
Modeling Span-Level Interactions with Boundary Probabilities for
Targeted Sentiment Analysis

Anonymous ACL submission

Abstract

Aspect extraction and sentiment prediction are001
two important tasks for targeted sentiment anal-002
ysis. Recently, some span-based methods have003
gained great attention to capture the associa-004
tions between the two tasks in this domain,005
where they first extract aspects by detecting as-006
pect boundaries and then predict the span-level007
sentiments. Most existing studies on modeling008
the inter-task interactions either share the input009
representation of the two tasks at the encod-010
ing layer, or approximate the output representa-011
tion of the two tasks at the task layer. Both of012
them focus on modeling sentence-level correla-013
tions between these two tasks, leading to insuf-014
ficient inter-task feature interactions. Since the015
aspect-level features are also crucial to connect016
these two tasks, thus, different from previous017
approaches, in this paper, we propose to model018
the span-level interactions with boundary prob-019
abilities (SIBP) to explicitly consider the inner020
correlations for these two tasks. Specifically,021
we use the predicted boundary probabilities of022
aspects to generate all possible spans as input023
of the sentiment prediction module, such that024
the sentiment information can be backpropa-025
gated into the boundary detection process in026
a fully differentiable manner. Further, we de-027
vise an alternate learning strategy to take the028
best of both tasks between predicted aspects029
and real aspects. This strategy not only guides030
sentiment prediction more properly but also031
improves computational efficiency. Moreover,032
to predict the boundary probabilities of the033
aspects more accurately, we design a seman-034
tic compatibility mechanism. Finally, we con-035
duct extensive experiments on three real-world036
datasets to demonstrate the model’s superiority.037

1 Introduction038

Targeted sentiment analysis (Pang et al., 2008;039

Bing, 2012) has long been an important natural040

language processing task, which involves of two041

sub-problems: (1) aspect extraction (Jakob and042

Gurevych, 2010; Poria et al., 2016; Karimi et al.,043
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Figure 1: The upper part shows an example of tagging-
based models. The bottom part illustrates the span-
based methods, where we present an example semantic
space for different words.

2021), which aims to identify the aspects in a sen- 044

tence, and (2) sentiment prediction (Jiang et al., 045

2011; Lin et al., 2019; Karimi et al., 2021), which 046

predicts the sentiment polarity of a given aspect 047

(e.g., positive, negative, and neutral). 048

Generally, previous research in this domain 049

can be largely classified into two types: tagging- 050

based and span-based models. Tagging-based mod- 051

els (Luo et al., 2019; Li et al., 2019; Wang et al., 052

2021) combine two different problems via design- 053

ing the combination tags. For example, in the sen- 054

tence of Figure 1, each tag is composed of two 055

parts, the first part is used to label the aspect words, 056

while the second part indicates the word sentiment, 057

e.g., “B-” means the beginning of a negative as- 058

pect. Despite effectiveness, tagging-based methods 059

need to search huge word index spaces and cannot 060

guarantee sentiment consistency (Hu et al., 2019). 061

To alleviate these shortcomings, the span-based 062

models (Hu et al., 2019; Lin and Yang, 2020) are 063

proposed, where the aspect is detected by directly 064

predicting the boundary distributions, and the sen- 065

timent is classified based on all the words between 066

the boundaries. Instead of labeling each word sen- 067

timent sequentially, span-based models predict a 068

unified sentiment for all the words in the aspect. In 069

this work, we focus on the span-based models. 070

Recently, some span-based approaches (Lv et al., 071
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2021; Chen et al., 2022) start considering the inter-072

