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Abstract
This paper explores test-agnostic long-tail recog-
nition, a challenging long-tail task where the test
label distributions are unknown and arbitrarily im-
balanced. We argue that the variation in these dis-
tributions can be broken down hierarchically into
global and local levels. The global ones reflect a
broad range of diversity, while the local ones typ-
ically arise from milder changes, often focused
on a particular neighbor. Traditional methods
predominantly use a Mixture-of-Expert (MoE)
approach, targeting a few fixed test label distri-
butions that exhibit substantial global variations.
However, the local variations are left unconsid-
ered. To address this issue, we propose a new
MoE strategy, DirMixE, which assigns experts to
different Dirichlet meta-distributions of the label
distribution, each targeting a specific aspect of lo-
cal variations. Additionally, the diversity among
these Dirichlet meta-distributions inherently cap-
tures global variations. This dual-level approach
also leads to a more stable objective function, al-
lowing us to sample different test distributions
better to quantify the mean and variance of per-
formance outcomes. Theoretically, we show that
our proposed objective benefits from enhanced
generalization by virtue of the variance-based reg-
ularization. Comprehensive experiments across
multiple benchmarks confirm the effectiveness
of DirMixE. The code is available at https:
//github.com/scongl/DirMixE.
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Figure 1. Traditional methods can only capture global variations
of label distribution. By contrast, our DirMixE learns from both
global and local variations, covering more test distributions.

1. Introduction
Traditional machine learning (ML) methods are usually
designed for data with a balanced distribution (Krizhevsky
et al., 2009; Deng et al., 2009). In contrast, most real-world
data exhibits a long-tailed nature. Specifically, a few classes
have a large number of samples (i.e., head classes), while
many others have far fewer (i.e., tail classes) (Zhang et al.,
2023b). This pattern produces profound studies in many
tasks, including species classification (Horn et al., 2018;
Miao et al., 2021), face recognition (Zhang et al., 2017;
Zhong et al., 2019), medical image diagnosis (Galdran et al.,
2021), social image understanding (Tang et al., 2016; Li
et al., 2018), semantic segmentation (Zhong et al., 2023;
Zhang et al., 2020), and object detection (Lin et al., 2017).

Hitherto, considerable methods have been developed to ad-
dress this issue seeing its widespread nature. To evaluate
model performance with long-tail distributions, most exist-
ing studies train their models on long-tailed data and test
them on a balanced dataset (Cui et al., 2019; Cao et al.,
2019; Kang et al., 2020; Menon et al., 2021; Kini et al.,
2021b; Cui et al., 2021; Rangwani et al., 2022; Alshammari
et al., 2022; Wang et al., 2023). This protocol poses an
implicit assumption: the test distribution is balanced and
fixed. However, this assumption is often invalid, as the test
distribution is typically unknown and can change over time.

To reduce the bias in test distribution, Zhang et al. (2022) re-
cently proposed a more practical setting called test-agnostic
long-tailed recognition. This setting aims at ensuring model
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efficacy across heterogeneous test distributions, each ex-
hibiting varying levels of imbalance (ranging from long-tail
and nearly uniform to inversely long-tail distributions). To
address this challenge, they propose a novel mixture of ex-
perts approach called SADE, crafting distinct experts for
each type of distribution. A typical feature of SADE is
that each expert therein is assigned to a fixed label distri-
bution. We argue that the random variation of the unseen
test label distribution could be decomposed into global and
local variations. The global variations capture the hetero-
geneous diversity across different distributions (say, the
significant gap between long-tail and inverse long-tail dis-
tribution). The local variations capture the milder changes
mostly concentrated within a neighbor. Back to SADE,
the fixed assignment scheme could capture global varia-
tions by choosing sufficiently diverse target distributions
for different experts. However, the local variations of label
distributions can hardly be discovered by fixed points. In
this sense, how to comprehensively utilize the hierarchical
random variations remains an open problem. To address this
issue, we propose a new mixture-of-experts strategy with
the following contributions.

First, we explore how to better model the randomness of the
unknown test label distributions in a hierarchical manner.
To this end, we propose a probabilistic framework where the
label distributions are presumed to be sampled from a meta-
distribution. To capture the global variations, we formulate
the meta-distribution as a mixture form of heterogeneous
distributions. Herein, each component is a Dirichlet dis-
tribution capturing the local variations of a specific factor
disentangled from the meta-distribution. Furthermore, we
allocate a specific expert for each component of the meta-
distribution to ensemble expert models enjoying diverse
skills. The overall effect is illustrated in Fig.1.

On top of this, we take a step further to explore how to
evaluate the overall performance on the meta-distribution
and learn from it. We argue that the average performance is
not stable enough for the complex random variations of the
test label distributions. In this sense, we develop a Monte
Carlo method for estimating the mean and variance of the
averaged training loss obtained across different label distri-
butions. From the optimization perspective, minimizing the
variance term might prevent the model from performing bet-
ter than the average level. We thus construct a semi-variance
regularization as a surrogate for the empirical variance, se-
lectively penalizing performances below the average level.
The attained estimation forms the basis for our objective
function in training the expert ensemble.

Finally, we dive into the theoretical underpinnings for the
generalization ability of our method. We can attain a sharper
upper bound of generalization error thanks to the variance-
based regularization scheme. Moreover, it also indicates

that Monte Carlo sampling offers better generalization than
the previous method developed on fixed test distributions.

2. Related Work
This paper will provide a brief overview of several areas
closely related to our study.

Loss Modification. The main problem with traditional
methods is their poor performance on tail classes. A direct
solution is modifying the loss function to enhance perfor-
mance for these classes. Increasing the weights of tail-class
losses is a common tactic (Morik et al., 1999; Cui et al.,
2019) along this course. While seemingly reasonable, it
can lead to unstable optimization (Cui et al., 2019; Cao
et al., 2019; Wang et al., 2023) and ruin the overall perfor-
mance. Cao et al. (2019) suggests using weighted terms
mainly in the later stages of training. To further address the
optimization issues caused by unequal weights, another line
of research turns to adjust the logits through class-specific
operations. For instance, Tan et al. (2020) observes that pos-
itive samples of one class can be negative for others, causing
discouraging gradients for tail samples. To address this issue
they proposed the equalized loss, adding class-dependent op-
erations to ignore these gradients. LDAM imposes a larger
margin penalty on tail-class logits for stronger regularization
(Cao et al., 2019). The LA loss (Menon et al., 2021) uses
additive adjustments on the logits to maintain the consis-
tency of balanced error. Later, Kini et al. (2021a) combines
additive and multiplicative terms (Ye et al., 2020) to form a
unified approach called the VS loss. Most recently, Wang
et al. (2023) provides a detailed generalization analysis of
these loss-modification methods using a local contraction
lemma.

Experts Ensembling. In our paper, we address the long-tail
issue using a mixture of experts strategy. This approach is
a specific form of ensemble learning that combines multi-
ple models to enhance overall model generalization. Early
long-tail ensemble learning methods (Zhou et al., 2020; Guo
& Wang, 2021) use two network branches to handle long-
tail and uniform distributions separately. During training,
these branches’ outputs are dynamically merged, shifting
the focus progressively from head to tail classes. Li et al.
(2020) finds that balanced datasets often outperform long-
tail ones. As a result, they split the long-tail dataset into
several more balanced subsets and designed networks with
multiple branches. Since model diversity is crucial in ensem-
ble learning, recent developments have turned their focus
to improving experts with different skills. For instance, in
ACE (Cai et al., 2021), three experts are created to learn
from subsets containing all classes, middle+tail classes, and
tail classes, respectively. RIDE (Wang et al., 2021) uses a
KL-divergence based loss to encourage diversity among ex-
perts. SADE (Zhang et al., 2022) introduces a concept called
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test-agnostic long-tail recognition, which demands gener-
alization across various test distributions. This is achieved
by combining diverse experts trained with different logit
adjustments using self-supervision. Finally, BalPoE (Aimar
et al., 2023) suggests a balanced product of experts approach,
blending multiple logit-adjusted experts using a product rule
to suit the chosen test distribution.

In this paper, we construct a distributional mixture of experts
model for the test-agnostic long-tail recognition task. Specif-
ically, instead of using fixed test distributions, we adopt a
Dirichlet mixture distribution to simultaneously model the
global and local variations of the unseen label distribution.
Moreover, our method also enjoys a sharp generalization
bound.

3. Problem Formulation
In this study, we focus on the challenge of training a
good model in the presence of a long-tail data distribu-
tion. We define our training data as S = {xi, yi}Ni=1,
sampled from distribution D, with a total of N instances.
Here, xi ∈ X ⊆ Rd represents the raw input feature of
dimensionality d for instance i, and yi ∈ 1, 2, · · · , C de-
notes the corresponding label in a C-class classification
problem. Under this setting, if we decompose the joint
data distribution as D = Ptr [x|y] · Ptr [y], then the la-
bel distribution is often highly skewed in the sense that
maxi Ptr [y = i]/minj Ptr [y = j] >> 1. This imbalance
necessitates the design of specialized learning strategies to
ensure adequate performance in the tail classes.

Test Agnostic Long-tail Recognition. Contrary to the as-
sumption of a uniform test label distribution, we adopt the
test agnostic long-tail recognition in (Zhang et al., 2022).
This approach evaluates model performance across multi-
ple test sets, each subjects to a different label distribution.
From a distributional standpoint, we can frame this as a
label shift problem, where i) Ptr [x|y] = Pte [x|y] and ii)
Ptr [y] ̸= Pte [y] generally. To model the uncertainty of
the test label distributions, we assume that the labels are
sampled in the following hierarchical process:

1) Due to label shift problem, the test label distribution
Pte [y] should be more than just a constant function.
In this paper, we assume that Pte [y] is rather sam-
pled from a meta-distribution E over the simplex
∆C , i.e., Pte [y] ∼ E . Moreover, the selected meta-
distribution should: i) reflect the diversity of the label
distributions with significant different degrees of imbal-
ance (global variations); ii) reflect the local variations
of the label distributions to make more stable predic-
tions (local variations).

2) The test data is then sampled from the observed test
distribution: (x, y) ∼ Pte [x, y] = Ptr [x|y] · Pte [y].

Goal. We aim to develop a well-trained model that demon-
strates good performance across the entire spectrum of test
label distributions within E . Moreover, if we denote the per-
formance of a model f on test data Dte by a loss function ℓ,
the goal can be expressed as:

E
(x,y)∼Pte[x,y]

ℓ (y, f(x)) is small for most Pte [y] ∼ E .

4. Methodology
4.1. Preliminaries

To initiate our discussion, we revisit the approach to ad-
dressing the label shift problem in scenarios where the test
label distribution Pte [y] is fixed but differs from the training
distribution.

Following the convention of the classification problem, we
want to learn a scoring function {f (1)θ , · · · , f (C)

θ } : Rd →
∆C by minimizing the CE loss over the training data:

ℓCE(fθ(x), y) = − log
(
softmax

(
f
(y)
θ (x)

))
.

With the adjusted logits (Menon et al., 2021), if the soft-
max function is calibrated, we have softmax(f

(y)
θ (x)) ∝

Ptr [y|x]. We can then achieve the Fisher consistency in the
sense that:

ŷ = argmax
i∈{1,··· ,C}

f
(i)
θ (x) ≈ argmax

i∈{1,··· ,C}
Ptr [y = i|x]

However, due to the label shift problem, the prediction rule
suffers a distributional bias since Ptr [y|x] ̸= Pte [y|x]. To
address this issue, (Hong et al., 2021) proposes to employ
the logit adjustment method (Menon et al., 2021) to modify
the loss function. Specifically, one can use the following
loss function denoted as ℓLA (fθ(x), y;Pte):

ℓCE

(
f
(y)
θ (x)− log

(
Pte [y]
Ptr [y]

))
. (1)

To see how the new logarithm factor eliminates the bias,
we can again check the probability correspondence when
calibration of the softmax score is achieved:

softmax(f
(y)
θ (x)) ∝ Ptr [y|x] ·

Pte [y]
Ptr [y]

∝ Pte [y|x]

This implies that when the model is effectively trained, it is
possible to re-establish the Bayes rule.

4.2. DirMixE: Learning with a Dirichlet Mixture of the
Experts

We are ready to formulate our method, called DirMixE, for
unknown label distributions Pte [y]. Seeing the complicated
random variation, minimizing the mean error is not enough
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for a stable prediction. In this sense, we aim to optimize
the model performance from a distributional perspective. In
other words, we want to ensure the average error is low for
most possible choices of Pte [y]. To do this, we control the
average error’s first (mean) and second (variance) moment to
be small. Mathematically, we try to minimize the following
objective function:

E
Pte∼E

[R(f ;Pte)] + λ · V
Pte∼E

[R(f ;Pte)] (2)

whereR(f ;Pte) = E(x,y)∈Ptr
ℓLA(fθ(x), y;Pte) is the ex-

pected logit adjustment loss (see Eq.1) given the label distri-
bution Pte, and λ is a trade-off coefficient.

It is hard to simultaneously minimize all the training losses
over different distributions by learning a single model. To
address this issue, we propose an ensemble learning strategy
to deal with the heterogeneity among test distributions with
different experts. We will elucidate the technical aspects
of our approach by addressing three key questions: 1) How
to model the distribution E to capture the test distribution
of interest effectively, 2) How to assign different experts to
distinct test distributions, and 3) How to approximate the
objective function using sampling methods and empirical
data.

Targeted E . The target E is designed to capture the global
and local variations of the label distribution, where we re-
sort to the hierarchical structure of mixture distributions.
Specifically, we define K as the number of components
in this mixture distribution, using a discrete distribution to
select a component i with probability pi. Given the com-
monality of the Dirichlet distribution for sampling discrete
probabilities (label distributions are discrete probabilities ),
we define the i-th component itself as a Dirichlet distribu-
tion with parameters α(i) = [α

(i)
1 , · · · , α(i)

C ]. This mixture
distribution framework facilitates the hierarchical sampling
of Pte, offering a structured approach to model the variation
of test label distributions:

Pte|i ∼ Dir
(
α
(i)
1 , · · · , α(i)

C

)
(3)

i|p ∼ Discrete (p1, · · · , pK) (4)

In the meta-distributions, the diversity across different dis-
tributions captures the global variations. Moreover, within
each component, the Dirichlet distribution makes sure that
the local variations concentrated on the mean can be effec-
tively characterized. In this sense, we can better utilize the
hierarchy of the variations by virtue of the meta-distribution.

Note that prior research (Aimar et al., 2023; Hong et al.,
2021; Zhang et al., 2022) can be regarded as a special case
of the proposed approach, wherein the Dirichlet distribution
is substituted with a fixed point (Dirac delta distribution).
However, as we will demonstrate in the subsequent section,

Figure 2. Illustration of the training process, where a hierarchical
sampling process is employed to esitmate the empirical risk.

this approach limits the generalization capacity of the re-
sulting model. This limitation arises because such fixed
distribution schemes inadequately represent the randomness
inherent in the test label distributions. Mixture of Experts
Strategy. The overall model is expressed in a compositional
structure

f
(i)
θ (·) = g(i) ◦ ψ(·), i = 1, 2, · · · ,K,

where f (i) is the model allocated for the i-th component,
g(i) reflects the distributional-specific feature, ψ reflects the
invariant part and is shared across components.

