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ABSTRACT

Deep neural networks (DNNs) have significantly improved the productions in many
areas like large-scale computer vision and natural language processing. While
conventional DNNs implemented on digital platforms have intrinsic limitations
in computation and memory requirements, optical neural networks (ONNs), such
as diffractive optical neural networks (DONNs), have attracted lots of attention
as they can bring significant advantages in terms of power efficiency, parallelism,
and computational speed. In order to train DONNs, fully differentiable physical
optical propagations have been developed, which can be used to train the physi-
cal parameters in optical systems using conventional gradient descent algorithms.
However, inversely mapping algorithm-trained physical model parameters onto
the applied stimulus in real-world optical devices is a non-trivial task, which can
involve multiple imperfections (e.g., quantization and non-monotonicity) and is
especially challenging in complex-valued domains. This work proposes a novel
device-to-system hardware-software codesign framework, which enables efficient
training of DONNs w.r.t arbitrary experimental measured optical devices across
layers. Specifically, Gumbel-Softmax with a novel complex-domain regularization
method is employed to enable differentiable one-to-one mapping from discrete
device parameters into the forward function of DONNs, where the physical pa-
rameters in DONNs can be trained by simply minimizing the loss function of the
ML task. The experimental results have demonstrated significant advantages over
traditional quantization-based methods with low-precision optical devices (e.g., 8
discrete values), with ∼20% accuracy improvements for MNIST and ∼28% for
FashionMNIST. More importantly, our framework provides high versatility in code-
sign even for one system implemented with mixed optical devices. In addition, we
include comprehensive studies of regularization analysis, temperature scheduling
exploration, and runtime complexity evaluation of the proposed framework.

1 INTRODUCTION

During the past half-decade, there has been significant growth in machine learning with deep neural
networks (DNNs). DNNs improve productivity in many domains such as large-scale computer
vision, natural language processing, and data mining tasks (LeCun et al. (2015); Silver et al. (2017);
Senior et al. (2020)). However, conventional DNNs implemented on digital platforms have intrinsic
limitations in computation and memory requirements (Jouppi et al. (2017); Sharma et al. (2016); Abadi
et al. (2016)). When it deals with computation-intense tasks, its energy cost will be a great concern.
To overcome limitations in resources and find an energy-save computation method, people have
turned their eyes to optics. Specifically, the free-space diffractive optical neural networks (DONNs),
which is based on light diffraction, featuring millions of neurons in each layer interconnected with
neurons in neighboring layers, show its great potential in improving efficiency in computing with
neural networks Lin et al. (2018). More importantly, Lin et al. (2018); Rahman et al. (2020); Li et al.
(2021) demonstrated that diffractive models controlled by physical parameters are differentiable, such
that the parameters can be optimized with conventional automatic differentiation engines.

However, when such DONNs system is deployed on physical hardware, it shows significant accuracy
degradation compared to the numerical physics emulation. To narrow the algorithm-hardware
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miscorreclation gaps between differentiable numerical physics models and physical optical systems,
hardware-software codesign training algorithms are needed to deal with the practical response of
optical devices, i.e., the feasible and accurate deployment of trained parameters onto devices. For
example, the reconfigurability of DONNs is implemented using spatial light modulators (SLMs),
which generally have a discrete and non-monotonic complex-valued modulation of propagating
optical fields as a function of applied voltages with finite-precision. Therefore, despite the diffractive
propagation in the DONNs system is differentiable, directly adding discrete mapping from device
to DONNs system will break the gradient chain in backpropagation. More importantly, diffractive
layers can behave differently due to different optical configuration or device responses. Thus, while
training a multi-layer DONNs system, there is a great need to develop a flexible training framework
that can optimize the DONNs parameters w.r.t various optical devices from layer to layer.

This work proposes a novel, efficient, and flexible framework that enables differentiable discrete
mappings from devices to DONNs systems via Gumbel-Softmax. Moreover, we introduce a complex-
domain regularization technique, which significantly improves the training performance. The pro-
posed framework overcomes the physics-aware training limitations of existing training methodologies.
Our experimental results demonstrate the advantages over existing state-of-the-art codesign training
algorithms, particularly for devices with few discrete states (≤ 16), in various DONNs architectures
settings. With the regularization technique, our framework is to overcome the training limitations on
complex-valued backpropagation in DONNs training.

