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ABSTRACT

Invariant risk minimization is an important general machine learning framework
that has recently been interpreted as a total variation model (IRM-TV). However,
how to improve out-of-distribution (OOD) generalization in the IRM-TV setting
remains unsolved. In this paper, we extend IRM-TV to a Lagrangian multiplier
model, named OOD-TV-IRM. We find that the autonomous TV penalty hyperpa-
rameter is exactly the Lagrangian multiplier. Thus OOD-TV-IRM is essentially a
primal-dual optimization model, where the primal optimization reduces the entire
invariant risk and the dual optimization strengthens the TV penalty. The objective
is to reach a semi-Nash-equilibrium where the balance between the training loss
and OOD generalization is kept. We also develop a convergent primal-dual solv-
ing algorithm that facilitates an adversarial learning scheme. Experimental results
show that OOD-TV-IRM outperforms IRM-TV in most situations.

1 INTRODUCTION

Traditional risk minimization methods such as Empirical Risk Minimization (ERM) are widely used
in machine learning. ERM generally assumes that both training and test data come from the same
distribution. Based on this assumption, ERM learns model parameters by minimizing the average
loss on the training data. However, the distributions between training and test data or even within the
training or test data are often different in practical situations, which affects the model’s performance
in new environments. Besides, ERM tends to exploit correlations in the training data, even if these
correlations do not hold in different environments. This may cause the model to learn some spurious
features that are irrelevant to the target, so as to perform poorly in new environments. Because ERM
only focuses on the average performance on a given data distribution, the model may overfit to
specific training data and thus perform unstably when facing distribution changes or outliers. These
problems lead to the poor generalization ability of ERM across different environments (Recht et al.|
2019; |Arjovsky et al., 2019; Lin et al., [2022).

The key to solving the above problems is to distinguish between invariant features and spurious
features that cause distribution shifts, so that a trained model can be generalized to an unseen domain.
This leads to the concept of out-of-distribution (OOD) generalization (Ben-Tal et al., [2009; Huang
et al.,2023)). One important methodology is the Invariant Risk Minimization (IRM, |Arjovsky et al.
2019) criterion. It aims to extract invariant features across different environments to improve the
generalization and robustness of the model (Yang et al.l 2023} |Xin et al., [2023). Specifically, it
introduces a gradient norm penalty that measures the optimality of the virtual classifier in each
environment. Then it minimizes the risk in all potential environments to ensure that the model
can still work effectively when facing distribution drift. In summary, IRM copes with distribution
changes by introducing environmental invariance constraints in order to make the trained model
more robust in a wider range of application scenarios (Ahuja et al.,|2020). There are various variants
and improvements of IRM, such as Heterogeneous Risk Minimization (HRM, [Liu et al.[2021)), Risk
Extrapolation (REx, Krueger et al.|[2021)), SparseIRM (Zhou et all 2022), jointly learning with
auxiliary information (ZIN, [Lin et al.|2022)), and invariant feature learning through independent
variables (TTVA, Tan et al.|2023)). On the other hand, diversifying spurious features (Lin et al.|[2023))
is also an effective approach to improve IRM. These works not only provide new IRM settings or
new application scenarios, but also improve the robustness and extensibility of IRM. In addition,
they enrich related theoretical results in OOD generalization.
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A recent work reveals that the mathematical essence of IRM is a total variation (TV) model (Lai
& Wangl [2024). TV measures the locally varying nature of a function, which is widely applied to
different areas of mathematics and engineering, such as signal processing and image restoration. Its
core idea is to eliminate noise by minimizing the TV of a function while preserving sharp disconti-
nuities in the function (e.g., edges in an image (Dey et al., [2006))). Interpreting IRM as a TV model
not only provides a unified mathematical framework, but also reveals why the IRM approach can
work effectively across different environments. In the case of the original IRM, it actually contains
an ¢5 norm based TV (TV-{5) term. Compared with TV-{5, TV-¢; further has the coarea formula
that provides a geometric nature of sharp discontinuity preservation. This property is well-fitted to
the invariant feature extraction of IRM. Hence an IRM-TV-¢; framework is proposed and it shows
better performance than the IRM-TV-/, framework. By considering the learning risk as part of the
full-variance model, IRM-TV-/; performs better in OOD generalization. This finding helps to deal
with distributional drift and improve model robustness and generalization in machine learning.

However, IRM-TV-/; may not achieve complete OOD generalization, due to insufficient diversity
in the training environments and inflexible TV penalty. |Lai & Wang| (2024)) investigate some addi-
tional requirements for IRM-TV-/; to achieve OOD generalization. A key point is to let the penalty
parameter vary according to the invariant feature extractor. However, the authors do not specify a
tractable implementation. Thus, how to construct and optimize this framework for broader practical
applications remains unresolved, resulting in an urgent need for effective solutions.

To fill this gap, we find that the TV penalty hyperparameter can be used as a Lagrangian multiplier.
Then we extend the IRM-TV framework to a Lagrangian multiplier framework, named OOD-
TV-IRM. It is essentially a primal-dual optimization framework. The primal optimization reduces
the entire invariant risk, in order to learn invariant features , while the dual optimization strengthens
the TV penalty, in order to provide an adversarial interference with spurious features. The objective
is to reach a semi-Nash-equilibrium where the balance between the training loss and OOD gen-
eralization is kept. We also develop a convergent primal-dual solving algorithm that facilitates
an adversarial learning scheme. This work not only extends the theoretical foundation of previ-
ous works, but also provides a concrete implementation scheme to improve OOD generalization of
machine learning methods across unknown environments.

2 PRELIMINARIES AND RELATED WORKS

2.1 INVARIANT RISK MINIMIZATION

In machine learning tasks, we often work with a data set consisting of multiple samples, where
each sample includes input and output variables. These samples are typically drawn from various
environments, but in many scenarios, the specific environment labels are not explicitly available. As
aresult, the challenge is to train a model that can generalize well across these different environments,
even when the environment information is unknown.