actions between these two tasks to achieve strong073

performance due to their inner correlation. Most074

prior works either focus on input-side interactions,075

sharing partial sentence encodings, or they con-076

sider the output-side interactions, forcing the out-077

put representations of the two tasks to be close.078

Unfortunately, both of them model the inter-task079

interactions relying on sentence-level features, ig-080

noring aspect-level feature interactions. Indeed, the081

aspect-level features play an essential role when082

connecting two tasks. On the one hand, sentimen-083

tal expressions can be understood precisely if the084

desired aspects are specific, e.g., “my new house is085

close to sports park." and “my new house is close086

to stinky ditch.", the sentimental words “close to"087

show a positive attitude towards “sports park” but088

the negative attitude towards “stinky ditch”. On the089

other hand, aspects can also be quickly detected if090

we know where the sentimental expressions locate,091

e.g., if a negative sentimental words “acid” appears092

in a hotel review, there is likely an aspect word093

related to “food". Previous span-based models usu-094

ally neglect such sequential connections between095

the two tasks, which may limit their performances.096

Inspired by the above analysis, in this paper, we097

propose SIBP, to model span-level interactions with098

boundary probabilities for solving the task of tar-099

geted sentiment analysis. Specifically, we utilize100

the boundary distribution predicted from the aspect101

extraction model to generate all possible spans as102

input for sentiment prediction. Based on this strat-103

egy, the aspect information can guide the sentiment104

prediction task, and the sentiment information can105

provide helpful signals via backpropagation for the106

aspect extraction task in a fully differentiable man-107

ner. Then, we devise an alternate learning strategy108

to achieve a trade-off between predicted aspects109

and real aspects. This strategy not only ensures110

that both tasks are well learned but also reduces the111

computational overhead.112

Moreover, we also design an advanced semantic113

compatibility mechanism to combine the position114

and semantic information for detecting aspects in115

a unified manner. Most previous models predict116

the start and end boundaries independently. And117

to the best of our knowledge, there is no specific118

mechanism to guarantee that the words between119

the boundaries can form an aspect, which may neg-120

atively impact the capability of aspect extraction.121

For example, in Figure 1, the end boundary distribu-122

tion implies that the 2nd and 3rd words have similar 123

chances to become the end of an aspect. However, 124

from the semantic perspective, the word “is” can be 125

irrelevant to the former words, and less likely to be 126

the end of an aspect. Semantic information is use- 127

ful in checking whether different words can form a 128

“semantically reasonable” aspect, which may play 129

a complementary role together with the boundary 130

distributions. Finally, extensive experiments on 131

three datasets and several baseline models prove 132

the effectiveness of our proposed framework. The 133

major contributions of this paper are summarized 134

as follows: 135

• We propose a span-level interaction method 136

with boundary probabilities (SIBP) for solv- 137

ing the task of targeted sentiment analysis. 138

• To predict the boundary probabilities of as- 139

pects more accurately, we design a seman- 140

tic compatibility mechanism, which provides 141

complementary signals to boundary detection. 142

• We validate the effectiveness of SIBP on three 143

real-world datasets, and results indicate our 144

model outperforms a variety of state-of-the-art 145

baselines. 146

2 Related Work 147

The aspect extraction and sentiment prediction are 148

the utmost trending tasks of targeted sentiment anal- 149

ysis. Recently, considering the fact that both aspect 150

and sentiment can provide strong mutual indica- 151

tions for each other, research studies have been 152

performed to devise tagging-based and span-based 153

solutions for extracting aspect-sentiment jointly. 154

Here, we briefly review these models in the follow- 155

ing. 156

Tagging-based methods. Many researchers 157

adopted the tagging-based strategy to solve these 158

two tasks jointly, which basically regard the prob- 159

lem as a sequential labeling process (Mitchell et al., 160

2013). The aspect and sentiment information is 161

scattered onto each word, and the sentence is la- 162

beled with tags. With this formulation, early mod- 163

els (Zhang et al., 2015; Li and Lu, 2017) leverage 164

Conditional Random Field (CRF) (Lafferty et al., 165

2001) to autoregressively predict the tags based 166

on handcrafted linguistic features. To exploit the 167

powerful representations of encoders (e.g., LSTM, 168

CNN, BERT), recent studies (Li et al., 2019; Mao 169
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Figure 2: A depiction of the SIBP model. The model is specifically designed to extract aspects and sentiments
from reviews by performing the following operations: (1) Encoding the input sentence representations for aspect
extraction and sentiment prediction through the BERT encoder; (2) Generating the boundary probabilities (i.e., start
and end ) through word semantic prediction module and word index prediction module; (3) Generating expectation
matrix though weight matrix and vector matrix; and (4) Incorporating the expectation features of aspect to sentiment
predicting. Precisely, in the expectation matrix, the darker the color, the greater the weight on the span.

et al., 2021; Zhang et al., 2022) have paid more at-170

tention to designing neural networks for predicting171

the tags sequentially. Further, several models (Hu172

et al., 2019; Chen et al., 2020; Yan et al., 2021)173

leverage advanced learning technology (e,g., graph174

representation learning and multi-task learning) to175

extract aspects and predict sentiments jointly. Al-176

though the above models have achieved many suc-177

cesses, the main problem is that they disperse the178

whole aspect sentiment to each word within it, and179

basically relax the constraint of sentiment consis-180

tency, which increases the sentiment ambiguity.181

Span-based methods. Meanwhile, some of182

the researchers implemented the span-based strate-183

gies (Hu et al., 2019; Zhou et al., 2019), that is,184

first extracting aspects by detecting aspect bound-185

aries and then predicting the span-level sentiments.186

Hu et al. (2019) proposed an extract-then-classify187

framework that first extracts targets with a heuristic188

decoding algorithm, and then correspondingly clas-189

sifies the sentiments. In this work, a shared input190

embedding is introduced to consider the correla-191

tions between two tasks. To extend the above work,192

Lin and Yang (2020) devised a shared-private rep-193

resentation method that implicitly incorporates the194

shared and private information in sentence embed-195

ding between two tasks to improve task results. Lv196

et al. (2021) explicitly constructed dual gated re-197

current units and an interaction layer to model the198

inter-task connections. Further, Chen et al. (2022) 199

developed an interactive network in a hierarchical 200

manner (i.e., input-side interactions and output- 201

side interactions) that takes explicit cooperation 202

from aspect extraction and sentiment prediction to 203

enhance the model performance. 204

Unlike existing works on aspect extraction and 205

sentiment prediction that model the inter-task inter- 206

actions relying on sentence-level features. In this 207

work, we novelly propose to model the span-level 208

interactions with boundary probabilities for these 209

two tasks. And we devise an alternate learning 210

strategy to achieve a trade-off between predicted 211

aspects and real aspects. Moreover, this study also 212

designs a semantic compatibility mechanism to ex- 213

tract the aspects more accurately. Compared with 214

the current endeavors, our models yield better per- 215

formance. 216

3 Methodology 217

The overall framework is depicted in Figure 2. We 218

can see that the sentiment prediction module takes 219

the predicted aspects as input, and outputs the sen- 220

timent of the aspects. Under the guidance of the 221

sentiment information, the boundary distributions 222

are regularized and the aspect is extracted in a more 223

accurate manner. 224

Given a sentence x = {x1, x2, . . . , xn} where 225

xi is the ith token in x, and n is the length of 226
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sentence, the main task is to extract all possible227