2 BACKGROUND

Diffractive Optical Neural Networks (DONNs) Recently, there have been increasing efforts on
optical neural networks and optics-based DNNs hardware accelerators, which bring significant advan-
tages for machine learning systems in terms of their power efficiency, parallelism and computational
speed, demonstrated at various optical computing systems by Gao et al. (2021b;a); Mengu et al.
(2020); Lin et al. (2018); Feldmann et al. (2019); Shen et al. (2017); Tait et al. (2017); Rahman et al.
(2020); Li et al. (2021). Among them, free-space diffractive optical neural networks (DONNs) ,
which is based on the light diffraction, features millions of neurons in each layer interconnected
with neurons in neighboring layers. This ultrahigh density and parallelism make this system possess
fast and high throughput computing capability. One of the significant advantages of DONNs is the
computational density, where such a platform can be scaled up to millions of artificial neurons. In
contrast, the design complexity for deploying deep learning algorithms on other optical architectures,
e.g., silicon photonic platform proposed by Feldmann et al. (2019; 2020)Tait et al. (2017)), can
dramatically increase. For example, Lin et al. (2018); Li et al. (2021); Mengu et al. (2019; 2020)
experimentally demonstrated various complex functions with an all-optical DONNs. In conventional
DNNs, forward propagations are computed by generating the feature representation with floating-
point weights associated with each neural layer. While in DONNs, such floating-point weights are
encoded in the complex-valued transmission coefficient of each neuron in diffractive layers and
free-space propagation function, which is multiplied onto the light wavefunction as it propagates
through the neuron to next diffractive layer. Similar to conventional DNNs, the final output class
is predicted based on generating labels according to a given one-hot representation, e.g., the max
energy reading over the output signals of the last layer observed by detectors. Specific examples of
the system at training and inference can be found in the next section (Figure 1a).

However, there are several critical limitations in the existing DONNs training methodology. First, the
prediction accuracy of DONNs with few diffractive layers (≤ 3) (Lin et al. (2018)) is highly limited,
even with simple image classification datasets. While Lin et al. (2018) claimed that it is caused
by fundamental limitations of optical physics, it is believed that there are potentials on improving
the complex-domain training algorithms. Moreover, when such DONNs systems are deployed on
physical hardware, existing training approaches do not take real device response into consideration
and only assume simple phase-only modulation without any limitations. This ideal assumption creates
miscorrelation gaps between numerical models and hardware deployment, leading to significant
accuracy degradation such as 30% drop on MNIST dataset demonstrated by Zhou et al. (2021).
The framework proposed in this work aims to overcome all these limitations with Gumbel-Softmax
enabling discrete mapping training and a novel complex-domain regularization technique.
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Gumbel-Softmax Gumbel-Softmax is a continuous distribution on the simplex which can be used
to approximate discrete samples (Maddison et al. (2016); Jang et al. (2016); Gumbel (1954)). With
Gumbel-Softmax, discrete samples can be differentiable and their parameter gradients can be easily
computed with standard backpropagation. Let z be the discrete sample with one-hot representation
with k dimensions and its class probabilities are defined as π1, π2, ..., πk. Then, according to the
Gumbel-Max trick proposed by Gumbel (1954), the discrete sample z can be presented by:

z = one_hot(argmax
i

[gi + logπi]) (1)

where gi are i.i.d samples drawn from Gumbel(0, 1). Then, we can use the differentiable approxima-
tion Softmax to approximate the one-hot representation for z, i.e.,∇πz ≈ ∇πy:

yi =
exp((log(πi) + gi)/τ)∑k
j=1 exp((log(πi) + gi)/τ)

(2)

where i = 1, 2, ..., k. The softmax temperature τ is introduced to modify the distributions over
discrete states. Softmax distributions will become more discrete and identical to one-hot encoded
discrete distribution as τ → 0, while at higher temperatures, the distribution becomes more uniform
as τ →∞ (Jang et al. (2016)). Gumbel-Softmax distributions have a well-defined gradient ∂y∂π w.r.t
the class probability π. When we replace discrete states with Gumbel-Softmax distribution depending
on its class probability, we are able to use backpropagation to compute gradients.