IRM (Arjovsky et al.|[2019) addresses this challenge by structuring the model into two components:
a feature extractor and a classifier. The feature extractor, denoted as ®, is responsible for identify-
ing invariant features from the input data, while the classifier w makes predictions based on these
features. IRM aims to minimize the invariant risk across different training environments, thereby
finding a representation that performs consistently well across all environments.

For a given training data set of n samples D := {(z;,y;) € X x Y}I_,, the empirical risk in a given
environment e is computed using a loss function £, which measures the discrepancy between the
predicted value and the true output. This risk is expressed as:

1 n
R(wo ®,e) := Ezﬁ(woq’(l‘i),yi,e)v (1
=1

which represents the mean loss over n samples in environment e. IRM simultaneously learns an
invariant feature extractor ® and a classifier w across multiple training environments, such that the
classifier minimizes the risk in all environments:

miél Z Rwo®,e), s.t. wEe arg min R(w' o ®,¢€),Ve € &, )
w e€&y v



Under review as a conference paper at ICLR 2025

where the classifier w is required to be the optimal solution for minimizing the risk in each environ-
ment e. However, it is a challenging bi-level optimization problem. Hence |Arjovsky et al.|(2019)
further propose a practical variant of IRM as follows:

: 2
m(gné {R(10®,€) + A|Vy|w=1R(wo ®,€)[3} . (3)

In this version, the classifier w is fixed to a scalar value of 1, and a gradient norm penalty term is
introduced to convert the objective into a single-level optimization problem.

ZIN (Lin et al.,[2022) further extends the IRM framework by introducing auxiliary information z; €
Z to simultaneously learn environment partitioning and invariant feature representation. It assumes
that the training environment space & is the convex hull of E linearly independent fundamental
environments. By learning a mapping p : Z — A that provides weights for different environments,
ZIN optimizes the following objective:

1
min {R(w o®, El(E)) 1) + )\mfz)lx IVwR(wo <I>,p)||§} . 4)

w,d

In this way, ZIN can effectively learn invariant features even without explicit environment partition
information.

2.2 TOTAL VARIATION

TV is a mathematical operator widely recognized for its ability to measure the global variability of a
function. It has been extensively applied in various fields, such as optimal control, data transmission,
and signal processing. The central concept behind TV is to quantify the overall amount of change
in a function across its domain. It is able to preserve sharp discontinuities (such as edges in images)
while removing noise, making it a valuable tool in image restoration and signal denoising. This
property is further elucidated through the coarea formula (Chen et al., [2006). For a function f €
L' (2), where € is an open subset of R?,

/ Vf| = / / ds d, )
Q —oo Jf1(y)

where f~1(7) represents the level set of f at the value +. This formulation shows that TV integrates
over all the contours of the function, reinforcing its capability in capturing piecewise-constant fea-
tures. Mumford & Shah| (1985) and Rudin et al.| (1992)) propose the following TV-¢5 and TV-¢;
models, respectively.

: 2 N2 . N2
felLrgf(Q){/QIVfl A fu-5) dx}, fengf(m{/QWﬂH/Q(f—f) dx}7 ©

where f € L?(9) is the ground-truth signal and ) is a hyperparameter that affects accuracy. These

models aim to preserve target features in the approximation f and leave noise in the residual ( f — f ).
In general, TV-¢; can better preserve useful features and sharp discontinuities in the approximation

I
2.3 INVARIANT RISK MINIMIZATION BASED ON TOTAL VARIATION

It can be seen that the penalties of and are similar to a TV-/5 term, which has been verified
by Lai & Wang| (2024)) under some mild conditions, such as measurability of the involved functions,
non-correlation between the feature extractor and the environment variable, representability of w by
e, etc. In this sense, (3) and @) are actually IRM-TV-{5 and Minimax-TV-{, models. Considering
the superiority of TV-£; over TV-/5 in sharp feature preservation,[Lai & Wang|(2024) further propose
the following IRM-TV-¢; (7) and Minimax-TV-/; (8) models:

mqin {Ew [R(w o (I))] + )\(]EU,HV“,R(UJ © (I))H)2} ’ )
win {E,_ 1, [l o ®)] + Amax(Buec, [V Rw o D)2 ®
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where E,,., denotes the mathematical expectation with respect to (w.r.t.) w whose measure is

induced by p, and MTE) denotes the uniform probability measure for the environment e. The maxi-
mization with respect to (w.r.t.) p identifies the worst-case inferred environment causing the greatest
variation in the risk function. Hence, Minimax-TV-{; can be seen as the TV-{; version of ZIN. The
corresponding coarea formula for IRM-TV-/; or Minimax-TV-/; is

o0
/ |VyR(wo ®)|dv = / / ds dry, )
Q —oo J{weQ:R(wod)=~}

where {w € Q : R(w o ®) = ~} denotes the level set, and s is the Hausdorff measure in the corre-
sponding dimensions. This formula ensures that IRM-TV-¢; or Minimax-TV-{; preserves essential
structural features while maintaining robustness across different environments. In the rest of this
paper, we abbreviate IRM-TV-¢; as IRM-TV if not specified otherwise.

3 METHODOLOGY

3.1 AUTONOMOUS TOTAL VARIATION PENALTY AND LAGRANGIAN MULTIPLIER

OOD generalization represents the generalization ability of a trained model to an unseen domain.
From the perspective of IRM-TYV, it can be represented by (Ben-Tal et al.l 2009} |Arjovsky et al.,
2019; Lin et al., [2022; |La1 & Wang, [2024)

m‘ii)nmax R(w o ®). (10)

In general, IRM-TV cannot achieve OOD generalization without additional conditions, due to in-
sufficient diversity in the training environments and inflexible TV penalty. However, [Lai & Wang
(2024) indicate that the penalty hyperparameter A¢ of IRM-TV should be variable according to the
invariant feature extractor ®:

min {Ey[R(w o ®)] + Ao (Bu |V R(w o ®)[])*} (11)

min {Ewm [R(w o @)] + Ao max(E, e[|V R(w o <I>)H)2} . (12)

The main reason is that a variable \g can fill the gap between the objective value of or
and the objective value of . Lai & Wang| (2024) further indicate that this variable A\p exists in
general situations. However, they do not specify any tractable and concrete implementation of \g.