aspect terms (s, e) (the start and end indexes of228

aspect term), and predict corresponding sentiments229

(i.e., positive, neutral, and negative) in x.230

In order to represent the semantics more accu-231

rately, we use the well-known bidirectional encoder232

representation from transformers (BERT) (Devlin233

et al., 2019) to process the raw input. For a sentence234

x = {x1, x2, . . . , xn}, we suppose the output from235

BERT is H = {h0, h1, . . . , hn} ∈ Rn×d, where d236

is the embedding size, n is the sentence’s length.237

3.1 Aspect Boundary Prediction238

In previous models (Hu et al., 2019; Lin and Yang,239

2020), the aspects are detected by predicting the240

start and end boundaries through a linear transfor-241

mation operation. To be specific, the distribution242

of the start boundary is predicted as,243

gs = HW1 + b1 , p̂s = softmax(gs), (1)244

where W1 ∈ Rd×1 and b1 ∈ Rn are the weighting245

and bias parameters, softmax(·) normalizes the in-246

put into a distribution. In this equation, the length247

of p̂s is the same as the sentence’s, and each el-248

ement in p̂s represents the probability of a word249

being the start of an aspect. The end distribution250

can be derived in a similar manner, and we define251

it as p̂e. The learning objective for the boundary252

distributions is,253

Jae = −
n∑

i=1

{pT
i,s log (p̂i,s) + pT

i,e log (p̂i,e)},

(2)254

where pT
i,s ∈ Rn and pT

i,e ∈ Rn are the ground255

truths of the boundaries (i.e., 0-1 vectors), p̂i,s and256

p̂i,e are the predicted boundary distributions, n is257

the length of sentence.258

3.2 Sentiment Prediction259

For a given aspect, the sentiment is predicted based260

on the words between its boundaries. Suppose the261

start and end boundaries are s and e, respectively,262

we calculate a summarized vector α using the atten-263

tion mechanism over tokens in its corresponding264

bound (s,e)1, thus, the sentiment is predicted as,265

α = softmax (WαHs→e) , (3)266

267
ŷ =softmax(W3 tanh(W4 · F)

=softmax(W3 tanh(W4

e∑
i=s

αiHi)),
(4)268

1Please note that (s, e) is ground truth boundaries.

whereF is the aspect vector, and Wα, W3 and W4 269

are weighting parameters. This sentiment predic- 270

tion method is actually used by most of the previous 271

models (Lin et al., 2019; Tian et al., 2021b). Then, 272

the parameters are learned based on cross-entropy, 273

Jsp = −
N∑
i=1

yT
i log ŷi =−

N∑
i=1

K∑
j=1

yi,j log ŷi,j ,

(5) 274

where N is the total number of training samples, K 275

is the number of sentiment types, ŷi is the predicted 276

sentiment distribution, and yT
i is the corresponding 277

ground truth. 278

3.3 Modeling Span-Level Interactions 279

Most existing approaches capture the inter-task cor- 280

relations based on sentence-level features. They 281

model these interactions from the input-side or 282

output-side to share sentence representation, both 283

of which fail to sufficiently model connections be- 284

tween aspect extraction and sentiment prediction. 285

As mentioned above, the aspect can provide use- 286

ful signals for sentiment prediction. Conversely, 287

sentimental features are also beneficial to the ex- 288

traction of aspect boundaries. However, the senti- 289

ment is predicted based on the ground truth bound- 290

aries in previous works, which basically separates 291

the sequential connections between these two tasks. 292

Therefore, in this paper, we use the aspect features 293

to supervise the sentiment predicting process. On 294

the one hand, aspect extraction can sequentially 295

deliver useful supervised signals for sentiment pre- 296

diction. On the other hand, sentiment information 297

can influence aspect detection through backprop- 298

agation. To this end, we do not use the boundary 299

ground truth as the input, instead, we derive an 300

expectation of the word embedding based on the 301

boundary distributions, thus, the Equation 4 can be 302

rewritten to, 303

ŷ = softmax(W3 tanh(W4 · F̂)

= softmax(W3 tanh(W4E(i∼p̂s,j∼p̂e)[f(Hi→j)])),
(6) 304

where F̂ is the expected aspect vector, and f is an 305
aggregation function, and we specify it as, 306

f(Hi→j) =

j∑
k=i

Hk, (7) 307

Since p̂s and p̂e are both discrete distributions, we 308

have the following derivation, 309
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(c) F̂o

Figure 3: The matrix representation about the sentence
"The screen size is satisfactory.". The matrix on the
left represents using the real aspect as input, the middle
matrix denotes using the boundary probabilities expec-
tation of the generated aspect as input, and the right
means using the optimized aspect expectation as input.

