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Abstract

Aspect extraction and sentiment prediction are
two important tasks for targeted sentiment anal-
ysis. Recently, some span-based methods have
gained great attention to capture the associa-
tions between the two tasks in this domain,
where they first extract aspects by detecting as-
pect boundaries and then predict the span-level
sentiments. Most existing studies on modeling
the inter-task interactions either share the input
representation of the two tasks at the encod-
ing layer, or approximate the output representa-
tion of the two tasks at the task layer. Both of
them focus on modeling sentence-level correla-
tions between these two tasks, leading to insuf-
ficient inter-task feature interactions. Since the
aspect-level features are also crucial to connect
these two tasks, thus, different from previous
approaches, in this paper, we propose to model
the span-level interactions with boundary prob-
abilities (SIBP) to explicitly consider the inner
correlations for these two tasks. Specifically,
we use the predicted boundary probabilities of
aspects to generate all possible spans as input
of the sentiment prediction module, such that
the sentiment information can be backpropa-
gated into the boundary detection process in
a fully differentiable manner. Further, we de-
vise an alternate learning strategy to take the
best of both tasks between predicted aspects
and real aspects. This strategy not only guides
sentiment prediction more properly but also
improves computational efficiency. Moreover,
to predict the boundary probabilities of the
aspects more accurately, we design a seman-
tic compatibility mechanism. Finally, we con-
duct extensive experiments on three real-world
datasets to demonstrate the model’s superiority.

1 Introduction

Targeted sentiment analysis (Pang et al., 2008;
Bing, 2012) has long been an important natural
language processing task, which involves of two
sub-problems: (1) aspect extraction (Jakob and
Gurevych, 2010; Poria et al., 2016; Karimi et al.,
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Figure 1: The upper part shows an example of tagging-
based models. The bottom part illustrates the span-
based methods, where we present an example semantic
space for different words.

2021), which aims to identify the aspects in a sen-
tence, and (2) sentiment prediction (Jiang et al.,
2011; Lin et al., 2019; Karimi et al., 2021), which
predicts the sentiment polarity of a given aspect
(e.g., positive, negative, and neutral).

Generally, previous research in this domain
can be largely classified into two types: tagging-
based and span-based models. Tagging-based mod-
els (Luo et al., 2019; Li et al., 2019; Wang et al.,
2021) combine two different problems via design-
ing the combination tags. For example, in the sen-
tence of Figure 1, each tag is composed of two
parts, the first part is used to label the aspect words,
while the second part indicates the word sentiment,
e.g., “B-” means the beginning of a negative as-
pect. Despite effectiveness, tagging-based methods
need to search huge word index spaces and cannot
guarantee sentiment consistency (Hu et al., 2019).
To alleviate these shortcomings, the span-based
models (Hu et al., 2019; Lin and Yang, 2020) are
proposed, where the aspect is detected by directly
predicting the boundary distributions, and the sen-
timent is classified based on all the words between
the boundaries. Instead of labeling each word sen-
timent sequentially, span-based models predict a
unified sentiment for all the words in the aspect. In
this work, we focus on the span-based models.

Recently, some span-based approaches (Lv et al.,




2021; Chen et al., 2022) start considering the inter-
actions between these two tasks to achieve strong
performance due to their inner correlation. Most
prior works either focus on input-side interactions,
sharing partial sentence encodings, or they con-
sider the output-side interactions, forcing the out-
put representations of the two tasks to be close.
Unfortunately, both of them model the inter-task
interactions relying on sentence-level features, ig-
noring aspect-level feature interactions. Indeed, the
aspect-level features play an essential role when
connecting two tasks. On the one hand, sentimen-
tal expressions can be understood precisely if the
desired aspects are specific, e.g., “my new house is
close to sports park." and “my new house is close
to stinky ditch.", the sentimental words “close to"
show a positive attitude towards “sports park™ but
the negative attitude towards “stinky ditch”. On the
other hand, aspects can also be quickly detected if
we know where the sentimental expressions locate,
e.g., if a negative sentimental words “acid” appears
in a hotel review, there is likely an aspect word
related to “food". Previous span-based models usu-
ally neglect such sequential connections between
the two tasks, which may limit their performances.

Inspired by the above analysis, in this paper, we
propose SIBP, to model span-level interactions with
boundary probabilities for solving the task of tar-
geted sentiment analysis. Specifically, we utilize
the boundary distribution predicted from the aspect
extraction model to generate all possible spans as
input for sentiment prediction. Based on this strat-
egy, the aspect information can guide the sentiment
prediction task, and the sentiment information can
provide helpful signals via backpropagation for the
aspect extraction task in a fully differentiable man-
ner. Then, we devise an alternate learning strategy
to achieve a trade-off between predicted aspects
and real aspects. This strategy not only ensures
that both tasks are well learned but also reduces the
computational overhead.