To fill this gap, we find that Ag actually serves as a Lagrangian multiplier in and (12). Hence
we use it as an autonomous parameter, which is also taken into the training scheme. Specifically,
the parameters for the invariant feature extractor, also denoted by ®, are directly taken as inputs for
A. Next, A can be parameterized by another set of parameters W. In this way, A can be represented
as a function of both ¥ and ®: A(¥, ®). Then A not only depends on ®, but also adjusts its strength
through W. Now it can be deployed in a primal-dual optimization model, as illustrated in the next
section.

3.2 PRIMAL-DUAL OPTIMIZATION AND SEMI-NASH-EQUILIBRIUM

Replacing Ag by A(¥, @) in (11) and , we obtain the corresponding Lagrangian functions:
g(¥, @) :=E,[R(wo ®)] + A(¥, ®)(E,[|VyR(w o ®)[])%, (13)
h(p, U, @) :=E 15 [R(wo®)]+ ANV, ®)(Epe,[|VuR(wo )[])2. (14)
E

Applying the OOD generalization criterion (T0) in the literature of IRM, we adopt a minimax scheme
to optimize ® and W.

* Outer Minimization (Primal): the primal variable ® is trained to minimize the entire
invariant risk, in order to captures invariant features across different environments.

* Inner Maximization (Dual): the dual variable ¥ (or (p, ¥)) is trained to maximize the au-
tonomous TV penalty A(¥, ®)(E,, [| V. R(wo®)|])? (or A(¥, @) (Eyep[| Vi R(wod)[])?),
which confronts the most adverse scenarios with spurious features.
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They lead to the following proposed OOD-TV-IRM (15) and OOD-TV-Minimax (I6) models:
mqin mgxg(\ll, ) = ngn {Ew [R(wo ®)] + max [)\(‘Il, D) (Ey[|VwR(w o @)‘])2} } 7 (15)

ngn max h(p, U, D) := ngn {Em—l(g) [R(w o ®)] + max AT, @) (Ewep[|VwR(w o @)|])?] } .

P, Ps
(16)

They are essentially primal-dual optimization models. To further understand their functions, we in-
troduce the concept of semi-Nash-equilibrium in the context of this paper, without loss of generality.

Definition 1. A semi-Nash-equilibrium (¥*, ®*) of a Lagrangian function g(¥, ®) satisfies the
following conditions:

1. g(U*, ®*) > g(V, ®*) for any VU in the parameter space.

2. g(T*, %) = g(Vpae(P*), ") < 9(Vinax(P), P) for any @ in the parameter space,
where U,,,q,(P) € argmaxy [A(¥, ®)(E, ||V R(w o ®)[])?]. In other words,¥y,q, (P)
is a solution to the dual optimization with ® fixed.

A semi-Nash-equilibrium (p*, ¥*, ®*) of a Lagrangian function h(p, ¥, ®) follows the same defi-
nition with the unified dual variable (p, ¥).

Remark: in the context of game theory, OOD-TV-IRM (I5) (or OOD-TV-Minimax Eq. [I€) can
be seen as a two-player zero-sum game, where g(¥, ®) and —g(¥, ) are the gains for players
U and @, respectively. Item 1 in Definition [I] indicates that U* is the best strategy for dual opti-
mization given ®* (which is independent of ¥). On the other hand, Item 2 indicates that ®* is the
conditional best strategy for primal optimization only when WU, ,,.(®) is optimized over each ®. In
this sense, (¥*, ®*) is only a semi-Nash-equilibrium instead of a full Nash equilibrium. It accords
with our task where @ is the feature extractor and primary variable that should confront the most
adverse scenarios, while W is the TV penalty parameter and secondary variable that provides OOD
generalization depending on ®.

Theorem 2. Assume that R(w o ®) is continuous w.r.t. (w, ®) and differentiable w.r.t. w, A\(V, ®)
is continuous w.r.t. (¥, ®), and the feasible set of parameters (p, VU, ®) is bounded and closed. Then
any solution to OOD-TV-IRM (I3) or OOD-TV-Minimax ([I6)) is a semi-Nash-equilibrium.

Proof. The proof is given in Appendix [A.T} O

Most of the widely-used loss functions and deep neural networks satisfy the conditions of Theorem
[2] such as the squared loss, cross-entropy loss, multilayer perceptron, convolutional neural networks,
etc. In practical computation, a bounded and closed feasible parameter set is also satisfied due to the
maximum float point value. Hence Theorem [2]is applicable to general situations. It indicates that
OOD-TV-IRM and OOD-TV-Minimax balance between the training loss and OOD generalization
at a semi-Nash-equilibrium.

3.3 PRIMAL-DUAL ALGORITHM AND ADVERSARIAL LEARNING

We develop a primal-dual algorithm to solve OOD-TV-IRM or OOD-TV-Minimax (I6). To
do this, we further assume that R(w o ®) and A(¥, ®) are differentiable w.r.t. their corresponding
arguments w, ®, and ¥. As indicated in (Lai & Wang} [2024), |V, R(w o ®)| in or is non-
differentiable w.r.t. ®. Hence we adopt the subgradient descent method to update these parameters,
as illustrated in Appendix [A.2] Then the primal and dual updates for (I3) or (I6) are:

U+ = e*) — Mgy (W) K], an
g+ — k) 4 nék)vq,g(\p(k), Pk+1)),

U+ = k) — M gup(p®) TH) Pk, as)
(p®HD, WD) = (o0 W)+ T, g h(p), B E), D),

where ngk),nék) > 0 are the learning rates for the primal and dual updates, respectively. The com-

putation of the above (sub)gradients is illustrated in Appendix In general machine learning
scenarios, the smoothness and convexity of the Lagrangian functions g and h are usually unknown,
thus nik) and nék) should be set according to different specific tasks. In addition, we provide a
convergent scheme as follows.
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Theorem 3. The same assumptions in Theorem|[2|are used. By setting
if Oag(W™, ®K)) 2 0;

1
(k). ) &P[[0pg(TFE) R[5>
n = 105 9( @R[

0, if Oag(W™, &) = 0.
1 . k k .
.= | BV g (@ 2ETD)], if Veg(¥®, o¢+) £ 0; (19)
? 0, if Vag(T®), ok+) = .
1 . k k k .
or .= | PTG g am Dah(p, ¥, o) 3£ 0;
! 0, if  Oph(p®, TF) &F) =,
0. F e e § Vewh(h v ®, 00y 20
0, if Vipuh(p®), ¥®, k) — .

with an arbitrary p > 1, the primal-dual algorithm (I7) or (I8) achieves convergent sequences
{@R)yee | LwRree or {(pF), WR)) Y22 | respectively. Moreover, its computational complexity

is O([(p — 1)6]7ﬁ) to achieve a convergence tolerance of € > 0.