F̂ = E(i∼p̂s,j∼p̂e)[f(Hi→j)]

= Ei∼p̂s [

n∑
j=1

p̂e,jf(Hi→j)]

=

n∑
i=1

n∑
j=1

p̂s,i p̂e,jf(Hi→j)

=

n∑
i=1

n∑
j=1

p̂s,i p̂e,j

j∑
k=i

Hk,

(8)310

where we assume n is the sentence’s length.311

In the training process, in order to more accu-312

rately model the expected output of each aspect,313

we split the sentences containing multiple aspects314

into multiple sentences (i.e., each sentence con-315

tains only one aspect), which can ensure these as-316

pect words in the same sentence are not disturbed317

during learning. However, during inference, we318

can still extract multiple aspects and corresponding319

sentiments simultaneously if the sentence contains320

multiple aspects.321

Appendix A proves that the optimization objec-322

tive does not change when changing the partition323

of the training set.324

Remark.325

(1) Comparison with F . For a more intuitive326

understanding of leveraging boundary probabilities327

as input, we compare it with the previous approach328

of leveraging real aspect as input in Figure 3a and329

3b (i.e., F and F̂). More specifically, F can be330

regarded as a 0-1 matrix, and the real aspect is used331

as input to supervise the learning of the sentiment332

predicting, which basically cuts off the connection333

between the two tasks. F̂ is a differentiable prob-334

ability matrix, the sentiment information can be335

backpropagated into the boundary detection pro-336

cess via p̂s and p̂e with our method, which captures337

the sequential nature between different tasks.338

(2) Optimizing F̂ → F̂o. In practice, during 339

training, to compute Equation 8 (i.e., F̂ ), one needs 340

to traverse the whole sentence, and the computa- 341

tional complexity is O(n2), which is very difficult 342

to calculate2. Fortunately, this complexity can be 343

reduced based on two facts: (i) The end point is 344

not smaller than the start point. (ii) The length of 345

an aspect term is usually not large. Then we revise 346

Equation 8 as F̂o (see Figure 3c), that is, 347

F̂o =

n∑
i=1

i+h∑
j=i

p̂i,sp̂e,j

j∑
k=i

Hk, (9) 348

where h is the maximum length of the aspect. Fi- 349

nally, the computation complexity is reduced to 350

O(nh). 351

(3) Alternate Learning Strategy. Predicting 352

sentiment based on real boundaries (i.e., Equa- 353

tion 4) can be more effective in learning the parame- 354

ters in the sentiment prediction module, while lever- 355

aging boundary distributions (i.e., Equation 6) can 356

enhance the capability of aspect detection. There- 357

fore, different strategies have their own advantages, 358

in this paper, we propose an alternate learning strat- 359

egy to take the best of both tasks. Precisely, during 360

training, we train a fixed ratio (τ ) of samples based 361

on Equation 4, while the others are learned using 362

Equation 6. This strategy not only guides the sen- 363

timent prediction more properly but also eases the 364

high computational cost caused by span enumera- 365

tion. 366

3.4 Semantic Compatibility Mechanism 367

To predict the boundary probabilities of the aspects 368

more accurately, we design a semantic compatibil- 369

ity mechanism. Intuitively, the words in an aspect 370

should have some inherent connections, and they 371

usually appear in the corpus simultaneously. To 372

capture such information, we propose to explicitly 373

learn the semantic compatibility between the words 374

in an aspect. Formally, supposing the start and end 375

boundaries of an aspect are s and e, respectively, 376

then we need to measure the semantic compatibility 377

of the words in this bound (s,e) to form a reason- 378

able aspect. And the semantic compatibility score 379

of the aspect is computed as, 380

ms,e = σ (W6ReLU(W5g(Hs→e) + b5) + b6) , (10) 381

where {W5,W6, b5, b6} are trainable parameters. 382

Hs→e corresponds to the words in the aspect. g is 383

2the computational complexity is O(1) in F .
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Model Laptop Restaurant Tweets
P R F1 P R F1 P R F1

SPJM (Zhou et al., 2019) 61.40 58.20 59.76 76.20 68.20 71.98 54.84 48.44 51.44
SPAN-pipeline (Hu et al., 2019) 69.46 66.72 68.06 76.14 73.34 74.92 60.72 55.02 57.69

SPAN-joint (Hu et al., 2019) 67.41 61.99 64.59 72.32 72.61 72.47 57.03 52.69 54.55
SPAN-collapsed (Hu et al., 2019) 50.08 47.32 48.66 63.63 53.04 57.85 51.89 45.05 48.11

SPRM (Lin and Yang, 2020) 68.66 68.77 68.72 77.78 80.60 79.17 60.25 58.79 59.45
S-AESC (Lv et al., 2021) 66.87 64.92 65.88 78.26 70.50 74.18 55.86 53.74 54.73

HI-ASA (Chen et al., 2022) 70.28 70.50 70.39 79.41 80.38 79.90 61.64 59.17 60.36
SIBP 75.18 66.40 70.52 84.45 76.15 80.08 66.76 55.51 60.59

%Improve.+ 6.97% -5.82% 0.18% 6.35% -5.27% 0.23% 8.31% -6.19% 0.38%
p-value 3.39e-7∗ 2.55e-5∗ 0.042∗ 7.37e-5∗ 1.12e-5∗ 0.035∗ 1.97e-4∗ 3.49e-4∗ 0.012∗