3 APPROACH

This section describes the proposed training framework integrated with Gumbel-Softmax and complex-
domain regularization, which emulates optical diffraction in the complex domain and conducts
physic-aware training with real-world optical devices.

System Overview We illustrate the proposed training framework using five-layer DONNs system
implemented for a ten-class image classification task, with ten detector regions placed evenly on
the detector plane. The optical devices used for deploying phase and amplitude modulation are
controlled by the input discrete voltage values. As shown in Figure 1, each diffractive layer modifies
the amplitude and phase of the input light signal. To enable differentiable discrete mapping, our
framework defines the input discrete voltage values as trainable parameters, where each pixel is
represented using a one-hot vector. The trainable parameters dimensions is then defined by (1) the
system size and (2) the number of discrete values in the devices. For example, let the system size be
200× 200 with 8 discrete states in the devices, the trainable voltage parameters will be 200× 200× 8
in each layer. Note that the phase and amplitude modulation will still be in the shape of 200× 200,
where the optical properties are mapped by matmul the one-hot vectors and the device state vector.

To deal with the problem of gradient chain breakage brought by the discrete trainable parameters,
Gumbel-Softmax is added in the numerical modeling of DONNs. As it is shown in Figure 1, during
backpropagation in the training process, instead of propagating gradients to the discrete one-hot
voltage levels directly, it will propagate through the differentiable approximation to the discrete
levels generated by Gumbel-Softmax distribution with its class probability θ. The differentiable
approximation will be updated according to the training algorithm, and the discrete voltage levels will
be updated by its class probability θ from approximation. Let A be the array with discrete calibrated
amplitude value, P be the array with discrete calibrated phase value and wi,j be the voltage level
applied to the pixel located at [i, j] in the diffractive layer with a size N ×N .

wi,j = one_hot(
exp((log(θi,j) + gi,j)/τ)∑k
j=1 exp((log(θ

i,j) + gi,j)/τ)
), gi,j ∼ Gumbel(0, 1), k = discrete size

wi,jC =

Real︷ ︸︸ ︷
(wi,j ·A)︸ ︷︷ ︸

Matmul

×cos(wi,j · P )+ i(wi,j ·A)× sin(wi,j · P )︸ ︷︷ ︸
Imaginary

, i, j ∈ [0, N − 1]

(3)

Let wi,j ∈ W , where i, j ∈ [0, N − 1], N is the size of diffractive layer. According to Equation 3,
the discrete variable W has the distribution depending on θ and cost function f(W ). The objective is
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Figure 1: Illustration of the proposed framework in training a five-layer DONNs system with
Gumbel-Softmax and complex-domain regularization – (a) In the inference path, input signal will
be modulated by each layer in both amplitude and phase encoded by optical devices controlled by
discrete voltage values. In backpropagation path in training, starting from loss function, the gradients
will flow through Gumbel-Softmax over the approximated differentiable representation of the one-hot
encoded discrete voltage levels; (b) Detailed illustration of discrete device-to-system mapping via
Gumbel-Softmax in both forward and backpropagation.

to minimize the expected cost L(θ) = EW∼pθ(W )[f(W )], which is the ML loss in the system, e.g.,
in DONNs system for image classification, L is usually set as the MSE Loss (Lin et al. (2018), Zhou
et al. (2021)), via gradient descent, which requires us to estimate∇θEW∼pθ(W )[f(W )]. The discrete
sample W can be approximated by G(θ, g). The gradients from f to θ will be computed as follows:

∂

∂θ
EW∼pθ(W )[f(W )] =

∂

∂θ
Eg[f(G(θ, g))] = Eg∼Gumbel(0,1)[

∂f

∂G

∂G

∂θ
] (4)

