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Abstract

We study an online setting of the linear quadratic Gaussian optimal control problem on a sequence
of cost functions, where similar to classical online optimization, the future decisions are made by
only knowing the cost in hindsight. We introduce a modified online Riccati update that under some
boundedness assumptions, leads to logarithmic regret bounds. In particular, for the scalar case we
achieve the logarithmic regret without any boundedness assumption. As opposed to earlier work,
the proposed method does not rely on solving semi-definite programs at each stage.'
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1. Introduction

The problem of prediction and decision making has many applications in engineering, economy
and social sciences, for instance, portfolio selection (Agarwal et al., 2006; Luo et al., 2018), trans-
portation and traffic control (Patel and Ranganathan, 2001), power engineering (Zhai et al., 2016),
manufacturing and supply chain management; and it has received substantial attention in recent
years, see (Anava et al., 2013), (Ross et al., 2011), and (Cesa-Bianchi and Lugosi, 2006). The sub-
ject we study in this work fits into the general theme of decision making problems, and particularly
is related to online optimization. The literature on online optimization is extremely rich and its
connections to many other areas of learning has been explored in recent years (Cesa-Bianchi and
Lugosi, 2006; Hazan, 2016; Shalev-Shwartz, 2012; Hazan et al., 2007; Hazan and Kale, 2014; Gofer
et al., 2013; Blum and Mansour, 2007).

Unlike the classical setting of online optimization, where the decisions of the learner are solely
chosen according to a cost function, in many realistic scenarios the learner’s decisions are inputs
to a control system. Examples include power supply management in the presence of time-varying
energy costs due to demand fluctuations and tracking of an adversarial target. In such scenarios,
decisions are usually assumed to be a function of the current state which is referred to as a policy.
As usual, the regret is defined as the difference between the accumulated costs incurred by control
actions made in hindsight using previous states and the cost incurred by the best fixed admissible
policy when all the cost functions are known in advance. Similar to online optimization, the objec-
tive is to design algorithms to generate policies which make the regret function grow sublinearly.
Of course, the online optimization problem discussed above would reduce to the classical optimal
control problem if the cost functions were available to the decision maker. Our work is closely re-
lated to the recent work of Cohen et al. (2018) where an online version of linear quadratic Gaussian
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control is studied. In particular, an online gradient descent algorithm with a fixed learning rate is
proposed, where in each iteration, a projection onto a bounded set of positive-definite matrices is
taken, which itself relies on solving a semi-definite program. Under the assumptions that the under-
lying system is controllable, the cost functions are bounded, and the covariance of the disturbance is
positive definite, it is proved that the regret is sublinear, and grows as (’)(ﬁ) where 7' is the time
horizon. Other closely related works are (Agarwal et al., 2019) and (Agarwal et al., 2019), where
the cost functions are assume to be general convex and globally Lipschitz functions. In contrast
to (Cohen et al., 2018), the noise assumed in (Agarwal et al., 2019) is adversarial, and (Agarwal
et al., 2019) achieves a regret bound of O((log(T))7). In these works, the generated control ac-
tions, which lead to a sublinear regret bound, are linear feedbacks which rely on a finite history of
the past disturbances.

Before we state our contributions, we point out a wider set of literature related to our work.
First, we note that one can think about the underlying control system as a dynamical constraint on
the optimization problem. Considering control systems as constraints is also classical in the context
of model predictive control (Garcia et al., 1989). Although we tackle dynamic constraints in this
work, we should emphasize that online optimization problems with static constraints, known only
in hindsight, also play a key role in various settings and have generated interest in recent years (Yu
et al., 2017; Neely and Yu, 2017; Jenatton et al., 2016).