Moreover, we also design an advanced semantic
compatibility mechanism to combine the position
and semantic information for detecting aspects in
a unified manner. Most previous models predict
the start and end boundaries independently. And
to the best of our knowledge, there is no specific
mechanism to guarantee that the words between
the boundaries can form an aspect, which may neg-
atively impact the capability of aspect extraction.
For example, in Figure 1, the end boundary distribu-

tion implies that the 2nd and 3rd words have similar
chances to become the end of an aspect. However,
from the semantic perspective, the word “is” can be
irrelevant to the former words, and less likely to be
the end of an aspect. Semantic information is use-
ful in checking whether different words can form a
“semantically reasonable” aspect, which may play
a complementary role together with the boundary
distributions. Finally, extensive experiments on
three datasets and several baseline models prove
the effectiveness of our proposed framework. The
major contributions of this paper are summarized
as follows:

* We propose a span-level interaction method
with boundary probabilities (SIBP) for solv-
ing the task of targeted sentiment analysis.

* To predict the boundary probabilities of as-
pects more accurately, we design a seman-
tic compatibility mechanism, which provides
complementary signals to boundary detection.

* We validate the effectiveness of SIBP on three
real-world datasets, and results indicate our
model outperforms a variety of state-of-the-art
baselines.

2 Related Work

The aspect extraction and sentiment prediction are
the utmost trending tasks of targeted sentiment anal-
ysis. Recently, considering the fact that both aspect
and sentiment can provide strong mutual indica-
tions for each other, research studies have been
performed to devise tagging-based and span-based
solutions for extracting aspect-sentiment jointly.
Here, we briefly review these models in the follow-
ing.

Tagging-based methods. Many researchers
adopted the tagging-based strategy to solve these
two tasks jointly, which basically regard the prob-
lem as a sequential labeling process (Mitchell et al.,
2013). The aspect and sentiment information is
scattered onto each word, and the sentence is la-
beled with tags. With this formulation, early mod-
els (Zhang et al., 2015; Li and Lu, 2017) leverage
Conditional Random Field (CRF) (Lafferty et al.,
2001) to autoregressively predict the tags based
on handcrafted linguistic features. To exploit the
powerful representations of encoders (e.g., LSTM,
CNN, BERT), recent studies (Li et al., 2019; Mao
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Figure 2: A depiction of the SIBP model. The model is specifically designed to extract aspects and sentiments
from reviews by performing the following operations: (1) Encoding the input sentence representations for aspect
extraction and sentiment prediction through the BERT encoder; (2) Generating the boundary probabilities (i.e., start
and end ) through word semantic prediction module and word index prediction module; (3) Generating expectation
matrix though weight matrix and vector matrix; and (4) Incorporating the expectation features of aspect to sentiment
predicting. Precisely, in the expectation matrix, the darker the color, the greater the weight on the span.

et al., 2021; Zhang et al., 2022) have paid more at-
tention to designing neural networks for predicting
the tags sequentially. Further, several models (Hu
et al., 2019; Chen et al., 2020; Yan et al., 2021)
leverage advanced learning technology (e,g., graph
representation learning and multi-task learning) to
extract aspects and predict sentiments jointly. Al-
though the above models have achieved many suc-
cesses, the main problem is that they disperse the
whole aspect sentiment to each word within it, and
basically relax the constraint of sentiment consis-
tency, which increases the sentiment ambiguity.

Span-based methods. Meanwhile, some of
the researchers implemented the span-based strate-
gies (Hu et al., 2019; Zhou et al., 2019), that is,
first extracting aspects by detecting aspect bound-
aries and then predicting the span-level sentiments.
Hu et al. (2019) proposed an extract-then-classify
framework that first extracts targets with a heuristic
decoding algorithm, and then correspondingly clas-
sifies the sentiments. In this work, a shared input
embedding is introduced to consider the correla-
tions between two tasks. To extend the above work,
Lin and Yang (2020) devised a shared-private rep-
resentation method that implicitly incorporates the
shared and private information in sentence embed-
ding between two tasks to improve task results. Lv
et al. (2021) explicitly constructed dual gated re-
current units and an interaction layer to model the

inter-task connections. Further, Chen et al. (2022)
developed an interactive network in a hierarchical
manner (i.e., input-side interactions and output-
side interactions) that takes explicit cooperation
from aspect extraction and sentiment prediction to
enhance the model performance.