To be more specific, as shown in Figure 1b, for each pixel (wi,j) in diffractive layers, the modulation
provided by the pixel is represented by complex tensors that emulate the diffraction of light. The
complex number is transformed from phase and amplitude modulation by Euler’s formula. Since
the input light signal is also described by complex numbers, the modulation can be easily realized
by multiply the two complex numbers (see Equation 3). In Gumbel-Softmax, to approximate the
discrete levels, a Gumbel distribution g ∼ Gumbel(0, 1) and a class probability θ for the discrete
states will be introduced. With the help of these two differentiable elements, the approximation for
discrete states will be differentiable. As a result, the device-to-system codesign with consideration
of discrete device information will be differentiable and can be trained with conventional autograd
optimization algorithms simply minimizing DONNs’ ML training loss function. Note that in the
DONNs system, since diffractive layers are propagated in sequence, each layer can be implemented
using different devices, i.e., with different calibrated data points. As we can see in Figure 1, mapping
multiple devices in one DONNs system can be simply realized using the proposed framework by
replacing the Amp and Phase vectors.

Gumbel-Softmax Exploration As it is discussed in Section 2, the variance of the approximated
Gumbel-Softmax distribution over discrete states is determined by τ , which is also referred as
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temperature in Gumbel-Softmax. While giving a higher temperature value, Gumbel-Softmax will
result in less variance that is close to a uniform distribution. In opposite, when τ is close to 0,
it will be more variant over discrete states, i.e., be more identical to one-hot distribution. Thus,
similar to simulated annealing, the algorithm should be first deployed with high temperature to enable
coarse-grain global search. The temperature should then be annealed down to shrink the search space
to find the local optimized point. Specifically, at the early training stage, we expect the variance
between different states to be small, such that the discrete values are easier to be changed during
gradient descent optimization. As the optimization efforts increase, it is expected to decrease the
temperature to fine-tune the optimization, where most of the discrete values are far more stable during
gradient descent optimization. In Section 4.1, we explore and provide comprehensive discussions on
six different temperature schedules.

Complex-domain Regularization As shown in Figure 1, the trainable discrete values control both
optical amplitude and phase, i.e., the gradients backpropagated to Gumbel-Softmax are the average of
the upstream gradients for amplitude and phase (complex-domain mapping). In addition, according
to Lin et al. (2018), DONNs is more phase modulation dominated. Thus, we introduce a novel
regularization factor λ in the forward function described in Equation 4 to improve the training
efficiency, which can flexibly change the gradient scales between amplitude and phase modulations.
Specifically, λ is applied to amplitude vector A. LetM as the mapping of (wi,j , A, P ) M−−→ wi,jC . Let
∇wi,jC be the upstream gradient to calculate ∇wi,j . The difference of the gradient updates can be
summarized as follows:

∇wi,j = ∇wi,jC ·
∂M
∂wi,j ·A+ ∂M

∂wi,j · P
2

λ
====⇒ ∇wi,jreg = ∇w

i,j
C ·

1
λ · (

∂M
∂wi,j ·A) +

∂M
∂wi,j

· P
2

(5)

Since in DONNs system, the intensity of the input light decreases exponentially as diffractive layers
increase, the weight of amplitude modulation in forward and backward propagation are expected to
decrease exponentially, as the number of layers increases. Thus, the optimal value for the algorithmic
parameter λ needs to be explored for different DONNs architectures. Empirically, λ should be ≥1,
i.e., optimizing wi,j with more bias on phase gradients, for any number of layers in DONNs. In
Section 4.3, we explore the performance of the proposed regularization technique with 1, 3 and 5
diffractive layers in DONNs, which confirms the discussed regularization characteristic.

4 RESULTS

System Setup The default system used in this work is designed with five diffractive layers with the
size of 200× 200, i.e., the size of layers and the size of total ten detector regions are 200× 200. To
fit the optical system, the original input images from MNIST (LeCun (1998)) and FashionMNIST
(FMNIST) (Xiao et al. (2017)) with size of 28× 28 will be interpolated into size of 200× 200 and
encoded with the laser source whose wavelength is 532 nm. The physical distances between layers,
first layer to source, and final layer to detector, are set to be 30 cm. As shown in Figure 1, ten separate
detector regions for ten classes are placed evenly on the detector plane with the size of 20×20, where
the sums of the intensity of these ten regions are equivalent to a 1×10 vector in float32 type. The
final prediction results will be generated using argmax. The default DONNs system is implemented
with an optical device consisting of 8 discrete voltage values for modulation.

