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Abstract

Multimodal event extraction task aims to iden-001
tify event types and arguments from visual and002
textual representations related to events. Due to003
the high cost of multimedia training data, previ-004
ous methods mainly focused on weakly align-005
ment of excellent unimodal encoders. However,006
they ignore the conflict between event under-007
standing and image recognition, resulting in008
redundant feature perception affecting the un-009
derstanding of multimodal events. In this pa-010
per, we propose a multimodal event extraction011
strategy with a multi-level redundant feature se-012
lection mechanism, which enhances the event013
understanding ability of multimodal large lan-014
guage models by leveraging knowledge editing015
techniques, and requires no additional parame-016
ter optimization work. Extensive experiments017
show that our method outperforms the state-of-018
the-art (SOTA) baselines on the M2E2 bench-019
mark. Compared with the highest baseline, we020
achieve a 34% improvement of precision on021
event extraction and a 11% improvement of F1022
on argument extraction.023

1 Introduction024

In the real world, the representation of events fre-025

quently encompasses a multitude of expression026

modalities such as images and text. This cat-027

alyzes the evolution of Multimedia Event Extrac-028

tion (MEE) task, which aims to extract the event029

type and argument information from the event’s030

text description and associated image.031

Due to the high cost of building multimedia data032

sets, existing multimedia event extraction dataset033

M2E2 only provides data for testing, which re-034

stricts the fine-tuning on multimodal large language035

model (MLLM) in multimedia event extraction036

task. Recent MEE methods mainly focus on the037

weak alignment of features obtained from well-038

pretrained unimodal encoders. According to their039

cross-modal alignment strategy, they can be di-040

vided into graph-based methods, which align the041

Malaysian plainclothes 
police carry a 

computer from the 
1MDB (1 Malaysia 

Development Berhad) 
office after a raid in 

Kuala Lumpur, 
Malaysia, July 8, 2015

MLLM

MLLM

MLLM

MLLM

Justice:Arrest-Jail

Movement:Transport

Justice:Arrest-Jail

Movement:Transport

knowledge editing

Malaysian plainclothes 
police carry a 

computer from the 
1MDB  ...

visual

multimedia

textual

multimedia data

Malaysian plainclothes 
police carry a 

computer from the 
1MDB  ...

Figure 1: Example of multimedia data on M2E2, the
overunderstanding of visual features led to the incorrect
prediction of MLLM on image-only task, which further
effect the prediction on multimedia task.

visual objects and textual entities with a knowl- 042

edge graph structure (Li et al., 2020, 2022; Liu 043

et al., 2024); template-based methods, which align 044

candidate items from different modalities with the 045

template uniformly (Seeberger et al., 2024); and 046

fine-tune-based methods, which align the features 047

under different modal by parameter-efficient fine- 048

tuning on multimodal large language models (Du 049

et al., 2023; Sun et al., 2024). 050

These methods have achieved good performance, 051

however, they ignore the differences of visual en- 052

coding requirements between image recognition 053

and event extraction task. In fact, there is a trade- 054

off between the event extraction task and the image 055

recognition task: the image recognition task desires 056

to perceive the image features as much as possi- 057

ble, while the event extraction task prefers to focus 058

on those important features and neglect redundant 059

content. Due to the fact that the visual encoder uti- 060

lized by previous methods are trained from image 061

recognition tasks, there may exist redundant feature 062

perception capabilities which affect event under- 063

standing of MLLMs. Taking Fig. 1 as an example, 064

the image data from M2E2 are originally intended 065

to show a person running away with a computer. 066

However, due to the forward-leaning posture of the 067
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body which resembles being detained, it is wrongly068

