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ABSTRACT

The remarkable achievements of high-level vision tasks (e.g., object detection,
semantic segmentation) under favorable lighting conditions highlight the persis-
tent challenges faced in low-light vision. Previous studies have mainly focused
on enhancing low-light images to create visual-friendly representations, often ne-
glecting the differences between machine vision and human vision. This oversight
has led to limited performance improvements for high-level tasks. Furthermore,
many approaches rely on synthetic paired datasets for training, which can result
in limited generalization to real-world images with diverse illumination levels. To
address these issues, we propose a new module called BiEnhancer, which is de-
signed to enhance the representation of low-light images by optimizing the loss
function of high-level tasks to improve performance. BiEnhancer decomposes
low-light images into low-level and high-level components and performs feature
enhancement. Then, it adopts an attentional feature fusion strategy and a pixel-
wise iterative estimation strategy to effectively enhance and restore the details and
semantic information of low-light images and improve the machine-readable rep-
resentation ability of low-light images. As a versatile plug-in module, BiEnhancer
supports end-to-end joint training with diverse high-level tasks. Extensive exper-
imental results demonstrate that the BiEnhancer framework outperforms state-of-
the-art methods in both speed and accuracy.

1 INTRODUCTION

Computer vision has achieved remarkable success in processing high-quality images and videos.
Existing backbone networks (Gao et al., 2019) (Dosovitskiy, 2020) (Liu et al., 2021b) (Chen et al.,
2023), object detectors (Ren et al., 2016) (Redmon, 2016) (Redmon, 2018) (Meng et al., 2021)
(Zhang et al., 2022) (Wang et al., 2024) (Zhao et al., 2024), and semantic segmentation models
(Long et al., 2015) (Qin et al., 2020) perform well on benchmark datasets. However, although exist-
ing low-light image enhancement (LIE) methods (Zhang et al., 2019) (Wang et al., 2023) (Jin et al.,
2023) have shown significant improvements in converting low-light images into visual-friendly rep-
resentations, high-level vision tasks such as object detection and semantic segmentation still face
challenges under low-light conditions. Simply combining LIE models and high-level vision tasks
may not necessarily lead to improved performance.

There are two methods for combining LIE models with high-level vision tasks: end-to-end training
and Non end-to-end training. End-to-end training entails removing the loss function of the LIE
model (Hashmi et al., 2023). Low-light images processed by the LIE model are fed into the high-
level framework’s backbone network, and both models optimize synchronously using the high-level
model’s loss function. Non end-to-end training first trains the LIE model on paired data with its own
loss function, then sends enhanced images to the high-level model for fine-tuning. The comparison
in Figure 1 reveals the inferior performance of simple model combinations (Non end-to-end training)
in terms of both detection accuracy and efficiency.

This work explores the underlying reasons for the low performance observed in a Non end-to-end
training of LIE methods with high-level vision tasks: 1) The different loss functions employed
by LIE and high-level vision models lead to optimization conflicts between them, resulting in the
performance of the entire combination being less than expected. End-to-End training can better
coordinate the two parts and achieve global optimality. For example, the loss functions of Sparse
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Figure 1: Performance comparison of Zero-DCE when trained end-to-end or Non end-to-end with
RetinaNet and Spark R-CNN as benchmarks on the ExDark dataset.

R-CNN (Sun et al., 2021), including L1 Loss, GIoU Loss (Rezatofighi et al., 2019), and Focal Loss,
prioritize improving prediction accuracy. On the other hand, the loss functions of Zero-DCE (Guo
et al., 2020), including Spatial Consistency Loss, Exposure Control Loss, Color Constancy Loss,
and Illumination Smoothness Loss, focus on enhancing image brightness and contrast to improve
image clarity under low-light conditions. However, this enhancement may compromise the semantic
information crucial for accurate detection. 2) Current LIE methods (Liu et al., 2021a) (Ma et al.,
2022) often emphasize low-level features at the expense of enhancing high-level features rich in
semantic information (see in Figure 4. In the ground truth (GT), there are four boats. However,
Zero-DCE only identifies two of them. On the contrary, there is no person in GT, but Zero-DCE
misidentifies some objects as a person). Although restoring low-level features can improve local
details, due to the lack of basic semantic context essential for accurately understanding images,
restoring low-level features may ultimately reduce the machine readability of the entire image.