Table 1: The performance (Precision, Recall, and F1-Score) comparisons with different methods. Baseline results
are retrieved from published papers. And the bold indicates the best performances among all the models.
+ The improvements are calculated between HI-ASA and SIBP.
∗ It denotes that the corresponding improvement has passed the significant test at the significance level of 0.05.

a semantic aggregation function, there we specify384

it as the embedding combination from start to end385

position.386

In the optimization process, we maximize the387

semantic compatibility scores between the real as-388

pect boundaries, and simultaneously minimize that389

between the negative boundaries3, that is,390

Jsc =

N∑
i=1

l∑
j=1

{logm
s
j
i ,e

j
i
+
∑

(x,y)∈O

log (1−mx,y)}, (11)391

where N is the number of sentences and l is the392

number of aspects in the sentence, O is the set393

of negative boundary pairs. In this equation, the394

parameters of {W5,W6, b5, b6} are optimized to395

identify real aspects based on word semantics (i.e.,396

H), which provides complementary signals to the397

above index-based method.398

During inference, For each candidate aspect399

(s, e), first, we judge whether it can compose an400

aspect based on γ (i.e., the sum score of start and401

end indexes). Then, we check whether this as-402

pect pair is a semantically reasonable aspect via403

µ (see Equation 10). The specific details of our404

semantic-compatibility aspect extraction algorithm405

are shown in Appendix B.406

3.5 Model Training407

The overall loss is the weighted sum of the sub-408

tasks losses,409

J = Jae + β · Jsp + γ · Jsc, (12)410

where β and γ are task coefficients. We minimize411

the J and determine suitable parameters by grid412

search for information feedback mechanism during413

the experiment.414

3We sample the negative boundary pairs from all the bound-
ary pairs that cannot form an aspect.

Aspect Extraction (F1) Laptop Res Tweets
DE-CNN (Xu et al., 2018) 81.59 - -

SPAN (Hu et al., 2019) 83.35 82.38 75.28
CL-BERT (Yang et al., 2020) 85.61 - -

S-AESC (Lv et al., 2021) 85.19 84.20 76.04
- w/o DI 79.02 82.30 75.57
- w/o SC 81.66 84.45 75.34
- w/o SC & DI 81.11 85.01 74.25

SIBP 83.92 85.87 76.54
Sentiment Prediction (ACC) Laptop Res Tweets

TNet (Li et al., 2018) 76.54 - -
DMMN (Lin et al., 2019) 77.59 - -
SPAN (Hu et al., 2019) 81.39 89.95 75.16

SPRM (Lin and Yang, 2020) 81.50 90.35 78.34
DGEDT (Tang et al., 2020) 76.80 - 74.80
DualGCN (Li et al., 2021) 81.80 - 77.40
T-GCN (Tian et al., 2021a) 81.97 - 78.03

- w/o DI 84.86 92.40 83.99
- w/o SC 84.70 92.44 84.11
- w/o SC & DI 83.28 92.01 82.99

SIBP 85.96 92.49 84.13
Joint Task (F1) Laptop Res Tweets

- w/o DI 67.08 78.06 60.39
- w/o SC 68.93 79.05 60.22
- w/o SC & DI 68.30 77.54 58.82

SIBP 70.52 80.08 60.59

Table 2: The above is the performance (F1-score) com-
parisons with different methods on aspect extraction.
The Middle is the performance (Accuracy) comparisons
with different methods on sentiment prediction. And
below is the performance (F1-score) comparisons with
different methods on joint task.

4 Experiments 415

4.1 Experimental Setup 416

Datasets. We conduct our experiments on three 417

real-world datasets, which have been widely used 418

in previous work (Hu et al., 2019; Lin and Yang, 419

2020; Chen et al., 2022). More details are shown 420

in Appendix C.1. 421

Metrics. Please refer to Appendix C.2 for metric 422

details. 423

Baselines. We compare our model with the fol- 424
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(a) Laptop
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Figure 4: The performances (P, R, F1) of our SIBP w.r.t varying parameter τ on three datasets.
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Figure 5: The performances (F1) of our SIBP w.r.t vary-
ing parameter h on Restaurant and Laptop, respectively.