Unlike existing works on aspect extraction and
sentiment prediction that model the inter-task inter-
actions relying on sentence-level features. In this
work, we novelly propose to model the span-level
interactions with boundary probabilities for these
two tasks. And we devise an alternate learning
strategy to achieve a trade-off between predicted
aspects and real aspects. Moreover, this study also
designs a semantic compatibility mechanism to ex-
tract the aspects more accurately. Compared with
the current endeavors, our models yield better per-
formance.

3 Methodology

The overall framework is depicted in Figure 2. We
can see that the sentiment prediction module takes
the predicted aspects as input, and outputs the sen-
timent of the aspects. Under the guidance of the
sentiment information, the boundary distributions
are regularized and the aspect is extracted in a more
accurate manner.

Given a sentence * = {1, %2, ...,Z,} Where
x; is the i*" token in @, and n is the length of



sentence, the main task is to extract all possible
aspect terms (s, e) (the start and end indexes of
aspect term), and predict corresponding sentiments
(i.e., positive, neutral, and negative) in x.

In order to represent the semantics more accu-
rately, we use the well-known bidirectional encoder
representation from transformers (BERT) (Devlin
etal., 2019) to process the raw input. For a sentence
x = {x1,x9,...,2,}, we suppose the output from
BERT is H = {hg, h1,...,h,} € R"*4 where d
is the embedding size, n is the sentence’s length.

3.1 Aspect Boundary Prediction

In previous models (Hu et al., 2019; Lin and Yang,
2020), the aspects are detected by predicting the
start and end boundaries through a linear transfor-
mation operation. To be specific, the distribution
of the start boundary is predicted as,

gs = HW; +b; s ﬁs = SOftmaX(gs)a (D

where W € R¥! and b; € R™ are the weighting
and bias parameters, softmax(-) normalizes the in-
put into a distribution. In this equation, the length
of p; is the same as the sentence’s, and each el-
ement in P represents the probability of a word
being the start of an aspect. The end distribution
can be derived in a similar manner, and we define
it as p.. The learning objective for the boundary
distributions is,

Jae = = »_{pllog (i) + Plelog (Bie)},
i=1

2
where p;{S € R"™ and pg:e € R" are the ground
truths of the boundaries (i.e., 0-1 vectors), p; s and
Di e are the predicted boundary distributions, n is
the length of sentence.

3.2 Sentiment Prediction

For a given aspect, the sentiment is predicted based
on the words between its boundaries. Suppose the
start and end boundaries are s and e, respectively,
we calculate a summarized vector « using the atten-
tion mechanism over tokens in its corresponding
bound (s,e)!, thus, the sentiment is predicted as,

a = softmax (W, H,_.), 3)

g =softmax(W3 tanh(Wy - F)

¢ 4
=softmax (W3 tanh(Wy Z%’Hi)), @

1=s

"Please note that (s, ¢) is ground truth boundaries.

where F is the aspect vector, and W,,, W3 and W,
are weighting parameters. This sentiment predic-
tion method is actually used by most of the previous
models (Lin et al., 2019; Tian et al., 2021b). Then,
the parameters are learned based on cross-entropy,

N N K
Tp ==Y yllogi == > yi;logi;,
=1

i=1 j=1

®)
where IV is the total number of training samples, K
is the number of sentiment types, y; is the predicted
sentiment distribution, and y; is the corresponding
ground truth.

3.3 Modeling Span-Level Interactions

Most existing approaches capture the inter-task cor-
relations based on sentence-level features. They
model these interactions from the input-side or
output-side to share sentence representation, both
of which fail to sufficiently model connections be-
tween aspect extraction and sentiment prediction.

As mentioned above, the aspect can provide use-
ful signals for sentiment prediction. Conversely,
sentimental features are also beneficial to the ex-
traction of aspect boundaries. However, the senti-
ment is predicted based on the ground truth bound-
aries in previous works, which basically separates
the sequential connections between these two tasks.
Therefore, in this paper, we use the aspect features
to supervise the sentiment predicting process. On
the one hand, aspect extraction can sequentially
deliver useful supervised signals for sentiment pre-
diction. On the other hand, sentiment information
can influence aspect detection through backprop-
agation. To this end, we do not use the boundary
ground truth as the input, instead, we derive an
expectation of the word embedding based on the
boundary distributions, thus, the Equation 4 can be
rewritten to,

¢ = softmax (W3 tanh(Wjy - F)
= softmaX(W3 tanh(WdE(iNﬁMjNﬁC) [f(Hl_”)D),
(6)
where F is the expected aspect vector, and f is an
aggregation function, and we specify it as,

J
f(Hisg) = Hy, (7)
k=i

Since ps and p. are both discrete distributions, we
have the following derivation,
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where we assume n is the sentence’s length.