To address two issues, we propose BiEnhancer, a multifunctional plug-in module. Unlike traditional
LIE methods (Guo & Hu, 2023) (Cui et al., 2021), , it doesn’t rely on a specific loss function and
can train end-to-end with high-level vision task models. BiEnhancer uses a feature aggregation
enhancement strategy and an attentional bi-level feature fusion strategy inspired by cross attention
(Vaswani, 2017). It also employs a pixel-wise iterative estimation strategy. These strategies enhance
robustness and improve performance and efficiency of tasks. Experimental results show BiEnhancer
outperforms existing state-of-the-art methods and improves results in low-light vision tasks, e.g.,
+0.5 mAP and +0.5 FPS in dark object detection on ExDark, +0.9 mAP in face detection on DARK
FACE, and +0.3 mIoU and +0.5 FPS in nighttime semantic segmentation on ACDC with an A5000
GPU.

Our main contributions can be summarized as follows:

(i) We propose BiEnhancer, a novel module that can improve the extraction of low-level features
and enhance the semantic quality of high-level features to boost high-level vision tasks under low-
light conditions

(ii) We introduce the attentional bi-level feature fusion strategy to effectively fusing low-level and
high-level features.

(iii) Our proposed pixel-wise iterative estimation strategy can rapidly iterate low-light images to
obtain more machine-readable and feature-enhanced representations.

2 RELATED WORK

2.1 LOW-LIGHT ENHANCEMENT

Most LIE methods (Lore et al., 2017) (Moran et al., 2020) are designed to transform low-light im-
ages into visual-friendly representation by increasing brightness, restoring color, completing details,
reducing noise, etc. Traditional LIE methods (Ibrahim & Kong, 2007) (Lee et al., 2013) mainly rely
on histogram equalization (Pizer et al., 1987) and Retinex theory (Land & McCann, 1971), but
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often face challenges such as increased noise, color distortion, and slow processing speed. Re-
cently, deep learning has made significant progress in LIE, and LIE methods can be categorized into
supervised learning, unsupervised learning, semi-supervised learning, and zero-reference learning
according to different learning strategies (Li et al., 2021). Supervised learning is mainstream, al-
though it performs well, it often lacks generalization ability in real low-light conditions due to the
use of synthetic training data. To address these issues, unsupervised EnlightenGAN (Jiang et al.,
2021) applied GAN (Goodfellow et al., 2014) technology for the first time in low-light fields. This
approach enables training using unpaired data while employing discriminators to handle different
lighting conditions, albeit with a somewhat unstable training process. To combine the advantages
of supervised and unsupervised learning, semi-supervised DRBN (Yang et al., 2020) is proposed,
which performs unsupervised band reassembly after supervised recursive band learning, but it is dif-
ficult to construct cross-domain information relationships. To compensate for these shortcomings,
Guo et al. (2020) propose zero-reference learning, which only enhances learning from test images,
but faces the challenge of designing non-reference loss functions.

2.2 LOW-LIGHT ENHANCEMENT FOR DOWNSTREAM VISUAL TASKS

Research on object detection under sub-optimal lighting conditions (including low light conditions)
has resulted in several YOLOv3-based methods (Liu et al., 2022) (Kalwar et al., 2023) to improve
detection performance. However, these methods often struggle with adaptability to other models.
Cui et al. (2021) introduced MAET to improve object detection performance under low-light con-
ditions by analyzing intrinsic lighting patterns. Their subsequent work, IAT (Cui et al., 2022),
employed the Transformer architecture to estimate global image signal processing (ISP) parameters
for improving object detection and semantic segmentation performance. However, this might come
at the cost of slower detection speeds. Based on the contrastive learning strategy, Xue et al. (2022)
designed a joint unified framework with a cascaded architecture that can enhance the visual and
machine perception capabilities of nighttime semantic segmentation. Ma et al. (2022) established a
cascaded illumination learning process (SCI) with weight sharing to enhance the visual quality of
low light images and improve performance in tasks such as low-light face detection and nighttime
semantic segmentation. Hashmi et al. (2023) proposed a FeatEnHancer network with no loss func-
tion, which aggregates and generates multi-level features to enhance the performance of advanced
visual tasks. Our work also adheres to this spirit, and the proposed BiEnhancer performs better and
faster in advanced visual tasks.