Training Setups The learning rate in the training process is 0.5 trained with 100 epochs for all
experiments using Adam (Kingma & Ba (2014)) with batch size 500. The implementations are
constructed using PyTorch v1.8.1. All experimental results are conducted on an Nvidia 2080 Ti GPU,
except the runtime complexity analysis is conducted on Nvidia 2080 Ti and 3090 Ti GPUs.

4.1 TEMPERATURE SCHEDULING FOR GUMBEL-SOFTMAX

While deploying Gumbel-Softmax to enable differentiable discrete training for ONNs, the temperature
value in Gumbel-Softmax is known as an important hyperparameter for the training performance.
Thus, we first explore different temperature schedules in the proposed training framework for
implementing ONNs with low-precision optical devices. Specifically, the results shown in Figure
2 are trained with experimental measured devices with 8 discrete values enabled (see Figure 1b
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in Section 3). As discussed in Section 3, higher temperature leads to less variation between the
discrete states, while lower temperature leads to a distribution closer to discrete states. Specifically,
with higher temperature implemented in Gumbel-Softmax, a larger range of possible states will be
explored as the distribution is more uniform over all possible states.

In this work, we mimic the concept of temperature scheduling in simulated annealing into our Gumbel-
Softmax based training framework. To limit the exploration space of Gumbel-Softmax training, we
evaluate six different temperature schedules, which all start with highest temperature τh = 50, and
lowest temperature τl = 1 with 100 training epochs (Figure 2). First, we set three static temperature
training as baselines for comparisons, which are trained with static temperature for the whole training
process, i.e., (1) τ = 1, (2) τ = 25, and (3) τ = 50. For dynamic temperature scheduling, we
evaluate (4) linear temperature decaying scheduling (Linear), with temperature decay rate as
0.5 per epoch; and (5) cosine-annealing-decaying (Cosine) temperature schedule, where we set
τcosine = [50, 40, 30, 20, 40, 30, 20, 30, 15, 5, 10, 1]. With higher temperature, i.e., larger exploration
space for the algorithm, it is expected to train more epochs. Thus, we set the training epochs
for each temperature as [10, 10, 10, 10, 10, 10, 10, 8, 7, 5, 5, 5] ; and (6) step temperature decaying
(Step) the temperature schedule is set as τstep = [50, 40, 30, 20, 10, 5, 1] with the training epochs
per temperature as [25, 20, 20, 15, 10, 5, 5].
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(d) Testing loss evaluations on F-MNIST.

Linear Cosine Step τ = 50 τ = 25 τ = 1

MNIST 0.997/0.979 0.994/0.978 0.995/0.978 0.138/0.133 0.930/0.926 0.143/0.146

FMNIST 0.941/0.891 0.935/0.888 0.938/0.889 0.857/0.844 0.876/0.854 0.446/0.444

(e) Final training/testing accuracy of all temperature schedules.

Figure 2: Evaluations of temperature scheduling in Gumbel-Softmax for training the proposed
differentiable discrete device-to-system DONNs codesign framework.

In Figures 2(a)–(d), the training and testing processes are fully recorded for MNIST and FMNIST,
with the x-axis representing the training iteration and the y-axis representing the loss value. The
training and testing accuracy is shown in Figure 2(e). As we can see, for both MNIST and FMNIST,
the system performs better with annealing temperature schedules in Gumbel-Softmax compared to
the static temperature setups. To be more specific, in Figure 2, we can conclude from the results: (1)
The system implemented with simulated annealing applied Gumbel-Softmax performs better than
that implemented with static temperature applied Gumbel-Softmax. With bad static temperature
implemented (e.g., τ = 50 and τ = 1 for MNIST dataset and τ = 1 for FMNIST dataset), the system
can get worse as training efforts increases. (2) The Linear temperature annealing schedule works
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best for our system, as training and testing loss converge simultaneously and most efficiently. Thus,
we deploy Linear temperature decaying in the rest of the section.