Proof. The proof is given in Appendix [A.2] O

In fact, or facilitates an adversarial learning to dynamically adjust model parameters (¥, ®)
or (p, ¥, @) to balancing training loss and OOD generalization. This approach extends the theoret-
ical work of IRM-TV by providing a practical, dynamic implementation of A(¥, ®) that adapts to
the most adverse environments.

Remark: the above OOD-TV-IRM and OOD-TV-Minimax models as well as the primal-dual al-
gorithm can also be applied to the TV-¢5 versions, which are omitted here since they are simpler
differentiable cases.

3.4 IMPLEMENTATION WITH NEURAL NETWORKS

First, we remind that all the theoretical results in this section hold with any functions satisfying
the corresponding conditions (e.g., continuity, differentiability), not limited to neural networks. To
provide a specific instance, we implement A\(W, &) with neural networks that take ¥ and ® as net-
work trainable parameters and network inputs, respectively. Besides A(¥, ®), ® and p can also be
developed by neural networks. Specifically, ® : X — H is the feature extractor that maps a sample
x in the sample space X to the feature space . It can be implemented by different kinds of neu-
ral networks according to the practical situation, as shown in Table[I] The data sets correspond to
different synthetic or real-world tasks, which will be illustrated in Section ] For example, ® can
be a multilayer perceptron in Simulation, or a convolutional neural network in Landcover. Simi-
larly, p : Z — AP is the environment inference operator that maps the auxiliary variables z € Z
to the probability space A¥ := {v € R¥ : v > Oy and v - 1(5) = 1}, where R” denotes the
E-dimensional real space (i.e., E' environments). Moreover, the architectures of p are developed by
multilayer perceptrons, which are compatible with the corresponding ®, as shown in Table

Without ambiguity, we can also use ® to denote the parameters of the feature extractor. Then
A(U, @) can be implemented as a neural network that takes ® as input and ¥ as network param-
eters. We provide tractable architectures of A in Table [I} which should also be compatible with
the corresponding ®. With the primal-dual algorithm in Section[3.3] ® and ¥ can be learned in an
adversarial way to improve OOD generalization, which puts Theorem [2]into practice.

4 EXPERIMENTAL RESULTS

We conduct experiments for the proposed OOD-TV-IRM and OOD-TV-Minimax on 7 simulation
and real-world data sets to evaluate their effectiveness in different OOD generalization tasks. These
tasks largely follow the settings in the literature of IRM (Lin et al., [2022; |Lai & Wang, 2024)). The
implementation details are provided as codes in the Supplementary Material. The original IRM
(Arjovsky et al.,2019), ZIN (Lin et al.,2022), IRM-TV-{; and Minimax-TV-¢; (Lai & Wang, 2024)
frameworks are also included in comparisons to verify the effectiveness of the proposed primal-
dual optimization and adversarial learning scheme. IRM and ZIN are equivalent to IRM-TV-{5 and
Minimax-TV-/{5, respectively.
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Table 1: Network architectures of the invariant feature extractor ®, the environment inference oper-
ator p, and the TV penalty strength A\, w.r.t. their corresponding inputs.

DATA SET z— ® z=p
SIMULATION LINEAR(15, 1) LINEAR(1, 16)—RELU()—LINEAR(16, 1) —SIGMOID()
CELEBA LINEAR(512, 16)—»RELU()—LINEAR(16, 1) LINEAR(7, 16)—RELU()—LINEAR(16, 1)—SIGMOID()

CoNVID(8, 32, 5)—RELU()—CONVID(32, 32, 3)
—RELU()—>MAXPOOLID(2, 2)—CONV1D(32, 64, 3)

LANDCOVER A RELUO—MAXPOOLID(2. 2)—CONVID(64. 6. 3) LINEAR(2, 16)—RELU()—LINEAR(16, 2)—SOFTMAX()
—RELU()— AVEPOOLID(1)

ADULT LINEAR(59, 16)—RELU()—LINEAR(16, 1) LINEAR(6, 16)—RELU()—LINEAR(16, 4)—SOFTMAX()

HOUSE PRICE LINEAR(15,32) -RELU() — LINEAR(32,1) LINEAR(1,64)— RELU() — LINEAR(64,4) — SOFTMAX()

CONV2D(3,32,3) — MAXPOOL2D(2,2)
—CONV2D(32,64,3) — MAXPOOL2D(2,2)
— CONV2D(64,128,3) — MAXPOOL2D(2,2)
— LINEAR(128%3%3,128)— LINEAR(128,10)

COLORED MNIST LINEAR(3,16) — RELU() — LINEAR(16,1) — SOFTMAX()

NICO RESNET-18() LINEAR(3,16) — RELU() — LINEAR(16,1)— SOFTMAX()
DATA SET D — A
SIMULATION LINEAR(11, 1) — RELU() — LINEAR(1, 1) — SOFTPLUS()
CELEBA LINEAR(8225, 16) — RELU() — LINEAR(16, 1) — SOFTPLUS()
LANDCOVER LINEAR(173574, 32) — RELU() — LINEAR(32, 1) — SOFTPLUS()
ADULT LINEAR(977, 16) — RELU() — LINEAR(16, 1) — SOFTPLUS()
HOUSE PRICE LINEAR(545, 32) — RELU() — LINEAR(32, 16) — SOFTPLUS() — LINEAR(16,1)
COLORED MNIST LINEAR(242122,32) — RELU() — LINEAR(32,1) — SOFTPLUS()
NICO LINEAR(11180113,32) — RELU() — LINEAR(32,1) — SOFTPLUS()

4.1 SIMULATION DATA

The simulation data consists of temporal heterogeneity observations with distributional shift w.r.t
time, which is used in (Lin et al., [2022; Tan et al., 2023) to evaluate OOD generalization. Details
of generating this data set is provided in Appendix [A.3] Among all the parameter settings, the most
challenging one is (p; , pt, p,) = (0.999,0.9,0.8), thus we use this setting in the evaluation.

