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ABSTRACT

In this paper, we adapt Physics-Informed Neural Networks (PINNs) to solve
Fisher’s equation with solutions characterized by steep traveling wave fronts. We
introduce a residual weighting scheme that is based on the underlying reaction
dynamics and helps in tracking the propagating wave fronts. Furthermore, we ex-
plore a network architecture tailored for solutions in the form of traveling waves.
Lastly, we assess the capacity of PINNs to approximate an entire family of travel-
ing wave solutions by incorporating the reaction rate coefficient as an additional
input to the network architecture.

1 INTRODUCTION

Reaction-diffusion systems constitute a wide class of mathematical models used in biology, physics,
chemistry, ecology, and engineering. Fisher’s equation, a simple yet profound reaction-diffusion
system, was introduced in (Fisher, 1937) and reads

∂u

∂t
− ∂2u

∂x2
= ρu(1− u), (1)

where u is the concentration of a chemical substance, and ρu(1 − u) ≡ R(u; ρ) is a reaction term,
parameterized by the reaction rate coefficient ρ. This equation admits traveling wave solutions of
the form u(x, t) = u(x± ct) ≡ u(z) for every wave speed c ≥ 2

√
ρ. For values ρ≫ 1, the solution

exhibits a sharp and fast traveling wave front which demands fine spatial and temporal resolutions
when studied numerically (Zhao & Wei, 2003).

Physics-informed neural networks (PINNs) have emerged as a deep learning method that is appli-
cable to physical systems such as described by Eq. (1) (Raissi et al., 2019; Pan et al., 2023). The
utility of PINNs in solving differential equations is still under investigation, but their flexibility and
the fact that they do not need discretization has already shown great potential for solving all kinds of
problems involving differential equations (Raissi et al., 2020). Training PINNs – i.e., obtaining the
neural approximation uθ of the solution function u in Eq. (1) by minimizing residuals on collocation
points – however, is not straightforward and demands a carefully chosen optimization procedure.

In this work, we apply PINNs to approximate solutions to Fisher’s equation with large reaction
rate coefficients ρ. We observe that standard PINNs struggle in approximating the resulting sharp
solutions, and introduce a novel residual weighting method as a remedy. Additionally, we assess
the effectiveness of a specific network architecture, designed to automatically adapt to the shape of
traveling wave fronts. Finally, we investigate the generalization capability of PINNs by employing a
single PINN to approximate a family of traveling wave solutions parameterized by the reaction rate
coefficient ρ, where said coefficient is an additional input to the PINN.
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Figure 1: (Left) Wave layer structure compelling the network function to u(z̃) with z̃(x, t) = θ1x+
θ2t+ θ3 for the discrete-ρ approximation, or z̃(x, t; ρ) = θ1ρ1x+ θ2ρ2t+ θ3 for the continuous-ρ
approximation. (Right) Reference and predicted wave front for ρ = 10,000.

2 METHODOLOGY

Steep Traveling Wave Solutions. For Eq. (1), the traveling wave solution with a constant wave
speed of c = 5

√
ρ/6 is of particular interest, as it admits the analytical solution (Ablowitz &

Zeppetella, 1979):

u(x, t; ρ) =

[
1 + exp

(√
ρ

6
x− 5ρ

6
t

)]−2

(2)

that satisfies limz→−∞ u(z) = 0 and limz→∞ u(z) = 1. Although Eq. (1) and Eq. (2) can be
brought into a nondimensionalized form, e.g. by using x̂ ← √

ρx and t̂ ← ρt, the system is
numerically studied often with the dependency on the reaction rate coefficient ρ. This is due to
the fact that for a fixed computational domain, the reaction term, and thus the steepness of the
traveling wave front, can be made arbitrarily large by adjusting ρ. Typical values fall into the range
ρ ∈ (1,000, 10,000) and these settings commonly serve as a numerical challenge for discretization
schemes (Li et al., 1998; Qiu & Sloan, 1998; Kırlı & Irk, 2023).