3 METHODS

Figure 2: The overview of the framework of BiEnhancer.
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3.1 OVERVIEW OF BIENHANCER

This paper introduces BiEnhancer, a versatile and robust plug-in module specifically designed to
enhance machine readability under low-light conditions for vision tasks such as object detection,
face detection, and semantic segmentation. BiEnhancer decouples low-light images into low-level
and high-level features, enhances them, and effectively fuses them while preserving details and
strengthening their semantic description. Finally, the enhanced low-light representation is obtained
through pixel-level iterative evaluation. An overview of the framework of BiEnhancer is presented
in Figure 2.

3.2 FEATURE EXTRACTION AND ENHANCEMENT

In this section, we take a low-light RGB image I ∈ RW×H×3 as input. An reflection convolutional
operator RefConv (an regular convolutional operator with reflection padding) is employed on I to
generate a low-resolution image Il ∈ RH

8 ×W
8 ×3. Then, the Feature Aggregation Module (FAM)

is utilized to transform I and Il into low-level features Fl ∈ RW×H×C and high-level features
fh ∈ RH

8 ×W
8 ×C . Subsequently, the High-level Feature Enhancement Module (HFEM) processes to

generate richer high-level features Ff ∈ RH
8 ×W

8 ×C .

Feature Extraction Inspired by DenseNet (Huang et al., 2017), we design a fully convolutional
inter-scale Feature Aggregation Module (FAM) for aggregating features and capturing crucial spa-
tial and channel information. We apply four convolution blocks to the RGB image I to generate
the aggregated high-level features Fh ∈ RW×H×C . In each convolution block, the input is the sum
obtained by concatenating the output of the previous block and the original image I . Each convo-
lution block is accompanied by a SiLU activation function. In fact, BiEhnancer only uses the SiLU
activation function. The process of obtaining fh by processing Ih with FAM is similar to the above,
and the structure of FAM is shown in Figure 3(a).

Figure 3: Details of FAM, ReponvN, DWconv and HFEM.

Feature Enhancement High-level features embody rich semantic detail and serve as crucial ele-
ments for downstream visual tasks. To extract this semantic information, we were motivated by
U-net (Ronneberger et al., 2015) and designed the high-level feature enhancement module (HFEM).
In HFEM, we utilize depthwise separable convolution (DW Conv) (Chollet, 2017) and simplified
reconparameterization convolution (RepConvN) (Ding et al., 2021) bolocks as the basic operation
unit. The structures of the RepConvN and DWConv blocks are shown in Figure 3(b) and 3(c).
We start with two RepConvN blocks to convert low-channel features fh into a high-channel fea-
tures, followed by two DWConv blocks reduce the channels and obtain the final high-level feature
Fh ∈ RH

8 ×W
8 ×C . In HFEM, in order to obtain more comprehensive semantic information, we also

used two skip connections (SC). The structure of HFEM is shown in Figure 3(d).
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3.3 FEATURE FUSION

Single low-level or high-level features are difficult to effectively improve vision task performance,
while fusion features can better reflect the complexity of visual information (as shown in Tables
5). In Bi-level Feature Fusion Module (BFFM), we propose an efficient feature alignment and
attentional fusion scheme to enhance the ability of module to represent low-level details and high-
level semantics. As shown in Figure 2, to maintain the lightweight BiEnhancer, we perform feature
alignment at the low-resolution scale by using a reflection convolutional operator RefConv (K=9,
S=8) to down-sampling the low-level features Fl ∈ RH×W×C and another regular convolutional
operator Conv (K=3, S=1) to increase the number of channels for Ih. Then, we split the down-
sampled low-level features Fl ∈ RH