lowing representative methods: (1) Joint aspect425

extraction and sentiment prediction, (2) Aspect ex-426

traction, (3) Sentiment Prediction.427

(1) Joint aspect extraction and sentiment predic-428

tion method contain:429

• SPJM (Zhou et al., 2019). • SPAN-{pipeline,430

joint, collapsed} (Hu et al., 2019). • SPRM (Lin431

and Yang, 2020) • S-AESC (Lv et al., 2021) •432

HI-ASA (Chen et al., 2022).433

(2) Aspect extraction methods including • DE-434

CNN (Xu et al., 2018). • CL-BERT (Yang et al.,435

2020).436

(3) Sentiment Prediction methods including •437

TNet (Li et al., 2018). • DMMN (Lin et al., 2019).438

• TM (Yadav et al., 2021). • DGEDT (Tang439

et al., 2020). • DualGCN (Li et al., 2021). •440

T-GCN (Tian et al., 2021a).441

More baseline details are listed in Appendix C.3442

Implementation Details. Implementation de-443

tails are reported in Appendix C.4.444

4.2 Main Results445

The comparisons between our model and the base-446

lines are presented in Table 1. Overall, our pro-447

posed model SIBP consistently achieves the best448

results against all the baselines. These observations449

indicate the carefully designed SIBP is capable of450

achieving better performances.451

However, the recall performances of SIBP are452

lower than other baselines. This happens because453

we select the best model via the F1-score during454

optimization, which can maintain a good balance455

between precision and recall. Hence, we cannot 456

guarantee that the precision and recall are at their 457

peak when the model achieves the highest F1-score. 458

4.3 Ablation Study 459

In the above section, we have evaluated SIBP’s 460

overall performance. For studying the contribu- 461

tions of different model components, here, we go 462

deeper into the model and conduct ablation studies. 463

The results are shown in Table 2. More precisely, 464

we compare SIBP with the following variants: 465

• - w/o DI: In this model, we only use the 466

ground truth as the input of the sentiment predic- 467

tion module (i.e., the ratio τ is set as 1). 468

• - w/o SC: In this model, we remove the seman- 469

tic compatibility module (i.e., Jsc). 470

The results in joint task show that when a cer- 471

tain module is removed, the model performance 472

decreases, which indicates the indispensability of 473

each module. This manifests that different model 474

components are critical to the final performance. 475

In general, we can observe that SIBP outper- 476

forms baseline competitors on both tasks, which 477

indicates the effectiveness of modeling the span- 478

level associations between aspect extraction and 479

sentiment classification. 480

4.4 Parameter Analysis 481

Effect of parameter τ . In our model, an important 482

parameter is the ratio τ (i.e., Remark.(3)) when 483

connecting different tasks. It measures how much 484

we predict the sentiment based on the aspect bound- 485

ary distributions. For the special cases, if τ = 0, 486

we make sentiment prediction completely based on 487

the direct output from the aspect extraction module. 488

If τ = 1, the sentiment is predicted purely based 489

on the ground truth boundaries. In this experiment, 490

we tune the ratio τ in the range of 0 to 1, and the 491

results are reported in Figure 4 based on the joint 492

task.4 We find on all datasets, the F1-score in- 493

creases rapidly at first, then tends to be stable, and 494

4It should be noted that τ = 1 is equal to the model of
-w/o DI in the above ablation studies.
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Sentences Predictions of HI-ASA SIBP
1. All the money went into the [interior decoration]+, none of
it went to the [chefs]−.

[ interior decoration]+(!)
[chefs]+(%)

[ interior decoration]+(!)
[chefs]−(!)

2. After [dinner]−, take your date to the HUGE [dance floor]+,
probably one of the biggest you’ll see in NY.

[dinner]+(%)
[dance floor]+(!)

[dinner]−(!)
[ dance floor ]+(!)

3. [Lunch]+ came with [pickels and slaw]−, no extra charge.
[lunch]+(!)

[pickels]−(%)
[slam]−(%)

[lunch]+(!)
[pickels and slaw]−(!)

4. You will obtain a gift if you buy the separate [RAM memory]+.[separate RAM memory]+(%) [RAM memory]+(!)

Table 3: Outputs of different models. The extracted aspects are wrapped in brackets with the predicted polarities
given as subscripts. Correct and incorrect predictions are marked with !and %, “+/-/0” denote the positive,
negative, and neutral sentiment polarities.