4.2 COMPARISONS WITH CONVENTIONAL QUANTIZATION

In this section, we compare the performance of the proposed training approach with existing ap-
proaches used in experimental optical studies (Lin et al. (2018); Zhou et al. (2021)). Specifically, we
experimentally measured discrete values of amplitude and phase modulation realized in the optical
setups discussed in System Overview. The models evaluated in Figure 3 are trained with the proposed
framework by feeding in these measured device parameters. During deployment, the trained discrete
values are used to configure the device, which produces the complex-valued property of optical de-
vices. We compared the proposed framework with the same system setup but implemented with fitted
curve and conventional quantization method, i.e., straightforward post-training quantization (PTQ),
quantization-aware training (QAT). For the system implemented with conventional quantization
methods, we first fit a multi-polynomial using regression methods, which takes the device voltage
value as inputs. For PTQ, we train the DONNs while considering the device voltage values being
feasible in float32 precision and round the voltages to the nearest discrete points after training.
For QAT, instead of quantization after all training iterations, the values are rounded to the nearest
discrete values after each training iteration, where the loss is calculated with the rounded voltages.
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Figure 3: Training performance comparisons between the proposed framework and leveraging
conventional quantization methods for discrete device mapping in 3, 4, and 5-layer D2NNs using
MNIST and FMNIST datasets.

As shown in Figure 3, three different co-design training algorithms are evaluated with 8, 12, and
16 discrete states in three DONNs systems with 3, 4, 5 diffractive layers, respectively. For the PTQ
algorithm, when discrete states are as few as 8, the accuracy is unstable. To be fair, we collect the
average accuracy of ten runs. First, within the same depth of DONNs systems, the models trained
with the proposed Gumbel-Softmax enabled framework show clear advantages in all cases. More
importantly, for the system implemented with different discrete states, we can see that the proposed
framework is able to train the DONNs to match the best accuracy regardless of its complexity.
Moreover, for systems with different structural complexity, Gumbel-Softmax shows its tremendous
advantages in training, especially devices with fewer discrete states. Our experimental results have
demonstrated that the proposed differentiable discrete training framework offers significant
training performance improvements over traditional quantization algorithms, especially in
co-designing DONNs systems built very limited non-uniform distributed discrete states.
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4.3 COMPLEX-VALUED REGULARIZATION EVALUATION

As discussed in Section 3, in our DONNs system, regularization is required for system optimization.
Thus, the regularization factor λ is introduced to regularize the gradients from amplitude and phase.
Table 1 shows that (1) regularization will improve the optimization of the DONNs implemented
with our system structure significantly, i.e., for MNIST dataset, 36%/18%/3% accuracy improvement
for the systems with 1/3/5 diffractive layers respectively and for FMNIST dataset, 27%/15%/8%
accuracy improvement for the systems with 1/3/5 diffractive layers respectively. (2) Regularization
needs to be carefully adjusted for specific DONNs architecture. As it is discussed in section 3, in our
system, the regularization factor needs to be decreased as the implemented diffractive layers increase.
For the single-layer DONNs, the best regularization factor is λ1 = 90, where the training accuracy
can be 0.9874 and testing accuracy can be 0.9698. While applying regularization factors explored for
deeper DONNs, the accuracy has significantly degraded. In this work, we empirically discover that
regularization factor λ3 = 5 and λ5 = 1.8 work the best for three- and five-layer DONNs systems
in image classification on MNIST and FMNIST. Also, we can see that inappropriate regularization
factors can significantly degrade the training performance such that it requires careful exploration.

Table 1: Evaluations of the complex-valued regularization technique in training ONNs with 8 discrete
values in the optical devices, with training/testing accuracy. *Results only include testing accuracy.