In the upcoming discussions, we will see how E and the
MoE strategy will help us construct an estimation of the loss
distribution.

Empirical Approximation of the Objective Function. To
approximate the population-level objective function (Eq.2),
we utilize a Monte Carlo method to estimate the expectation
and variance over E . This is achieved by generating empiri-
cal data for test label distributions. Each time, we sample a
test label distribution P and a component ξ from the hierar-
chical model as outlined in equations (3)-(4). The generated
data set is represented as P = {Pj , ξj}Mj=1. In this process,

each expert f (ξj)θ is assigned to the sampled pair (Pj , ξj).
The performance of these experts is then evaluated based on
the following average loss:

ℓ̂LAj
=

1

N

∑
(x,y)∈D

ℓLA

(
f
(ξj)
θ (x), y;Pj

)
.

From all of the above, we get the Monte Carlo estimation of
the population mean and variance in (2) as:

Ê(ℓLA) =
1

M

M∑
j=1

ℓ̂LAj
, V̂(ℓLA) =

1

M

M∑
j=1

(
ℓ̂LAj
− Ê(ℓLA)

)2
.
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Practically, minimizing the variance term tends to punish
ℓ̂LAj being smaller than its empirical mean. This over-
regularization can impede the training process, particularly
for test distributions that are relatively easier to learn. To
circumvent this challenge, we replace the variance penalty
with a semi-variance term, which only penalizes ℓ̂LAj

that
are larger than the mean.

V̂+(ℓLA) =
1

M

M∑
j=1

((
ℓ̂LAj
− Ê(ℓLA)

)
+

)2

.

Please see Appendix A for the sampling process in details.

Putting all together, we come to the final objective function:

min
g(1),··· ,g(K), ψ

Ê(ℓLA) + λ · V̂+(ℓLA).

During testing, we adopt the self-supervision strategy as pro-
posed in SADE (Zhang et al., 2022) to learn a set of model
averaging weights ω(1)

te , ω
(2)
te , · · · , ω

(K)
te . The prediction

for a test data point is then determined by combining these
weights, leading to a weighted average of the outputs from
the individual models expressed as follows:

fte(x) =

K∑
i=1

ω
(i)
te · f (i)(x). (5)

5. Theoretical Analysis
For the sake of simplicity, we will adopt asymptotic no-
tations to perform magnitude comparison. Specifically,
f(n) ≲ g(n) denotes ∃C > 0, f(n) ≤ C · g(n), and
f(n) ≳ g(n) vice versa. f(n) ≍ g(n) means f(n) ≲ g(n)
and f(n) ≳ g(n) hold simultaneously. All the proofs are
deferred to Appendix B and D.

5.1. Generalization Ability of DirMixE

To show the generalization ability of our proposed method,
we attempt to answer two questions theoretically. The first
question is how well the proposed training method can gen-
eralize to unseen label distributions. In the following Thm.,
we answer this question by presenting an upper bound of
E′(ℓLA), the expected loss over all test label distributions
sampled from E ′ (which is not necessarily identical to E)
and D. We assume that V ≍ V+, which will be justified in
Sec.5.2.

Theorem 1 (Generalization Bound, Informal). Let E be
the true meta-distribution and P be an observed empirical
distribution sampled by the Monte Carlo method. Moreover,
the training data S are sampled in an i.i.d manner from
its true distribution D. Assume that V(ℓLA) ≍ V+(ℓLA),
then for any possible meta-distribution E ′ defined on the
probability simplex Sc−1 we denote E′(ℓLA) as the corre-
sponding version of the loss expectation, then the following

inequality holds uniformly for all f ∈ F with probability
at least 1− δ over the randomness of the training data S,
and the sampled label distribution P:

E
′
(ℓLA) ≲ Ê(ℓLA) +

√
C1

M
· V̂
+
(ℓLA)︸ ︷︷ ︸

(1)

+
∥E − E ′∥∞

C!︸ ︷︷ ︸
(2)

+ C2 ·
(
M−3/4 +M−1/2N−1/4 +N−1/2

)
︸ ︷︷ ︸

(3)

,

where C1,C2 are complexity terms of the hypothesis space
F .

The bound can be decomposed into three terms:

Empirical Error Term: The first component (1) in the
theorem represents an empirical error term that can be opti-
mized during training. The implication of this bound is that
employing a semi-variance regularization approach enables
achieving a sharper bound compared to the traditional
complexity of O(N−1/2 +M−1/2). Our proposed method
accomplishes this by optimizing Ê(ℓLA)+λ · V̂(ℓLA), which
serves as a smooth approximation of the empirical error
term (1).

Approximation Error from Meta-Distribution Shift: The
second term (2) provides an upper bound on the stochas-
tic error that may arise due to a potential shift from the
meta-distribution E to another distribution E ′. Following
the insights from (Nguyen et al., 2020; 2023), employing
sufficiently large components in the Dirichlet mixture can
reduce the difference ||E − E ′||∞ to nearly zero.

Hierarchical Stochastic Error: The third term (3) quanti-
fies the hierarchical stochastic error involved in using the
sample sets (S,P) instead of the true distributions (D, E).
As highlighted, these results enjoy a sharper residual error
compared to conventional ones.

Furthermore, the theorem suggests that in cases where the
test label distribution is not fixed, it is essential to sam-
ple a sufficiently large number of test label distributions
(a large M ) to mitigate the stochastic error components
M−3/4 + M−1/2N−1/4 + N−1/2. This also underlines
the advantage of DirMixE over existing Mixture of Experts
(MoE) schemes, such as those referenced in (Aimar et al.,
2023; Hong et al., 2021; Zhang et al., 2022), where M is
typically fixed as O(1) by using a fixed distribution assign-
ment.

The second question is how well we can merge the experts
during test time. To explore the answer, we check the per-
formance of the self-supervised model averaging result fte
in (5).

Theorem 2 (Model Averaging Error). Under the same
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(a) Density of Gamma w.r.t α (b) ρ Bound for the Gamma (c) Density of Pareto w.r.t θ (d) ρ Bound for the Pareto

Figure 3. The Upper Bound for ρ for different distributions. (a) shows the distribution density of the Gamma distribution with β fixed
as 0.5 and α varied. The corresponding distribution has a tailed shape when α < 1. (b) shows the upper bound ρ for α < 1. One can
observe that ρ is roughly greater than 0.4 in this range. (c) shows the distribution density of the Pareto distribution with ℓm fixed as 0.1
and θ varied. (d) shows the ρ value for 2 < θ ≤ 10, we can see that ρ is slightly greater 0.2 for large θ. In all these observed cases, the
assumption V+ ≍ V is admissible.

setting as Thm.1, the following results hold:

E(ℓLA(fte)) ≲
∑
i∈[K]

E(ωi) · E(ℓLA(f (i)))

+
∑
i∈[K]

COV(ωi, ℓLA(f (i))),

where COV is the covariance operator and all the expecta-
tions are taken over the joint distribution of E ⊗ D.

The proof of Thm.2 directly follows (Zhang et al., 2023a)
and thus is omitted.

The resulting upper bounds consist of two parts. The first
part could be regarded as a weighted loss, which can be
guaranteed to have a similar concentration as in Thm.2. The
second term represents the covariance between the model
weights and the corresponding losses. A well-designed
model aggregation method should ideally assign lower
weights to models that yield higher losses. In this study,
we utilize the self-supervised method described in (Zhang
et al., 2022), which effectively maximizes the mutual infor-
mation between predictions and ground truth under certain
conditions. Consequently, we anticipate a negative correla-
tion between model weight and loss (negative covariance),
significantly reducing model averaging error.

5.2. Upper Bounding Variance with Semi-Variance

In DirMixE, we replace the variance in empirical estima-
tion with the semi-variance of loss to enhance optimiza-
tion. As shown in Thm.1, the stochastic error associated
with this approach remains small if V(ℓLA) ≍ V+(ℓLA).
Given that semi-variance is inherently smaller than variance,
our analysis primarily focuses on validating the condition
V(ℓLA) ≲ V+(ℓLA).

Note that, for a well-trained model, there should be a neg-
ative correlation between the probability density and the
magnitude of loss. Based on this assumption, we show that
V(ℓLA) ≲ V+(ℓLA) for certain types of distributions satisfy-
ing the negative correlation, ranging from light-tail (such as
the exponential distribution) to heavy-tail ones (such as the
Pareto distribution) distributions. For clarity and simplic-
ity, we will henceforth use ℓ as shorthand for ℓLA in this
subsection.

Theorem 3. Let ρ = V+[ℓ]
V[ℓ] , then we have the following

results for different distributions:

a) If ℓ subjects to an exponential distribution, i.e the p.d.f
p(ℓ) ∝ exp(−cℓ), then we have: ρ ≥ exp(−1).

b) If ℓ subjects a Gamma distribution with parameters
α, β, i.e, the p.d.f p(ℓ) ∝ ℓα−1 · exp(−β · ℓ), then we
have: ρ ≥ 1−α· Γ

↑(α,α)
Γ(α) , where Γ↑ is the lower incom-

plete gamma : Γ↑(s, x) = 1
Γ(α) ·

∫ x
0
ts−1 · exp(−t)dt.

c) If ℓ subjects to a Pareto distribution with parameter θ,
i.e the p.d.f p(ℓ) ∝ (ℓ/ℓm)−θ for some ℓm > 0, then
we have:

ρ =(θ − 1)2 ·
[
1− ϕ(θ)2−θ

]
+

θ · (θ − 2) ·
[
2 · ϕ(θ)1−θ − ϕ(θ)−θ − 1

]
where ϕ(θ) = θ/(θ − 1).

According to the theorem, we present practical observation
on the Gamma and Pareto distribution in Fig.3-(a). The
gamma distributions are tail-shaped when α < 1. In this
sense, we plot the theoretical lower bound ρ for α < 1
in Fig.3-(b). The results show that V+ /V > 0.4 in most

6



Harnessing Hierarchical Label Distribution Variations in Test Agnostic Long-tail Recognition

(a) Our’s Setting

(b) SADE’s Setting

Figure 4. Weight Assignment in the Self-supervised Aggrega-
tions on CIFAR-100. F,U,B represent the forward, uniform and
backward distributions, see Appendix F for more.

cases. Similar Fig.3-(c) shows that the Pareto distributions
are generally tail-shaped. We then plot ρ for 2 < θ < 10 in
Fig.3-(d). The results show that the V+ /V roughly resides
in [0.1, 0.3] when θ ≥ 3. Moreover, for the exponential dis-
tribution, we have a universal upper bound for ρ as exp(−1),
which is greater than 0.2. In this sense, the proposed claim
V+ ≍ V holds for a wide span of tail-shaped distributions.

In practical terms, Pte is sampled from a mixture distribu-
tion. Consequently, it is probable that the loss function is
subject to a mixture distribution rather than a single distri-
bution. The following theorem shows that ρ for a mixture
distribution can also be lower bounded by the mean of the
respective ρi values of its component distributions.

Theorem 4. Let ℓ be sampled from a mixture distribution
such that p(ℓ) =

∑K
k=1 ωk · pk(ℓ), where pk(ℓ) is the p.d.f.

for the component k. Furthermore, for each component, we
denote: Ek[ℓ] = µk,Vk[ℓ] = σ2

k. Under the assumption
that 1) P [ℓ ̸= E[ℓ]] with probability one w.r.t the mixture

distribution, 2) V[ℓ]/σ2
i ≥ max

{
V−[ℓ]i,j
V−[ℓ]i

, 1
}

, then ρ can
be upper bounded by the average of ρi in the sense that:

ρ ≤
∑
i

ωi · ρi,

where V−[ℓ] = V[ℓ] − V+[ℓ]; ρi,V−[ℓ]i are the corre-
sponding versions of ρ,V−[ℓ] on the i-th component, and

V−[ℓ]i,j =

∫ ∞

0

((ℓ− µi)−)2 · pj(ℓ) · dℓ.

This implies that controlling ρ is feasible if we can man-
age each ρi. Ultimately, this leads to the conclusion that
V(ℓLA) ≍ V+(ℓLA) holds under mild conditions.

6. Experiments
In this section, we conduct a series of empirical studies to
demonstrate the effectiveness of our proposed algorithm.
Due to space limitations, please refer to Appendix E and
F for more details and experiments.

6.1. The Choice of meta-distribution and Experts

We briefly introduce the choice of (3) and (4) to define the
mixture distribution. Detailed implementations are shown
in the appendix. Drawing inspiration from the skill-diverse
expert learning approach in prior art, we employ a three-
component mixture model for (3) to encapsulate three crit-
ical skills: forward component aligns with the training
label distribution, indicative of performance in the head
classes; uniform component corresponds to the local vari-
ation around uniform distribution; backward component
represents the local variation around an inverse long-tail
distribution of the training set, signifying performance in
the tail distribution. Please refer to Appendix E.4 for more
details.

6.2. Experiment Protocols

Evaluation Protocols. We evaluate the performance of var-
ious methods across multiple test datasets. Specifically, we
employ two regimes to generate test datasets: (a) Ours Set-
ting. We generate test data by sampling from the perturbed
version of the meta-distribution in Sec.E. Subsequently, for
each Dirichlet distribution, we sample three label distri-
butions for testing on three forward/uniform/backward LT
distributions, respectively (As in Tab.2). (b) SADE’s Set-
ting: (Zhang et al., 2022). Following SADE, the test datasets
usually fall into one of three distribution types: (forward)
long-tail, uniform, and backward long-tail, each defined by
a different imbalance degree ρ. Please see Appendix E for
more details.

