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Abstract

Human visual recognition of complex patterns is supported by hierarchical repre-
sentations in the ventral stream of visual cortex. However, it remains undetermined
whether representations in early visual cortical areas, e.g. primary visual cortex
(V1), are directly accessible by perception or are merely intermediates used only
for the generation of more complex representations in higher-level visual areas,
e.g. inferior temporal cortex (IT). Here, we constructed deep convolutional neural
network (dCNN) based simulations of V1 and IT by linearly weighting dCNN
features to maximize predictivity of electrophysiological responses. We used these
cortical simulations to synthesize stimuli which linearly interpolate through either
a V1- or IT-like feature space. In a visual discrimination task, we found that human
observers are highly sensitive to variation through both V1 and IT representational
spaces. We found that behavior on this task cannot be explained by an observer
model that makes use of solely V1 features or IT features, but instead is best
explained by a weighted combination of V1 and IT features. Our results thus
provide evidence for the insufficiency of IT-like representations and the utility of
representations in both early and late regions of the ventral visual stream for human
visual perception.

1 Introduction

The ventral stream of primate visual cortex contains representations that increase both in selectivity
for complex visual features (e.g. texture, shape, category) and in invariance to low-level visual
features (e.g. contrast, rotation, retinotopic location) from primary visual cortex (V1) to inferior
temporal cortex (IT) [1, 2]. While invariance is useful for generating category representations that
are robust to identity-preserving transformations, it is nonetheless the case that human observers
are perceptually sensitive to low-level visual features if asked [3, 4, 5, 6]. What is the nature of the
perceptual readout from the ventral visual stream that enables human observers to recognize both
complex and low-level visual features?

In one view, representations in IT are sufficient to account for a wide variety of human visual
recognition behaviors [7, 8]. This view is supported by evidence that visual features such as color
[9, 10], shape [11, 12, 10], texture [10, 13], pose, and rotation [14] can be accurately decoded from
IT, in addition to category information [15, 16]. A contrasting view suggests that a perceptual readout
must be able to directly access sensory representations in both early visual cortex and IT cortex to
support the full breadth of human visual recognition capabilities. To substantiate this view, it is
necessary to functionally dissociate the contributions of V1 representations from those in IT. However,
dissociating the functions of early and late ventral stream areas is made more difficult by the finding
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that category-orthogonal visual features, such as pose, rotation, and scale, traditionally thought to be
encoded by early visual cortex, can actually be decoded more easily from later ventral stream areas
[14].

Here, instead of hand-selecting features and labeling them as low- or high-level, we employed a
model-based approach to directly compare the representational geometry of V1 and IT to that of
human visual perception. To do so, we simulated populations of neurons in two visual cortical areas,
V1 and IT, and used these simulations both to synthesize stimuli and to model human behavior. To
assess the contribution of V1- and IT-like representations to perception, we synthesized a stimulus set
which linearly traversed through a V1-like representational space and another which linearly traversed
through a IT-like representational space. We reasoned that if human observers only had direct access
to IT representations, then they should be unable to accurately discriminate stimuli which varied
linearly through V1 representational space but were highly nonlinear in IT representational space.
Instead, we found that human observers were highly sensitive to variation through both V1- and
IT-like representational spaces. We compared the performance of observer models which read features
out of a V1 model only, IT model only, or used a joint readout from V1 and IT models, and found
that the joint readout model best explained human behavioral performance. These results provide
evidence that a state-of-the-art model of IT is insufficient to support human recognition of visual
features that span through a V1-like feature space, suggesting the direct accessibility of both V1 and
IT representations to perception.

2 Modeling V1 and IT cortical responses
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Figure 1: Using V1 and IT simulations to synthesize stimuli which linearly traverse
through neural representations. (A) Deep convolutional neural network model of IT
and V1. Imagenet-trained VGG-19 features from layer pool2 are fit to predict V1
neurons and features from layer pool4 are fit to predict IT neurons. (B) Metamer
synthesis is performed by matching the ITsim/V 1sim response to a natural image.
Image interpolation is performed by interpolating between the V 1sim/ITsim response
to two different images and synthesizing images that match the intermediate interval
responses.