In the training process, in order to more accu-
rately model the expected output of each aspect,
we split the sentences containing multiple aspects
into multiple sentences (i.e., each sentence con-
tains only one aspect), which can ensure these as-
pect words in the same sentence are not disturbed
during learning. However, during inference, we
can still extract multiple aspects and corresponding
sentiments simultaneously if the sentence contains
multiple aspects.

Appendix A proves that the optimization objec-
tive does not change when changing the partition
of the training set.

Remark.

(1) Comparison with 7. For a more intuitive
understanding of leveraging boundary probabilities
as input, we compare it with the previous approach
of leveraging real aspect as input in Figure 3a and
3b (i.e., F and F). More specifically, F can be
regarded as a 0-1 matrix, and the real aspect is used
as input to supervise the learning of the sentiment
predicting, which basically cuts off the connection
between the two tasks. F is a differentiable prob-
ability matrix, the sentiment information can be
backpropagated into the boundary detection pro-
cess via P, and P, with our method, which captures
the sequential nature between different tasks.

(2) Optimizing F = .7:'0. In practice, during
training, to compute Equation 8 (i.e., F), one needs
to traverse the whole sentence, and the computa-
tional complexity is O(n?), which is very difficult
to calculate®. Fortunately, this complexity can be
reduced based on two facts: (i) The end point is
not smaller than the start point. (ii) The length of
an aspect term is usually not large. Then we revise
Equation 8 as .7:"0 (see Figure 3c), that is,

. n i+h 7
Fo=>_> Pisbes Y Hr, ©)
i=1 j=i k=i
where h is the maximum length of the aspect. Fi-
nally, the computation complexity is reduced to
O(nh).

(3) Alternate Learning Strategy. Predicting
sentiment based on real boundaries (i.e., Equa-
tion 4) can be more effective in learning the parame-
ters in the sentiment prediction module, while lever-
aging boundary distributions (i.e., Equation 6) can
enhance the capability of aspect detection. There-
fore, different strategies have their own advantages,
in this paper, we propose an alternate learning strat-
egy to take the best of both tasks. Precisely, during
training, we train a fixed ratio (7) of samples based
on Equation 4, while the others are learned using
Equation 6. This strategy not only guides the sen-
timent prediction more properly but also eases the
high computational cost caused by span enumera-
tion.

3.4 Semantic Compatibility Mechanism

To predict the boundary probabilities of the aspects
more accurately, we design a semantic compatibil-
ity mechanism. Intuitively, the words in an aspect
should have some inherent connections, and they
usually appear in the corpus simultaneously. To
capture such information, we propose to explicitly
learn the semantic compatibility between the words
in an aspect. Formally, supposing the start and end
boundaries of an aspect are s and e, respectively,
then we need to measure the semantic compatibility
of the words in this bound (s,e) to form a reason-
able aspect. And the semantic compatibility score
of the aspect is computed as,

Mse =0 (WeReLU(W5g(H,g_>e) + b5) =+ bﬁ) ,  (10)

where {W5, Wg, bs, bg} are trainable parameters.
H_,. corresponds to the words in the aspect. g is

“the computational complexity is O(1) in F.



Model Laptop Restaurant Tweets
P R F1 P F1 P F1

SPJM (Zhou et al., 2019) 61.40 58.20 59.76 76.20 68.20 71.98 54.84 48.44 51.44
SPAN-pipeline (Hu et al., 2019) 69.46 66.72 68.06 76.14 73.34 74.92 60.72 55.02 57.69
SPAN-joint (Hu et al., 2019) 67.41 61.99 64.59 72.32 72.61 72.47 57.03 52.69 54.55
SPAN-collapsed (Hu et al., 2019) | 50.08 47.32 48.66 63.63 53.04 57.85 51.89 45.05 48.11
SPRM (Lin and Yang, 2020) 68.66 68.77 68.72 77.78 80.60 79.17 60.25 58.79 59.45
S-AESC (Lv et al., 2021) 66.87 64.92 65.88 78.26 70.50 74.18 55.86 53.74 54.73
HI-ASA (Chen et al., 2022) 70.28 70.50 70.39 79.41 80.38 79.90 61.64 59.17 60.36
SIBP 75.18 66.40 70.52 84.45 76.15 80.08 66.76 55.51 60.59
%Improve.™ 6.97% -5.82% 0.18% | 6.35% -527% 023% | 831% -6.19%  0.38%
p-value 3.3%e-7*  2.55e-5* 0.042* | 7.37e-5* 1.12e-5* 0.035* | 1.97e-4* 3.49e-4* 0.012*