6.3. Overall Performance

Tab.1-3 compare the overall performance on CIFAR-10,
CIFAR-100, ImageNet for Our’s setting, while those for
sade’s setting are shown in Appendix F. Moreover, we
also include the results for iNaturaList in Appdendix.F.
For fairness, we only compare the performance using MoE
scheme and do not use mixup for all the competitors. More-
over, we adopt the self-supervised aggregation method of
SADE to align test-time operations for all the MoE-based
Models (SADE, BalPoE, DirMixE) except RIDE. The ra-
tionale for the exception is that all the experts in RIDE are
designed for the same distribution, and there is already a
routing strategy to choose the experts. We have the follow-
ing observations on the results:
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Table 1. CIFAR-10-LT (Ours Setting)

Method
Forward-LT Uniform Backward-LT

Mean1 2 3 1 2 3 1 2 3

LDAM 89.66 90.50 90.30 74.27 74.39 74.77 60.65 59.89 60.42 74.98(±12.19)

LA 89.74 88.98 90.51 79.02 79.07 79.27 72.90 71.67 72.51 80.41(± 7.17)

VS 85.12 84.71 85.24 80.69 80.50 80.85 82.10 81.21 80.95 82.37(± 1.92)

LADE 87.31 87.11 87.79 79.69 79.72 80.20 76.79 75.77 76.47 81.21(± 4.62)

DDC 87.07 87.07 87.24 81.62 81.44 82.03 80.15 79.04 79.47 82.79(± 3.20)

RIDE 86.47 85.63 87.33 81.92 81.89 81.98 81.34 81.25 81.19 83.22(± 2.35)

SADE 90.26 89.94 91.05 83.14 82.71 83.38 88.89 88.29 89.48 87.46(± 3.19)

BalPoE 91.30 91.54 92.72 81.58 81.78 81.89 78.97 77.28 77.87 83.88(± 5.86)

DirMixE 90.46 89.90 91.30 83.24 82.98 83.71 89.39 88.78 88.40 87.57(± 3.12)

Table 2. Performance Comparison on CIFAR-100-LT (Ours Setting)

Method
Forward-LT Uniform Backward-LT

Mean1 2 3 1 2 3 1 2 3

LDAM 64.17 63.59 66.43 38.16 37.35 38.07 17.32 15.04 16.95 39.68(±19.78)

LA 58.71 58.77 61.39 44.93 45.35 43.75 31.94 29.49 30.96 45.03(±11.81)

VS 58.20 58.30 59.99 39.32 41.24 42.13 27.37 24.53 28.14 42.14(±13.21)

LADE 57.42 57.76 61.06 43.35 42.92 43.05 32.40 30.34 33.47 44.64(±11.01)

DDC 59.26 56.89 60.90 45.05 44.86 45.59 32.59 32.05 34.41 45.73(±10.68)

RIDE 63.34 62.72 65.68 45.30 45.35 47.81 30.82 27.61 30.75 46.60(±14.02)

SADE 66.13 66.00 68.31 46.89 48.05 45.59 41.99 42.91 40.06 51.77(±10.90)

BalPoE 67.75 67.80 69.98 45.05 46.86 48.81 29.80 26.32 31.17 48.17(±16.19)

DirMixE 66.85 66.40 69.44 47.99 49.41 44.21 44.41 47.01 44.35 53.34(±10.22)

a) Overall empirical trends: 1) Our method shows sim-
ilar performance to state-of-the-art (SOTA) methods
like BalPoE and SADE for Forward-LT and Uniform.
2) However, in Backward-LT, our method’s improve-
ments are much more substantial. For instance, in
Tab.2 (CIFAR-100, our setting), the performance gain
varies from 2.4 to 4.1. In Tab.3 (ImageNet-LT, our set-
ting), it ranges from 2.0 to 2.4. Thanks to these gains
in Backward-LT, our method consistently achieves
the best average performances, demonstrating its effec-
tiveness.

b) Performance differences across datasets: CIFAR
series performances (CIFAR-10, CIFAR-100) are com-
parable, likely due to their similar data distributions
and scales. In contrast, the ImageNet dataset, with
its distinct data distribution and scale, shows slightly
different trends. Yet, the results still follow the pat-
tern noted in a). Even though our method slightly lags
behind SOTA methods on the ImageNet dataset for
Uniform, the performance differences are mostly less
than 0.5. Conversely, the improvement in Backward
distributions is more significant, ensuring our method
maintains the best average performances.

c) Explaining the differences: The distinct distribution
of the ImageNet dataset compared to CIFAR-10 and
CIFAR-100 may account for these discrepancies. The

greater variation between different label distributions
means the model must focus more on Backward
distributions, slightly compromising performance in
Uniform and Forward distributions to lead in over-
all performance.

please see Appdendix F.6 for comparisions with other base-
lines.

6.4. Experts Assignment

In this part, we validate the ability of the test-time self-
supervised aggregation by visualizing the weight assign-
ments for different label distributions in Fig.4. The forward
and backward experts always tend to have a significant
weight for their corresponding distributions. Uniform distri-
butions tend to utilize all three experts. This is because tail
and head classes are equally crucial for uniform distribution.

6.5. Correlation between Weights and Losses

Fig.5 shows the correlation between expert weights of
DirMixE during the test phase and their corresponding
loss. We normalize the losses to align the magnitude of the
loss on different distributions, where the normalized loss of
the expert i is ℓi/

∑3
i=1 ℓi. The results show a strong nega-

tive correlation on the forward and backward experts, and a
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Table 3. ImageNet-LT (Ours Setting)

Method
Forward-LT Uniform Backward-LT

Mean1 2 3 1 2 3 1 2 3

LDAM 61.74 62.22 61.49 47.51 47.37 48.63 32.67 32.54 32.00 47.35(±12.02)

LA 60.94 60.32 59.78 50.82 50.86 50.86 40.39 40.16 40.14 50.47(± 8.22)

VS 61.14 59.60 59.00 52.04 52.22 53.18 44.03 44.47 43.02 52.08(± 6.60)

LADE 63.58 62.29 61.92 53.48 52.38 53.31 41.53 42.31 41.25 52.45(± 8.56)

DDC 59.42 59.45 58.30 51.36 51.83 51.51 42.50 44.09 43.47 51.33(± 6.43)

RIDE 65.32 64.28 63.49 55.18 55.02 55.98 43.49 44.52 43.16 54.49(± 8.47)

SADE 69.64 69.77 70.35 58.51 58.96 58.69 53.54 53.13 53.82 60.71(± 6.86)

BalPoE 69.82 69.32 70.26 58.26 58.78 58.47 52.08 51.46 52.36 60.09(± 7.37)

DirMixE 70.13 70.88 70.29 58.38 58.85 58.02 55.59 55.09 56.25 61.50(± 6.43)

(a) Expert 1 (Forward) (b) Expert 2 (Uniform) (c) Expert 3 (Backward)

Figure 5. The Correlation between Expert Weights and Loss.

much weaker positive correlation for uniform ones. This is
because uniform distributions do not have a significant bias
on head/tail classes, producing a relatively stable average
performance across different distributions. Above all, in
most cases, we can observe negative correlations between
loss and expert weight. According to Thm.2, the negative
correlation tends to reduce the generalization error of the
test-time aggregation scheme, validating the reasonability
of observed performance advantage.

6.6. The Semi-Variance/Variance Ratio

Recall Thm.1, we adopt the assumption that V(ℓLA) ≍
V+(ℓLA). To validate this assumption, we calculate the semi-
variance/variance ratio (ρ) in CIFAR-10 and CIFAR-100.
We find that ρ = 0.503, 0.509, respectively for CIFAR-10
and 100, which obviously aligns with the assumption.

7. Conclusion
We consider the hierarchy of the global and local varia-
tions of the test label distributions in test agnostic long-
tail recognition. To this end, we propose a Dirichlet MoE
method named DirMixE. The label distributions are sam-
pled from a meta-distribution, characterized by a mixture
of Dirichlet distribution. In the proposed MoE strategy,
each expert is assigned to a local Dirichlet distribution for a
specific skill. The global and local variations are then cap-

tured by inter- and intra-component variations of the meta-
distribution. This also leverages a stable objective function
minimizing the mean and semi-variance of the loss with the
help of Monte Carlo method. When V+(ℓLA) ≍ V(ℓLA), we
show that the proposed objective function enjoys an sharper
bound by semi-variance regularization. Finally, extensive
experiments demonstrate the efficacy of DirMixE.
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A. Detailed Explanation of the Sampling process
In our study, we aim to ensure good overall performance across the entire meta distribution E of label distributions. Since
our access is limited to training data with a long-tailed distribution, we employ the Logit Adjustment (LA) loss to tailor the
model for specific test-label distributions using only training data. Our objectives are to 1) construct a meta-distribution E
for test-label distributions, 2) assess the loss for different test-label distributions in E , and 3) maintain minimal change in the
mean and variance of the loss over E . For 1), we model E as a Dirichlet mixture distribution, representing global and local
variations through the randomness across and within its components, respectively. The Monte Carlo method is vital for
implementing 2) and 3), detailed further in below.

We have to deal with both the training data distribution and a meta-distribution for test-label distribution, leading to a
hierarchical process for the calculation:

Layer 1: For a given test-label distribution Pte, we measure a model’s adaptability to this new distribution through the
expected LA loss over training data parametrized by Pte:

ℓ̂LA(f,Pte) ≈
1

N
·
N∑
i=1

ℓLA(fθ(xi), yi;Pte),

where xi, yi represent the i-th instance’s feature and label in the training data.

Layer 2: Across various Ptes, we calculate the mean and variance of ℓLA(f,Pte) over meta-distribution E , represented as

EPte∼E

[
ℓ̂LA(f ;Pte)

]
, VPte∼E

[
ℓ̂LA(f ;Pte)

]
,

respectively.

To minimize both the mean and variance of the loss over E , we employ the following objective:

EPte∼E

[
ℓ̂LA(f ;Pte)

]
+ λ · VPte∼E

[
ℓ̂LA(f ;Pte)

]
,

where λ is a balancing coefficient.

Given the model f as a neural network, we can’t obtain the mean and variance in the closed-form. Instead, we have to
approximate the mean and variance for layer 2 using the Monte Carlo method, sampling a finite number of test distributions
Pte from E and then do the estimation.

Our training pipeline, based on the Monte Carlo method, includes:

- a) Sampling a set of test-label distributions from the Dirichlet mixture distribution {(Pj , ξj)}Mi=1, where Pj is the sampled
test-label-distribution, and ξj indicates its component. - b) Evaluating the empirical LA loss for each Pj on the training data,
adjusting the label distribution accordingly, then computing the mean and (semi-)variance of these losses. - c) Training the
model using backpropagation (BP).

Next, we outline each step of our process.

A.1. Step a)

In the main paper, we defined the meta distribution E as a Dirichlet mixture distribution:

Pte|ξ ∼ Dir
(
α(ξ)

)
,

ξ|p ∼ Discrete (p1, · · · , pK) .

To sample a test distribution Pte, we first select a Dirichlet component ξ from K options based on the discrete probability
(p1, · · · , pK). We then sample Pte from the ξ-th component Dir

(
α(ξ)

)
. This process repeats to generate a set of distributions

{Pj , ξj}Mi=1.

14
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A.2. Step b)

For each pair (Pj , ξj), we then calculate the loss. In our Mixture of Experts (MOE) strategy, the expert ξj is assigned to its
corresponding Dirichlet distribution component, and we train f (ξj)θ for this task. With this assignment,, we get the empirical
LA loss average on the training data: ℓ̂LA(f (ξj);Pj) for this specific test-label distribution. Repeating the calculate for each
(Pj , ξj), we can then obtain the empirical mean and variance of ℓ̂LA(f (ξj);Pj) as:

Ê(ℓ̂LA) =
1

M

M∑
j=1

ℓ̂LA(f
(ξj);Pj),

V̂(ℓ̂LA) =
1

M

M∑
j=1

(
ℓ̂LA(f

(ξj);Pj)− Ê
(
ℓ̂LA(f

(ξj);Pj)
))2

.

Moreover, we find that the variance regularization tends to punish loss functions smaller than its mean. We use semi-
variance regularization, which only penalizes loss deviations larger than the mean, as a surrogate to avoid penalizing the
smaller-than-mean losses:

V̂+(ℓ̂LA) =
1

M

M∑
j=1

((
ℓ̂LA(f

(ξj);Pj)− Ê
(
ℓ̂LA(f

(ξj);Pj)
))

+

)2

.

A.3. Step c)

We perform backpropagation (BP) based on the loss and train the MOE model.

Putting altogther, we summarize this procedure as the following algorithm.

Algorithm 1 Training Algorithm

Require: Batch size bs, Dirichlet components α(1),α(2), · · · ,α(K)

Ensure: Trained models f (1)θ , f
(2)
θ , · · · , f (K)

θ

1: for j ← 1 to M do
2: ξj ← RandomInteger(1,K) with probability (p1, · · · , pK)
3: Sample Pj from Dirichlet Distribution Dir(α(ξj))
4: Add sampled pair (Pj , ξj) to the test-label-distribution set P .
5: end for
6: while not converged do
7: Sample training data Batch B
8: Sample a subset P ′ from P
9: for each (Pj , ξj) ∈ P ′ do

10: Calculate ℓ̂LAj
= 1

bs

∑
(x,y)∈Bi

ℓ̂LA(f
(ξj)
θ (x), y;Pj)

11: end for
12: Calculate the mean Ê(ℓLA) and semi-variance V̂+(ℓLA)

13: Calculate the objective function L← Ê(ℓLA) + λ · V̂+(ℓLA)
14: Perform SGD with respect to L to update the model
15: end while
16: return f (1)θ , f

(2)
θ , · · · , f (K)

θ

15
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B. Proof for the Upper Bound of ρ
B.1. Proof for Thm.1

Proof. 1): For exponential distribution, we have:

pλ(ℓ) = λ · exp(−λ · ℓ), E
λ
[ℓ] =

1

λ
,V[ℓ]λ =

1

λ2
.

In this sense, we have:

V[ℓ]− V+[ℓ] =

∫ 1/λ

0

(ℓ− 1

λ
)2 · pλ(ℓ) · dℓ

≤ 1

λ2
· P
[
ℓ <

1

λ

]
≤ 1− exp(−1)

λ2

Hence:

V+[ℓ]

V[ℓ]
≥ 1− (1− exp(−1)) = exp(−1)

2): For the gamma distribution, we have:

pα,β(ℓ) =
βα

Γ(α)
· ℓα−1 · exp(−β · ℓ), E[ℓ] =

α

β
, V[ℓ] =

α

β2
.