We modeled the visual response properties of neurons in V1 and IT as a linear combination of
features [17] from an Imagenet-trained VGG19 [18] dCNN model. Using publicly available published
electrophysiology datasets of 166 units in V1 [19] and 168 units in IT ([8], [20]), we used partial
least squares (PLS) linear regression to find a linear weighting of VGG19 features that maximized
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the predictivity of each unit’s firing rate in response to a large set of visual stimuli. We found that
the layer which best predicted held-out neural responses in V1 was pool2 (mean R2 = 0.37) and the
layer which best predicted held-out neural responses in IT was pool4 (mean R2 = 0.51). Thus, by
multiplying the activations from those layers by weights, learned via linear regression, we were able
to simulate the responses of a population of 166 V1 neurons and a population of 168 IT neurons (Fig.
1A). We will refer to these model neural population responses as V 1sim and ITsim, respectively.

3 Synthesizing stimuli to linearly traverse V1 and IT representational space

By matching either the V 1sim or ITsim population response to a natural image, we were able to
synthesize images which were model-metameric (i.e. pixel-wise different images which evoke
identical simulated neural responses) in the V 1sim or ITsim representational space, respectively (Fig.
1B). Although the term "metamer" is sometimes used to refer to two stimuli which are perceptually
indistinguishable [21], in this case, we are using it to refer to two stimuli which evoke identical model
responses but are quite perceptually distinct [22]. We used gradient descent to iteratively update the
pixels of a randomly initialized image to minimize the mean squared error between the simulated
neural response evoked by the synthesized image and the simulated neural response evoked by a
natural image. We also incorporated a total variational loss to minimize high frequency noise in
the synthesized outputs, an approach which has been used previously when synthesizing images
by matching model responses [23, 24]. The resulting synthesized images were thus metameric to
their source natural images in either the V 1sim or ITsim representation. By initializing the synthesis
procedure with a different random seed image, we generated multiple samples which all evoked
nearly identical model responses, though they differed greatly in their pixel values.

To synthesize images which linearly traversed the V 1sim or ITsim representation, we interpolated
between the simulated neural response evoked by two different images, at 25%, 50%, and 75%
intervals, and synthesized images to match the model neural response at each of those intervals
between the model neural responses to two different natural images (Fig. 1B). That is, if Xi is the
vector of ITsim responses to image i and Xj is the vector of ITsim responses to image j, then we
synthesized images to match the ITsim responses at α×Xi+(1−α)×Xj for α ∈ [0, .25, .5, .75, 1].
We will refer to the set of images that linearly interpolate through ITsim as IT − linear images and
the set of images that linearly interpolate through V 1sim as V 1− linear images.

We selected 10 different images, including images of objects, textures, as well as sinusoidal gratings
and for each image, we extracted the V 1sim response and the ITsim response. To synthesize the
V 1 − linear images, we interpolated between the V 1sim response to two different images and
synthesized 5 samples at each of 5 evenly spaced intervals (0%, 25%, 50%, and 75%, 100%, where
0% and 100% are model metamers of the two original images) between the two images. To synthesize
IT − linear images, we interpolated between the ITsim response to two different images at each of
the same 5 evenly spaced intervals. See supplementary figure 1 for more example stimuli used in this
experiment.

We validated that the resulting synthesized images indeed linearly interpolated through the feature
space represented by the given population of model IT / V1 neurons. To do so, we passed each of the
synthesized images back into the neural models and extracted the simulated neural response to each
image. Then, we tested how well the trajectory of stimuli which were synthesized to interpolate from
one image response to another could be explained by a linear regression over model neurons. We
found that images generated to be linear in V1 (V1-linear images) were well-explained (R2 = 0.988)
by a linear function of V 1sim neurons, and that images generated to be linear in ITsim (IT-linear
images) were well-explained by a linear function of ITsim units (R2 = 0.997). This was expected
and validated that the synthesis process worked as intended. Additionally, we found that V1-linear
images were highly nonlinear in the ITsim representational space (R2 = 0.368) and that IT-linear
images were highly nonlinear in the V 1sim representational space (R2 = 0.080). This latter finding
is not necessarily expected, as it could have been that the V1-linear images were linear in the IT
representational space, if for example the V1 representation was a subspace of the IT representational
space.
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4 How does human perceptual sensitivity relate to V1 and IT
representations?