Table [2| (left) shows the mean and worst accuracies of different methods over the four test envi-
ronments on simulation data. The proposed OOD-TV-based methods outperform their counterparts
in all the mean and worst accuracy cases. Moreover, OOD-TV-IRM-/; achieves the highest accu-
racies among all the competitors in all the cases, while OOD-TV-Minimax-/, achieves the highest
accuracies among all the competitors in all the cases without environment partition. Hence the OOD-
TV-based methods achieve the best performance regardless of whether the environment partition is
available or not.

Table 2: Accuracies of different methods on simulation data (left) and CelebA (right).

Method Mean Worst Method Mean Worst
ZIN 0.8356 0.7648 ZIN 0.7329 0.5840
OOD-TV-Minimax-¢/, 0.8621 0.8127 OOD-TV-Minimax-¢/, 0.7783 0.6840
Minimax-TV-¢; 0.7831 0.7615 Minimax-TV-£; 0.7712  0.6990
OOD-TV-Minimax-¢/; 0.8054 0.7632 OOD-TV-Minimax-¢; 0.7551 0.6934
IRM 0.8336 0.7615 IRM 0.7815 0.7308
OOD-TV-IRM-/, 0.8673 0.8191 OOD-TV-IRM-/, 0.7841 0.7519
IRM-TV-¢; 0.8592 0.8215 IRM-TV-¢; 0.7848 0.7392
OOD-TV-IRM-/; 0.8817 0.8519 OOD-TV-IRM-/; 0.7889 0.7525

4.2 CELEBA

The CelebA data set (Liu et al.| [2015) contains face images of celebrities. The task is to identify
smiling faces, which are deliberately correlated with the gender variable. The 512-dimensional deep
features of the face images are extracted using a pre-trained ResNet18 model (He et al.,|2016), while
the invariant features are learned using subsequent multilayer perceptrons (MLPs). ZIN, OOD-TV-
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Minimax-f5, Minimax-TV-¢; and OOD-TV-Minimax-/; take seven additional descriptive variables
for environment inference, including Young, Blond Hair, Eyeglasses, High Cheekbones, Big Nose,
Bags Under Eyes, and Chubby. As for IRM, OOD-TV-IRM-/5, IRM-TV-¢1, and OOD-TV-IRM-/;,
they use the gender variable as the environment indicator.

Table [2| (right) shows the accuracies of different methods on CelebA. The proposed OOD-TV-based
methods outperform their counterparts in 6 out of 8§ situations with both mean and worst accuracies.
Moreover, OOD-TV-IRM-¢; achieves the highest accuracies among all the competitors. Hence
OOD-TV-IRM improves OOD generalization on IRM-TV.

4.3 LANDCOVER

The Landcover data set consists of time series data and the corresponding land cover types derived
from satellite images (Gislason et al., 2006 [Russwurm et al., 2020; |Xie et al., [2021). The input
data have dimensions of 46 x 8 and is used to identify one of six land cover types. The invariant
feature extractor ® is implemented as a 1D-CNN to process the time series input, following the
approaches of Xie et al.| (2021)) and [Lin et al.[ (2022). For the scenarios where ground-truth en-
vironment partitions are unavailable, latitude and longitude are used as auxiliary information for
environment inference. All methods are trained on non-African data, and then tested on both non-
African (from regions not overlapping with the training data) and African regions. This is a complex
and challenging experiment among the 6 experiments of this paper.

Table [3] (left) shows the accuracies of different methods on Landcover. The proposed OOD-TV-
based methods outperform their counterparts in all the worst accuracy cases and in 3 out of 4 mean
accuracy cases, respectively. Hence the OOD-TV-based methods show competitive performance in
this challenging task.

Table 3: Accuracies of different methods on Landcover (left) and adult income prediction (right).

Method Mean Worst Method Mean Worst
ZIN 0.7423  0.6235 ZIN 0.8261 0.8013
OOD-TV-Minimax-f/5 0.6418 0.6386 OOD-TV-Minimax-f/5, 0.8354 0.8116
Minimax-TV-{; 0.6557 0.6547 Minimax-TV-{; 0.8298 0.8062
OOD-TV-Minimax-¢/; 0.6677 0.6625 OOD-TV-Minimax-¢/; 0.8348 0.8100
IRM 0.6447 0.6425 IRM 0.8264 0.8012
OOD-TV-IRM-/, 0.6789 0.6787 OOD-TV-IRM-/, 0.8349 0.8121
IRM-TV-/; 0.6459 0.6430 IRM-TV-/; 0.8264 0.8012
OOD-TV-IRM-/; 0.6647 0.6616 OOD-TV-IRM-/; 0.8339 0.8100

4.4 ADULT INCOME PREDICTION

This task uses the Adult data setﬂ to predict whether an individual’s income exceeds $50K per year
based on census data. The data set is split into four subgroups representing different environments
based on race € {Black, Non-Black} and sex € {Male, Female}. Two-thirds of the data from the
Black Male and Non-Black Female subgroups are randomly selected for training, and the compared
methods are verified across all four subgroups using the remaining data. Six integer variables —
Age, FNLWGT, Education-Number, Capital-Gain, Capital-Loss, and Hours-Per-Week — are fed
into ZIN, OOD-TV-Minimax-{5, Minimax-TV-¢; and OOD-TV-Minimax-¢; for environment infer-
ence. Ground-truth environment indicators are provided for IRM, OOD-TV-IRM-/5, IRM-TV-/4,
and OOD-TV-IRM-/;. Categorical variables, excluding race and sex, are encoded using one-hot
encoding, followed by principal component analysis (PCA), retaining over 99% of the cumulative
explained variance. The transformed features are then combined with the six integral variables, re-
sulting in 59-dimensional representations, which are normalized to have zero mean and unit variance
for invariant feature learning.

