;t—1 [DKL(q¢(Zt | X)pr('zt | Zl:tfl))]a

o~
Il
_

where Zi1.4_1 ~ Hf:l gs (2 | X). O

A.2 EQUATION[]

Proof. Since O,.¢ is stralghtforward to derive from Equatlonl (decompose Z into Z and Z%), here
we show how L¢; and £¢, are derived from the Dy 1, (q4(Z | X)||py(Z)) in Equatlon

With g4 (Z | X) = q4(2¢ | X)p(Z¢ | X) and py(z; | Zt—1) = py (2 | Zas—1)py (25 | Zro—1):

Drr(q6(Z | X)|py(Z))

Z| X

- 52 o [ 255
| 46(Z° | X)p(2 | X)H
Ht 1Py (2t | Zaie1)
" (

)

q5(Z¢ | X)p(Z¢ H
Ty po (26 | Zaies pw(zt |th 1)

4(2° | X) log l p(Z' | X) H
T po(ef | Zoie-t) 1 Do (2 | Zaan)
T

T
Z Zoaos [Drr(as(z | X)|Ipy (2f | Zra—1))] = ) Bz, [logpy (2f' | Ziie—))
— t=1

+Ez

+ Egllogp(Z* | X)]

Since Ez[log p(Z? | X)] does not depends on any parameters, it can be dropped during optimization.
O

B MODEL ARCHITECTURES

Encoder ¢,(Z | X) We use a different number of residual blocks for the encoder. We use a kernel
size of 7; the hidden dimensions used for all models are in Figure |2| (a). The architecture of the
residual block is illustrated in Figure 2] (a). Finally, after 3 residual blocks, we apply another instance
normalization, followed by separate linear heads to output the mean and log variance of Equation 2]
We use the same size encoder for experiments on LibriSpeech and Libri-light. Instance Norm refers
to instance normalization (Ulyanov et al., [2017).

Autoregressive Transformer We follow the typical implementation of transformers with Post-
LN (Xiong et al., 2020). We use RMSNorm (Zhang & Sennrich, 2019) and GELU activa-
tion (Hendrycks & Gimpel, 2023). We use ALiBi (Press et al., [2022) for relative positional encoding.
We use different model sizes for LibriSpeech and Libri-light experiments, with the configuration
summarized in Table[5} The same configuration is shared for all comparing methods.
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Time-wise Flow Time-wise Flow

(a) Encoder Architecture (b) Time-wise Normalizing Flow Architecture

L]
. T,d, T,d,
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Convolution Layer = Output FiLM_J )
(T, 512) : H Last Layer —>n0
Instance Norm L] Output
- s (T, d,/2) (T, d,/2)
Convolution Layer . { Swap
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L]
Tnput (T, 80) H Input (T, d,) Input (T, d,)
:
L ]
L ]

Figure 2: (a) Residual block architecture or the encoder ¢. (b) Model architecture for the time-wise
normalization flow introduced in Section 3.4l

Table 5: Model configuration of the autoregressive transformer for training on LibriSpeech and
Libri-light respectively. This configuration is shared for all comparing methods. ‘feed-forward size’
refers to the width of the feed-forward linear layer.

Dataset | #of layers | # of heads | hidden size | feed-forward size
LibriSpeech ‘ 4 ‘ 8 ‘ 512 ‘ 2048

Libri-light 16 16 1024 4096

Time-wise Normalizing Flow The architecture of our time-wise normalizing flow is illustrated in
Figure 2] (b). Here, 1 and o are the mean and standard deviation that will be multiplied and added to
the input. This part mainly follows the implementation from Dinh et al.|(2017)). The “Last Layer
Output” in Figure[2] (b) refers to the output of the last transformer layer. “FiLM” refers to FILM
conditioning (Perez et al.| 2018)). “Swap” refers to swapping the two inputs in their channel order.
We use 4 flow blocks for all experiments.

Diffusion Decoder For our diffusion decoder 6, we apply the same residual block as Figure [2|(a).
However, here we have additional skip connections between output of residual blocks following the
commonly-used U-Net architecture (Ronneberger et al.|[2015). We encode the current diffusion step
with Sinusoidal positional encoding, linear project it and add it to each time frame of the output of
the first convolution layer in each of the residual blocks. For both datasets, we use 6 residual blocks,
with the same hidden dimensions and kernel size as that of the encoder ¢.

Utterance Encoder The utterance encoder consists of 3 blocks, where each block sequentially
includes a convolution with stride 2 and kernel size 4, followed by instance normalization (Ulyanov
et al.l 2017) and RELU activation. The hidden size of the convolution layer is: 128, 256, 512.
Afterward, a simple time-averaging is applied to the output to generate an utterance-level embedding.