Similarly, we have:

V[ℓ]− V+[ℓ] =

∫ α/β

0

(ℓ− α/β)2 · pα,β(ℓ) · dℓ

≤
(
α

β

)2

· 1

Γ(α)
·
∫ α/β

0

(β · ℓ)α−1 · exp(−β · ℓ) · d(β · ℓ)

=

(
α

β

)2

· 1

Γ(α)
·
∫ α

0

(ℓ)α−1 · exp(−ℓ) · d(ℓ)

=

(
α

β

)2

· Γ
↑(α, α)

Γ(α)

Then we have:

V+[ℓ]

V[ℓ]
≥ 1− α · Γ

↑(α, α)

Γ(α)

3): For a Pareto distribution: we have

pθ(ℓ) =

{
θℓθm
ℓθ+1 , ℓ ≥ ℓm,
0, ℓ ≤ ℓm

, E[ℓ] =

{
∞, θ ≤ 1,
θ
θ−1ℓm, θ > 1

,V[ℓ] =

{
∞, θ ≤ 2,
θ/(θ−1)2·(θ−2) · ℓ2m, θ > 2

In this sense, we have:

V+[ℓ] =

∫ θ
θ−1 ·ℓm

ℓm

(
ℓ− θ

θ − 1
· ℓm

)2

· θℓ
θ
m

ℓθ+1
dℓ

=

∫ θ
θ−1 ·ℓm

ℓm

θℓθm
ℓθ−1

dℓ − 2 ·
∫ θ

θ−1 ·ℓm

ℓm

θ · ℓθ+1
m

(θ − 1) · ℓθ−1
dℓ +

(
θ

θ − 1
· ℓm

)2

·
∫ θ

θ−1 ·ℓm

ℓm

θℓθm
ℓθ+1

dℓ
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∫ θ
θ−1 ·ℓm

ℓm

θℓθm
ℓθ−1

dℓ =
θ

θ − 2
· ℓ2m ·

[
1−

(
θ

θ − 1

)2−θ
]

2 ·
∫ θ

θ−1 ·ℓm

ℓm

θ · ℓθ+1
m

(θ − 1) · ℓθ−1
· dℓ = 2 ·

(
θ

θ − 1
· ℓm

)2

·

[
1−

(
θ

θ − 1

)1−θ
]

(
θ

θ − 1
· ℓm

)2

·
∫ θ

θ−1 ·ℓm

ℓm

θℓθm
ℓθ+1

dℓ =

(
θ

θ − 1
· ℓm

)2

·

[
1−

(
θ

θ − 1

)θ]

Above all, we come to the conclusion:

V+[ℓ]

V[ℓ]
= (θ − 1)2 ·

[
1−

(
θ

θ − 1

)2−θ
]
+ θ · (θ − 2) ·

[
2 ·
(

θ

θ − 1

)1−θ

−
(
θ − 1

θ

)θ
− 1

]

B.2. Proof for Thm.2

Lemma 1. The function f(x) = ((x)−)
2 is a convex for x ̸= 0.

Proof. Denote f1(x) = x2, f2(x) = (x)−, then we have:

f ′′(x) = f ′′2 (x) · f ′1(f2(x)) + f ′′1 (f2(x)) · (f ′2(x))2 =

{
0, x > 0

2, x < 0.

Obviously, we have f ′′(x) ≥ 0. The proof is thus finished.

Proof. We consider a mixture distribution of K-components with a p.d.f function

pm(ℓ) =

K∑
k=1

ωk · pk(ℓ),

where pk(ℓ) is the p.d.f. for the k-th component, and ωk is probability to observe the k-th component. In this sense, we have:

E[ℓ] =
K∑
k=1

ωk · µk, V[ℓ]
(a)

≥
K∑
k=1

ωk · σ2
k.

where µk, σ2
k are the corresponding means and variance given the component k. Here (a) follows from the total law of

variance.

In this sense, we can bound the semi-variance as:
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V−[ℓ] =

∫ ∞

0

((ℓ− E[ℓ])−)2 · pm(ℓ) · dℓ

=

∫ ∞

0

(
(ℓ−

k∑
k=1

ωk · µk)−

)2

· pm(ℓ) · dℓ

(∗)
≤

k∑
k=1

ωk ·
∫ ∞

0

((ℓ− µk)−)2 · pm(ℓ) · dℓ

=
∑
i,j

ωi · ωj ·
∫ ∞

0

((ℓ− µi)−)2 · pj(ℓ) · dℓ

1− ρ ≤ 1

V[ℓ]
·

∑
i,j

ωi · ωj ·
∫ ∞

0

((ℓ− µi)−)2 · pj(ℓ) · dℓ


(∗∗)
≤
∑
i,j

(
ωi · ωj ·

∫ ∞

0

((ℓ− µi)−)2 · pi(ℓ) · dℓ ·
1

σ2
i

)
≤
∑
i

ωi ·
V−[ℓ]i
V[ℓ]i

(∗) is from the fact that ((·)−)2 is a convex function when x ̸= 0, and that (∗∗) is from the assumption that:

V−[ℓ]i,j
V−[ℓ]i

≤ V[ℓ]
σ2
i

,
V[ℓ]
σ2
i

> 1

which further implies that

1

V[ℓ]
·
∫ ∞

0

((ℓ− µi)−)2 · pj(ℓ) · dℓ ≤
1

σ2
i

·
∫ ∞

0

((ℓ− µi)−)2 · pi(ℓ) · dℓ

It thus becomes clear that:

ρ = 1− (1− ρ)
(∗∗∗)
≥ 1−

∑
i

ωi ·
V−[ℓ]i
V[ℓ]i

=
∑
i

ωi −
∑
i

ωi ·
V−[ℓ]i
V[ℓ]i

=
∑
i

ωi ·
(
1− V−[ℓ]i

V[ℓ]i

)
=
∑
i

ωi · (1− (1− ρi))

=

K∑
i=1

ωi · ρi

Here (∗ ∗ ∗) is from the proven fact that 1− ρ ≤
∑
i ωi ·

V−[ℓ]i
V[ℓ]i
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C. Explanations for the Theoretical Results
Basic Notations: In our approach, we use a natural training dataset consisting of images and their labels from the distribution
D, and a constructed set of potential test-label distributions from E . We denote the training dataset as S and the constructed
set as P . Additionally, the training sample size is N and the constructed set size is M .

Our primary theoretical findings relate to how well our method generalizes to new, unseen test-label distributions. According
to standard learning theory, we measure generalization error by the difference between a) the expected error across the
joint distribution of test-label and training data, and b) the empirical average across the sampled S and P . This difference
results from stochastic errors in sampling and estimation. Reflecting on the previous question, the Monte Carlo process
incorporates a hierarchical sampling approach, also leading to a hierarchical structure of stochastic errors, a significant
challenge in our theoretical analysis. This explain this below.

C.1. Stochastic Errors

Inner Layer (training data): For a specific test label distribution Pi in P , we define ℓD,E,i and ℓS,E,i as the expected loss
on training distribution D and the empirical average loss on training data S, respectively:

ℓD,E,i = E(x,y)∼D

[
ℓLA(f

(ξi)(x), y;Pi)
]

ℓS,E,i =
1

N

N∑
j=1

ℓLA(f
(ξi)(xj), yj ;Pi)

These values estimate the error of the inner layer concerning the training data, specifically measuring the discrepancy when
substituting expectation with empirical average for a given test-label distribution Pi.

Outer Layer (test label distributions): We also consider the expectation over the meta-distribution E to assess the outer
Monte Carlo sampling error.

In practical training, we rely on Monte Carlo estimation results and finite training data to compute the empirical average:

ÊE [ℓS,E,i] =
1

NM

M∑
i=1

N∑
j=1

ℓLA(f
(ξi)(xj), yj ;Pi)

But Theoretically, the genearlization error should be measured by the expected loss on the joint distribution of test label
distribution E ′ (which could differ from E used in training) and training data D, expressed as:

EP∼E′ [ℓD,E′,i] = EP∼E′

[
E(x,y)∼D

[
ℓLA(f

(ξ)(x), y;P)
]]

Finally, we discuss the upper bound of the generalization error and briefly introduce the proof’s key idea.

Error Decomposition

Assume that our model is chosen from a hypothesis space F (for instance, CNNs within certain weight norm limits). The
generalization ability of the entire hypothesis set is often measured by the worst-case performance gap:

∆ = sup
f∈F

[
EP∼E′ [ℓD,E′,i]− ÊE [ℓS,E,i]

]
.

Analyzing this error directly is challenging due to its hierarchical nature. Nevertheless, we can further derive an upper bound
by summing three types of error:
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i) Meta-distribution Approximation Error: This error arises from approximating the ideal meta-distribution E ′ with E ,
expressed as:

sup
f∈F

[EP∼E′ [ℓD,E′,i]− EP∼E [ℓD,E,i]] .

ii) Label Dist: This error stems from the approximation of the expected values over E with a Monte Carlo average, which
can be shown as:

sup
f∈F

[
EP∼E [ℓD,E,i]−

1

M

M∑
i=1

ℓD,E,i

]
.

iii) Data Estimation Error: This error is due to approximating the expectation over the training distribution D with the
empirical average from the training data S:

sup
f∈F

[
EP∼E

[
1

M

M∑
i=1

ℓD,E,i −
1

M

M∑
i=1

ℓS,E,i

]]
.

C.2. Key Idea of the Proof:

From the error decomposition i)-iii) above, we outline an overall limit for the generalization gap ∆.

- For i), we establish an upper bound using the loss function’s boundedness, the probability simplex’s volume, and the largest
variation between two label distributions (measured by the inf-norm ∥ · ∥∞).

- For ii), the most complex part of this proof, we extend the Bernstein-type concentration bounds to upper bound the error
with the empirical semi-variance from our objective function. This approach shows how the objective function directly
enhances generalization.

- For iii), we translate this into the uniform convergence bound, where the covering number indicates the hypothesis class’s
complexity.

D. Proof for Overall Generalization Upper Bound
D.1. Basic Definitions of The Hypothesis Class

The Hypothesis Class. In this paper, we consider the Generalization ability based on the employed architecture. This means
that we only consider models chosen from the following hypothesis class F :

F =
{
RC ← Rd : f (i)θ (·) = g(i) ◦ ψ(·), i ∈ [K]., g(i), ψ are chosen from specific subclass of deep neural networks.

}
Note that since f (i)θ are scoring functions for multi-class classification problems, they must be vector-valued functions. For
the sake of simplicity, we will use f(x) under this context to denote the collection {f (i)θ }i∈[K]. We use f ∈ F to express
choosing one such collections out of F .

The Norm of Hypotheses. To measure the complexity of F , we must define a norm on each hypothesis f . To do this, we
adopt the overall infinity norm (over all K subbranches, all C classes, and all input features x ∈ X ):

∥f∥∞ = max
i∈[K]

max
j∈{1,2,··· ,C}

sup
x∈X

∣∣∣f (i)θ,j(x)∣∣∣ .
Here f (i)θ,j(x) means the output score of the i-th branch and j-th (channel) for feature x. It is easy to check that the new
infinity norm is also a norm.

Measuring Complexity with Covering Number. Given a functional class F , we can use the covering numberN∞(F , ϵ, n)
to measure its corresponding complexity with the following definition.

N∞(F , ϵ, n) = sup
x∈Xn

N (ϵ,F , || · ||∞)
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where N (ϵ,F , || · ||∞) is the smallest number of infinity norm open balls, denoted as No, such that there exist No open
balls that covers entire class F . In other words, ∃ Bi ⊆ F , such that F ⊆

⋃No

i=1 Bi, where Bi = {f : ∥f − fi∥∞ ≤ ϵ}.

In the proof, we will the following lemmas to as basic tools.

D.2. Fundamental Inequalities

Lemma 2. The volume of an c-dimensional probability simplex is c!. In other words, we have:

Vc =

∫
∑c

i=1 xi=1

1 · dx1 · dx2 · · · dxc =
1

c!

Proof. We proof it by induction.

Base Case, c=1 Obviously, we have:

V1 =

∫ 1

0

dx = 1.

Induction Supposes that Vi−1 = (i− 1)!, we have:

Vi =

∫
∑i

j=1 xj=1

1 · dx1 · dx2 · · · dxi

=

∫ 1

0

 ∫
∑i−1

j=1 xj=1−xi

1 · dx1 · dx2 · · · dxi−1

 dxi

uj=xj/(1−xi),j=1,2,··· ,i−1
=

∫ 1

0

(1− xi)i−1 ·

 ∫
∑i−1

j=1 uj=1

1 · du1 · du2 · · · dui−1

 dxi

= Vi−1 ·
∫ 1

0

(1− xi)i−1dxi

= (1/i) · Vi−1

= 1/i!

The proof is then completed by expanding the induction recursively.

Lemma 3. When g(·) is Lipschitz continuous, the following holds:

∥g(x)− g(x̃)∥∞ ≤ sup ∥∇xg∥p · ∥x− x̃∥q, (6)

where 1
p +

1
q = 1.

Proof.

|g(x)− g(x̃)| =
∣∣∣∣∫ 1

0

⟨∇g(τx+ (1− τ)x̃), x− x̃⟩ dτ
∣∣∣∣

≤ sup
x∈X

[
∥∇g∥p

]
·
∥∥x− x̃∥∥

q

(7)

Lemma 4. Let Ptr[y] be training label distribution and Pte[y] a test label distribution. We denote their ratio as qi =
Pte[i]
Ptr[i]

, i = 1, 2, · · · , C. Then we have the LA loss:

ℓLA

(
fξθ (x), j;Pj

)
= ℓCE

(
softmax

(
fξy,θ(x)− log (qy)

))
is 2-Lip. continuous w.r.t. the defined infinity norm.
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Proof. According to Lem.3, if for any fixed ξ:

sup
(x,y)∈Z,f∈F

∥∥∥∇f ℓLA (fξθ (x), j;Ptr)∥∥∥
1
≤ 2 (8)

Then we have:∣∣∣ℓLA (fξθ (x), j;Pj)− ℓLA (f̃ξθ (x), j;Pj)∣∣∣ ≤ 2 · ∥fξ − f̃ξ∥∞ ≤ 2 · max
i∈[K]

∥f (i) − f̃ (i)∥∞ = 2∥f − f̃∥∞

Hence, we only need to proof (8). To see this,

∣∣∣∣∣∂ℓLA (fθ(x), j;Ptr)
∂f

(j)
θ (x)

∣∣∣∣∣ =
∣∣∣∣∣∂
(
log
[∑

i exp(f
(i)(x)− qi)− (fy − qy)

])
∂f (j)(x)

∣∣∣∣∣
=
∣∣∣softmax

(
f
(j)
θ (x)− log (qj)

)
− I[j = y]

∣∣∣ .
Since we have:

∥∇f ℓLA (fθ(x), y;Ptr)∥1 =
∑
j

∣∣∣softmax
(
f
(j)
θ (x)− log (qj)

)
− I[j = i]

∣∣∣
= 2 ·

(
1− softmax

(
f
(y)
θ (x)− log (qy)

))
≤ 2.

The proof is completed since x, y, f are arbitrarily chosen.

Lemma 5. Given a meta-distribution E of label distributions, let E be the Dirichlet mixture distribution of the components
defined in the main paper. Let

P ∼ EM , P = {P1, · · · ,PM}

For any function ℓ(f) with the property that ℓ(f) = ℓ(f j), for the j Dirichlet component, if for any fixed j, ℓ(f j) is L-Lip.
continuous w.r.t to the infinity norm, then EE [ℓ(f)], ÊE [ℓ(f)] is also L-Lip. continuous w.r.t to the defined general infinity
norm.

11

Proof. We only prove the result for EE [ℓ(f)], since the result for ÊE [ℓ(f)] can be proven similarly. Since

E
E
[ℓ(f)] =

∑
i∈[K]

pi · E
E|i

[ℓ(f i)],

we have:

|E
E
[ℓ(f)]− E

E
[ℓ(f̃)]| ≤

∑
i∈[K]

pi · | E
E|i

[ℓ(f i)]− E
E|i

[ℓ(f̃ i)]| ≤
∑
i∈[K]

L · pi · ∥f i − f̃ i∥∞ ≤ L · ∥f − f̃∥∞
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D.3. Basic (Uniform) Concentration Inequalities

Please refer to Sec.D.1 for basic definitions of hypothesis class F , covering number N∞, and the infinity norm ∥ · ∥∞.