'https://archive.ics.uci.edu/dataset/2/adult
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Table [3] (right) shows the accuracies of different methods on this income prediction task. The pro-
posed OOD-TV-based methods outperform their counterparts in all the situations with both mean
and worst accuracies. Hence they are more effective and robust than the original IRM-TV methods
in this prediction task regardless of whether the environment partition is available or not.

4.5 HOUSE PRICE PREDICTION

The above four experiments are all classification tasks. We also perform a regression task with the
House Prices data se This task uses 15 variables, such as the number of bathrooms, locations,
etc., to predict the house price. The training and test sets consist of samples with built year in
periods [1900, 1950] and (1950, 2000], respectively. The house price within the same built year
is normalized. The built year variable is fed into ZIN, OOD-TV-Minimax-¢2, Minimax-TV-¢; and
OOD-TV-Minimax-¢; for environment inference. The training set are partitioned into 5 subsets with
10-year range in each subset. Each subset can be seen as having the same environment.

Table [4] (left) provides the mean squared errors (MSE) of different methods in this regression task.
The OOD-TV-based methods achieves lower MSEs than their counterparts in the mean result of all
the environments and the worst environment. Hence they are more effective and robust than the
original IRM-TV methods in the regression task.

Table 4: Left: mean squared errors of different methods in house price prediction. Right: accuracies
of different methods on Colored MNIST.

Method Mean Worst
ZIN 0.2862 0.4115 Method Mean
OOD-TV-Minimax-f5 0.2552 0.3649
Minimax-TV-{; 0.2961 0.4548 ZIN 0.9208
OOD-TV-Minimax-f; 0.2476 0.3641 OOD-TV-Minimax-f5  0.9705
IRM 0.9583 1.3858 Minimax-TV-{; 0.9199
OOD-TV-IRM-/, 0.5319 0.7616 OOD-TV-Minimax-/1  0.9699
IRM-TV-/; 0.4263 0.6281
OOD-TV-IRM-/4 0.4021 0.5595

4.6 COLORED MNIST

We use the Colored MNIST data seﬂ to evaluate the performance of our approach in multi-group
classification of a more general scenario. It consists of hand-written digits of 0 ~ 9 with different
background colors of red, green or blue. To make it more challenging, we hide the background color
information of samples, so that only the mean values of the red, green, and blue channels of a sample
can be used as three auxiliary variables for environment inference. Therefore, OOD-TV-Minimax
and Minimax-TV should be used in this setting. Their classification accuracies are shown in Table
[ (right). OOD-TV-Minimax achieves a high accuracy in this multi-group classification task, which
is significantly higher than Minimax-TV. Thus OOD-TV-Minimax is effective in improving OOD
generalization for this complex scenario.

4.7 NICO

The NICO data set (He et all 2021) is a widely-used benchmark in Non-Independent-and-
Identically-Distributed (Non-I.I.D.) image classification with contexts. It is a challenging data set
including both correlation shift and diversity shift. We use the Vehicle superclass to conduct ex-
periments, which consists of 7 classes of vehicles. Each class has several contexts, while different
classes may have different context sets. We randomly select 80% and 20% samples from each con-
text as training and test samples, respectively. Then we hide the context information of samples and
unite all the contexts to form a whole class. Therefore, only the mean values of the red, green, and
blue channels of a sample can be used as three auxiliary variables for environment inference, and

Zhttps://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
3https://www.kaggle.com/datasets/youssifhisham/colored-mnist-dataset
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only OOD-TV-Minimax and Minimax-TV can be used in this setting. The classification accuracies
are shown in Table [5] which indicates that OOD-TV-Minimax significantly outperforms Minimax-
TV. Thus OOD-TV-Minimax is effective in improving OOD generalization with both correlation
shift and diversity shift.

Table 5: Accuracies of different methods on NICO Vehicle.

Method Mean
ZIN 0.6357
OOD-TV-Minimax-f>  0.7548
Minimax-TV-£; 0.6547

OOD-TV-Minimax-¢;  0.7143

4.8 ADVERSARIAL LEARNING PROCESS

To visualize the adversarial learning process, we plot the objective values and parameter changes
for OOD-TV-IRM and OOD-TV-Minimax on simulation data in Figure[AT] Specifically, the overall
objectives are the g(¥, ®) and h(p, ¥, ) defined in and (14), respectively. The penalty terms
correspond to the second terms in and (T4), respectively. The parameter changes correspond
to |@F+D) — &K ||y and |[wF+HD — Wk ||y, respectively. We follow the annealing strategy of
(Lin et al} 2022)) in the early epochs, thus the adversarial learning starts from the 2001st epoch.
The Adam scheme (Kingma & Ba, [2015) is adopted as the optimizer. Figure indicates that the
adversarial learning process becomes stable with 400 epochs. Both of the overall objective and the
penalty term converge to form a stable gap, which corresponds to the fidelity term to be optimized.
Besides, both || @*+1) — &) ||, and ||T*+1) — W(F)||, converge to small values, which indicates

that the parameters ®(*) and ¥(*) are rarely updated.

We also demonstrate the adversarial learning process for OOD-TV-Minimax (OOD-TV-IRM is not
applicable) on Colored MNIST in Figure The Adam optimizer is used for the primal parameter
®, while the dual update (I8)(20) is used for ¥ to ensure convergence. Results show that the
adversarial learning process successfully converges with 600 epochs for OOD-TV-Minimax-¢; or
with 300 epochs for OOD-TV-Minimax-/{5. All these results indicate that the adversarial learning
process is feasible.