8 ×W
8 ×C , Fi ∈ RH

8 ×W
8 ×C and the high-level features Fh ∈

RH
8 ×W

8 ×C into N blocks along the channel dimension C. It can be written as:

Fn
l = Fl[:, :, (n− 1)

C

N
: n

C

N
];Fn

i = Fi[:, :, (n− 1)
C

N
: n

C

N
];Fn

h = Fh[:, :, (n− 1)
C

N
: n

C

N
]

(1)

where n ∈ 1, 2, ..., N and N is the number of fusion blocks. In a single fusion block, Fn
i ∈

RH×W×1×1× C
N and Fn

h ∈ RH×W×1×1× C
N are concatenated along the third dimension L to obtain

Fn
a ∈ RH×W×2×1× C

N . The three features Fn
l ∈ RH×W×1×1× C

N , Fn
i and Fn

h are multiplied with
Fn
a separated and then summed up along the last dimension T to obtain the attentional weights

Wn
al ∈ RH×W×2×1×1, Wn

ai ∈ RH×W×2×1×1 and Wn
ah ∈ RH×W×2×1×1. It can be written as:

Wn
al =

T∑
t=−1

(Fn
a · Fn

l · s); Wn
ai =

T∑
t=−1

(Fn
a · Fn

i · s); Wn
ah =

T∑
t=−1

(Fn
a · Fn

h · s) (2)

where
∑T

t=1, · ,and s denote the summing operation along the last dimension T, the element-
wise multiplication operation, and the scale factors (N−0.5). Then, we concatenate Wn

al, Wn
a0

and Wn
ah along the last dimension to obtain the total attentional weights of a fuse block

Wn
f ∈ RH×W×2×1× C

N . Due to the limitation of the above concatenation calculation, it is neces-
sary to ensure that C

N is equals to 3. Therefore, in this paper, we set C to 24 and N to 8. The process
can be written as:

Wn
f = Cat([Wn

al,W
n
a0,W

n
ah], dim = T ); Wn

f =
exp(Wn

f )∑T
t=1 exp(W

n
f )

(3)

where Cat([·],dim=T) represents the concatenation operation along the last dimension T, and Wn
f

is the normalized form of Wn
f . Then, we sum up all Wn

f along the dimension L to obtain Wf ∈
RH

8 ×W
8 ×C . Finally, we use the bilinear interpolation operator BiUp to upsample Wf to obtain

Wf ∈ RH×W×C , and then add the original low-level features Fl ∈ RW×H×C to get the fused
feature representation Ff ∈ RH×W×C .

3.4 ITERATIVE ESTIMATION

Inspired by the denoising process of DDPM (Ho et al., 2020), we design the Iterative Estimation
Module (IEM) to further optimize and enhance the feature representation of low-light images. First,
bilinear interpolation operator BiUp is utilized to up-sample Fh by a factor of 8 to attain the original
resolution size. Subsequently, the up-sampled Fh is added to the fused feature representation Ff in
the channel dimension. Next, reflection convolution operator RefConv is employed to operate on
the added feature representations Fa ∈ RH×W×2C , obtaining all parameters for iterative evaluation.
We set Fa to 2*N (twice the number of fusion blocks) parameters F̄n that are of the same size as the
low-light image I . Then, F̄n is used to iteratively evaluate I and transform it into a feature-enhanced
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representation Fe that is more machine-readable for high-level vision tasks. The iterative estimation
process can be written as:

In+1 = In
(
1 + F̄2n−1 + F̄2nIn

)
(4)

Here, n ∈ 1, 2, ..., N , and N is the number of iterations. I1 is the low-light RGB image I , and IN+1

is the feature enhancement representation Fe.