Table 1: The performance (Precision, Recall, and F1-Score) comparisons with different methods. Baseline results

are retrieved from published papers. And the bold indicates the best performances among all the models.
T The improvements are calculated between HI-ASA and SIBP.
* It denotes that the corresponding improvement has passed the significant test at the significance level of 0.05.

a semantic aggregation function, there we specify
it as the embedding combination from start to end
position.

In the optimization process, we maximize the
semantic compatibility scores between the real as-
pect boundaries, and simultaneously minimize that
between the negative boundaries>, that is,

N l
Jee =D D flogmy i+ D log(1—muy)} (1)

=1 j=1 (z,y)€O0

where N is the number of sentences and [ is the

number of aspects in the sentence, O is the set
of negative boundary pairs. In this equation, the
parameters of { W5, Wg, bs, bg } are optimized to
identify real aspects based on word semantics (i.e.,
H), which provides complementary signals to the
above index-based method.

During inference, For each candidate aspect
(s, e), first, we judge whether it can compose an
aspect based on ~ (i.e., the sum score of start and
end indexes). Then, we check whether this as-
pect pair is a semantically reasonable aspect via
u (see Equation 10). The specific details of our
semantic-compatibility aspect extraction algorithm
are shown in Appendix B.

3.5 Model Training

The overall loss is the weighted sum of the sub-
tasks losses,

j:jae"i_/@'sjsp"’_f)/'jsw (12)

where 3 and ~y are task coefficients. We minimize
the J and determine suitable parameters by grid
search for information feedback mechanism during
the experiment.

3We sample the negative boundary pairs from all the bound-
ary pairs that cannot form an aspect.

Aspect Extraction (F1)  |Laptop| Res |Iweets
DE-CNN (Xu et al., 2018) | 81.59| - -

SPAN (Hu et al., 2019) 83.35 (82.38| 75.28
CL-BERT (Yang et al., 2020)| 85.61 | - -

S-AESC (Lvetal., 2021) | 85.19 |84.20| 76.04

- w/o DI 79.02 |82.30] 75.57

-w/o SC 81.66 |84.45|75.34

-w/o SC & DI | 81.11 [85.01| 74.25

SIBP 83.92 [85.87| 76.54

Sentiment Prediction (ACC) |Laptop| Res |Tweets
TNet (Li et al., 2018) 7654 - -
DMMN (Lin et al., 2019) | 77.59 | - -

SPAN (Hu et al., 2019) 81.39 {89.95|75.16

SPRM (Lin and Yang, 2020) | 81.50 90.35| 78.34

DGEDT (Tang et al., 2020) | 76.80 | - |74.80

DualGCN (Liet al., 2021) |81.80| - |77.40

T-GCN (Tian et al., 2021a) | 81.97 | - |78.03

- w/o DI 84.86 (92.40| 83.99

-w/o SC 84.70 (92.44| 84.11

-w/o SC & DI | 83.28 [92.01| 82.99

SIBP 85.96 (92.49| 84.13

Joint Task (F1) Laptop| Res |Tweets

- w/o DI 67.08 [78.06] 60.39

-w/o SC 68.93 |79.05| 60.22

-w/o SC & DI | 68.30 [77.54| 58.82

SIBP 70.52 (80.08| 60.59

Table 2: The above is the performance (F1-score) com-
parisons with different methods on aspect extraction.
The Middle is the performance (Accuracy) comparisons
with different methods on sentiment prediction. And
below is the performance (F1-score) comparisons with
different methods on joint task.

4 Experiments

4.1 Experimental Setup

Datasets. We conduct our experiments on three
real-world datasets, which have been widely used
in previous work (Hu et al., 2019; Lin and Yang,
2020; Chen et al., 2022). More details are shown
in Appendix C.1.

Metrics. Please refer to Appendix C.2 for metric
details.

Baselines. We compare our model with the fol-
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Figure 5: The performances (F1) of our SIBP w.r.t vary-
ing parameter h on Restaurant and Laptop, respectively.

lowing representative methods: (1) Joint aspect
extraction and sentiment prediction, (2) Aspect ex-
traction, (3) Sentiment Prediction.