predicted as an arrest when only inputting visual069

features, which further misleads the judgment of070

multimodal large language models.071

To address this problem, we propose a multi-072

media event extraction framework that enhances073

the event understanding ability of MLLMs by edit-074

ing the knowledge of the visual layer. Specifically,075

we first design a multilevel redundant neuron se-076

lection mechanism with information entropy and077

L1-normalization, and then conduct a mask matrix078

based knowledge editing strategy. The evaluations079

on M2E2 show that our method significantly out-080

performs all SOTA methods for multimedia event081

extraction. The main contributions of this paper082

are as follows:083

• We propose a multimedia event extraction084

framework based on LLM knowledge edit-085

ing which enhances the understanding ability086

of MLLMs on event structure features, avoids087

the reliance on the quality of training data or088

the consistency of data distribution brought089

by strategies such as fine-tuning.090

• We propose a multi-level knowledge editing091

strategy which can effectively mitigate the092

influence of redundant neurons. Compared093

with the existing popular knowledge editing094

strategies, our method does not introduce any095

additional parameters and has extremely low096

computational and storage costs.097

• The experiments on M2E2 benchmark show098

that our model achieves SOTA performance.099

We outperform the SOTA baselines by 34%100

precision on multimedia event extraction and101

by 11% F1 on multimedia argument extrac-102

tion.103

2 RELATED WORK104

2.1 Multimedia Event Extraction105

Multimedia event extraction task (MEE) mainly106

includes event extraction and event argument ex-107

traction. Existing MEE methods can be divided108

into graph-based methods, template-based meth-109

ods, and fine-tune-based methods according to110

their cross-modal alignment strategy. Graph-based111

methods typically supervise visual objects with tex-112

tual entities with the association algorithm based113

on knowledge graph structure. Following this114

idea, WASE (Li et al., 2020) applies an attention- 115

based graph encoder to link the entities and ob- 116

jects extracted in different modals. Clip-event (Li 117

et al., 2022) proposes an event graph alignment 118

via optimal transport and evaluates their similar- 119

ity at different granularities. MGIM (Liu et al., 120

2024) represents the multimedia information in a 121

graph structure and performs coarse-grained align- 122

ment. Template-based methods identify the argu- 123

ments according to the similarity calculated be- 124

tween candidates and roles in templates. For ex- 125

ample, MMUTF (Seeberger et al., 2024) designs a 126

unified template filling framework that encodes the 127

corresponding event roles in templates to match the 128

candidate textual or visual arguments. Fine-tune- 129

based methods achieve cross-modal alignment by 130

updating some parameters. CAMEL (Du et al., 131

2023) proposes an incremental training strategy 132

that complements missing images and text with 133

a bidirectional cross-modality data augmentation. 134

UMIE (Sun et al., 2024) adaptively learns the cor- 135

relation between textual embedding and visual ob- 136

jects with a gated attention mechanism. 137

Compared to these methods, our method is the 138

first to apply knowledge editing technique to allevi- 139

ate the redundancy feature understanding problem 140

on MEE, obtaining more accurate event structure 141

understanding with less cost overhead. 142

2.2 Instruction following 143

Instruction following aims to help LLMs to un- 144

derstand various instructions and produce the cor- 145

responding responses, so that the model can be 146

suitable for downstream tasks. Existing instruc- 147

tion following technology can be divided into three 148

types: natural-language-inference-oriented instruc- 149

tions (Yin et al., 2019; Xu et al., 2023; Zhong 150

et al., 2021), which unifies various classification 151

problems into an inference task by constructing 152

hypotheses to explain the labels; LLM-oriented in- 153

structions (Gao et al., 2020; Bach et al., 2022a,b), 154

which utilizes templates to convert the origin inputs 155

into machine-friendly fill-in-blank questions; and 156

human-oriented instructions (Mishra et al., 2021; 157

Gupta et al., 2022; Yin et al., 2022), which splits 158

the task into definitions, demonstrations, instances, 159

and other information with obvious descriptive, and 160

paragraph-style based on the way people under- 161

stand the problem. These techniques can signifi- 162

cantly improve the model’s ability to understand 163

downstream tasks through different instruction de- 164
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Figure 2: The framework of our method, we first select the candidate layer with entropy and Gaussian smoothing,
then identify the redundant neurons on visual layers, and finally conduct knowledge editing for MLLMs.