4 EXPERIMENTS

We evaluate the effectiveness of BiEnhancer through extensive experiments on several high-level
tasks in low-light vision, including generic object detection, face detection, and semantic segmen-
tation. This section compares the proposed method with powerful baselines, existing LIE methods,
and state-of-the-art methods in these high-level tasks. We conducted ablation experiments on differ-
ent BiEnhancer blocks to assess their effectiveness. The key statistical data of datasets is summarized
in Table 1.

Datasets Task Cls Train Val

ExDark Object detection 12 4800 2563
DARK FACE Face detection 1 5400 600

ACDC Nightime Semantic segmentation 19 400 106

Table 1: Statistics of the datasets used to report results on three different downstream vision tasks.
Cls is the number of classes, whereas Train and Val denote number of training and validation
samples for each dataset, respectively.

4.1 DARK OBJECT DETECTION ON EXDARK

Details For dark object detection, we used the exclusively dark (ExDark) 1 dataset (see in Table 1)
in our experiments using RetinaNet (Lin, 2017), a typical detector, and Sparse R-CNN, an advanced
detector as detection frameworks. Both detectors were initialized with pre-trained weights from
COCO dataset and fine-tuned on the ExDark dataset using multiscale training (shorter sides 320 to
520, longer side 608). RetinaNet was trained with a 1×schedule in mmdetection 2 (12 epochs using
the SGD optimizer with an initial learning rate of 0.01, and batch size of 8). The Sparse R-CNN was
trained with a 1×schedule in mmdetection (12 epochs using the ADAMW optimizer (Loshchilov
et al., 2017) with an initial learning rate initial learning rate of 0.000025, weight decay of 0.0001,
and batch size of 8).

We compared our BiEnhancer with several leading LIE methods, including SCI, MBLLEN (Lv
et al., 2018), RAUS, PairLIE (Fu et al., 2023), Retinexformer (Cai et al., 2023), Zero-DCE, Zero-
DCE++, and state-of-the-art dark object detection method, FeatEnHancer. For each object detection
framework, we maintained the identical settings and employed the same end-to-end joint training
approach, where the low-light image is propagated to the detector after passing through the enhance-
ment network, without any LIE loss function.

Results Table 2 lists the results of LIE methods, FeatEnHancer, and our proposed BiEnhancer on
two object detection frameworks. Clearly, our BiEnhancer consistently offers enhanced detection
precision and faster test speeds, outperforming previous approaches. Specifically, on the Sparse
R-CNN framework, our BiEnhancer outperforms FeatEnHancer’s AP50 by 1.1%, reaching a score
of 78.9, and its mAP is also superior by 0.5%. Furthermore, on the RetinaNet framework, our
BiEnhancer shows more efficacy than FeatEnHancer (+0.2 AP50 and +0.6 mAP). Concurrently,
when using an A5000 GPU on both detection platforms, BiEnhancer proves swifter than all cur-
rent advanced LIE methods, achieving a speed advantage of 0.5 FPS over FeatEnHancer on Sparse
R-CNN. In addition, Figure 4 shows four detection examples from our method and two best com-
petitors using Sparse R-CNN as the detector. These results indicate that despite poor visual quality,
our BiEnhancer enhances and integrates beneficial features for detecting dark objects, producing
industry-leading results.

1https://github.com/cs-chan/Exclusively-Dark-Image-Dataset
2https://github.com/open-mmlab/mmdetection
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Figure 4: Visual comparison of Bienhancer
with SCI, Zero-DCE, and FeatEnHancer on
the Dark Face dataset.