We performed a 2 alternative forced choice (2-AFC) task to measure perceptual sensitivity to stimuli
which varied along dimensions of either the ITsim or V 1sim feature space. On each trial, subjects
were concurrently presented with a probe image and two choice images for up to 5 seconds (Fig. 2A).
The probe image, presented centrally, had been synthesized to evoke a model neural response 0% (i.e.
matched to image 1), 25%, 50%, 75% or 100% (i.e. matched to image 2) of the way between two
different images for 1 second. The choice images, presented on the left and right sides of the display,
were always 0% and 100% of the way between the two images (i.e. model metamer of a natural
image), with the samples selected so that the choice images were never identical to the probe images.
Subjects were instructed to select which of the two choice images appeared more similar to the probe
image. On each trial, all three images varied linearly either in V 1sim or in ITsim representational
space. We examined the likelihood that human subjects and cortical observer models selected the
100% choice, as a function of the interpolation interval of the probe image.
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Figure 2: Comparison of V 1sim and ITsim observer models yields predictions for
human behavior. (A) 2-AFC task design. Probe image is presented at fixation, and
choice images are presented to the left and right. Subject is asked to choose whether the
probe image looks more similar to the left or right choice. (B) V 1sim observer model
is highly sensitive to V1-linear stimuli but mostly insensitive to IT-linear stimuli. (B)
ITsim observer model is highly sensitive to IT-linear stimuli but weakly sensitive to
V1-linear stimuli. (C) Joint readout model which weights V 1sim and ITsim features
is sensitive to both V1-linear and IT-linear stimuli.

4.1 Hypothesis: which cortical representations might support visual perception?

We evaluated the behavior of different observer models in this task to understand what performance
could be expected if perception were supported by V1 alone, IT alone, or V1 and IT together. We
constructed observer models which performed the 2-AFC similarity judgment task by computing
the Pearson correlation between the simulated neural response to the probe image and that of each
of the two choices, and transforming these representational similarities into choice probabilities
using a softmax function, with a single exponent parameter that could be fit to the behavioral data
(Fig. 2B). We compared the behavior of 3 different observer models which used different feature
spaces to calculate the representational similarity - one with access to only V 1sim features, one
with access to only ITsim features, and one which weighted V 1sim and ITsim features (this model
had two additional free parameters: the weight assigned to the V 1sim feature dissimilarity and the
weight assigned to the ITsim feature dissimilarity). We found that the V1 observer model was highly
sensitive to V1-linear stimuli and insensitive to IT-linear stimuli (Fig. 2C), while the IT observer
model was highly sensitive to IT-linear stimuli but insensitive to the V1-linear stimuli (Fig. 2D). Only
the joint V1-IT readout model was sensitive to both the V1-linear and IT-linear stimuli (Fig. 2B).
Thus, if human observers are only sensitive to IT-linear images, we could reasonably conclude that
human perception is only able to access IT features, whereas if human observers are sensitive to both
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IT-linear and V1-linear images, we could conclude that perception must have direct access to the
features represented in both V 1sim and ITsim.

4.2 Human perception is supported by a joint readout of both V1 and IT features

Human observers were highly sensitive to both V1-linear and IT-linear stimuli. We collected
3000 total trials of data across 18 subjects, recruited using Amazon Mechanical Turk. All pro-
tocols were approved beforehand by the Institutional Review Board for research on human sub-
jects, and all observers gave informed consent prior to the start of the experiment. We assessed
perceptual sensitivity by evaluating the likelihood of selecting the 100% choice (denoted as the
"rightward" choice, even though 0% and 100% choices were left-right balanced) as a function
of the interpolation interval of the probe image (Fig. 3A). We found that there was a significant
effect of probe interpolation interval on the probability of selecting the 100% choice, for both
V1-linear and IT-linear images (βV 1−interval = 0.0783, 95%CI = [0.055, 0.102], p < 0.001,
βIT−interval = 0.1182, 95%CI = [0.095, 0.142], p < 0.001).
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Figure 3: Task design and behavioral results. (A) Human behavioral performance as
a function of the interpolation interval of the probe image, with V1-linear images in
blue and IT-linear images in purple. (B) Comparison of models fit to human behavior
reveals that joint V1-IT readout best predicts behavioral performance. Goodness-of-fit
measured by Tjur’s coefficient of discrimination [25].