sign strategies, and have been widely used in few-165

shot and zero-shot classification scenarios.166

2.3 Knowledge editing167

Knowledge editing aims to update, correct, opti-168

mize, or supplement existing knowledge. Com-169

mon LLM knowledge editing methods can be170

divided into external-memorization-based meth-171

ods, reparameterization-based methods, and local-172

modification-based methods. In order to obtain173

an accurate representation of knowledge in down-174

stream tasks, external-memorization-based meth-175

ods update knowledge by maintaining a memory176

which retrieves the most relevant cases (Zheng177

et al., 2023; Mitchell et al., 2022; Zhong et al.,178

2023), or introducing additional trainable param-179

eters while maintaining the pre-trained backbone180

unchanged (Pfeiffer et al., 2020; Lei et al., 2023;181

Houlsby et al., 2019); reparameterization-based182

methods construct low-dimensional reparameteri-183

zation of original parameters for training and equiv-184

alently transforms it back for inference (Lin et al.,185

2024; Hu et al., 2022; Wu et al., 2024); local-186

modification-based methods aim to locate and op-187

timize relevant parameters for specific knowledge188

learning in LLM (Guo et al., 2020; Zhang et al.,189

2024; He et al., 2023). Our method is designed190

based on the idea of local modification, but com-191

pared with the previous local-modification-based192

work, we propose a knowledge editing technique193

that does not require back propagation, which im-194

proves the performance on downstream tasks with195

extremely small computational overhead.196

3 Model 197

Let d = (t, v) represent a multimedia document 198

consisting of a text-image pair that describes a spe- 199

cific event, where t is the text and v is the corre- 200

sponding image. The multimedia event extraction 201

task contains the following two components. 202

Event Extraction: Given a multimedia docu- 203

ment d, Event Extraction (EE) requires predicting 204

the event type ye from the candidates C. 205

Event Argument Extraction: Given a multime- 206

dia document d and event type ye, Event Argument 207

Extraction (EAE) aims to identify event arguments 208

(entities or objects) with pre-defined event roles 209

(all participants and attributes) associated with ye. 210

Different from the currently popular methods 211

of introducing additional parameters to fine-tune 212

the pre-trained model for downstream tasks (Pfeif- 213

fer et al., 2020; Houlsby et al., 2019; Hu et al., 214

2022), we propose a large model knowledge edit- 215

ing approach that does not require fine-tuning. As 216

mentioned above, we focus on the visual percep- 217

tion layer. Our approach consists of two stages: 218

redundant neuron selection and knowledge editing. 219

We first propose a multilevel redundant neuron se- 220

lection mechanism for MLLMs, and then use a 221

mask-matrix-based editing strategy to edit redun- 222

dant visual perception knowledge. 223

3.1 Multilevel redundant neuron selection 224

Relevant studies show that the pre-trained trunk 225

exhibits different feature patterns at different pa- 226

rameter positions. In order to improve the abil- 227

ity of large models to understand event features, 228
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a redundant neuron recognition strategy is pro-229

posed in this paper. Specifically, given the multi-230

modal large model θ = {W 1,W 2, ...,Wn}, where231

W k = {wk
ij |i ∈ I, j ∈ O} represents the net-232

work parameter set of layer k of the large language233

model, I and O represent the number of input fea-234

ture and output feature dimensions of layer k re-235

spectively. We first convert the network weight236

parameter into a probability distribution, and the237

formula is expressed as:238

P k
ij =

exp(wk
ij)∑O

b=1

∑I
a=1 exp(w

k
ab)