(1) Joint aspect extraction and sentiment predic-

tion method contain:
e SPJM (Zhou et al., 2019). e SPAN-{pipeline,
joint, collapsed} (Hu et al., 2019). ¢ SPRM (Lin
and Yang, 2020) ¢ S-AESC (Lv et al., 2021) e
HI-ASA (Chen et al., 2022).

(2) Aspect extraction methods including e DE-
CNN (Xu et al., 2018). ¢ CL-BERT (Yang et al.,
2020).

(3) Sentiment Prediction methods including e
TNet (Lietal., 2018). « DMMN (Lin et al., 2019).
e TM (Yadav et al., 2021). ¢ DGEDT (Tang
et al., 2020). ¢ DualGCN (Li et al., 2021). e
T-GCN (Tian et al., 2021a).

More baseline details are listed in Appendix C.3

Implementation Details. Implementation de-
tails are reported in Appendix C.4.

4.2 Main Results

The comparisons between our model and the base-
lines are presented in Table 1. Overall, our pro-
posed model SIBP consistently achieves the best
results against all the baselines. These observations
indicate the carefully designed SIBP is capable of
achieving better performances.

However, the recall performances of SIBP are
lower than other baselines. This happens because
we select the best model via the F1-score during
optimization, which can maintain a good balance

between precision and recall. Hence, we cannot
guarantee that the precision and recall are at their
peak when the model achieves the highest F1-score.

4.3 Ablation Study

In the above section, we have evaluated SIBP’s
overall performance. For studying the contribu-
tions of different model components, here, we go
deeper into the model and conduct ablation studies.
The results are shown in Table 2. More precisely,
we compare SIBP with the following variants:

e - w/o DI: In this model, we only use the
ground truth as the input of the sentiment predic-
tion module (i.e., the ratio 7 is set as 1).

e - w/o SC: In this model, we remove the seman-
tic compatibility module (i.e., Jsc)-

The results in joint task show that when a cer-
tain module is removed, the model performance
decreases, which indicates the indispensability of
each module. This manifests that different model
components are critical to the final performance.

In general, we can observe that SIBP outper-
forms baseline competitors on both tasks, which
indicates the effectiveness of modeling the span-
level associations between aspect extraction and
sentiment classification.

4.4 Parameter Analysis

Effect of parameter 7. In our model, an important
parameter is the ratio 7 (i.e., Remark.(3)) when
connecting different tasks. It measures how much
we predict the sentiment based on the aspect bound-
ary distributions. For the special cases, if 7 =0,
we make sentiment prediction completely based on
the direct output from the aspect extraction module.
If 7 = 1, the sentiment is predicted purely based
on the ground truth boundaries. In this experiment,
we tune the ratio 7 in the range of 0 to 1, and the
results are reported in Figure 4 based on the joint
task.* We find on all datasets, the Fl-score in-
creases rapidly at first, then tends to be stable, and

*It should be noted that 7 = 1 is equal to the model of
-w/o DI in the above ablation studies.



Sentences Predictions of HI-ASA SIBP

1. All the money went into the [interior decoration] ., none of [ interior decoration] +(\/ ) [ interior decoration] +(\/ )

it went to the [chefs] . [chefs]  (X) [chefs] _(v)

2. After [dinner]_, take your date to the HUGE [dance floor]. , [dinner] . (X) [dinner]_(v)

probably one of the biggest you’ll see in NY. [dance floor] +(\/ ) [ dance floor | +(\/ )
lunch] (v

' ' [ ‘unc 1.(v) [lunch]+(\/)
3. [Lunch], came with [pickels and slaw]_, no extra charge. [p1ckels]7()( ) .
[pickels and slaw]f(/ )

[slam]_(x )

4. You will obtain a gift if you buy the separate [RAM memory], .[separate RAM memory] +(X ) [RAM memory] +(t/ )

Table 3: Outputs of different models. The extracted aspects are wrapped in brackets with the predicted polarities
given as subscripts. Correct and incorrect predictions are marked with v'and X, “4+/-/0” denote the positive,

negative, and neutral sentiment polarities.

finally falls down from 7 = 0.9 to 7 = 1. The rea-
son lies in that when 7 is small, the model cannot
obtain enough supervised information from ground
truth, resulting in poor performance. And when 7 is
very large, the model cannot take into account the
valuable interactions between the two tasks, lead-
ing to unsatisfactory performance. We observe that
the best performances are usually achieved when
7 is moderate (i.e., 0.9) on three datasets, which
implies that neither the ground truth boundary nor
distributional boundary is dominantly superior, and
a mixture of them can be more favorable.