5 CONCLUSION AND DISCUSSION

We extend the invariant risk minimization based on total variation model (IRM-TV) to a Lagrangian
multiplier model OOD-TV-IRM, in order to improve out-of-distribution (OOD) generalization. It is
essentially a primal-dual optimization model. The primal optimization reduces the entire invariant
risk, in order to extract invariant features. The dual optimization strengthens the autonomous TV
penalty, in order to provide an adversarial interference. The whole OOD-TV-IRM objective is to
find a semi-Nash-equilibrium to keep a balance between the training loss and OOD generalization.
We further develop a convergent primal-dual algorithm to facilitate an adversarial learning for the
invariant features and the adverse environments. Experimental results show that the proposed OOD-
TV-IRM framework improves effectiveness and robustness in most experimental tasks with both
mean and worst accuracies or mean squared errors across different test environments.

One possible future work may be making the most of OOD-TV-IRM by improving the diversity
and representation of the training environments. Another approach may be improving effectiveness
of the primal-dual optimization scheme. A third approach may be developing new penalties with
different variations other than the widely-used TV penalty.
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A APPENDIX

A.1 PROOF OF THEOREM

Proof. Part (a).

First, we verify that there exists at least one solution to (15). Since A\(¥, @) is continuous w.r.t.
(U, @) and (¥, ®) belongs to a bounded and closed set, a solution to maxy A(¥, ®) can be obtained
for any given ® by the Weierstrass extreme value theorem, denoted by W,,,q.(®). Let A(P) :=
AP 0z (@), D). We then turn to prove that A(®) is a continuous function w.r.t. . For &1 # Do,
we have

/\(\Ijmax((l)2)7¢)1) g A(\I/mam(q)l)aq)l)- (21)

From the continuity of A, for any given € > 0, there exists some d; > 0, such that for any & €
B(®4, d1), we have

)\(\I}max(q)Z)a (I)) —e< )\(\I/maz((I)Q)v (bl)a (22)

where B(®1, §1) denotes an open ball centered at ®; with radius ;. Letting @5 € B(®1,4;) in
and combining it with (2I)), we have

A(\11771117;(‘1)2)7 (1)2) —€e< A(“I/maa;(q)l)a (I)l) (23)

Following a similar deduction, for the above € > 0, there exists some o > 0, such that for ¢, €
B(®5, d2), we have

)\(\Ijmam(él)v (I)l) —€e< )\(\Ijmam(CDQ)v (1)2) (24)
Combining and (24), for any given € > 0, as long as ||®1 — @52 < min{dy,d2}, we have
|)\(\I!ma:r((b1)7 (I)l) - )\(\Ilma:v((PQ)7 (D2)| < €. (25)

This proves that A(®) is continuous w.r.t. D.

As for (E,[|V,R(w o ®)|])?, the TV operator and the expectation are taken on the variable w,
which does not affect the continuity w.r.t. ®. Define

G(®) := g(V ez (), ®) = Eyp[R(w 0o ®)] + A(P)(Ey[|VwR(w o @))% (26)

It can be seen that G(®) is the sum, multiplication, and composition of continuous functions w.r.t.
®, thus it is also continuous w.r.t. ®. Using the Weierstrass extreme value theorem again, there
exists a solution to ming G(®), denoted by ®*. Let U* := U, ,..(®*), then (¥T*, ®*) is a solution

to (T3).
Part (b).
Next, we turn to investigate h(p, U, ®) in . From Appendix A.3 of IRM-TV (Lai & Wang,
2024),
E
B o[V R(w o @) = > |V R(wod, e;)|pi, 27)
i=1
where e; denotes the i-th training environment in the literature of IRM, and p; denotes the environ-
ment inference operator for the i-th training environment. indicates that E,,.,[|V,, R(w o ®)[]
is a linear function w.r.t. p € AP, where A¥ is the E-dimensional simplex defined in Section [3.4}
Thus Ey,[| Vi R(wo @)|] as well as (Eqy e[|V R(w o @)|])? is continuous w.r.t. p. On the other
hand, \(¥, ®) is continuous w.r.t. ¥. Define
&(p, D) = (Eue ]|V R(w 0 B)[])2. 28)
To examine the continuity of A\(¥, ®)&(p, &) w.r.t. the entire dual variable (p, ¥), we check its
values at two different points (p1, ¥1) and (p2, U3):
‘)‘(\1’17 q))e(pla (b) - )‘(\1’27 ‘I’)@(pg, (I))|
<A1, B)€(py, D) — AWy, B)E(pa, )| + [A(W1, ®)E(ps, B) — AW, B)E(py, D)

13
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When (p2, ¥3) — (p1, ¥1), the right hand side of (29) tends to zero, thus the left hand side of
also tends to zero. This verifies that \(¥, ®)&(p, @) is continuous w.r.t. (p, ¥) for any given P.

Using the Weierstrass extreme value theorem, there exists at least one solution to
max, ¢ [A(¥, ®)&(p, )] for any given @, denoted by (p, ¥)pmaz(P). Define

H(®) = h((p, V)maz(®), ®) =E 15, [R(w 0 @)] + max[A(¥, D)&(p, )], (30)

s

which is continuous w.r.t. ®. Following similar deductions to Part (a), there exists a solution to
ming H(®), denoted by ®*. Let (p*, U*) := (p, ¥)maz(P*), then (p*, T*, &*) is a solution to

Part (c¢).

Last, we turn to verify that any solutions (U*, ®*) to and (p*, U*, ®*) to (16) are semi-Nash-
equilibria. We first fix ®*, since ¥* = U,,,,.(®*) and (p*, ¥*) = (0, ¥)maz(P*), we have
g(T*, @*) > g(T, D*) or h(p*, T*,®*) > h(p, ¥, @*) for any ¥ or (p, ¥) in the parameter space.
Hence Item 1 in Definition [Iis satisfied.

On the other hand, from and (30), we have G(®*) < G(®) and H(®*) < H(®) in the

parameter space. Hence Item 2 in Definition |1|is also satisfied. In summary, Theorem [2| has been
proved.