(1)239

We use entropy to measure the importance of240

neural network layers, which can be expressed as:241

Hi = −
O∑
b=1

I∑
a=1

P k
ij log2(P

k
ij) (2)242

Havg
i =

K∑
k=−K

G(k;σ) ·Hi+k (3)243

where G(k;σ) is a Gaussian kernel with bandwidth244

σ, K is the kernel size. The consideration behind245

this is that if the probability distribution of weights246

within a neural network layer is very different, and247

such difference is more obvious than the weight248

distribution of the neighboring layer, it means that249

there is a certain preference from input features to250

outputs in that layer, resulting in the layer being251

sensitive to feature learning. We select the layer252

of neural network with the most average weight253

distribution according to the entropy value, which254

is represented as θr, and consider that redundant255

information transfer in this layer is the cause of256

incorrect knowledge learning.257

Next, we evaluated the differences in the infor-258

mation value of neurons within θr. We think that259

neurons represent the ability to perceive different260

feature dimensions, and we want to identify those261

neurons that are used to capture redundant features.262

For each weight belonging to θr, we use the L1-263

norm to identify redundant neurons and informa-264

tion transfer pathways. Neuron ci importance can265

be expressed as:266

cri =

O∑
j=1

|wr
ij | (4)267

We use δ to represent the threshold for determin-268

ing whether a neuron is redundant, here δ is defined269

in [0,1] in order to avoid the case of layer collapse. 270

It is used to represent the importance of neurons 271

at the decomposition position represented by the 272

threshold value. Neurons that are determined to be 273

redundant can be expressed as: 274

Cr = {cri | cri < s} (5) 275

3.2 Mask matrix based knowledge editing 276

strategy 277

In order to modify the understanding of event 278

knowledge of the MLLMs, we apply a mask matrix 279

to mask the redundant neurons. The mask matrix 280

can be expressed as: 281

Mij =

{
0, crj ∈ Cr

1, crj ̸∈ Cr
∀i ∈ I, j ∈ O (6) 282

The network weight parameters after the mask 283

can be expressed as: 284

W̃ r = wr
ij ∗Mij (7) 285

Mij indicates the state information of the mask 286

matrix at (i, j). For each parameter in W̃ r, it is 287

masked if it represents the weight connected to the 288

neuron in Cr, otherwise it is retained as original. 289

4 Experiment 290

In this section, we extensively evaluate our frame- 291

work by comparing against existing SOTA ap- 292

proaches and variants of MLLM with different re- 293

dundant neuron selection strategies. 294

Event Type Argument Role
Movement:Transport Agent, Artifact, Vehicle,

Destination, Origin
Conflict:Attack Attacker, Target, Instru-

ment, Place
Conflict.Demonstrate Entity, Police, Instru-

ment, Place
Justice:ArrestJail Agent, Person, Instru-

ment, Place
Contact:PhoneWrite Entity, Instrument, Place
Contact:Meet Participant, Place
Life:Die Agent, Instrument, Vic-

tim, Place
Transaction:Transfer-
Money

Giver, Recipient, Money

Table 1: Event types and corresponding argument roles
in multimedia dataset M2E2.
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Table 2: Results of Event Extraction on M2E2, we compare our framework against 5 baselines and 3 variants, the
bold numbers denote the best results of all methods.

Baselines

Metrics Task Event Extraction Task

text-only image-only multimedia

P R F1 P R F1 P R F1

WASE 42.8 61.9 50.6 43.1 59.2 49.9 43.0 62.1 50.8
CLIP-EVENT - - - 41.3 72.8 52.7 - - -
CAMEL 45.1 71.8 55.4 52.1 66.8 58.5 55.6 59.5 57.5
UMIE - - - - - - - - 62.1
MMUTF 45.1 71.8 55.4 55.1 59.1 57.0 47.9 63.4 54.6

Qwen2vl-7b 80.05 73.94 74.49 69.11 65.38 64.83 83.77 73.14 70.64
Variant-1 81.36 71.81 73.06 68.55 63.09 64.34 83.88 73.46 70.99
Variant-2 82.07 70.74 72.70 69.03 64.15 63.46 85.41 79.93 82.66
Variant-3 81.07 70.89 72.26 69.15 65.10 64.89 89.13 87.06 86.59

Ours 82.10 76.06 76.01 69.32 65.77 65.30 89.82 87.70 87.39

Table 3: Results of Argument Extraction on M2E2.