C TRAINING DETAILS

For training the model, we use the AdamW optimizer (Loshchilov & Hutter, 2019) with 5, =
0.9, B2 = 0.98. We use weight decay of 0.01 for LibriSpeech models and 0.1 for the Libri-light
models. We trained the models with mixed precision. For Libri-light models, we use 2 L40S GPUs
with gradient accumulation of step size 2. This makes the effective batch size 192. We trained for
600k update steps. We warm up 3 from O to the final value in the first 30k update steps. It takes about
14 days to train the Libri-light models.

For LibriSpeech models, we discovered that methods involving discrete tokens suffers from early
overfitting (but not in Libri-light). Therefore, we train these models (including our proposed approach)
to only 100k steps. For the diffusion decoder of Token-LM and Token-LM + pitch, we separately train
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Please listen to the computer-generated speech sample below and rate how well its grammar and content convey meaningful information. Focus on evaluating the
grammar and the content, not the naturalness or quality of the speech.

® » ® ool 010 ) @ B

How meaningful is this speech sample in terms of grammar and content?

Very Poor Poor Fair Good Excellent

Figure 3: A screenshot of the Meaningfulness (M-MOS) assessment task, as the crowd-sourced rater
sees it.

Please listen to the computer-generated speech sample below and rate how well its grammar and content convey meaningful information. Focus on evaluating the
grammar and the content, not the naturalness or quality of the speech.

D B B 000 | s 010 ) [ D

How meaningful is this speech sample in terms of grammar and content?

Very Poor Poor Fair Good Excellent

Figure 4: A screenshot of the Naturalness (N-MOS) assessment task, as the crowd-sourced rater sees
it.

them to 500k steps, where we observe marginal improvement of loss functions between epochs. For
pure variational approaches, we train to 400k steps as we did not observe overfitting. We use the
same effective batch size on the 2 L40S GPUs but without gradient accumulation. For LibriSpeech
models, we warm up (3 from O to the final value in the first 20k update steps. It takes about 2 days to
train for the 400k step models and less than 1 day for the 100k step models. For both models, we use
an initial learning rate of 5e — 4 and apply cosine learning rate decay to 5e — 5.

For the input to the utterance encoder, we random crop the segment to be between 2 to 4 seconds. For
diffusion model, we use L1 loss to predict the diffusion noise, and apply the cosine schedule for the
diffusion noise variance.

D SUBJECTIVE EVALUATION

We use crowd-sourcing for subjective human evaluation on speech meaningfulness and naturalness.
The recruited raters speaks English and were paid at least the minimum wage. We sample 100
prompts from LibriSpeech development subsets, crop the first 3 seconds, and feed to each model
to produce a 10 seconds continuation (totally 13 seconds). The 100 prompts are the same for all
comparing methods. Since we do not train our model to predict the end of speech, we observed
that some synthesis ends earlier than 13 seconds. We use pre-trained voice activity detection from
pyannoteﬂ to post-process the samples, removing trailing silences and non-speech that might affect
evaluation.

In Figures[3]and[4] we provide screenshots of the what the raters see during evaluation. Raters are
presented with a spoken utterance and are instructed them to rate its naturalness or meaningfulness
on a five-point Likert scale, where 1 corresponds to very unnatural or meaningless and 5 corresponds
to very natural or meaningful.

E DIMENSION OF THE LATENT VARIABLE dz

Table |§| presents our results of increasing the latent dimension dj. We perform the sweep on the
variational approach without speech tokens for simplicity. From Table[f] we observe that increasing
the latent dimension from 4 to 16 results in uniform improvements across the measures. However,
further increasing the dimension from 16 to 64 leads to marginal degradation. We speculate that this
performance plateau may arise from the difficulty normalizing flows face when modeling higher-
dimensional distributions (Reyes-Gonzalez & Torre), [2023)).

Thttps://huggingface.co/pyannote/voice-activity-detection
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Table 6: Performance varying latent dimension d¢ on our proposed approach (without speech tokens).
Models are trained on LibriSpeech.

d° sWUGGY(?) sBLIMP(1) FO-RMSE(]) MCD(|) CER(})

4 69.33 51.85 17.47 5.48 13.02
16 73.49 51.69 16.68 5.37 7.80
64 73.25 50.91 17.37 5.35 7.79

Table 7: Comparison of model trained on different number of discrete tokens k. Models are trained
on LibriSpeech.

k sWUGGY(1) sBLIMP(1) Fy-RMSE(]) MCD(}) CER(})

50 59.63 52.49 41.11 6.49 11.87
200 67.32 52.46 3541 6.23 5.40
1000 65.11 50.99 32.60 5.99 4.48

F DISCRETE TOKEN VOCABULARY SIZE

Table [7| shows our evaluation results on speech token models (Token-LM) trained with varying k.
Here, k refers to number of clusters for the k-means clustering on obtaining the discrete token,
which is equal to the vocabulary size of the discrete tokens. Our result is consistent with [Maiti et al.
(2024), which shows that £ = 200 obtains the best SWUGGY score. The reconstruction metrics
indicate that £ = 200 provides a significant improvement over k£ = 50, whereas the increasing from
k = 200 to k = 1000 yields only marginal gain. Interestingly, having larger k seems to negatively
impact sSBLIMP. We speculate that the small vocabulary size (k = 50) is adequate for distinguishing
word-level changes in sentences but insufficient for detecting subtle phonetic variations within words.