O

A.2 PROOF OF THEOREM

Before starting the proof, we compute some gradients or subgradients in place of the conventional
gradients at non-differentiable points for g and h. This allows us to maintain the optimization flow
with the autograd module of mainstream learning architectures (like Pytorclﬂ). First, the subgradient
of |V R(w o @)| w.rt. @ is:

90|V R(w 0 ®)|= { e s (o) if VuR(wo )0, 31)
0 if VyR(wod®)=0,
where Jg[-] is the Jacobian matrix w.r.t. ®, and * is the matrix multiplication.
By the chain rule of derivative, the (sub)gradients of g w.r.t. ® and ¥ are:
0pg(V, @) =E,,[VaR(w o )] + 2A(V, P)E,[|VywR(w 0 @)||Ey [0s |V R(w o @)
+ V(¥ @)(Ey [V R(w o D)[])?,
Vug(V, @) =VyA(¥, ®)(E, ||V R(w o ®)[])% (32)

Similarly, the (sub)gradients of i w.r.t. p, ¥, and ® are:
Vph(p, W, ®) =220, D),y p[| Vo Rwo)||V (B [V Rwod)]),
Vah(p, ¥, ®) =Va (¥, ®)(Ewp[| Vi R(w o ®)[])?,
Oah(p, ¥, D) :]EW_@ Vo R(wo®)|+2X\(¥, )E ||V R(w o @)||Ey [0 |V R(w o @)]

+ VoA, ©)(Eyep[| Vi R(w o @)[])% (33)

Proof of Theorem 3] We first investigate the sequence {<I>(k)}. Combining and lmb we have

1
(k+1) _ (k) —
@ eVl < - 34)

Summing up both sides of from k = 2 to co yields

ad =1 | 1 1 1
(k+1) _ k)|, < 2 de = ) 0o _
kiz |® I P 372 < L w d¢ = o I P < 0. (35)

*https://pytorch.org/
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It means that the sum of infinite series > -, | @+ — ®(*)||5 is convergent. Then for any given

¢ > 0, there exists some N such that 3"3°  [|@*+1) — ®(®)||, < ¢. Hence for any k& > N and any
m e N+,

k+m—1 0
@) — o), < Z [@U+D — U], < [@UH+D — dU)||, < €. (36)
Jj=k j=N
It indicates that {®(*)} is a Cauchy sequence. From the completeness of the parameter space for @,
(%) converges to some point ®*. Following similar deductions, the sequences {¥(*)} for g, {®(*)}
and {(p™*), W(¥))1 for h also converge.

Next, we turn to analyze the computational complexity of this primal-dual algorithm. Without
loss of generality, we consider one iteration as having a complexity of O(1), since the complex-
ity within one iteration depends on specific forms of g or h and is relatively constant across different
(sub)gradient-type algorithms. Suppose the algorithm needs /N iterations in order to achieve a con-
vergence tolerance of e. From the above deduction, we have

> ~ ] 1 1
N — *|, < e+ _ o)), < / —d¢ = . <e. (3D
| | 1;\/ | | NG p=1 N1yt

The last inequality in indicates that the convergence tolerance e can be achieved as long as
N> [(p—1) 71 +1. (38)
By taking the smallest integer for /N in , we obtain the computational complexity O([(p —
1)e] "7 1).
O

A.3 SIMULATION DATA GENERATION

The binary outcome of interest Y (¢) with time ¢ € [0, 1] is caused and influenced by the invariant
features X, (¢) € R and the spurious features X (t) € R:

N(1,1), w.p. 0.5; N(Y(t),1),  w.p.ps(t);
Xolt) ~ {N(—l, 1), w.p. 0.5. Xolt) ~ {N(—Y(t), 1), wp.1—p,(b).

sign(X,(t)),  W.p. po;
Ye) ~ {—sign(Xv(t))7 w.p. 1 —p,.

X, (t) and X,(t) are further extended to 5 and 10 dimensional sequences by adding standard Gaus-
sian noise, respectively. We control the correlation between X, (¢t) and Y (¢) by a parameter p,,
keeping it constant, but change the correlation between X (t) and Y (¢) over ¢ by a parameter p(t).
Hence, the training data is generated with parameter setting (p; ,pJ,py), where p; and pf de-
note the ps(t) setting for ¢ € [0,0.5) and ¢ € [0.5, 1], respectively. As for the test data, we set
ps € {0.999,0.8,0.2,0.001} and keep the same p,. Time ¢ can be exploited as the auxiliary vari-
able in ZIN and Minimax-TV-/; for environment inference.

A.4 MORE RESULTS OF ADVERSARIAL LEARNING PROCESS
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Objective Value of Adversarial Training for OOD-TV-IRM Parameter Change of Adversarial Training for OOD-TV-IRM
—— Penalty Term — o+ — oW,
8 —— Whole Objective 0.20 wk+D — gy,
6 0.15
Q Q
3 E
Sa 2 0.10
2 0.05
0 0.00 e
2000 2050 2100 2150 2200 2250 2300 2350 2400 2000 2050 2100 2150 2200 2250 2300 2350 2400
Epoch Epoch
Objective Value of Adversarial Training for OOD-TV-Minimax 0 I(D)%rameter Change of Adversarial Training for OOD-TV-Minimax
1.0 —— Penalty Term — Jok+D — oW,
—— Whole Objective 0.05 — Wk D gk,
058
0.04
0.6 °
3 50.03
g g
0.4 0.02
02 . — 0.01
0.0 + 0.00
2000 2050 2100 2150 2200 2250 2300 2350 2400 2000 2050 2100 2150 2200 2250 2300 2350 2400
Epoch Epoch

Figure Al: Objective value and parameter change of adversarial learning for OOD-TV-IRM and
OOD-TV-Minimax on simulation data.
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Figure A2: Objective value and parameter change of adversarial learning for OOD-TV-Minimax on
the Colored MNIST data set. The top two figures correspond to OOD-TV-Minimax-¢;, while the
bottom two figures correspond to OOD-TV-Minimax-£s.
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