Figure 5: Visual comparison of Bienhancer
with the two previous best competitors on the
ACDC nighttime dataset

Methods Sparse R-CNN RetinaNet
AP50 mAP FPS AP50 mAP

Baseline 76.3 47.8 46.8 71.0 42.5
RUAS 67.3 40.9 38.4 73.3 44.7

Retinexformer 73.6 45.6 14.3 73.5 44.5
MBLLEN* 76.4 47.4 16.5 71.2 42.5

SCI 76.5 48.1 31.3 72.5 44.0
PairLIE* 77.0 48.2 26.7 71.8 43.5

Zero-DCE++ 77.4 48.6 38.5 73.4 44.5
Zero-DCE 77.8 48.8 39.6 72.6 44.1

FeatEnHancer 77.8 48.8 36.4 73.6 44.6

BiEnhancer (Ours) 78.9 49.3 40.1 73.8 45.2

Table 2: Performance comparison on Exdark dataset. The best and second-best results are marked
in red and blue respectively. Note that here MBLLEN* and PairLIE* denote training with a skip
connection (SC).

4.2 FACE DETECTION ON DARK FACE

Details DARK FACE is a challenging face detection dataset released for the UG2 competition. For
dark object detection, we utilized the DARK FACE dataset 3 (see Table 1) in our experiments with
RetinaNet and Sparse R-CNN detection frameworks. For experiments on DARK FACE (see in
Table 3), images are resized to a resolution of 1080×720 for both methods.To emulate our previous
findings on Dark Object Detection experiments, we utilize the identical RetinaNet and Sparse R-
CNN objects detection frameworks, maintaining the same prescribed experimental conditions. For
Sparse R-CNN, the batch size has been adjusted to to 4.

Results The performance of BiEnhancer, FeatEnHancer, and seven other LIE methods in combi-
nation with RetinaNet and Sparse R-CNN is summarized in Table 3. Similarly, our BiEnhancer
has significantly improved the detection accuracy and speed on both Sparse R-CNN and RetinaNet
compared to FeatEnHancer. On Sparse R-CNN, both AP50 (+1.2) and mAP (+0.9) are higher than
those of FeatEnHancer. On RetinaNet, AP50 (+1.4) and mAP (+0.3) are also higher than those of
FeatEnHancer.

3https://flyywh.github.io/CVPRW2019LowLight/
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Methods Sparse R-CNN RetinaNet
AP50 mAP AP50 mAP

Baseline 52.5 21.6 32.6 12.3
RUAS 51.5 21.1 36.8 14.1

MBLLEN* 54.2 22.3 32.4 12.4
SCI 54.3 22.4 37.0 14.1

Retinexformer 56.6 22.9 36.8 13.9
PairLIE* 56.3 23.3 34.6 13.0

Zero-DCE++ 57.7 23.9 36.3 13.9
Zero-DCE 58.8 24.4 37.1 14.0

FeatEnHancer 58.5 24.4 36.4 13.8

BiEnhancer (Ours) 60.0 25.5 38.5 14.4

Table 3: Performance comparison on the Dark Face dataset. The best and second-best results are
marked in red and blue respectively. Note that here MBLLEN* and PairLIE* denote training with a
skip connection (SC).

4.3 NIGHTTIME SEMANTIC SEGMENTATION ON ACDC

Details We utilize nighttime images from the ACDC dataset 4 (see in Table 1) to report semantic
segmentation results under low-light conditions. DeepLab-V3 (Chen, 2017) and SegFormer (Xie
et al., 2021) was adopted as the segmentation baseline from mmsegmentation 5 for straightfor-
ward comparison with concurrent works. The module is initialized with pretrained weights from
Cityscapes and fine-tuned on the ACDC nighttime dataset, while images are resized to a resolution
of 1920×1080. DeepLab-V3 is trained with a 40k schedule in mmsegmentation (40000 iterations
using the SGD optimizer, an initial learning rate of 0.001, weight decay of 0.0005, and a batch size
of 4), and the crop size is set to (512, 1024). SegFormer is trained with a 20k schedule in mmseg-
mentation (20000 iterations using the ADAMW optimizer with an initial learning rate of 0.00005,
weight decay of 0.01, and a batch size of 8), and the crop size is set to (1024, 1024).