Lemma 6. (Duchi & Namkoong, 2016) Let f : RN → R be convex and L-Lip. continuous w.r.t to ℓ2 norm over [a, b]n, and
let Z1, · · · , ZN be independent random variables on [a, b]. Then for all t ≥ 0

max

{
P [f(Z1:N ) ≥ E [f(Z1:N )]] + t, P [f(Z1:N ) ≤ E [f(Z1:N )]− t]

}
≤ exp

(
− t2

2L2(b− a)2

)
Lemma 7 ((Maurer & Pontil, 2009)). Let {xi, yi}Ni=1 be i.i.d samples from a data distribution, the loss function of a
prediction is given by ℓ(xi, yi) = ℓ(f(xi), yi) for a scoring function f ∈ F . For sufficiently large N and sufficiently small
δ, with probability at least 1− δ over the randomness of the data sampling, we have:

E[ℓ] ≲ Ê[ℓ] +

√
V̂[ℓ] · log (M/δ)

N
+
B · log (M/δ)

N

holds uniformly for all f ∈ F , withM = N∞(F , 1/N, 2N).

Lemma 8. Let {xi, yi}Ni=1 be i.i.d samples from a data distribution, the loss function of a prediction is given by ℓ(xi, yi) =
ℓ(f(xi), yi) ∈ [0, B] for a scoring function f ∈ F . If the loss function is L-Lip. continuous w.r.t. the infinity norm
||f ||∞ = maxx∈X |f(x)|. Then the following inequality holds with probability at least 1− δ uniformly for all f ∈ F:

∣∣∣E[ℓ]− Ê[ℓ]
∣∣∣ ≲ B ·

√
log(M′/δ)

N

whereM′ = N∞(F , 1/2LN,N).

Proof. According to the basic property of the covering number, we can find a covering of F with a set of open ball
{B1, · · · ,BM′}. For each Bj the center is defined as fj . In this sense, we have Bj = {f ∈ F : ∥f − fj∥∞ ≤ ϵ/3L}

In this sense we have the following results according to the union bound:

P

[
sup
f∈F

[∣∣∣E[ℓ]− Ê[ℓ]
∣∣∣] ≥ t+ ϵ

]
≤

M′∑
j=1

P

[
sup
f∈Bj

[∣∣∣E[ℓ]− Ê[ℓ]
∣∣∣] ≥ t+ ϵ

]

Fix one j, we must have:

P

[
sup
f∈Bj

[∣∣∣E[ℓ]− Ê[ℓ]
∣∣∣] ≥ t+ ϵ

]
≤P

[
sup
f∈Bj

[|E[ℓ]− E[ℓj ]|] ≥
ϵ

2

]

+ P
[∣∣∣Ê[ℓj ]− Ê[ℓj ]

∣∣∣ ≥ t]+ P
[
sup
f∈Bj

[∣∣∣Ê[ℓ]− Ê[ℓj ]
∣∣∣] ≥ ϵ

2

] (9)

Since ℓ is L-Lip. w.r.t the infinity norm, we have:

|ℓ− ℓj | ≤ L · ∥f − fj∥∞ ≤ L ·
ϵ

2L
≤ ϵ

2
.

Hence, supf∈Bj
[|E[ℓ]− E[ℓj ]|] ≥ ϵ

2 , supf∈Bj

[∣∣∣Ê[ℓ]− Ê[ℓj ]
∣∣∣] ≥ ϵ

2 has probability 0.

Moreover, according to the Hoeffding’s inequality, we have:

P
[∣∣∣E[ℓj ]− Ê[ℓj ]

∣∣∣ ≥ t] ≤ 2 · exp
(
−2 · t2

B2

)
Combing the arguments all above, we have:
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P

[
sup
f∈F

[∣∣∣E[ℓ]− Ê[ℓ]
∣∣∣] ≤ ϵ] ≥ 1−N∞(F , ϵ/2L,N) · exp

(
−2t2

B2

)
.

The proof is finished by setting δ = exp
(
− t2

B2

)
and ϵ = 1/N .

Lemma 9. Let {xi, yi}Ni=1 be i.i.d samples from a data distribution, the loss function of a prediction is given by ℓ(xi, yi) =
ℓ(f(xi), yi) ∈ [0, B] for a scoring function f ∈ F . If ℓ is L-Lip. continuous, then for any Lg Lip. continuous function of f ,
we have the following inequality holds with probability at least 1− δ uniformly for all f ∈ F:∣∣∣∣g(E[ℓ]

)
− g

(
Ê[ℓ]

)∣∣∣∣ ≲ Lg ·B ·
√

log(M′/δ)

N

whereM′ = N∞(F , 1/2LN,N).

Proof. Since g is Lg Lip., we have:

sup
f∈F

[∣∣∣∣g(E[ℓ]
)
− g

(
Ê[ℓ]

)∣∣∣∣] ≤ Lg sup
f∈F

[∣∣∣E[ℓ]− Ê[ℓ]
∣∣∣]

Thus we have:

P

[
sup
f∈F

[∣∣∣∣g(E[ℓ]
)
− g

(
Ê[ℓ]

)∣∣∣∣] ≥ t+ ϵ

]
≤ P

[
sup
f∈F

[∣∣∣E[ℓ]− Ê[ℓ]
∣∣∣] ≥ t+ ϵ

Lg

]

Then the claim follows from Lem.8 using ϵ′ = ϵ
Lg
, t′ = t

Lg
.

D.4. Proof of the Main Result

D.4.1. NOTATIONS IN THE PROOF

The Hierarchy of Stochastic Error. Recall that we are using a stratified sampling process for the Dirichlet mixture
distribution. Hence, we each component j of the mixture, we sample M label distributions, denoted as

P ∼ EM , P = {P1, · · · ,PM}

This forms an empirical sample of the test label distributions. We denote corresponding overall estimation as
ÊE [ℓD,E ], V̂E [ℓD,E ]. Moreover, we also have a fixed training dataset

S ∼ DN ,S = {xi, yi}Ni=1,

This forms an empirical estimation of the training data distribution. We mark the corresponding empirical (population resp.)
estimations with subscript S (D resp.). To estimate the excess risk, we must estimate the hierarchical stochastic error
coming from label distribution sampling and data sampling. To do this, we present the following error decompose regime.

In this proof, we will employ two groups of intermediate empirical estimations.

The first group involves quantities for a fixed test label distribution Pi ∈ P . Specifically, we denote ℓD,E,i, ℓS,E,i as the
expected loss on distribution D (empirical average loss on the training data D resp.):

ℓD,E,i = E
D

[
ℓLA(f

(ξi)(x), y;Pi)
]

ℓS,E,i = Ê
S

[
ℓLA(f

(ξi)(x), y;Pi)
]

(10)
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Table 4. Some Important Notations Used in the Proof.

Notation Description

Basic Quantities

N The number of data instances in the training data.
M The number of sampled test distributions in the Monte Carlo process.
τ A specific test label distribution.
E The meta-distribution of label distributions.
ℓ̂S,E

∑
(xiyi)∈S ℓLA(fθ(xi), yi;P) The expected loss when the label distribution is fixed (for example P).

ℓD,E The empirical loss on training data S when the label distribution is fixed.
ℓS,E,i ÊS

[
ℓLA(f

(ξi)(x), y;Pi)
]

The empirical risk on training data S for Pi ∈ P
ℓD,E,i ED

[
ℓLA(f

(ξi)(x), y;Pi)
]

The empirical risk on training data distribution D for Pi ∈ P
ℓ̄P

1
M

∑M
m=1 ℓLA(f

(ξm)(x), y;Pm) The empirical average over P given a fixed sample pair (x, y).

Estimations based on the true meta-distribution E

EE [ℓ̂S,E ] The expected ℓ̂S,E over the meta-distribution of label distributions
EE [ℓD,E ] The expected ℓD,E over the meta-distribution of label distributions
VE [ℓ̂S,E ] The variance of ℓ̂S,E over the meta-distribution of label distributions
VE [ℓD,E ] The variance ℓD,E over the meta-distribution of label distributions
V+,E [ℓD,E ] The semi-variance ℓD,E over the meta-distribution of label distributions

Estimations based on Empirical meta-distribution P

ÊE [ℓ̂S,E ] The empirical average of ℓ̂S,E over the sampled label distributions in the Monte Carlo process.
ÊE [ℓD,E ] The empirical average of ℓD,E oover the sampled label distributions in the Monte Carlo process.
V̂E [ℓ̂S,E ] The empirical variance of ℓ̂S,E over the sampled label distributions in the Monte Carlo process.
V̂E [ℓD,E ] The empirical variance ℓD,E over the sampled label distributions in the Monte Carlo process.
V̂+,E [ℓ̂S,E ] The empirical semi-variance of ℓ̂S,E over the sampled label distributions in the Monte Carlo process.
V̂+,E [ℓD,E ] The empirical semi-variance ℓD,E over the sampled label distributions in the Monte Carlo process.

Complexity Measures

N∞(F , ϵ, n) The covering number for a hypothesis class F , with radius of the covering open ball chosen as ϵ.

The other groups of quantities regard the average loss under all sampled label distributions as a fixed loss and then evaluate
their sample- and population-level means. Specifically, let

ℓ̄P =
1

M

M∑
m=1

ℓLA(f
(ξm)(x), y;Pm),

then we can rewrite ÊE [ℓD,E ], ÊE [ℓ̂S,E ] as:

Ê
E
[ℓD,E ] = E

D

[
ℓ̄P
]

Ê
E
[ℓ̂S,E ] = Ê

S

[
ℓ̄P
]

(11)

D.4.2. THE FORMAL RESTATE AND PROOF

Theorem 5 (Restate of Thm.1). For label distributions, let E be the true meta-distribution and P be a observed empirical
distribution for label distribution sampled by the Monte Carlo method. Moreover, the training data S are sampled in a
i.i.d manner from its true distribution D. Assume that N∞(F , ϵ,M) ≤

(
r
ϵ

)ν
, ℓ(·) ∈ [0, B], and VE [ℓD,E ] ≍ V+,E [ℓD,E ]

following the notations in Tab.4, all any possible meta-distribution E ′ defined on the probability simplex Sc−1, the following
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inequality holds uniformly for all f ∈ F with probability at least 1− δ over the randomness of S,P:

E
E′
[ℓD,E′ ] ≲ Ê

E
[ℓ̂S,E ] +

√
ν · V̂+,E [ℓ̂S,E ] · log (ζ1)

M
+
B · ∥E − E ′∥∞

C!
+B ·

√
ν3/2 · log

3/2 (ζ1)

M
√
M

+B ·

√
ν3/2 ·

√
log (ζ2) · log (ζ1)

M
√
N

+
B · ν · log (ζ1)

M
+B ·

√
ν · log(ζ2)

N
,

where

CM = 3M + 4, ζ1 = (CMBM/δ)
(1/ν) · r, ζ2 = (CMN/δ)

(1/ν) · r,

Proof. this is the begining
this is the begining
NOTE: Please see Tab.4 and Sec.D.4.1 for all the necessary notations not explained herein.

The Error Decomposition. The overall uniform excess risk can be decomposed into three parts:

sup
f∈F

[
E
E′
[ℓD,E′ ]− Ê

E
[ℓ̂S,E ]

]
≤ sup
f∈F

[
E
E′
[ℓD,E′ ]− E

E
[ℓD,E ]

]
︸ ︷︷ ︸

(1)

+ sup
f∈F

[
E
E
[ℓD,E ]− Ê

E
[ℓD,E ]

]
︸ ︷︷ ︸

(2)

+ sup
f∈F

[
Ê
E
[ℓD,E ]− Ê

E
[ℓ̂S,E ]

]
︸ ︷︷ ︸

(3)

The first part is due to the meta-distribution shift from the known distribution τ to an unknown distribution τ ′; the second
part reflects the random error produced from using the Monte Carlo estimation; while the third part reflects the error coming
from the empirical estimation of the population-level mean loss when the Monte Carlo result is given.

Since bounding (1) and (3) are relatively simple, the derivation will be presented following the order (1)→ (3)→ (2).

The Bound for (1). Since ℓ ∈ [0, B], we have:

sup
f∈F

[
E
E′
[ℓD,E′ ]− E

E
[ℓD,E ]

]
≤ B ·

∫
Sc−1

|E ′(P)− E(P)|dP

(a)

≤ B · ∥E ′(P)− E(P)∥∞
C!

Sc−1 is the probabilistic simplex on Rc, P is a c-dimensional probability allocation sampled either from E or E ′. In the
derivation, (a) is a direct result from Lem.2.

The Bound for (3). According to (11), we have the following result:

sup
f∈F

[
Ê
E
[ℓD,E ]− Ê

E
[ℓ̂S,E ]

]
= sup
f∈F

[
E
D

[
ℓ̄P
]
− Ê

S

[
ℓ̄P
]]

Under this reformulation, we then derive an upper bound by concentration over the randomness of ℓ̄P . By applying Lem.8,
we have the following result holds with probability at least 1− δ/(CM ) for all f ∈ F :

Ê
E
[ℓD,E ]− Ê

E
[ℓ̂S,E ] ≲ B ·

√
log(CM · N1/δ)

N
,

where N1 = N∞(F , 1/4N,N), where we used the fact of the Lip. constant in Lem.4-5 and the basic property of
expectation.

The Bound for (2). Applying Lem.7 to the Monte Carlo process, we have the following result holds uniformly with
probability at least 1− δ/(CM ):

E
E
[ℓD,E ] ≲ Ê

E
[ℓD,E ] +

√
V̂E [ℓD,E ] · log (CM · M/δ)

M
+
B · log (CM · M/δ)

M
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withM = N∞(F , 1
4M , 2M). We present the rest of derivation in two steps

Step 1. We first upper bound V̂E [ℓD,E ] with V+,E [ℓD,E ] and get a resulting inequality.

First we show that V̂E [ℓD,E ] is 1-Lip w.r.t ℓ2 norm defined on the empirical measure P:

∥f − g∥2,M =

√√√√ M∑
i=1

(
f(P(j)

M )− g(P(j)
M )
)2
.

To do this, we denote ℓ = [ℓD,E,1, · · · , ℓD,E,M ], where

ℓD,E,i = E
D

[
ℓLA(f

(ξi)(x), y;Pi)
]

is the expected loss given a fixed test label distribution Pi. Then, one can rewrite V̂E [ℓD,E ] as:

V̂
E
[ℓD,E ] =

1

M

(
ℓ⊤ℓ− 1

M
· ℓ⊤1M×Mℓ

)
=

1

M

∥∥∥∥(I − 1

m
1M×M )ℓ

∥∥∥∥2
where ℓ⊤1M×M is an M by M all-one matrix. Here we used the property:

(I − 1

m
1M×M )⊤(I − 1

m
1M×M ) = (I − 1

m
1M×M ).