Dataset DONNs Depth λ1 = 90 λ3 = 5 λ5 = 1.8
w/o reg*

(Lin et al. (2018))

MNIST

Depth=1 0.9691/0.9591 0.0491/0.0466 0.0476/0.0445 0.67

Depth=3 0.2095/0.2118 0.9984/0.9781 0.0408/0.0309 0.91

Depth=5 0.0946/0.0938 0.9641/0.9594 0.9971/0.9791 0.95

FMNIST

Depth=1 0.9083/0.8746 0.1287/0.1175 0.1001/0.0955 0.54

Depth=3 0.1937/0.1969 0.9532/0.8892 0.0162/0.0144 0.83

Depth=5 0.1000/0.0941 0.7476/0.7416 0.9412/0.8906 0.87

As shown in Table 1, DONNs implemented with different diffractive layers can be trained to achieve
similar prediction accuracy using our framework, which is a significant boost to the state-of-the-art
results discussed by Lin et al. (2018). Although our framework can still achieve decent accuracy
performance by adjusting the regularization factor, there are some fundamental limitations on the
optical physics side in small depth DONNs. Thus, we further analyze the performance/robustness of
the DONNs trained with different regularization factors. Specifically, we explore the confidence of the
predictions acquired by the system. When the sample is classified correctly, we decrease the highest
probability generated by softmax function (softmax of intensity values collected in the ten detector
regions) by 1%, 3% and 5%, and then evenly distribute to the other nine outputs, i.e., increasing the
probabilities of the other outputs by 0.11%, 0.33% and 0.55%, respectively. The results are shown in
table 2. We can see that for both datasets, as the depth of DONNs increases, the prediction confidence
increases, while the prediction accuracy are all relatively the same. For example, there is no accuracy
degradation on five-layer DONNs for MNIST, and less than 1% degradation on FMNIST. However,
for single-layer DONNs, the accuracy drops 63% for MNIST and 54% for FMNIST when 1% error
applied and drops to 0 when applied error increases to 3% and 5%.

4.4 RUNTIME COMPLEXITY ANALYSIS

Finally, we analyze the runtime complexity of the proposed framework. As shown in Figure 1, the
size of the trainable parameter is related to the system size and the number of discrete values in the
devices. For a given DONNs system, the size of the training models will be linear to the number of
discrete values in the devices. Thus, it is expected that the runtime complexity of the proposed method
could be limited to the number of discrete values. In Figure 4, we analyze the runtime complexity
of training a five-layer DONNs architecture, where we change the number of discrete values in the
optical devices1. The left x-axis represents the runtime per training epoch on Nvidia 2080 Ti, and

1Here we use synthetic devices values since we only evaluate the training runtime complexity.
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Table 2: Confidence evaluation of DONNs trained with complex-domain regularization.

dataset DONNs Depth 0 1% 3% 5%

MNIST
Depth=1 0.9600 0.3260 0 0

Depth=3 0.9820 0.9640 0.850 0.5880

Depth=5 0.9860 0.9860 0.9860 0.9860

FMNIST
Depth=1 0.8780 0.3400 0 0

Depth=3 0.8940 0.8120 0.502 0.264

Depth=5 0.8940 0.8940 0.892 0.8900
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Figure 4: Runtime analysis of Gumbel-Softmax based discrete optical neural network training,
measured on 2080 Ti and 3090 Ti GPU. The complexity of training a 5-layer ONNs is almost linear
to the number of discrete size of the targeted hardware devices on 3090 Ti, and linear on 2080 Ti up
to device with less than 384 discrete values.

the right x-axis represents the runtime on 3090 Ti. We can see that the training runtime is almost
linear on 3090 Ti up to 784 discrete values due to the more efficient memory hierarchy in the newer
GPU design. While using 2080 Ti, we start observing quadratic runtime increases for more than 512
discrete values. However, note that the number of discrete values in real-world optical devices are
mostly limited to 256 voltage values and are mostly limited to 16 states for high-speed devices (Ríos
et al. (2019); Sebastian et al. (2020)).

5 CONCLUSION

This work proposes a novel flexible device-to-system hardware-software codesign framework which
enables efficient training of DONNs systems implemented with arbitrary experimental measured
optical devices across the layers. Specifically, this framework realizes backpropagation through
discrete parameters via Gumbel-Softmax and improves the training performance for DONNs systems
by introducing a novel complex-domain regularization technique. Our experiments demonstrate
that the DONNs system optimized with the proposed framework will acquire tremendous accuracy
improvements compared to the state-of-the-art experimental studies. Moreover, exploration for
temperature schedule for Gumbel-Softmax in DONNs system, confidence evaluation for the same
system architecture implemented with different complex-domain regularization factor and runtime
complexity analysis are comprehensively discussed.
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