finally falls down from τ = 0.9 to τ = 1. The rea-495

son lies in that when τ is small, the model cannot496

obtain enough supervised information from ground497

truth, resulting in poor performance. And when τ is498

very large, the model cannot take into account the499

valuable interactions between the two tasks, lead-500

ing to unsatisfactory performance. We observe that501

the best performances are usually achieved when502

τ is moderate (i.e., 0.9) on three datasets, which503

implies that neither the ground truth boundary nor504

distributional boundary is dominantly superior, and505

a mixture of them can be more favorable.506

Effect of parameter h. In this section, we in-507

vestigate the influence of h, which controls the508

aspect’s length in Equation 9. Theoretically, when509

h is large, the model parameters are huge and diffi-510

cult to converge. Conversely, when h is very small,511

it is not easy to extract correct aspects. Considering512

the length of an aspect term is usually not large,513

we search h in the range of {1, 2, 3, 4, 5} in our ex-514

periment. We provide the F1-scores on Restaurant515

and Laptop in Figure 5. As h increases, the per-516

formances gradually rise to a maximum and then517

start to fall, indicating that a moderate h (2 or 3)518

can not only reduce the amount of parameters but519

also ensure extracting correct aspects.520

4.5 Case study521

To provide more insights into our model’s superior522

performance, we present some case studies in a523

qualitative manner. Table 3 shows that:524

• In the first two cases, since the associations525

between aspect extraction and sentiment prediction526

are weak, the aspect detection and sentiment in the527

HI-ASA model are not completely correct. For in-528

stance, it extracts the correct aspect “dinner”, but529

predicts inaccurate sentiment with “dinner” in the530

2nd case. However, in SIBP, the sentiment infor-531

mation can be backpropagated into the boundary532

detection process, which can enhance the correla-533

tions and therefore predict the aspect and sentiment 534

correctly. 535

• By modeling the semantic compatibility, SIBP 536

can extract more accurate aspects. For example, in 537

the 4th case, the word “separate” has a higher prob- 538

ability to become the start of an aspect as compared 539

to the word “RAM”, while from the semantic per- 540

spective, “separate” should not be mixed into the 541

aspect of “RAM memory”, which has been success- 542

fully discovered by our model. Similar phenomena 543

can also be observed in the 3rd case. 544

5 Conclusion and Future Work 545

In this paper, we studied the problem of joint as- 546

pect extraction and sentiment prediction. Different 547

from previous approaches that model the inter-task 548

correlations replying on sentence-level features, we 549

proposed to model the span-level interactions with 550

boundary probabilities for the task of targeted sen- 551

timent analysis. In order to take the best of both 552

tasks, we devised an alternate learning strategy to 553

improve the performance during training. More- 554

over, we combined the position and semantic in- 555

formation to detect the boundaries of an aspect. 556

Extensive experiments on three real-world datasets 557

demonstrated the model’s superiority. 558

This paper actually makes the first step towards 559

modeling span-level interactions for targeted senti- 560

ment analysis. However, there is still much room 561

to be improved. For example, the position infor- 562

mation and semantic information are scattered in 563

a sentence, which will affect the performance of 564

joint aspect-sentiment extraction. In future work, 565

we may introduce graph structure to model the posi- 566

tion and semantic information in a more integrated 567

manner. Besides, we may also leverage some data 568

augmentation technologies to solve the sparse prob- 569

lem in targeted sentiment analysis. 570
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Appendix754

A Proof755

In this section, we prove that the optimization756

objective of targeted sentiment analysis does not757

change after partitioning the training dataset.758

First, when there are multiple aspects in a sen-759

tence, the optimization objective can be denoted760

as,761

J1 = Jae + Jsc + Jsp

= −
N∑
i=1

m∑
i=1

{
pT
s,i,j log

(
p̂s,i,j

)
+ pT

e,i,j log
(
p̂e,i,j

)}
+

N∑
i=1

l∑
j=1

{logm
s
j
i
eji +

∑
(x,y)∈O

log (1−mx,y)}

−
N∑
i=1

l∑
j=1

t∑
k=1

yi,j,k log ŷi,j,k

= −
N∑
i=1

(
m∑
i=1

{
pT
s,i,j log

(
p̂s,i,j

)
+ pT

e,i,j log
(
p̂e,i,j

)}
−

l∑
j=1

{logm
s
j
i ,e

j
i
+

∑
(x,y)∈O

log (1−mx,y)}

+

l∑
j=1

t∑
k=1

yi,j,k log ŷi,j,k

)

= −
N∑
i=1

(
m∑
i=1

{
pT
s,i,j log

(
p̂s,i,j

)
+ pT

e,i,j log
(
p̂e,i,j

)}
−

m∑
j=1

{logm
s
j
i ,e

j
i
+

∑
(x,y)∈O

log (1− m̂x,y)}

+

m∑
j=1

t∑
k=1

yi,j,k log ŷi,j,k

)

= −
N∑
i=1

m∑
i=1

(∣∣∣∣∣{pT
s,i,j log

(
p̂s,i,j

)
+ pT

e,i,j log
(
p̂e,i,j

)}
− {logm

s
j
i ,e

j
i
+

∑
(x,y)∈O

log (1− m̂x,y)}

+

t∑
k=1

yi,j,k log ŷi,j,k

)
(13)762

where N is the number of sentences in training763

dataset, m is the sentence’s length, and l is the as-764

pect’s number in each sentence. With the above765

derivation, we can observe that the targeted senti-766

ment analysis can be viewed as an optimization of767

a single aspect. In other words, this is independent768

of the number of aspects in a sentence.769

To further test our idea, we derive the case that770

there is only one aspect per sentence, the optimiza-771

tion goal is,772

Algorithm 1 Overall Process
Input: gs , ge , k , γ , µ .

gs : the score of start position
ge : the score of end position
k : the maximum number of extracted aspects
γ : sum score threshold
µ : compatibility score threshold

Output: M denotes the aspects set
1: Initialize the extracted aspect pairM=∅
2: Get the top-k start indexes S from gs
3: Get the top-k end indexes E from ge
4: for i in S do
5: for j in E do
6: if i ≤ j then
7: if gsi + gej ≥ γ and ms,e ≥ µ then
8: u = j − i
9: r = gsi + gej − u

10: t = {(i, j)}
11: M←M∪ t
12: SortM in ascending order by the value of r
13: for k in size(M) do
14: for q in size(M) do
15: if Mk ∩Mq ̸= ∅ then
16: DeleteMk

17: ReturnM

J2 = Jae + Jsc + Jsp

= −
M∑
i=1

m∑
i=1

(∣∣∣∣∣{pT
s,i,j log

(
p̂s,i,j

)
+ pT

e,i,j log
(
p̂e,i,j

)}
− {logm

s
j
i ,e

j
i
+

∑
(x,y)∈O

log (1− m̂x,y)}

+

t∑
k=1

yi,j,k log ŷi,j,k

)
,

(14) 773

where M is the number of sentence in new training 774

dataset, i,e., M =
∑N

i=1 li. 775

We can observe that J1 and J2 are linearly de- 776

pendent, thereby, the two optimization objectives 777

are consistent. 778

B Semantic-compatibility Aspect 779

Extraction Algorithm 780

See algorithm 1. 781

C Experimental Setup 782

C.1 Datasets 783

We conduct our experiments on three real-world 784

datasets, which have been widely used in previous 785
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Dataset #Sentences #Aspects #+ #- #0
Laptop 1869 2936 1326 900 620