∇ℓ V̂
E
[ℓD,E ] =

2

M
· (I − 1

m
1M×M ) · ℓ

According to Lem.3, we need to bound:∥∥∥∇ℓ V̂
E
[ℓD,E ]

∥∥∥
2,M

=
2

M
·
∥∥∥∥(I − 1

m
1M×M ) · ℓ

∥∥∥∥
2

≤ 2

M
·
∥∥∥∥(I − 1

m
1M×M )

∥∥∥∥
sp

· ∥ℓ∥2

≤ 2

M
·
(
1− 1

M
· λmin (1M×M )

)
·MB

= 2 ·B,

where for a real square matrix A ∈ RM×M , ||A||sp = λmax(A) is the spectral norm. The last equality follows that
λmin (1M×M ) = 0 since the rank of all-one matrix is 1. According to Lem.6, we have the following inequality holds for a
fixed f ∈ F with probability at least 1− δ/(CM ):

V̂
E
[ℓD,E ] ≲ V

E
[ℓD,E ] +B2 ·

√
log(CM/δ)

M
.

To construct a uniform bound, we derive the Lip. constant for V̂E|j [ℓD,E ] and VE|j [ℓD,E ] w.r.t the change of f in terms of
the infinity norm.

First we have:

| V̂
E
[ℓD,E ]− V̂

E
[ℓ̃D,E ]| ≤ 2 ·B

∥∥∥ℓD,E − ℓ̃D,E∥∥∥
2,M
≤ 4 ·B ·

∥∥∥f − f̃∥∥∥
∞
,
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where ℓ̃D,E is the loss function evaluated on f̃ . The second inequality used the fact that ℓD,E is 4B-Lip. continuous (a direct
result of Lem.4 and the basic property of the expectation).

Moreover, since VE [ℓD,E ] = (1 − 1
M ) · E[V̂E [ℓD,E ]]. Thus, we have VE [ℓD,E ] is also 4B-Lip continuous. Above all,

following a similar proof as Lem.8, we have:

V̂
E
[ℓD,E ] ≲ V

E
[ℓD,E ] +B2 ·

√
log(CM · M1/δ)

M

holds uniformly over all f ∈ F with practicality at least 1− δ/CM , whereM1 = N∞(F , 1/8BM,M).

Putting all together, we have the following result holds uniformly with probability at least 1− 2 · δ/(CM ):

E
E
[ℓD,E ] ≲ Ê

E
[ℓD,E ] +

√
VE [ℓD,E ] · log (CM · M/δ)

M

+B ·

√
log (CM · M1/δ) · log (CM · M/δ)

M
√
M

+
B · log (CM · M/δ)

M

≍ Ê
E
[ℓD,E ] +

√
V+,E [ℓD,E ] · log (CM · M/δ)

M

+B ·

√
log (CM · M1/δ) · log (CM · M/δ)

M
√
M

+
B · log (CM · M/δ)

M
.

(12)

Step 2. We now derive an upper bound for V+,E [ℓD,E ] by V̂+,E [ℓ̂S,E ].

First, we provide an upper bound of V+,E [ℓD,E ] by V̂+,E [ℓD,E ]:

sup
f∈F

[
V
+,E

[ℓD,E ]− V̂
+,E

[ℓD,E ]

]
≤

M∑
i=1

1

M
· sup
f∈F

[∣∣∣∣∣
((

ℓD,E,i − Ê
E
[ℓD,E ]

)
+

)2

−
((

ℓD,E,i − E
E
[ℓD,E ]

)
+

)2
∣∣∣∣∣
]

+ sup
f∈F

[∣∣∣∣∣
M∑
i=1

1

M

((
ℓD,E,i − E

E
[ℓD,E ]

)
+

)2

− E
τ

[((
ℓD,E,i − E

E
[ℓD,E ]

)
+

)2
]∣∣∣∣∣
]

(13)

According to Lem.9, we have the following holds with probability at least 1− δ/(CM ):

sup
f∈F

[∣∣∣∣∣
((

ℓD,E,i − Ê
E
[ℓD,E ]

)
+

)2

−
((

ℓD,E,i − E
E
[ℓD,E ]

)
+

)2
∣∣∣∣∣
]
≲ B2 ·

√
log(CM · N∞(F , 1/4M,M)/δ)

M
.

Here we used the fact that
(
(x− y)+

)2
is 2 ·B-Lip w.r.t y if y ∈ [0, B].

According to Lem.8, we have holds with probability at least 1− δ/(CM ):

sup
f∈F

[∣∣∣∣∣
M∑
i=1

1

M

((
ℓD,E,i − E

E
[ℓD,E ]

)
+

)2

− E
E

[((
ℓD,E,i − E

E
[ℓD,E ]

)
+

)2
]∣∣∣∣∣
]
≲ B ·

√
log(CM · M2/δ)

M
,

whereM2 = N∞(F , 1/16BM,M) Here we used the fact that
(
(ℓD,E,i − EE [ℓD,E ])+

)2
is 8 ·B-Lip w.r.t to infinity norm

in F .

Putting all together with a union bound, we have with probability at least 1− δ/(CM ):

sup
f∈F

[
V
+,E

[ℓD,E ]− V̂
+,E

[ℓD,E ]

]
≲ B2 ·

√
log(CM · M2/δ)

M
+B ·

√
log(CM · M2/δ)

M
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Next, we provide an upper bound of V̂+,E [ℓD,E ] by V̂+,E [ℓ̂S,E ]

sup
f∈F

[
V̂
+,E

[ℓD,E ]− V̂
+,E

[ℓ̂S,E ]

]
≤

M∑
i=1

1

M
·
(
sup
f∈F

[∣∣∣∣∣
((

ℓD,E,i − Ê
E
[ℓD,E ]

)
+

)2

−
((

ℓD,E,i − Ê
E
[ℓ̂S,E ]

)
+

)2
∣∣∣∣∣
]

︸ ︷︷ ︸
(a)

+ sup
f∈F

[∣∣∣∣∣
((

ℓD,E,i − Ê
E
[ℓ̂S,E ]

)
+

)2

−
((

ℓS,E,i − Ê
E
[ℓ̂S,E ]

)
+

)2
∣∣∣∣∣
]

︸ ︷︷ ︸
(b)

)

For (a), we have the following results hold with probability at least 1− δ/(CM ):

sup
f∈F

[∣∣∣∣∣
((

ℓD,E,i − Ê
E
[ℓD,E ]

)
+

)2

−
((

ℓD,E,i − Ê
E
[ℓ̂S,E ]

)
+

)2
∣∣∣∣∣
]

≤ 4B · sup
f∈F

[∣∣∣∣ ÊE [ℓD,E ]− Ê
E
[ℓ̂S,E ]

∣∣∣∣]

= 4B · sup
f∈F

[∣∣∣E
D

[
ℓ̄P
]
− Ê

S

[
ℓ̄P
]∣∣∣]

≲ B2 ·
√

log(CM · N1/δ)

N

For (b), we have the following results hold with probability at least 1− δ/(CM ):

sup
f∈F

[∣∣∣∣∣
((

ℓD,E,i − Ê
E
[ℓ̂S,E ]

)
+

)2

−
((

ℓS,E,i − Ê
E
[ℓ̂S,E ]

)
+

)2
∣∣∣∣∣
]

≤ 4B · sup
f∈F

[∣∣∣∣ℓD,E,i − ℓS,E,i∣∣∣∣]
≲ B2 ·

√
log(CM · N1/δ)

N

Combining (a) and (b) with a union boubsnd, we have the following result holds with probability at least 1− 2M · δ/(CM )

sup
f∈F

[
V̂
+,E

[ℓD,E ]− V̂
+,E

[ℓ̂S,E ]

]
≲ B2 ·

√
log(CM · N1/δ)

N

all together, we have the following bound holds with probability at least 1− (3M + 1) · δ/(CM ) for (13)

sup
f∈F

[
V
+,E

[ℓD,E ]− V̂
+,E

[ℓ̂S,E ]

]
≲ B2 ·

√
log(CM · N1/δ)

N
+B ·

√
log(CM · M2/δ)

M
(14)

We finish the bound for (2) by combining (12) and (14), which suggests that the following result holds with probability at
least 1− (3M + 3) · δ/(CM )

E
E
[ℓD,E ] ≲ Ê

E
[ℓD,E ] +

√
V̂+,E [ℓ̂S,E ] · log (CM · M/δ)

M
+B ·

√
log (CM · M2/δ) · log (CM · M/δ)

M
√
M

+B ·

√
log (CM · N1/δ) · log (CM · M/δ)

M
√
N

+
B · log (CM · M/δ)

M
.
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Final Step. Finally, by combining the bound for (1),(2),(3), we reach that the following result holds with probability at
least 1− δ uniformly for all f ∈ F :

E
E
[ℓD,E ] ≲ Ê

E
[ℓ̂S,E ] +

B · ∥E − E ′∥∞
C!

+

√
V̂+,E [ℓ̂S,E ] · log (CM · M/δ)

M
+B ·

√√
log (CM · M2/δ) · log (CM · M/δ)

M
√
M

+B ·

√√
log (CM · N1/δ) · log (CM · M/δ)

M
√
N

+
B · log (CM · M/δ)

M
+B ·

√
log(CM · N1/δ)

N
,

Under the Assumption that

N∞(F , ϵ,M) ≤
(r
ϵ

)ν
,

we have the following result holds with probability at least 1− δ uniformly over all f ∈ F :

E
E
[ℓD,E ] ≲ Ê

E
[ℓ̂S,E ] +

B · ∥E − E ′∥∞
C!

+

√
ν · V̂+,E [ℓ̂S,E ] · log (ζ1)

M
+B ·

√
ν3/2 ·

√
log (ζ1) · log (ζ1)

M
√
M

+B ·

√
ν3/2 ·

√
log (ζ2) · log (ζ1)

M
√
N

+
B · ν · log (ζ1)

M
+B ·

√
ν · log(ζ2)

N
,

where ζ1 = (CMBM/δ)
(1/ν) · r, ζ2 = (CMN/δ)

(1/ν) · r.

E. Additional Experiment Settings
E.1. Implentation Details.

Following (Zhang et al., 2022; Aimar et al., 2023), we employ ResNeXt-50 (Xie et al., 2017) and ResNet-32 (He et al.,
2016) as the backbones for ImageNet-LT and CIFAR-LT datasets, respectively. In CIFAR-LT experiments, we train the
model for 200 epochs using Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951). The initial learning rate is set at
0.1, with 0.9 momentum rate and 128 batch size. Moreover, a step learning rate schedule is adopted, which reduces the
learning rate by a factor of 10 at the 160-th and 180-th epoch, respectively. Regarding the ImageNet-LT dataset, the model
is trained 180 epochs using SGD. Here, the initial learning rate is 0.025 with 0.9 momentum and 64 batch size. Then, the
learning rate is adjusted through a cosine annealing schedule, which gradually declines from 0.025 to 0 over 180 epochs.
Finally, for the sake of fair comparisons, we re-implement the above methods using their publicly available code and conduct
experiments on the same device.

E.2. Datasets

Dataset Descriptions. We conduct experiments on three popular benchmark datasets for imbalanced learning: (a) CIFAR-
10-LT and CIFAR-100-LT datasets. The original CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009) have
50, 000 images for training and 10, 000 images for validation with 10 and 100 categories, respectively. Following (Cui et al.,
2019), we use the long-tailed version of CIFAR 10 and CIFAR 100 datasets with imbalanced ratio ρ = Nmax/Nmin = 100.
(b) ImageNet-LT dataset. We adopt the ImageNet-LT dataset proposed by (Liu et al., 2019), which is sampled from
ImageNet (Deng et al., 2009) following the Pareto distribution. Briefly, it consists of 115.8K images from 1000 classes,
with 1280 images in the most frequent class and 5 images in the minority.

E.3. Competitors

• Label-Distribution-Aware Margin (LDAM) (Cao et al., 2019) improves the performance of minority classes by
encouraging larger margins for minority classes.

• Logit Adjustment (LA) (Menon et al., 2021) advances the conventional softmax cross-entropy by ensuring Fisher
consistency in minimizing the balanced error.
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• Vector Scaling (VS) (Kini et al., 2021b) proposes to leverage both multiplicative and additive logit adjustments to
address label imbalance problems.

• LAbel distribution DisEntangling (LADE) (Hong et al., 2021) X regards the long-tailed learning as a label shift
problem and aims to disentangle the source label distribution from the model prediction to match the target label
distribution during training.

• Data Dependent Contraction (DDC) (Wang et al., 2023) designs a Deferred Re-Weighting scheme to boost
performance for imbalanced learning, which is also compatible with the VS loss.

• RoutIng Diverse Experts (RIDE) (Wang et al., 2021) proposes a distribution-aware multiple expert routing system,
which can efficiently reduce both model bias and variance for imbalanced learning.

• Self-supervised Aggregation of Diverse Experts (SADE) (Zhang et al., 2022) is a state-of-the-art test-agnostic
long-tailed learning method, which trains multiple skill-diverse experts to tackle different class distributions and adopts
self-supervision to aggregate the decisions of multiple experts to adapt unknown test class distributions.

• Balanced Product of Experts (BalPoE) (Aimar et al., 2023) is another state-of-the-art long-tailed learning algorithm
that successfully extends logit adjustment to the mixture of experts.

E.4. The Choice of meta-distribution and Experts

We briefly introduce the choice of (3) and (4) to define the mixture distribution. Detailed implementations are shown in the
appendix. Drawing inspiration from the skill-diverse expert learning approach in prior art, we employ a three-component
mixture model for (3) to encapsulate three critical skills. Each component is determined by a specific choice of α, the
parameter for Dirichlet distribution. The forward component α(f) aligns with the training label distribution, indicative of
performance in the head classes. The uniform component α(u) corresponds to a uniform distribution, reflecting adherence
to the conventional long-tail testing protocol. The backward component represents an inverse long-tail distribution of
the training set (where head classes are transformed into tail classes and vice versa), signifying performance in the tail
distribution. Furthermore, for (4), we chose a uniform distribution (p1 = p2 = p3 = 1/3) in our model, considering the
equal significance of all three skills. This prevents the unfair oversight of any particular skill.

E.5. Construction of Training meta-distribution E

Consider the training class distribution represented by P1, P2, ..., PC , where C denotes the number of classes. Without loss
of generality, we assume that the classes are sorted in a sense: P1 ≥ P2 ≥ ... ≥ PC . Otherwise, we can change the
numbering and obtain the same result.

The training meta-distribution E is a Dirichlet mixture distribution as Sec.E.4. It consists of three Dirichlet distribution
components: the forward component α(f), the uniform component α(u), and the backward component α(b).