Our work is also related to the framework of Markov decision processes (MDPs), where the
system transition to the next state is defined through a probability distribution. Moreover, a reward
is given to the decision maker for each action at each state. This framework is classical in rein-
forcement learning, where the objective is to learn the optimal policy which yields the maximum
reward (Sutton and Barto, 2018). It is also worth pointing out that there is another key role that
regret minimization has played recently, bringing learning and control theory together, in the con-
text of robust control, adaptive control, and system identification. Here, the regret enters through
the lack of perfect knowledge of the model, and research efforts focus on generating algorithms for
updating models in a data-driven fashion (Yang et al., 2019; Karimi and Kammer, 2017). Finally,
our setting is also related to online optimization in dynamic environments (Hall and Willett, 2015),
where the decisions are constrained in dynamics chosen by the environment. However, the objective
of (Hall and Willett, 2015) is to study the impact of model mismatch on the overall regret, whereas
in this paper the decisions are input to a control system, which impacts the way the decisions affect
the future outcomes through its dynamics.

Contributions. We consider the online linear quadratic Gaussian optimal control problem,
where the cost function only becomes available in hindsight. In contrast to (Cohen et al., 2018),
where an online algorithm using semi-definite programming update is employed to generate the
control inputs, we take a control-theoretic approach and employ a modified version of the classical
Riccati update, using averaged past data, to generate control policies. Our main result is a O(log T")
regret bound for the online linear quadratic Gaussian optimal control problem, improving O(v/T)
bound of Cohen et al. (2018) and O((log(T))7) of Agarwal et al. (2019) for time horizon T, under
some boundedness assumption. The technical part of our result relies on characterizing the interplay
between a notion of stability for the sequence of control policies and boundedness of the solutions
of the proposed Riccati update; in particular, for the scalar case, we prove a stronger result that
initializing the control policy to be stable is enough to guarantee boundedness of the solutions of
the proposed online Riccati update.

Notation. Throughout the paper, we use the following mathematical notion. Let R denote the
set of real numbers. We use lowercase letters for vectors and uppercase letters for matrices. We
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denote by || - || the Euclidean norm on vectors and its corresponding operator norm on real matrices.
We denote by A" the transpose of matrix A. Thus ||A|| = omax(A) = /Amax(AT A), where
Omax (A) is the largest singular value of A and A\yax (AT A) is the largest eigenvalue of A" A. Trace
of matrix A is denoted by Tr(A). If A is an n x n real matrix with eigenvalues A, ..., Ay, then the
spectral radius of p(A) of A is p(A) = max{|A1],...,|\n|}. Weuse A = B to indicate that A — B
is positive semi-definite.

2. Problem Formulation

We start by describing the general problem of online optimization in control systems. We focus on
a special class of control systems where the system dynamics are linear and the cost functions are
quadratic. Let us recall this setting.

2.1. Discrete-Time Linear Quadratic Gaussian Control

The discrete-time linear quadratic Gaussian (LQG) control problem is defined as follows, see for
instance (Soderstrom, 2002): Let x; € R™ and u; € R™ be the control state and the control action
at time ¢, respectively, with initial state x1. The system dynamics are given by

Ti41 = A{Et + But + wy, t> 1 (1)

where A € R™", B € R™™, and {w;};>1 are i.i.d. Gaussian noise vectors with zero mean
and covariance W € R™" (w; ~ N(0,W)). It is assumed that the initial value is Gaussian
x1 ~ N(m, X1) and is independent of the noise sequence {w; };>1. The cost incurred in each time
step ¢ is a quadratic function of the state and control action given by z; Qsz; + u, Ryus, where
Q: € R™™ and R, € R™*™ are positive-definite matrices. The total cost after 7" time steps is
given by

T-1

Jr(z1,uy, ..., ur) = E[x}—QTxT + Z (x;er:Et + uZ—Rtut)].
t=1

We consider controllers of the form uw; = m(x¢), where the function 7, : R® — R™ is called a
policy. This assumption does not restrict generality, as the optimal policy will provably be of this
form (Soderstrom, 2002). It is well-known that under the assumption that the control system is
stabilizable, and the cost matrices (); and R; are positive-definite, the optimal policy is a stable
linear feedback of the state, which will be described in Section 3.