Baselines

Metrics Task Argument Extraction Task

text-only image-only multimedia

P R F1 P R F1 P R F1

WASE 23.5 30.3 26.4 14.5 10.1 11.9 19.5 18.9 19.2
CLIP-EVENT - - - 21.1 13.1 17.1 - - -
CAMEL 24.8 41.8 31.1 21.4 28.4 24.4 31.4 35.1 33.2
UMIE - - - - - - - - 24.5
MMUTF 33.6 44.2 38.2 23.6 18.8 20.9 39.9 20.8 27.4

Qwen2vl-7b 50.10 36.19 37.83 27.30 27.63 27.31 47.13 42.70 43.04
Variant-1 48.07 36.25 36.81 25.42 26.95 25.67 46.45 40.63 42.77
Variant-2 50.69 36.19 37.95 25.08 24.58 25.88 48.02 42.25 44.08
Variant-3 51.45 37.05 38.22 26.64 27.63 25.90 47.47 41.03 43.39

Ours 51.92 37.48 39.34 27.30 27.63 27.31 48.11 43.89 44.25

4.1 Experimental settings295

Datasets We evaluated our framework on the296

M2E2 benchmark, a large-scale multimedia event297

extraction dataset with 8 types of events and 15298

types of arguments, as shown in Table. Specifi-299

cally, M2E2 contains 245 multimedia documents300

with 6167 sentences and 1014 images. There are301

1,297 text events and 391 visual events, of which302

192 text event mentions and 203 visual event men-303

tions are arranged into 309 multimedia events.304

Baselines We compare our proposed method305

against a wide range of SOTA models: WASE (Li306

et al., 2020) uses weakly aligned structured em- 307

bedding to encode the multimodal events, CLIP- 308

Event (Li et al., 2022) performs visual event extrac- 309

tion with a pre-trained CLIP network, CAMEL (Du 310

et al., 2023) learns more accurate text align- 311

ment with image generator and image captioner, 312

UMIE (Sun et al., 2024) constructs a series of in- 313

struction following templates, and MMUTF (See- 314

berger et al., 2024) addresses the MEE with 315

candidate-query matching. 316

Experimental Setup In this work, we use 317

Qwen2-VL-7B as the foundational model. The 318
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Figure 3: Cases on M2E2, the above two shows the error correction cases in the MEE task, and the following two
correct errors for text argument and image argument in the MAE task.

experiments are conducted on an NVIDIA A100319

GPU with a memory capacity of 40GB, and due320

to GPU memory limitations, the size of images in321

M2E2 is set to 512*512 resolution. In addition,322

we also build several MLLM-based variants with323

other redundant neuron selection strategies which324

expands the scope of knowledge editing to all fully325

connected layers, uses L1-normalization of neurons326

for identification, and focuses on the redundancy327

of weights rather than the neurons.328

4.2 Results329

Tab. 2 and Tab. 3 show the comparison in detail.330

Compared with previous SOTA methods, the orig-331

inal Qwen2-VL-7b has a significantly outperfor-332

mance, demonstrating the strong semantic under-333

standing ability of the pre-trained multimodal large334

model for text and images. Our method inherits335

such ability, and enhances the event structure under-336

standing of MLLMs with knowledge editing that337

makes a comprehensive performance improvement.338

Especially for multimedia event extraction, the se-339

lection of redundant feature makes a 6.15% Pre-340

cision improvement, 14.56% Recall improvement,341

16.75% F1 improvement on multimedia event ex-342

traction. Compared with Variant-1, the focus on343

the visual encoding layer makes a 5.94% Preci-344

sion improvement, which validates our proposed345

hypothesis that the bottleneck of multimodal event346

extraction lies in the capability of image event un-347

derstanding. The comparison against Variant-2348

demonstrates the superiority of the entropy-based 349

redundant identification mechanism over directly 350

judging based on L1 values. And the comparison 351

against Variant-3 may due to the unstable weight 352

masking causes the broken of structured sparsity, 353

which may causes incomplete input received by 354

downstream neurons, affecting feature expression 355

ability. For multimedia argument extraction task, 356

our method still achieve a 8.21% Precision im- 357

provement, 8.79% Recall improvement, 11.05% 358

F1 improvement compared with the nearest SOTA 359

performance. We attribute this as our appropri- 360

ate feature extraction granularity which revises the 361

understanding of roles in events by MLLM. Note 362

that we do not utilize any additional image-text 363

paired datasets or cross-modal data augmentation 364

for fine-tuning in this work. Incorporating cross- 365

modal information from the document’s context 366

and external datasets, as well as customized Prompt 367

Engineering for each task, might further improve 368

our method’s performance. 369

4.3 Case Study 370

We selected four representative cases to illustrate 371

the effect of multimodal large language models 372

after knowledge editing, as shown in Fig. 3. 373

In case-1, the main reason for the original 374

MLLM’s error lies in the presence of multiple 375

triggers strongly associated with different candi- 376

date event types in the text: the simultaneous ex- 377

istence of "Protestor" and "detained" leads to a 378
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misunderstanding of the event from a textual per-379