The forward component parameter α(f) is set element-wisely:

α
(f)
i = S · Pi, i = 1, 2, . . . , C

where S is a predefined normalization factor to control the variance of the component. Here we set it as S = 10000 for all
datasets. Since the mean of the Dirichlet distribution is exactly α(f), this component represents local variations concentrated
around the long-tail distribution aligned with the training data.

The backward component α(b) is set element-wisely as:

α
(b)
i = S · P(C−i)

where S is a predefined normalization factor to control the variance of the component. Here we set it as S = 10000 for all
datasets. By connecting α(b)

i with P(C−i), the long-tail distribution is reversed, where the head classes become tail classes,
and vice versa. Since the mean of the Dirichlet distribution is exactly α(b), this component represents local variations
concentrated around the inverse long-tail distribution aligned with the training data.
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The uniform component α(u) is set element-wisely as:

α
(u)
i =

S

C
, i = 1, 2, . . . , C

where S is a predefined normalization factor to control the variance of the component. Here we set it as S = 10000 for all
datasets. By connecting α(b)

i with 1/C, it recovers a uniform distribution. Since the mean of the Dirichlet distribution is
exactly α(u), this component represents local variations concentrated around the uniform distribution.

The corresponding p.d.f are expressed as: Dir(f),Dir(u),Dir(b). Moreover, the three components are mixed with a uniform
distribution. Above all, the p.d.f for the mixture distribution becomes:

E =
1

3
· Dir(f) + 1

3
· Dir(u) + 1

3
· Dir(b)

E.6. Sampling Procedure of Pte for the Monte Carlo Approximation

Initially, we employ a Monte Carlo method to sample a set of Pte from the training meta-distribution E and obtain the
generated data P = {Pj , ξj}Mj=1 for Monte Carlo approximation.

We implement the sampling process by repeating the following two-step procedure for M times.

1. Randomly sampling a Dirichlet distribution component α from {α(f), α(u), α(b)} with equal probability.

2. Sampling a distribution Pte from the Dirichlet distribution component α.

E.7. Mini-Batch Construction

Denote the number of mini-batches as B. We sample 60 ·B label distributions to construct the dataset P . We randomly
sample 60 label distributions for each mini-batch without replacement in each epoch to get an unbiased estimation.

E.8. Construction of Testing Datasets

We employ two settings, SADE’s Setting and our setting, to construct our test data. The details are discussed as follows:

E.8.1. SADE’S SETTING

The test data in this setting directly follows SADE (Zhang et al., 2022). The only difference here is that we include more
imbalance ratios, denoted as ρ, in our experiments. For CIFAR 100-LT and CIFAR 10-LT, ρ ∈ {2, 5, 10, 25, 50, 100}. For
ImageNet-LT, ρ ∈ {2, 5, 10, 25, 50}.

E.8.2. OURS SETTING

According to our meta-distribution, we employ three kinds of Dirichlet components to generate test distributions: the
forward Dirichlet distribution α(ftest), the uniform Dirichlet distribution α(utest) and the backward Dirichlet distribution
α(btest).

From each component of the meta-distribution, we sample three specific distributions as the test class distribution, resulting
in a total of 9 test class distributions.

The Dirichlet distributions are chosen based on a predefined imbalance ratio ρ. The greater the ρ, the more challenging the
test distribution. For CIFAR 100-L and CIFAR 10-LT, we set ρ to be 100, while for ImageNet-LT, we use ρ = 50.

For the forward Dirichlet distribution α(ftest), we set:

α
(ftest)
i = ρ−(i−1)/(C−1), i = 1, 2, . . . , C

For the backward Dirichlet distribution α(btest), we set:

α
(btest)
i = ρ−(C−i)/(C−1), i = 1, 2, . . . , C
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For the uniform Dirichlet distribution α(utest), we set:

α
(utest)
i = 1/C, i = 1, 2, . . . , C

Subsequent steps remain consistent across the three components. For simplicity, we denote each Dirichlet distribution as α.

To enhance the simulation of the randomness in the test distribution, we introduce a perturbation to α, allowing up to 5%
variations. This involves adjusting the i-th element αi:

αi = αi + αi ∗ ϵ, ϵ ∼ U(−0.05, 0.05)

Following this, we normalize α to ensure the sum of its components equals S. The role of S is identical to its function
in constructing the Training meta-distribution. We set S = 100 for CIFAR 100-LT, S = 1000 for CIFAR 10-LT and
S = 10000 for ImageNet-LT.

F. Additional Experiments
F.1. Overall Performance on the SADE’s Settings

The Overall Performance on ImageNet-LT and CIFAR-10-LT are shown in Tab.6-Tab.7.

Table 5. Performance Comparison on CIFAR-100-LT (SADE’s Setting)

Method
Forward-LT Uni. Backward-LT

Mean100 50 25 10 5 2 1 2 5 10 25 50 100

LDAM 66.03 63.03 59.98 55.37 51.01 45.02 39.99 35.04 28.75 24.33 19.49 16.49 13.66 39.86(±17.66)

LA 60.68 58.89 56.90 54.08 51.74 48.45 45.40 42.30 39.44 37.23 33.69 31.98 30.22 45.46(±10.12)

VS 58.80 57.16 55.38 52.55 49.66 45.74 42.84 39.46 35.04 32.33 28.52 26.43 24.78 42.21(±11.58)

LADE 59.22 57.84 55.55 52.40 49.70 46.82 44.47 41.53 38.46 36.46 33.49 31.98 30.41 44.49(± 9.60)

DDC 59.36 58.33 56.60 53.95 51.48 49.01 46.98 44.01 41.06 39.22 36.20 34.55 33.13 46.45(± 8.82)

RIDE 64.57 62.91 61.06 58.02 55.33 51.67 48.40 44.66 40.43 37.54 34.10 32.46 30.41 47.81(±11.62)

SADE 67.81 65.45 62.75 58.69 56.04 51.91 49.53 45.90 44.04 43.34 42.32 42.48 42.75 51.77(± 9.02)

BalPoE 69.22 67.02 64.45 60.19 57.26 52.05 48.66 44.54 40.57 37.13 33.25 31.58 29.24 48.86(±13.44)

DirMixE 68.32 66.21 63.09 59.49 56.35 52.62 48.38 46.40 45.05 44.79 43.71 44.41 44.25 52.54(± 8.74)

Table 6. ImageNet-LT (SADE’s Setting)

Method
Forward-LT Uni. Backward-LT

Mean50 25 10 5 2 1 2 5 10 25 50

LDAM 63.18 61.31 58.10 55.29 51.28 47.92 44.63 40.19 37.11 33.80 31.17 47.63(±10.65)

LA 60.57 59.83 57.63 55.64 52.92 50.66 48.39 45.43 43.35 41.08 39.07 50.42(± 7.21)

VS 60.27 59.33 57.77 56.05 53.76 52.20 50.42 48.36 46.64 44.97 43.55 52.12(± 5.56)

LADE 63.92 62.41 60.17 57.91 54.98 52.71 50.29 47.10 45.19 42.89 40.55 52.56(± 7.66)

DDC 59.49 58.37 57.02 55.16 53.15 51.32 49.45 47.39 45.53 44.10 42.46 51.22(± 5.64)

RIDE 64.98 63.73 62.20 60.15 57.09 54.98 52.53 49.59 47.75 44.86 42.88 54.61(± 7.35)

SADE 69.93 68.19 66.02 63.53 60.94 59.00 57.53 55.91 54.60 53.58 53.15 60.22(± 5.69)

BalPoE 69.66 68.28 65.87 63.77 60.91 58.95 57.00 55.22 53.85 52.59 51.88 59.82(± 6.05)

DirMixE 70.09 68.46 65.93 63.22 60.50 58.61 57.27 55.27 55.04 55.38 55.33 60.46(± 5.36)

F.2. Results on iNaturalist

In this subsection, we show the results on the iNaturalist dataset. First, we clarify the setting we adopt to carry the
experiments.

Training Meta-Distribution E Construction: For iNaturalist2018, we construct the training meta-distribution E
similarly to CIFAR-100-LT, CIFAR-10-LT, and ImageNet-LT. The difference is in the normalization factor S, the sum of the
Dirichlet distribution hyperparameter α, which we employ to control component variance. Given iNaturalist2018’s
larger class size, we set S to 100, 000.
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Table 7. CIFAR-10-LT (SADE’s Setting)

Method
Forward-LT Uni. Backward-LT

Mean
100 50 25 10 5 2 1 2 5 10 25 50 100

LDAM 90.56 89.12 87.18 84.28 81.58 77.60 74.49 71.41 68.06 65.35 62.40 60.86 60.09 74.84(±10.60)

LA 89.79 88.55 87.18 85.50 83.70 81.30 79.17 77.59 76.13 74.93 73.52 73.38 72.76 80.27(± 5.89)

VS 84.26 83.97 83.49 82.52 81.66 80.78 80.59 80.11 80.73 80.66 80.30 80.75 81.23 81.62(± 1.39)

LADE 87.45 86.73 85.41 83.91 82.82 81.14 79.77 79.02 78.21 77.64 76.74 76.74 76.55 80.93(± 3.78)

DDC 86.72 86.23 85.35 84.30 83.63 82.49 81.64 81.31 80.61 80.12 79.31 79.32 79.38 82.34(± 2.56)

RIDE 87.01 86.26 85.32 84.60 83.94 82.57 81.80 81.74 81.64 81.44 80.92 80.89 81.28 83.03(± 2.05)

SADE 90.15 89.19 87.95 86.24 84.83 83.51 83.10 83.55 84.37 85.01 86.62 87.91 89.10 86.27(± 2.31)

BalPoE 92.13 91.31 89.97 87.93 86.01 83.92 81.70 80.57 79.94 80.14 78.10 77.89 77.80 83.65(± 5.05)

DirMixE 90.92 90.16 89.04 87.10 85.83 83.66 83.26 84.16 85.16 86.17 86.62 87.55 88.30 86.76(± 2.31)

Construction of Testing Datasets: The test dataset is constructed from the following procedure.

1. SADE’s Setting: We directly apply setting in SADE’s paper [a] for ‘iNaturalist2018‘ test data, maintaining imbalance
ratios ρ ∈
2, 3.

2. Ours’ Setting: As with CIFAR datasets and ImageNet-LT, we use three Dirichlet components for test distributions:
α(ftest), α(utest), and α(btest). We sample three distributions from each meta-distribution component, creating 9
test class distributions in total, with a predefined imbalance ratio ρ = 3. The approach for iNaturalist2018
mirrors that for the CIFAR and ImageNet datasets. The main adjustment is the normalization factor S to 100, 000 to
accommodate iNaturalist2018’s larger class dimension.

The results are shown in Tab.8, Tab.9.

Table 8. iNaturalist (Ours Setting)

Method
Forward-LT Uniform Backward

Mean1 2 3 1 2 3 1 2 3

LDAM 61.33 61.36 60.31 61.58 63.08 63.59 64.10 62.14 63.42 62.32(±1.14)

LA 61.88 61.46 60.19 61.61 62.04 62.09 62.33 60.89 61.84 61.59(±0.60)

VS 58.58 58.00 57.80 60.72 61.46 62.20 62.79 62.25 62.56 60.71(±1.82)

LADE 64.81 63.56 63.31 64.11 64.13 65.07 65.50 64.06 64.93 64.39(±0.65)

DDC 58.58 58.46 56.80 61.31 61.40 62.56 64.81 64.00 64.33 61.36(±2.57)

RIDE 67.33 68.28 66.96 68.76 68.39 69.27 69.05 68.72 69.04 68.42(±0.71)

SADE 68.94 70.13 69.52 68.64 68.92 69.82 69.95 69.44 70.73 69.57(±0.60)

BalPoE 69.46 69.03 66.99 68.70 69.73 70.22 71.30 71.75 71.84 69.89(±1.42)

DirMixE 69.75 70.49 69.88 69.13 70.00 70.34 71.24 71.91 72.02 70.53(±0.89)

Table 9. iNaturalist (SADE’s Setting)

Method
Foward-LT Uni. Backward-LT

Mean3 2 1 2 3

LDAM 65.95 66.21 66.66 67.45 67.23 66.70(±0.52)

LA 66.17 66.31 66.28 66.27 66.26 66.26(±0.04)

VS 64.06 64.71 65.34 66.10 66.05 65.25(±0.72)

LADE 69.53 69.80 70.06 70.41 70.36 70.03(±0.30)

DDC 64.31 64.92 65.93 66.86 66.90 65.78(±0.94)

RIDE 71.10 71.52 71.59 72.17 71.69 71.61(±0.31)

SADE 71.95 72.58 72.70 73.16 73.27 72.73(±0.43)

BalPoE 72.23 73.00 73.31 73.99 73.55 73.22(±0.54)

DirMixE 72.53 72.88 73.21 73.66 73.94 73.24(±0.47)
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F.3. Ablation Study on the Effect of Semi-Variance

We show the performance with and without employing the semi-variance regularization term in Tab.10-Tab.13.The results
consistently show that the proposed regularization induces a better average performance on all the datasets.

Table 10. Ablation of Semi-Variance on CIFAR-100 (Ours Setting)

Semi-Var
Uniform Forward-LT Backward-LT

Mean1 2 3 1 2 3 1 2 3
w/o 47.31 48.76 44.67 66.41 65.80 69.33 43.20 45.47 42.89 52.65

w 47.99 49.41 44.21 66.85 66.40 69.44 44.41 47.01 44.35 53.34

Table 11. Ablation of Semi-Variance on CIFAR-100 (SADE Setting)

Semi-Var
Forward-LT Uni. Backward-LT

Mean100 50 25 10 5 2 1 2 5 10 25 50 100
w/o 68.18 65.73 62.69 58.85 55.60 52.11 48.85 46.89 45.13 43.60 42.96 43.00 43.13 52.06

w 68.32 66.21 63.09 59.49 56.35 52.62 48.38 46.40 45.05 44.79 43.71 44.41 44.25 52.54

Table 12. Ablation of Semi-Variance on CIFAR-10 (Ours Setting)

Semi-Var
Uniform Forward-LT Backward-LT

Mean1 2 3 1 2 3 1 2 3

w/o 82.87 82.99 83.36 89.86 89.58 90.80 90.04 89.15 88.96 87.51
w 83.24 82.98 83.71 90.46 89.90 91.30 89.39 88.78 88.40 87.57

F.4. Experts Assignment

In this part, we validate the ability of the test-time self-supervised aggregation by visualizing the weight assignments for
different label distributions in Fig.6-8. The forward and backward experts always tend to have a significant weight for their
corresponding distributions. Uniform distributions tend to utilize all three experts. This is because tail and head classes are
equally crucial for uniform distribution.