2.2. Problem Setting

We now define the problem we study in this work, following (Cohen et al., 2018). In online linear
quadratic control, the sequence of cost matrices {Q;}+>1 and {R;};>1 are not known in advance
and (); and R; are only revealed after choosing the control action u;. Since it is not possible to find
the optimal policy before observing the whole sequence of cost matrices { Q¢ }+>1 and { R }+>1, the
decision maker faces a regret. Here, we assume that the control system (A, B) is stabilizable, and
the cost matrices (); and R; are positive-definite and uniformly bounded over ¢ > 1. As the optimal
policy for the system with these assumptions is given by a stable linear feedback, we use the set of
stable linear feedback functions as the set of admissible policies. This setting is formally presented
next.
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Let x; € R™ and u; € R™ be the control state and controller action at time ¢ > 1. The controller
uses a linear feedback policy u; = — K2, and commits to this action after observing x;. Then the
controller receives the positive-definite matrices QQ; € R™*™ and R; € R™*™, and suffers the cost

Ji(K) =E [xj Qute + u] Rtut} . 2)

The objective is to design an algorithm to generate a sequence of policies {/;};>1 such that the
regret function, which is defined as

where KC is the set of stable policies, grows sublinearly in 7. In other words, the average regret over
time converges to zero. Before stating our main results, we provide a brief review of the iterative
Riccati updates that we employ to design our main algorithm.

3. Iterative Methods for Solving the Discrete Algebraic Riccati Equation

In the classical LQG problem, where all the cost functions are known, the optimal policy can be
obtained by dynamic programming, and is a linear function of the state. In particular, u; = — K,
where K is given by the equation

Ky = (B"Py1B+ R) " 'B" P14,

and P, is a sequence of positive-definite matrices obtained iteratively, backwards in time, from
the dynamic Riccati equation:

P=A"P A—A"P\B(B'"P.y1B+R,) 'B"P 1A+ Q (3)

with the terminal condition Pr = Q.
For the infinite-horizon problem with the assumption that Q; = @Q and R; = R are fixed, and
under the assumptions that

1. R is positive-definite

2. the pair (A, B) is stabilizable, i.e., there exists a linear policy w(x) = —Ku such that the
closed-loop system x; 11 = (A — BK)xy is asymptotically stable: p(A — BK) < 1,

3. the pair (A, C), where Q = C'TC, is detectable [i.e., if us — 0 and Cx; — 0 then, 2; — 0],

it is well-known that the optimal policy is unique, time invariant, and is a linear function of the
state (Bertsekas, 2018), i.e., uy = —K*x;. Here K* is given by

K*=(B"P*B+ R)"'B' P*A, 4)
where P~ satisfies the discrete algebraic Riccati equation (DARE):

P*=A"P*A—-A"P*B(B"P*B+ R)"'B'P*A+Q. 5)
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Moreover, P; given by (3) converges to P* as ¢ — oo (Soderstrom, 2002). By using the policy
K*, we have that 411 = (A — BK*)x; + w;. The optimal policy K* is guaranteed to be stable
ie. p(A— BK™*) < 1. Here, x; converges to a stationary distribution, i.e., z; converges weakly
to a random variable = which has the same distribution as (A — BK™)x + w, so that we have
E[z] = E[(A — BK*)x + wy], which implies E[x] = 0, and the covariance matrix X = E[zx ]
satisfies X = (A — BK*)X(A — BK*)" + W, see e.g., (Cohen et al., 2018).

Several methods for solving DARE exist in the literature, including iterative methods (Caines
and Mayne, 1970), algebraic methods (Rodman and Lancaster, 1995), and semi-definite program-
ming (Balakrishnan and Vandenberghe, 2003). Our work is based on iterative methods, and in
particular, we use the technique studied by Hewer (1971). In what follows, we modify this tech-
nique and use it for the online linear quadratic Gaussian problem. We present our algorithm after
reviewing some salient properties of stable policies. Similar to (Cohen et al., 2018), we use the
notion of strong stability, which allows us to analyze the rate of convergence of the state covariance
matrices under our proposed algorithm.

4. Strong Stability

A key property that we require before introducing our algorithm is the notion of strong stability and
sequential strong stability which are defined in (Cohen et al., 2018). The notion of strong stability
is defined as follows.