spective. Our method does not focus on achieving380

more accurate textual identification but corrects the381

erroneous event understanding by optimizing the382

main subject’s actions in visual modality. Another383

type of error is shown in case-2: the event "Con-384

filct:Attack" is not reflected in the corresponding385

image. We attribute this to the temporal misalign-386

ment between the text and image information. De-387

spite the painstaking efforts of M2E2 to clean the388

mismatched text-image data, such temporal mis-389

alignment still affects model’s understanding of the390

event content. In contrast, our method alleviates the391

over-interpretation of image information by filter-392

ing redundant image features, thereby achieving an393

appropriate fusion of event text and image features.394

Case-3 shows the mistake of identifying the en-395

tity of "Confilct:Attack" as "Islamist terroism". In396

fact, it illustrates a typical problem of multime-397

dia textual argument extraction with original LLM.398

Due to the lack of understanding of the event struc-399

ture, the pre-trained model interprets the object of400

the event as the subject of the event. Although our401

model only edits the visual layer, it still signifi-402

cantly enhances the ability to extract textual argu-403

ments, which are also observed on text-only MAE.404

We infer that it may be because the moderate visual405

sparsity can induce text-side capability compen-406

sation, resulting in an overall performance boost.407

Case-4 gives an example of correcting faulty visual408

argument extractions. Compared with the origi-409

nal MLLM, our method provides more accurate410

visual event object identification with appropriate411

size boundaries. We attribute this to our knowledge412

editing strategy which focus on eliminating redun-413

dant visual features. It not only solves the feature414

dilution caused by excessive visual layer channels,415

but also reduces the interference of noise on sub-416

sequent layers, making the model more inclined417

to focus on some key features such as lines and418

colors, ultimately alleviating the boundary blurring419

problem of the original MLLM.420

5 Conclusion421

In this study, we propose a multimedia event ex-422

traction method based on the knowledge editing of423

large language models. We first analyze the reasons424

for the poor performance of multimodal large lan-425

guage models in multimedia event extraction tasks,426

and then design a multi-level redundant neuron427

selection mechanism. Finally, based on the identi-428

fied redundancy, we edited the knowledge of LLM 429

to enhance the understanding of event structure. 430

Compared to previous work, our method does not 431

require fine-tuning and has extremely low compu- 432

tational and storage costs. Substantial experiments 433

on the M2E2 benchmark show that our method 434

significantly improves the LLM’s understanding 435

of multimedia event structures, and has become a 436

new SOTA with a 34% precision improvement on 437

MEE and a 11% F1 performance improvement on 438

MAE. Future work mainly focus on the research 439

of domain adaptation capabilities for multimodal 440

large language models. 441

Limitations 442

Although our work achieved a significant improve- 443

ment in accuracy in multimodal event extraction 444

and argument extraction tasks through knowledge 445

editing of the visual layer, this editing is not as sen- 446

sitive to image only argument extraction as other 447

subtasks. This may be due to our multimodal large 448

model’s tendency towards object level bounding- 449

boxes rather than instance level, and we leave more 450

validation work to future experiments. 451

In addition, we found in the experiment that the 452

M2E2 dataset itself has some missing argument 453

labels. In fact, the extracted events can be further 454

subdivided into events with clear subject object 455

relationships (e.g. Justice:Arrest-Jail) and events 456

with unclear subject object relationships (e.g. Con- 457

tact:Meet). Normally, they should have different 458

mining difficulties, but due to the limitations of 459

multimodal datasets, we have to leave these tasks 460

for further research. 461
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