F.5. Fine-grained Performance

In addition to the overall accuracy of test datasets, we also examine the effectiveness of DirMixE across many-shot,
medium-shot, and few-shot classes. For CIFAR 100-LT and ImageNet-LT, classes are divided into many-shot (> 100),
medium-shot (20 ∼ 100), and few-shot (< 20) categories. In the case of CIFAR 10-LT, classes are split into many-shot
(> 1000), medium-shot (200 ∼ 1000), and few-shot (< 200) categories. All these statistics are based on the training label
distribution. The results are illustrated in heat maps in Fig.10, Fig.9 for CIFAR-10 and 100, respectively.

F.6. Comparison with Stronger Baselines

In this subsection, we further compare our method with two stronger basline: GPACO (Cui et al., 2023), and BCL (Zhu
et al.). The results are shown in Tab.14-17.

F.7. The Effect of the Normalization Factor S

As shown in Tab.18-Tab.21, our investigation into S, the sum of the Dirichlet distribution hyperparameter α, shows
performance improves with higher S values before a slight decline. A larger S reduces the randomness in the sampled
test-label distributions. When S is too small, local variation overshadows global trends, leading to misassigned experts and

35



Harnessing Hierarchical Label Distribution Variations in Test Agnostic Long-tail Recognition

Table 13. Ablation of Semi-Variance on CIFAR-10 (SADE Setting)

Semi-Var
Forward-LT Uni. Backward-LT

Mean100 50 25 10 5 2 1 2 5 10 25 50 100

w/o 90.72 90.02 88.91 87.07 85.65 84.01 83.36 83.80 84.53 84.82 85.48 86.37 86.84 86.28
w 90.92 90.16 89.04 87.10 85.83 83.66 83.26 84.16 85.16 86.17 86.62 87.55 88.30 86.76

Table 14. Performance Comparison on CIFAR-100-LT (SADE’s Setting)

Method
Foward-LT Uni. Backward-LT

Mean
100 50 25 10 5 2 1 2 5 10 25 50 100

GPaCo-ResNet32 64.01 62.59 61.06 58.49 56.55 53.71 51.53 48.8 45.36 43.19 40.02 38.86 37.07 50.86(± 9.02)

BCL-ResNet32 65.37 63.56 61.43 58.26 56.00 52.43 49.82 46.43 42.19 39.37 35.35 33.43 31.30 48.84(±11.33)

Ours-ResNet32 68.32 66.21 63.09 59.49 56.35 53.63 48.38 46.40 45.05 44.79 43.71 44.41 44.25 52.62(± 8.75)

Table 15. Performance Comparison on CIFAR-100-LT (Ours Setting)

Method
Foward-LT Uniform Backward-LT

Mean1 2 3 1 2 3 1 2 3

GPaCo-ResNet32 62.89 60.31 64.50 50.18 48.86 49.58 37.15 37.09 34.94 49.50(±10.75)

BCL-ResNet32 64.56 62.85 66.49 47.37 47.51 48.27 32.59 30.17 32.74 48.06(±13.44)

Ours-ResNet32 66.85 66.40 69.44 47.99 49.41 44.21 44.41 47.01 44.35 53.34(±10.22)

Table 16. Performance Comparison on ImageNet-LT (SADE’s Setting)

Method
Foward-TL Uni. Backward-LT

Mean50 25 10 5 2 1 2 5 10 25 50

GPaCo-ResNeXt50 65.68 64.67 63.91 62.31 60.27 58.69 56.86 54.3 52.56 50.49 48.37 58.01(±5.69)

BCL-ResNeXt50 67.44 66.41 64.33 62.29 59.49 57.25 54.83 51.63 49.39 47.2 44.6 56.81(±7.55)

Ours-ResNeXt50 70.09 68.48 65.93 63.22 60.5 58.61 57.27 55.27 55.04 55.38 55.33 60.47(±5.37)

Table 17. Performance Comparison on ImageNet-LT (Ours Setting)

Method
Foward-LT Uniform Backward-LT

Mean1 2 3 1 2 3 1 2 3

GPaCo-ResNeXt50 65.74 64.69 64.92 59.52 58.83 59.06 49.43 50.04 49.08 57.92(±6.44)

BCL-ResNeXt50 66.75 66.69 66.31 57.41 57.52 58.43 45.40 46.71 44.64 56.65(±8.63)

Ours-ResNext50 70.13 70.88 70.29 58.38 58.85 58.02 55.59 55.09 56.25 61.50(±6.43)
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performance loss. Conversely, excessively large S values minimize local variation, making the meta-distribution collapse to
fix distributions. Thus, we find a moderate value is optimal.

Table 18. Ablation of S on CIFAR-100-LT (SADE’s Setting)

S
Foward-LT Uni. Backward-LT

Mean100 50 25 10 5 2 1 2 5 10 25 50 100

100 55.33 52.29 49.22 44.07 39.31 33.31 28.27 23.53 17.60 14.50 9.64 7.32 5.40 29.21(±17.03)

500 56.92 54.51 51.89 47.99 44.34 39.17 34.18 29.31 25.93 20.51 16.85 15.12 19.43 35.09(±14.44)

1000 69.73 66.81 64.17 59.26 55.64 49.87 45.47 41.68 40.39 37.90 36.33 33.27 31.72 48.63(±12.70)

5000 68.51 65.93 63.53 59.52 56.06 51.90 50.37 46.99 45.52 45.05 43.84 43.72 43.64 52.66(± 8.73)

10000 68.32 66.21 63.09 59.49 56.35 52.62 48.38 46.40 45.05 44.79 43.71 44.41 44.25 52.54(± 8.74)

50000 68.51 66.21 63.46 59.57 55.86 52.14 49.35 46.71 44.44 43.42 42.25 42.60 42.14 52.05(± 9.30)

100000 67.57 65.12 62.65 59.65 56.53 52.14 49.42 46.27 44.77 44.32 42.83 42.92 42.61 52.06(± 8.82)

500000 67.81 66.05 63.46 59.91 56.53 52.14 49.12 45.48 44.28 43.83 42.93 43.28 43.83 52.20(± 9.04)

1000000 67.43 65.57 62.52 58.75 55.66 51.76 48.03 45.13 42.98 42.31 41.14 41.27 41.34 51.07(± 9.47)

Table 19. Ablation of S on CIFAR-100-LT (Ours Setting)

S
Foward-LT Uniform Backward

Mean1 2 3 1 2 3 1 2 3

100 54.41 53.35 58.11 29.24 26.00 28.70 9.12 5.81 9.41 30.46(±19.42)

500 55.47 54.42 59.24 31.50 34.43 35.69 28.77 16.75 23.64 37.77(±14.25)

1000 67.47 66.47 69.23 45.18 42.86 48.20 31.01 26.50 32.53 47.72(±15.62)

5000 66.80 66.40 68.96 48.78 47.89 49.35 42.64 41.88 42.47 52.80(±10.66)

10000 65.96 65.80 68.10 50.55 48.00 47.12 42.83 44.53 41.84 52.75(±10.14)

50000 66.85 65.33 68.74 47.25 48.00 47.89 40.22 41.28 40.48 51.78(±11.15)

100000 65.23 66.33 67.62 47.37 48.86 48.04 43.85 43.68 42.68 52.63(± 9.95)

500000 66.63 66.20 68.10 48.35 48.16 47.81 42.27 43.25 43.10 52.65(±10.37)

1000000 65.85 63.72 67.29 46.52 47.78 45.82 41.99 41.03 38.70 50.97(±10.73)

Table 20. Ablation of S on ImageNet-LT (SADE’s Setting)

S
Foward-LT Uni. Backward-LT

Mean50 25 10 5 2 1 2 5 10 25 50

100 70.24 68.02 64.64 61.60 57.17 54.06 49.91 47.10 42.88 43.14 41.13 54.54(±10.04)

500 70.42 67.87 64.12 60.31 56.09 51.27 46.23 43.07 37.40 30.67 27.25 50.43(±14.11)

1000 70.53 68.05 64.00 60.18 56.33 52.03 47.13 41.79 50.14 48.37 46.71 55.02(± 9.06)

5000 69.94 68.07 65.35 62.35 59.42 57.40 56.15 54.30 54.31 54.25 53.66 59.56(± 5.69)

10000 70.09 68.46 65.93 63.22 60.50 58.61 57.27 55.27 55.04 55.38 55.33 60.46(± 5.36)

50000 69.42 67.99 65.54 63.15 60.27 58.55 57.36 55.96 55.26 55.00 55.23 60.34(± 5.11)

100000 69.31 67.65 65.50 62.81 60.41 58.56 57.36 56.15 55.47 55.11 55.25 60.33(± 4.98)

500000 69.31 67.75 65.61 63.28 60.53 58.59 57.29 56.21 55.66 55.40 55.23 60.44(± 4.99)

1000000 68.81 67.47 65.18 62.73 60.45 58.63 57.44 56.49 55.98 55.63 55.88 60.43(± 4.66)

F.8. The Effect of The Number of Experts

In the DirMixE method, three experts are initially considered. However, the DirMixE framework can be extended to
accommodate varying numbers of experts. We explore the impact of the number of experts on CIFAR 100-LT, specifically
examining cases where the number is set to 1, 2, 3, 5, 7, and 9, where each expert corresponds to a distinct Dirichlet
distribution component.

The forward and backward components are characterized by an imbalance ratio denoted as ρ.

Denote the training class distribution as P1, P2, . . . , PC , where C denotes the number of classes.

Specifically, we will need the following notations for experts handling different levels of imbalance ratio.
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Table 21. Ablation of S on ImageNet-LT (Ours Setting)

S
Forward-LT Uniform Backward-LT

Mean1 2 3 1 2 3 1 2 3

100 70.21 70.26 70.74 53.82 53.36 53.22 42.44 40.73 42.38 55.24(±11.73)

500 70.30 70.33 70.24 50.90 51.89 51.10 27.32 24.87 24.96 49.10(±18.28)

1000 70.65 70.42 70.45 51.01 52.14 51.04 46.58 46.42 46.42 56.13(±10.37)

5000 70.03 69.94 70.47 56.75 57.53 56.55 54.11 53.72 55.03 60.46(± 6.95)

10000 70.13 70.88 70.29 58.38 58.85 58.02 55.59 55.09 56.25 61.50(± 6.43)

50000 69.50 69.55 69.70 58.58 59.29 58.37 54.96 54.52 55.31 61.09(± 6.21)

100000 69.44 69.20 69.37 58.29 58.90 58.36 55.15 55.53 56.14 61.15(± 5.91)

500000 69.68 70.09 69.90 58.43 59.10 58.26 54.95 54.61 55.87 61.21(± 6.31)

1000000 69.02 69.24 69.12 58.26 58.47 58.26 56.02 55.83 56.18 61.16(± 5.72)

The forward component α(fρ) with imbalance ratio ρ is set element-wisely as:

α
(fρ)
i =

S ∗ ρ(i−1)/(C−1)∑C
j=1 ρ

(j−1)/(C−1)
, i = 1, 2, . . . , C,

where S is the normalization factor.

The backward component α(bρ) with imbalance ratio ρ is set element-wisely as:

α
(bρ)
i =

S ∗ ρ(C−i)/(C−1)∑C
j=1 ρ

(j−1)/(C−1)
, i = 1, 2, . . . , C

where S is the normalization factor.

The uniform component α(u) is set element-wisely as:

α
(u)
i =

S

C
, i = 1, 2, . . . , C

where S is the normalization factor.

In the case of a single expert, we utilize one Dirichlet component α(u). For two experts, we employ two components,
α(f100) and α(b100). For three experts, we select the uniform component α(u) and the forward and backward component
with ρ = 100. For scenarios with more than three experts, we will symmetrically add the forward components and
backward components based on the 3-experts configuration. For five experts, we select the uniform component α(u) and
the forward/backward components with ρ = 100, 50. For seven experts, we select the uniform component α(u) and the
forward/backward component with ρ = 100, 50, 25. For nine experts, we select the uniform component α(u) and the
forward/backward components with ρ = 100, 50, 25, 10.

The results are reported in Fig.11. This indicates that the average ACC is monotonically increasing as more and more
experts are employed.
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(a) Our’s Setting (b) SADE’s Setting

Figure 6. Weight Assignment in the Self-supervised Aggregations on CIFAR-100. F,U,B represent the forward, uniform and backward
distributions. For the x-axis, F-1,F-2,F-3 in (a) denote the three observed label distributions in the test data respectively. F-2,F-5,· · · ,F-100
represents the corresponding imbalance ratio of the forward distribution under SADE’s setting. The case for the suffices of U and B are
similar. Expert-F,U,B represents the experts assigned to the forward, backward, uniform Dirichlet distribution, respectively.

(a) Our’s Setting (b) SADE’s Setting

Figure 7. Weight Assignment in the Self-supervised Aggregations on CIFAR-10. F,U,B represent the forward, uniform and backward
distributions. For the x-axis, F-1,F-2,F-3 in (a) denote the three observed label distributions in the test data respectively. F-2,F-5,· · · ,F-100
represents the corresponding imbalance ratio of the forward distribution under SADE’s setting. The case for the suffices of U and B are
similar. Expert-F,U,B represents the experts assigned to the forward, backward, uniform Dirichlet distribution, respectively.

(a) Our’s Setting (b) SADE’s Setting

Figure 8. Weight Assignment in the Self-supervised Aggregations on ImageNet. F,U,B represent the forward, uniform and backward
distributions. For the x-axis, F-1,F-2,F-3 in (a) denote the three observed label distributions in the test data respectively. F-2,F-5,· · · ,F-100
represents the corresponding imbalance ratio of the forward distribution under SADE’s setting. The case for the suffices of U and B are
similar. Expert-F,U,B represents the experts assigned to the forward, backward, uniform Dirichlet distribution, respectively.
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(a) Our’s Setting

(b) SADE’s Setting

Figure 9. Fine-grained Performance of DirMixE on CIFAR-100-LT F,U,B represent the forward, uniform and backward distributions.
For the x-axis, F-1,F-2,F-3 in (a) denote the three observed label distributions in the test data respectively. F2,F5,· · · ,F100 in (b)
represents the corresponding imbalance ratio of the forward distribution under SADE’s setting. The case for the suffixes of U and B are
similar. L, M, S denote the many-shot, medium-shot and few-shot classes respectively. For example, L-B100 indicates the performance of
medium-shot classes on the backward distribution with an imbalance ratio of 100.
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(a) Our’s Setting

(b) SADE’s Setting

Figure 10. Fine-grained Performance of DirMixE on CIFAR-10-LT F,U,B represent the forward, uniform and backward distributions.
For the x-axis, F-1,F-2,F-3 in (a) denote the three observed label distributions in the test data respectively. F2,F5,· · · ,F100 in (b)
represents the corresponding imbalance ratio of the forward distribution under SADE’s setting. The case for the suffixes of U and B are
similar. L, M, S denote the many-shot, medium-shot and few-shot classes respectively. For example, L-B100 indicates the performance of
medium-shot classes on the backward distribution with an imbalance ratio of 100.

(a) Our’s Setting (b) SADE’s Setting

Figure 11. The Effect of Using Different Number of Experts.
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