Definition 1 A policy K is called stable if p(A—BK) < 1. A policy K is (k,y)-strongly stable (for
k> 0and0 < v < 1) if | K|| < k, and there exist matrices L and H such that A—BK = HLH !,
with |L|| <1 —vand |H|||H || < k.

Note that every (k,y)-strongly stable policy K is stable, since the matrices A — BK and L
are similar and hence p(A — BK) = p(L) < (1 — ). (Cohen et al., 2018, Lemma B.1), shows
that every stable policy is (k,y)-strongly stable for some x > 0 and 0 < v < 1. Under the
assumption of (k,y)-strong stability of policy K, the state covariance matrices X; = E[zyz/ ]
converge exponentially to a steady-state covariance matrix X, which satisfies

X =(A-BK)X(A-BK)" +W;

See (Akbari et al., 2019, Lemma A.2) for details. In order to obtain a similar result for the change of
the state covariance matrices using a sequence of different (r, )-strongly stable policies { K }+>1,
we need to define a notion of sequential strong stability, which is presented next.

Definition 2 A sequence of policies { Ky }+>1 is sequentially (k,y)-strongly stable, for k > 0 and
0 < 7 <1, if there exist sequences of matrices { H }t>1 and { Lt }+>1 such that

A - BK; = H;L;H; "
forallt > 1, with the following properties:
o Ll <1 -~ and | K] < r:
o ||H|| < Band |H || <1/awithk = f/aand o > 0 and § > 0;

o [[H \Hi| <1+7.
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We now proceed with some key results that we later use to ensure strong stability for the sequence of
policies generated. Suppose that a sequence of positive-definite matrices P is generated recursively
as

P, = (A—- BK,)"P(A - BK,)+ Q, + K R K, (6)

where -
Kt+1 == (BTPtB + Rt)_lBTPtA (7)

and where R, € R™*™ and Qt € R™*™ are given positive-definite matrices for all ¢ > 1, and K;
is an initial stable policy. The reason for this update will become clear as part of our algorithm in
Section 5. The key point we wish to make here is that under the assumption of uniform boundedness
of the matrix sequence { P, }+>1, and the stability of matrix K, for all ¢ > 1, the sequence { K} };>1
is uniformly (k, 7)-strongly stable, with appropriate choices of x and ~.

Proposition 3 Assume that fort > 1, Q¢, Ry = pl and P, < vI, where p,v > 0 and {P;}¢>1 is
the sequence of matrices obtained as the solution of (6), and assume that the policy K; given by (7)

is stable for t > 1. Define k = \/% Then the sequence { Ki}>1 is uniformly (K, 1/2k?)-strongly
stable.

We refer to (Akbari et al., 2019) for a proof of this result. We now present a second useful result,
where we show that under the additional property that the rate of changes of sequence F; is small

(which we will be able to establish for our proposed algorithm), one can obtain that the sequence
{K}+>1 is sequentially strongly stable; the proof can again be found in (Akbari et al., 2019).

Proposition 4 Assume that for t > 1, Q¢, Ry = pl and P, < vI, where p,v > 0 and {P;}1>1
is the sequence of matrices obtained as the solution of (6), and assume that the policy K; given

by (7) is stable for t > 1. Let k = \/% and suppose that | P,11 — Pi|| < n for allt > 1 for some
n < p/R2. Then the sequence {Ky};>1 is sequentially (k,1/2&?)-strongly stable.

Note the above results rely on uniform boundedness of the sequence { P; };>1, which we assume
throughout the paper. However, we can show that stability of K is enough to guarantee this property
in the scalar case, see (Akbari et al., 2019, Proposition A.4). We believe that this property should
hold only by assuming stability of /; for the general case, but have not been able to prove this.