Residual Weighting. PINNs are known to suffer from optimization issues when applied to problems
with sharp and shock-like solutions (Liu et al., 2024; Mao & Meng, 2023). Therefore, with uθ being
the neural approximation corresponding to network parameters θ, we propose a residual weighting
scheme that is based on the reaction dynamics R and assigns the weight

ω =
1

λ|R(uθ; ρ)|+ 1
(3)

to each residual f in the physics loss function L(θ) ∼ ∑
i |ωifi|2 (cf. Eq. (3) in (Raissi et al.,

2019)). Intuitively, for λ > 0, the weights ω reduce the influence of steep gradients in regions
with predominant reaction dynamics, while leaving residuals at predominant diffusion dynamics
unaffected. Our approch is thus similar in spirit to (Liu et al., 2024) and in contrast to approaches
that place additional residual points in regions of high residuals with (Mao & Meng, 2023) or that
weight collocation points with high residuals more strongly (McClenny & Braga-Neto, 2023).

Standard- & Wave-Architecture. In the standard architecture, hidden layers directly follow the
input layer, aiming to approximate the solution function in the general spatial-temporal form u(x, t).
Conversely, in the wave architecture, an additional wave layer is introduced that directly follows the
input layer and precedes the hidden layers. The wave layer introduces a latent variable represen-
tation (cf. Figure 1) to compel the network function to solutions that take the traveling wave form
u(z̃). This approach is similar in spirit to the Lagrangian PINN (Mojgani et al., 2023) and the
characteristics-informed neural network (Braga-Neto, 2022), which both adapt the network archi-
tecture to the solution family of the respective (class of) PDEs.
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Table 1: The mean (and standard deviations) of the L2-error for the four tested models and discrete
values of ρ. All numbers should be multiplied by 10−4. Bold: Best results.

Reaction rate coefficient, ρ
Model λ 100 1,000 10,000

standard-ANN - 1.66 (1.30) 0.79 (0.29) 1.69 (2.10)
wave-ANN - 1.12 (0.60) 1.05 (0.81) 1.54 (1.62)

standard-PINN

0 180 (46) 320 (184) 5689 (3469)
0.1 37.9 (11.0) 81.1 (15.9) 36.8 (34.3)
1 5.74 (0.95) 14.0 (3.0) 132 (66)
10 1.72 (1.23) 8.79 (1.46) 354 (174)

wave-PINN

0 16.5 (13.5) 178 (160) 5082 (4106)
0.1 1.26 (1.49) 1.65 (0.95) 12.1 (6.5)
1 0.82 (0.95) 0.60 (0.63) 1.10 (0.80)
10 2.16 (3.28) 0.83 (1.45) 3.11 (3.71)

3 RESULTS

For our experiments, we consider the following two applications: the discrete-ρ approximation (i.e.,
approximating u(x, t) for a single ρ), and the continuous-ρ approximation (i.e., approximating an
entire family of solutions u(x, t; ρ)) by applying a generalizing architecture that takes ρ as an addi-
tional input. For each application, we assess the L2-error of four specific models: (i) standard-ANN
and (ii) wave-ANN, which are purely data-driven models trained on the solution function (2), by
sampling labeled data from it anew at each epoch; and (iii) standard-PINN and (iv) wave-PINN,
which infer the solution function by minimizing the physics loss and a data loss that encodes the
initial and boundary conditions.1

We consider x ∈ [−5, 5] as the spatial and t ∈ [0, 0.004] as the temporal domain and vary reaction
rate coefficients in the range ρ = [100, 10,000]. In the standard architecture, all input variables are
scaled to [0, 1]. Conversely, in the wave architecture, only the temporal variable is scaled to [0, 1] to
ensure reduced sensitivity of the θj weights in the wave layer. The reaction rate input ρ is further
transformed to ρ1 ← √ρ and ρ2 = ρ (cf. Figure 1).

Datasets of size N = 1024 are sampled anew at each training epoch using Latin hypercube sam-
pling; the test set is taken with N = 10, 000. The PINN for a single value of ρ and the generalizing
architecture have two and three hidden layers, respectively, with 20 neurons each. We use the hyper-
bolic tangent (tanh) as hidden layer activation and the Sigmoid activation as output layer activation
to ensure that any prediction lies in the bounded interval uθ ∈ [0, 1]. Optimization of all models is
carried out with Adam for 50k training epochs for the discrete-ρ approximation and for 100k epochs
when applying the generalizing architecture. A default learning rate of 0.001 is applied.

3.1 DISCRETE-ρ APPROXIMATION

For the discrete-ρ experiment, the model performance is evaluated by approximating the solution
function for three individual reaction rate coefficients ρ ∈ {100, 1,000, 10,000} while applying
separate models for each case. The result can be found in Table 1 which shows the mean (and
standard deviations) of the L2-error over ten independently trained model instances.