We subsequently fit each of the three observer models described previously to the human behavioral
data by estimating the free parameters to maximize the likelihood of the observed behavioral data,
and evaluated the goodness-of-fit of the models on a held-out subset of the behavioral data, using
cross-validated Tjur’s R2 [25] (Fig. 3B). Our results suggest that the model which used a weighted
combination of both V1 and IT features fits human behavioral performance significantly better than
both the V1 observer model (p=0.003) and the IT observer model (p=0.010). We also evaluated the
performance of 5 additional observer models, which were constructed by using activations from
different intermediate layers in VGG19 [18] or CORnet-Z [26] to compute the similarity between the
probe image and each of the choice images on each trial. Despite the fact that these representations
are much higher dimensional than the ITsim or V 1sim representations, we nonetheless found that
the joint readout from V 1sim and ITsim was a better fit to human behavior (Fig. 3B).

5 Discussion

By simulating the visual responses properties of visual cortical neurons and using those simulations
to synthesize stimuli which linearly traversed through simulations of V1 and IT, we sought to
characterize the contributions of early and late ventral stream representations to perception. We found
that human visual perception was sensitive both to stimuli which varied linearly through a V1-like
representational space as well as to stimuli which varied linearly through an IT-like representational
space.

Although this approach had the benefit of avoiding hand-selecting features, it is necessarily limited
by the accuracy of the V1 and IT models that we constructed. Though these models do explain a
great deal of variance in neural firing rates, they certainly do not explain 100% of the variance and
furthermore, they only simulate a small number of neurons in each visual area. Our conclusions
assumed that these model feature spaces are representative of the true representational space spanned
by V1 and IT and would generalize to larger sets of neurons. This assumption has thus far held up
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under a variety of experimental tests: for example, [24] recently demonstrated that images explicitly
synthesized to maximize the response of a dCNN-based model V4 neuron were also able to drive the
response of the corresponding biological neuron far above naturally occurring levels, and [27] used a
similar approach to synthesize maximally exciting images for mouse V1 neurons.

However, it is certainly possible that the full representational space spanned by IT or some other late
ventral stream region would be sufficient to support human perceptual sensitivity to the "V1-linear"
images. This possibility suggests the necessity to make cortical measurements from high-level visual
cortical regions to determine whether their representational geometry can support behavior in a task
specifically designed to make use of V1-like features. In the absence of such cortical measurements,
we used the representations in intermediate dCNN layers, which are significantly higher dimensional
than our simulation of V1 or IT, but nonetheless found that the joint readout from V1 and IT was the
best predictor of human behavior.

Our findings contribute to an ongoing debate about the tradeoffs between invariance and selectivity.
Numerous studies have characterized the invariance of IT representations to category identity-
preserving transforms, yet human observers can clearly access category-orthogonal features [1, 14].
One possible explanation is that the representation of low-level visual features is orthogonal to the
representation of category, which might explain why IT can decode certain features. However, our
results suggest that a better explanation is that perception can directly read visual information out
of lower-level visual areas, such as V1. Exploring the anatomical and functional connectivity that
might underlie such a readout mechanism would be useful for characterizing the link between sensory
representation and perceptual experience.

Though we do not specifically explore the implications here, it is likely the case that feature-based
attention plays a prominent role in any potential readout mechanism that would allow flexible
access to both simple visual features from early visual cortical areas in addition to complex features,
represented in later ventral stream regions. The importance of feature-based attention in selecting
task-relevant stimuli from distinct cortical regions has been shown for the case of motion perception,
where [28] demonstrated that human behavior is best explained by a flexible readout from V1 and MT,
depending on whether subjects are cued to attend to the contrast or to the coherence of moving dots.
It is possible that such a readout mechanism might also allow for flexible access to representations
from both early and late stages of the ventral visual stream.

Finally, our results suggest a need to rethink the design of architecture of models of human visual
recognition. dCNNs and other feedforward models use an architecture where the decision readout
only extracts features from the last layer of the network. However, our results suggest that the primate
brain might be able to flexibly extract features from earlier or later stages of processing, which
might be more useful for encoding hierarchical features while maintaining both invariance as well as
selectivity.
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