Effect of parameter /. In this section, we in-
vestigate the influence of h, which controls the
aspect’s length in Equation 9. Theoretically, when
h is large, the model parameters are huge and diffi-
cult to converge. Conversely, when £ is very small,
it is not easy to extract correct aspects. Considering
the length of an aspect term is usually not large,
we search h in the range of {1,2,3,4,5} in our ex-
periment. We provide the F1-scores on Restaurant
and Laptop in Figure 5. As h increases, the per-
formances gradually rise to a maximum and then
start to fall, indicating that a moderate h (2 or 3)
can not only reduce the amount of parameters but
also ensure extracting correct aspects.

4.5 Case study

To provide more insights into our model’s superior
performance, we present some case studies in a
qualitative manner. Table 3 shows that:

e In the first two cases, since the associations
between aspect extraction and sentiment prediction
are weak, the aspect detection and sentiment in the
HI-ASA model are not completely correct. For in-
stance, it extracts the correct aspect “dinner”, but
predicts inaccurate sentiment with “dinner” in the
2nd case. However, in SIBP, the sentiment infor-
mation can be backpropagated into the boundary
detection process, which can enhance the correla-

tions and therefore predict the aspect and sentiment
correctly.

e By modeling the semantic compatibility, SIBP
can extract more accurate aspects. For example, in
the 4th case, the word “separate” has a higher prob-
ability to become the start of an aspect as compared
to the word “RAM?”, while from the semantic per-
spective, “separate’” should not be mixed into the
aspect of “RAM memory”, which has been success-
fully discovered by our model. Similar phenomena
can also be observed in the 3rd case.

5 Conclusion and Future Work

In this paper, we studied the problem of joint as-
pect extraction and sentiment prediction. Different
from previous approaches that model the inter-task
correlations replying on sentence-level features, we
proposed to model the span-level interactions with
boundary probabilities for the task of targeted sen-
timent analysis. In order to take the best of both
tasks, we devised an alternate learning strategy to
improve the performance during training. More-
over, we combined the position and semantic in-
formation to detect the boundaries of an aspect.
Extensive experiments on three real-world datasets
demonstrated the model’s superiority.

This paper actually makes the first step towards
modeling span-level interactions for targeted senti-
ment analysis. However, there is still much room
to be improved. For example, the position infor-
mation and semantic information are scattered in
a sentence, which will affect the performance of
joint aspect-sentiment extraction. In future work,
we may introduce graph structure to model the posi-
tion and semantic information in a more integrated
manner. Besides, we may also leverage some data
augmentation technologies to solve the sparse prob-
lem in targeted sentiment analysis.
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Appendix

A Proof

In this section, we prove that the optimization
objective of targeted sentiment analysis does not
change after partitioning the training dataset.

First, when there are multiple aspects in a sen-
tence, the optimization objective can be denoted
as,

jl = jae + jsc + jsp
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where NV is the number of sentences in training
dataset, m is the sentence’s length, and [ is the as-
pect’s number in each sentence. With the above
derivation, we can observe that the targeted senti-
ment analysis can be viewed as an optimization of
a single aspect. In other words, this is independent
of the number of aspects in a sentence.
To further test our idea, we derive the case that
there is only one aspect per sentence, the optimiza-
tion goal is,
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Algorithm 1 Overall Process

Input: gs.gc. k.7, p.
s © the score of start position

. : the score of end position
k : the maximum number of extracted aspects
~ : sum score threshold
w : compatibility score threshold
Output: M denotes the aspects set

1: Initialize the extracted aspect pair M=9
2: Get the top-k start indexes S from g;
3: Get the top-k end indexes E from g.
4: foriin S do
5. for jin E do
6 if : < j then
7 if g5, + ge; = v and mg . > 11 then
8 u=7j—1
9: r=gs; +ge; — 1
10 t = {(i,4)}
11: M- MUt
12: Sort M in ascending order by the value of r
13: for k in size(M) do
14:  for ¢ in size(M) do
15: if M, "M, # @ then
16: Delete M,
17: Return M
T2 = Jae + Tse + Tsp

5>
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where M is the number of sentence in new training
. N

dataset, i,e, M =) ;" l;

We can observe that 71 and 75 are linearly de-
pendent, thereby, the two optimization objectives
are consistent.

B Semantic-compatibility Aspect
Extraction Algorithm

See algorithm 1.