As evident from the table, the wave-PINN with λ = 1 achieves the best results, even outperforming
both data-driven models across all ρ values. This is particularly intriguing, as the data-driven ANNs
have effectively (and without overfitting) learned the solution from labeled data, making them highly
accurate for the given network size. Furthermore, the right panel of Figure 1 demonstrates that the
wave-PINN with λ = 1 accurately captures the steep wave front at ρ = 10,000.

By comparing the standard and wave architecture, we observe that the wave models generally out-
perform the standard models, with a notable discrepancy observed within the PINN models. Across

1Initial and boundary conditions are imposed by sampling labeled data from the analytical solution at the
computational boundary.
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Figure 2: The median (and 25%- and 75%-quantiles) of the L2-error for each tested model on the
continuous domain ρ ∈ [100, 10,000]. Labeled training data was used at ρ = 100 and ρ = 10,000,
indicated by the dashed black lines.

nearly all residual settings (λ), the wave-PINN consistently achieves lower prediction errors com-
pared to the standard-PINN, while the difference is less pronounced for the data-driven ANNs.

Regarding the optimal residual weighting, we find that a value of λ = 1 is effective for the wave-
PINN, whereas for the standard-PINN, the optimal choice is less evident. Nevertheless, the results
clearly indicate that conventional, unweighted (λ = 0) PINNs exhibit significant performance is-
sues, particularly for large ρ values. Across all values of ρ, employing a residual weight with λ > 0
yields considerably better performance compared to λ = 0.

3.2 CONTINUOUS-ρ APPROXIMATION

For the continuous-ρ experiment, we utilize labeled data sampled from the analytical solution for
ρmin = 100 and ρmax = 10,000 and aimed for obtaining a reliable approximation within the con-
tinuous range ρ ∈ [ρmin, ρmax]. While collocation points for the PINN instances are sampled within
this range, the data-driven models are exclusively trained on labeled data corresponding to ρmin and
ρmax. The results for this interpolation task are depicted in Figure 2 which shows the median (and
25%- and 75%-quantiles) of the L2-error across ten independently trained model instances.

Consistent with the results from the previous experiment, the wave-PINN achieves the best perfor-
mance across the continuous ρ domain. However, we also observe remarkable performance from the
wave-ANN, considering that it is trained solely on the solution at the two specific ρ values (indicated
by dashed black lines in Figure 2). The inclusion of the wave layer appears to offer a highly effec-
tive inductive bias that facilitates finding solutions over a continuous parameterization. Notably,
even within the range of ρ = 100,000, both wave models continue to yield strong approximations in
the extrapolation regime, with only a slight degradation compared to the interpolation regime.

Overall, we see that the PINN models outperform their data-driven counterparts and that the wave
architectures outperform the standard architectures. Apparently, the inductive bias induced by the
wave layer is stronger than the learning bias induced by the physics loss function. This is expected,
as the wave layer, especially in the generalizing architecture, incorporates explicit knowledge about
traveling wave nature of the solution function.

4 CONCLUSION

In this paper, PINNs were applied to solve Fisher’s equation with large reaction rate coefficients and
sharp solutions representing steep traveling wave fronts. To address the challenges posed by sharp
transitions in traveling waves, a residual weighting scheme was introduced and integrated into the
optimization process of PINNs. The residual weighting scheme is based on the underlying reaction
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term and effectively facilitates optimization in sharp regions of the solution function. Additionally,
a specific network architecture designed to approximate traveling waves was tested, and the results
demonstrated outstanding improvements compared to conventional network architectures. Finally,
a generalized PINN architecture was explored that incorporates the reaction rate coefficient as an
additional input, enabling the approximation of an entire family of solutions to Fisher’s equation.
The results showed that the PINN with the introduced modifications can effectively solve Fisher’s
equation with large reaction rate coefficients and, furthermore, can be extended to approximate a
family of sharp solutions with a single PINN instance. Furthermore, our modifications complement
and are compatible with other approaches to improving PINN training, such as methods for colloca-
tion point sampling (Mao & Meng, 2023) and domain decomposition (Jagtap & Karniadakis, 2020).
Future work shall evaluate the utility of our work in the context of this literature.
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