G SCORING SWUGGY AND SBLIMP

Token-LM To obtain the scores for s WUGGY and sBLIMP for discrete speech token only models,
we follow Borsos et al.| (2023)) and use the log-likelihood returned by the model normalized by the
sequence length.

Token-LM + pitch, proposed methods For methods that have additional inputs other than the
discrete tokens, we only use the model’s log-likelihood of the discrete tokens. We do not use the
log-likelihood of the Z¢, as we assume that the discrete tokens 7% should contain all the information
needed for sSWUGGY and sBLIMP. In practice, we indeed observe that including the log-likelihood
of the Z° slightly lowers the score for our proposed method.

Proposed w.o. token Since there are no discrete tokens involved in Proposed w.o. token, we
directly use the log likelihood of Z¢. The likelihood can be estimated by using Equation [6]

For Proposed and Proposed w.o. token, to ensure deterministic outcome, we again use the u¢(X, t)
from Equationdirectly as Z¢, instead of sampling Z¢ from gg4(z; | X).

H SBLIMP AND MCD RESULTS FOR TABLE [4]

Table [§] shows the remaining measures (sSBLIMP and MCD) for Table [d] We observe that MCD
follows the same trend as CER, while sSBLIMP aligns with the trend observed in sWUGGY.

I SIDE EXPERIMENTS ON INSPECTING LEARNED FEATURES

Speech Emotion Recognition We evaluate speech emotion recognition on the EmoV-DB |Adigwe
et al.[(2018) dataset. We follow a 9:1 split on training and testing for the dataset. The dataset contains
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Table 8: Results showing the impact of varying the - parameter (as described in Section [3.3)) in
our proposed approach on sSBLIMP and MCD. These measures are dropped in Table 4] due to space
constraints.

~  SsBLIMP(}) MCD())

0.5 59.88 5.43
1.0 59.12 5.36
2.0 58.19 5.21

Table 9: Performance of speech emotion recognition models trained on different features. The
features are extracted from models pre-trained on Libri-light using our proposed method.

Method Emotion Recognition (ACC, %)
Tokens 57.46 + 1.59
Variational Features 91.57 +0.35
Tokens + Variational Features 92.74 +0.37

Table 10: Performance of speaker identification models trained on different features. The features are
extracted from models pre-trained on Libri-light using our proposed method.

Method Speaker Identification (ACC, %)
Tokens 7.08 £0.40
Variational Features 63.41 £0.43

Tokens + Variational Features 63.13 £0.45
Utterance Embedding 94.06 + 0.32

five emotion categories: amused, angry, neutral, disgust, and sleepiness. We train a classifier with
the same structure to predict emotion categories based on different features. The experiments are
repeated 20 times to report the mean and 95% confidence interval. From Table[0] we can observe that
the variational features alone obtain significantly better performance compared to tokens, showcasing
its capability of capturing paralinguistic information. Combining both tokens and variational features
gives a slight improvement over using variational features alone.

Speaker Identification For speaker identification, we evaluate the performance on the VCTK |Yam/
agishi et al.| (2019)) dataset, which consists of read English sentences, with 400 sentences each from
110 speakers. We again follow a 9:1 train-test split and repeat each run 20 times to report the mean
and 95% confidence interval. We additionally evaluate our utterance embedding, which is designed
to capture static utterance-level information (see Section [3.3). From Table[I0] we can see that using
tokens only results in poor speaker identification accuracy. With variational features, the classifier
obtains improved accuracy. We attribute this improvement to the fact that speaking styles can be
captured in the variational features to classify speakers. On the other hand, the utterance embedding
outperforms the other features in this task. These results support our claim that the utterance encoder
encodes global speaker information while variational features capture local paralinguistic attributes.

J  CONDITIONAL INDEPENDENCE ASSUMPTION OF z AND zf

In general, Z¢ and Z? are not independent, since the language content can imply the paralinguistic
information, and vice versa. However, our modeling assumes only conditional independence. Specifi-
cally, the past generations Z.;_1 are first passed through the autoregressive transformer 1 to produce
the intermediate representation o, = T'rans formery(Z1..—1). Then, two separate heads predict z{
and z¢ based on o;. This framework assumes that the transformer can learn o; such that z§ and z
become conditionally independent given o;. Given the transformer’s modeling capacity, we believe
it can extract shared information (o;) between z; and zf from Z;.;_1, while delegating the distinct
information to their respective heads.
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