C Experimental Setup
C.1 Datasets

We conduct our experiments on three real-world
datasets, which have been widely used in previous



Dataset  #Sentences #Aspects #+ #-  #0
Laptop 1869 2936 1326 900 620
Restaurant 3900 6603 4134 1538 931
Tiveets 2350 3243 703 274 2266

Table 4: Statistics of three datasets. “+/-/0” denote the
positive, negative, and neutral sentiment polarities.

work and the statistics are shown in Table 4. Pre-
cisely, Laptop contains costumer reviews in elec-
tronic product domain, which is collected from
SemEval Challenge 2014 (Pontiki et al., 2014).
Restaurant is the reviews set of the restaurant
domain from SemEval2014, SemEval2015 and
SemEval2016 (Pontiki et al., 2014, 2015, 2016).
Tweets is built by (Mitchell et al., 2013), which
is composed of twitter posts from different users.
These datasets come from different domains with
various characters, for example, Restaurant con-
tains more positive or negative sentiments, while
there are relatively fewer neutral comments. In con-
trast, the number of neutral sentiments in Tweets
is much larger than that of the positive or negative
polarities. With these datasets, our model can be
fairly evaluated under different settings.

C.2 Metrics

In the experiments, the commonly used metrics
including Precision (P), Recall (R), and F1-Score
(F1) are selected to evaluate our model. For aspect
extraction, we also use F1-Score to evaluate our
model. And we adopt accuracy (ACC) as the metric
in sentiment prediction. In specific, a predicted
target is correct only if it exactly matches the gold
targets and the corresponding polarity. Since we
use exactly the same datasets and metrics as (Hu
et al., 2019), we directly copy the baseline results
from it.

C.3 Baselines

We compare our model with the following repre-
sentative methods: (1) Joint aspect extracting and
sentiment predicting, (2) Aspect extracting, (3) Sen-
timent Predicting.

(1) Joint aspect extraction and sentiment predic-
tion methods contain:
e SPJM (Zhou et al., 2019): The model firstly
searches directly to determine the span of the target
and then performs sentiment polarity classification.
e SPAN-{pipeline, joint, collapsed} (Hu et al.,
2019): A span-based model employing a BERT
encoder and a multi-target span decoder to extract
aspects and corresponding sentiments.
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e SPRM (Lin and Yang, 2020): It adopts the pri-
vate and share representation for the joint task to
capture correlations between the two tasks, which
is an improvement over SPAN (Hu et al., 2019).

e S-AESC (Lv et al., 2021): A dual gated recur-
rent units and an interaction layer are used jointly
to generate the aspects and sentiments.

e HI-ASA (Chen et al., 2022): The current state-
of-the-art model for span-based targeted sentiment
analysis, which proposes a hierarchical interactive
network that takes explicit cooperation from aspect
extraction and sentiment predicting to exact the
aspects and sentiments.

(2) Aspect extraction methods including:
e DE-CNN (Xu et al., 2018): It utilizes a double
embedding with CNNss to extract aspect words.
e CL-BERT (Yang et al., 2020): The current state-
of-the-art model for aspect extraction, this work
incorporates the syntactic information in neural
network models.

(3) Sentiment Prediction methods including:
e TNet (Li et al., 2018): A classification model
that uses a multi-layer context-preserving network
as the feature extractor.
e DMMN (Lin et al., 2019): It integrates the in-
formation of semantic dependency and inter-aspect
relation into memory network.
e DGEDT (Tang et al., 2020): This work proposes
a dependency graph enhanced dual-transformer net-
work, which joint considers the flat representation
learned from Transformer and graph-based repre-
sentations learned from the corresponding depen-
dency graph.
o DualGCN (Li et al., 2021): It designs a dual
graph convolution network that considers the com-
plementarity of syntax structures and semantic cor-
relations simultaneously.
e T-GCN (Tian et al., 2021a): A state-of-the-art
method that explicitly uses dependency types for
ABSA with type-aware graph convolution network.

C.4 Implementation Details

Following previous works (Hu et al., 2019; Lin
and Yang, 2020; Chen et al., 2022), we split the
training and test sets for each dataset. As there
is no train-test split in Tweets, we report the ten-
fold cross-validation results for it. In the model,
we adopt the BERT-large model as the backbone
network, which consists of 24 Transformer blocks
with 16 self-attention heads as the encoding layer.
The maximum length of aspect (i.e., h in Equa-



tion 9) is in the range of {1, 2, 3,4, 5}. The ratio of
distributional input samples (i.e., 7 in Remark.(3))
is determined in the range of 0 to 1. our model
is optimized based on Adam optimizer (Kingma
and Ba, 2014), and the learning rate is searched
in {2e-5, 2e-4, 2e-3}. Moreover, all methods were
implemented using the PyTorch framework and

trained on Nvidia GeForce Titan RTX 3090 GPUs.
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