Restaurant 3900 6603 4134 1538 931
Tweets 2350 3243 703 274 2266

Table 4: Statistics of three datasets. “+/-/0” denote the
positive, negative, and neutral sentiment polarities.

work and the statistics are shown in Table 4. Pre-786

cisely, Laptop contains costumer reviews in elec-787

tronic product domain, which is collected from788

SemEval Challenge 2014 (Pontiki et al., 2014).789

Restaurant is the reviews set of the restaurant790

domain from SemEval2014, SemEval2015 and791

SemEval2016 (Pontiki et al., 2014, 2015, 2016).792

Tweets is built by (Mitchell et al., 2013), which793

is composed of twitter posts from different users.794

These datasets come from different domains with795

various characters, for example, Restaurant con-796

tains more positive or negative sentiments, while797

there are relatively fewer neutral comments. In con-798

trast, the number of neutral sentiments in Tweets799

is much larger than that of the positive or negative800

polarities. With these datasets, our model can be801

fairly evaluated under different settings.802

C.2 Metrics803

In the experiments, the commonly used metrics804

including Precision (P), Recall (R), and F1-Score805

(F1) are selected to evaluate our model. For aspect806

extraction, we also use F1-Score to evaluate our807

model. And we adopt accuracy (ACC) as the metric808

in sentiment prediction. In specific, a predicted809

target is correct only if it exactly matches the gold810

targets and the corresponding polarity. Since we811

use exactly the same datasets and metrics as (Hu812

et al., 2019), we directly copy the baseline results813

from it.814

C.3 Baselines815

We compare our model with the following repre-816

sentative methods: (1) Joint aspect extracting and817

sentiment predicting, (2) Aspect extracting, (3) Sen-818

timent Predicting.819

(1) Joint aspect extraction and sentiment predic-820

tion methods contain:821

• SPJM (Zhou et al., 2019): The model firstly822

searches directly to determine the span of the target823

and then performs sentiment polarity classification.824

• SPAN-{pipeline, joint, collapsed} (Hu et al.,825

2019): A span-based model employing a BERT826

encoder and a multi-target span decoder to extract827

aspects and corresponding sentiments.828

• SPRM (Lin and Yang, 2020): It adopts the pri- 829

vate and share representation for the joint task to 830

capture correlations between the two tasks, which 831

is an improvement over SPAN (Hu et al., 2019). 832

• S-AESC (Lv et al., 2021): A dual gated recur- 833

rent units and an interaction layer are used jointly 834

to generate the aspects and sentiments. 835

• HI-ASA (Chen et al., 2022): The current state- 836

of-the-art model for span-based targeted sentiment 837

analysis, which proposes a hierarchical interactive 838

network that takes explicit cooperation from aspect 839

extraction and sentiment predicting to exact the 840

aspects and sentiments. 841

(2) Aspect extraction methods including: 842

• DE-CNN (Xu et al., 2018): It utilizes a double 843

embedding with CNNs to extract aspect words. 844

• CL-BERT (Yang et al., 2020): The current state- 845

of-the-art model for aspect extraction, this work 846

incorporates the syntactic information in neural 847

network models. 848

(3) Sentiment Prediction methods including: 849

• TNet (Li et al., 2018): A classification model 850

that uses a multi-layer context-preserving network 851

as the feature extractor. 852

• DMMN (Lin et al., 2019): It integrates the in- 853

formation of semantic dependency and inter-aspect 854

relation into memory network. 855

• DGEDT (Tang et al., 2020): This work proposes 856

a dependency graph enhanced dual-transformer net- 857

work, which joint considers the flat representation 858

learned from Transformer and graph-based repre- 859

sentations learned from the corresponding depen- 860

dency graph. 861

• DualGCN (Li et al., 2021): It designs a dual 862

graph convolution network that considers the com- 863

plementarity of syntax structures and semantic cor- 864

relations simultaneously. 865

• T-GCN (Tian et al., 2021a): A state-of-the-art 866

method that explicitly uses dependency types for 867

ABSA with type-aware graph convolution network. 868

C.4 Implementation Details 869

Following previous works (Hu et al., 2019; Lin 870

and Yang, 2020; Chen et al., 2022), we split the 871

training and test sets for each dataset. As there 872

is no train-test split in Tweets, we report the ten- 873

fold cross-validation results for it. In the model, 874

we adopt the BERT-large model as the backbone 875

network, which consists of 24 Transformer blocks 876

with 16 self-attention heads as the encoding layer. 877

The maximum length of aspect (i.e., h in Equa- 878
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tion 9) is in the range of {1, 2, 3, 4, 5}. The ratio of879

distributional input samples (i.e., τ in Remark.(3))880

is determined in the range of 0 to 1. our model881

is optimized based on Adam optimizer (Kingma882

and Ba, 2014), and the learning rate is searched883

in {2e-5, 2e-4, 2e-3}. Moreover, all methods were884

implemented using the PyTorch framework and885

trained on Nvidia GeForce Titan RTX 3090 GPUs.886
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