S. The Online Riccati Algorithm

We outline our main algorithm in this section. Our assumptions are as follows:

Assumption 5.1 Throughout we assume that
e The pair (A, B) is stabilizable.

e The cost matrices QQy and Ry are positive-definite and pl =< Qy, pI = Ry, and Tr(Qy) < o,
Tr(Ry) < o, for some o > > 0 forall t > 1.

e For the noise covariance matrix W we have that w = Tr(W') < cc.
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We first provide an informal description of the algorithm; a formal description is given in Al-
gorithm 1. We start from a stable policy K7; the existence of K is provided by the assumption
of stabilizability of the control system. At each time step ¢ > 1, the controller uses the policy
uy = —Kyxy after observing x¢, then the cost matrices (Q; and R; are revealed, and the controller
updates P; and K; using the average of the history of Q:s and Rys through (6) and (7). There is
a technical step in our algorithm, which we call the “reset” step. This step allows us to show that
using these updates the change of the norm of the policies is O(1/t), and this gives a regret bound
O(log(T)). Before we state the algorithm, we need to elaborate on the parameters used.

Remark 5 (Parameters used in Algorithm 1) Our algorithm naturally uses parameters x and o,
stated in Assumption 5.1. For the reset step, we also need (an estimate on) the strong stability
parameters  and vy, which are defined in Algorithm 1. Proposition 3 plays a key role in that regard,
as it states that as long as we can estimate a uniform bound on the sequence P;, we can obtain these
parameters. In the scalar case, we know this uniform bound (Akbari et al., 2019); in other cases,
given that the parameters are not needed in the early steps of the algorithm, one can envision that we
can run our algorithm with a large estimate on this bound and adjust it if necessary. Extending the
uniform boundedness of the sequence P, to vector cases, which is an avenue of our current research,
will remove this restriction all together.

Algorithm 1 Online Riccati Update

Input: The system matrices A and B, initial state x1, time horizon 7, parameters v, i,k =
v/p,y = 1/(2’{2)70
Output: A sequence of stable policies {K;}7 ;
1: Initialize K to be stable

2: foreacht =1,2,--- ,T:

3 receive xy

4: use controller u; = — Kz and receive )y and R

5 update By = SRy 1 + TRy, Qr = 52 Q1 + 1@y
6 update P, as the solution of

= (A - BK;)"P,(A - BK;) + Qi + K R/K;

7 Reset: s o311 Bl 2

8 ift=1* = (%(QAJ,{JFWHH:

9: Initialize ¢ = 0, Py = P+, and KO = Kt*

10: while |, — Py || > (2% + CliCLVS

11: l—1l+1 R

12: K, = (B Pg 1B+Rt*) 1BTPZ 1A

13: Py satisfies P, = (A — BK;)T Py(A — BKy) + Qi + K] Ri- K,
14: return Py = Py

15: return Kt+1 = (BTPtB + Rt)ilBTPtA
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6. Main Results

We are now in a position to state our main contribution.

Theorem 6 Suppose that the tuple (A, B, {Q:}_,, { R}, W) satisfies Assumption 5.1. Sup-
pose that the matrices P, generated by Algorithm I are uniformly bounded. Then we have that

R(T) = O(log(T))-

Proof [Outline of the proof of Theorem 6] The proof is provided in (Akbari et al., 2019), and is quite
involved. We provide a brief outline here. Our first technical result (Akbari et al., 2019, Lemma A.5)
shows that Algorithm 1, as long as it is initialized at an stable policy, iteratively produces stable
polices. This step is analogous to the classical result of Hewer (1971) for the case where the cost
objective matrices (); and R, are fixed. Recall that, by Proposition 3, stability of policies K; is
required to establish strong stability. A technical part of this proof demonstrates the reason why we
need the reset step of the algorithm to ensure that the sequence of policies { P41 — P;} decay as
m/t, for some m > 0. Using this and by rewriting the regret using trace products, we establish a
set of bounds (Akbari et al., 2019, Lemmas A.8, A.9, A.10) which eventually yield the result. |

Note that the assumption of (k,y)-strongly stability in Theorem 6 will be satisfied as long as
the solutions to the online Riccati equation are uniformly bounded. In particular, we do not need
this assumption for the scalar case, see (Akbari et al., 2019, Proposition A.4).
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