Results Table 4 summarizes the performance of BiEnhancer, FeatEnHancer, and seven other LIE
methods in combination with SegFormer and DeepLab-V3. Our BiEnhancer has brought significant
baseline improvements. On DeepLab-V3, the mIoU is 53.1, which is 0.3 higher than the previous
best result. On SegFormer, the mIoU is 54.4, also 0.2 higher than the previous best result. In addi-
tion, our BiEnhancer shows a segmentation speed of 4.5 FPS on the A5000 GPU while maintaining
excellent segmentation accuracy. It is significantly improved by 0.5 FPS compared to FeatEnHancer.
At present, we have made a qualitative comparison with the previous best competitor in Figure 5.
Obviously, our BiEnhancer can generate more accurate segmentation for both larger and smaller ob-
jects. These results confirm the effectiveness of BiEnhancer as a general-purpose module to achieve
state-of-the-art results in nighttime semantic segmentation.

4.4 ABLATION STUDIES

In this section, we conduct ablation studies on the key design components of the proposed BiEn-
hancer when integrated with Sparse R-CNN for dark object detection on the ExDark dataset and
DeepLab-V3 for nighttime semantic segmentation on the ACDC dataset. As shown in Table 5,
we emphasize the evaluation results of dark object detection and nighttime semantic segmentation
obtained by removing individual critical elements within the BiEnhancer framework.

Scale of High-level Features As shown in Table 6, varying the configuration of the inaugural two
halved convolutional modular units on Image I resulted in different resolution levels for high-level
features Fh. Despite a marginal increase in object detection speed (+0.2 FPS), it’s noteworthy that
8X down-sampling provides optimal results when considering BiEnhancer as a whole.

4https://acdc.vision.ee.ethz.ch/download
5https://github.com/open-mmlab/mmsegmentation
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Methods DeepLab-V3 SegFormer
mIoU FPS mIoU

Baseline 50.0 5.2 52.8
RUAS 49.8 4.3 52.5

SCI 50.8 3.4 52.9
Xue et al. 52.3 4.6 52.9
PairLIE* 52.5 2.9 53.8

MBLLEN* 52.6 2.4 53.3
Zero-DCE++ 52.6 4.3 53.5

Zero-DCE 52.7 4.3 54.1
FeatEnHancer 52.8 4.0 54.2
FFNet(Ours) 53.1 4.5 54.4

Table 4: Performance comparison on ACDC nighttime dataset. The best and second-best results are
marked in red and blue respectively. Note that here MBLLEN* and PairLIE* denote training with a
skip connection (SC).

FAM HFEM BFFM IEM Exdark ACDC
mAP mIoU

47.8 50.0
✓ ✓ ✓ 48.0 50.7

✓ ✓ ✓ 48.7 52.3
✓ ✓ ✓ 48.6 51.8
✓ ✓ ✓ 48.5 51.4
✓ ✓ ✓ ✓ 49.3 53.1

Table 5: Effectiveness of BiEnhancer.

Scale ExDark ACDC
mAP FPS mIoU FPS

2 48.6 30.5 52.3 3.5
4 48.9 37.5 52.5 4.1
8 49.3 40.1 53.1 4.5

16 48.6 30.5 52.2 4.7

Table 6: Various combinations of the scale of
high-level features. Here, 4 means the high-level
features is Fh ∈ RH

4 ×W
4 ×C .

N C ExDark ACDC
mAP FPS mIoU FPS

2 6 48.0 44.2 50.3 4.8
4 12 48.4 37.5 52.5 4.7
8 24 49.3 40.1 53.1 4.5

16 48 48.9 30.5 52.9 4.2

Table 7: Various combinations of the number of
fusion blocks.

Number of Fusion Blocks in BFFM As shown in Table 7, variable N (number of fusion blocks
in the proposed BFFM model) has a significant impact. Increasing N improves set accuracy and
test speed, but when N exceeds 8, object detection and semantic segmentation speeds slow down.
Marginal accuracy improvement doesn’t justify the performance degradation. Optimal number of
fusion blocks is 8.

5 CONCLUSION

This paper presents a new multifunctional plug-in module called BiEnhancer, which is designed to
enhance the fused bi-level features crucial for low-light vision tasks. Our feature aggregation and
enhancement scheme is aligned with the vision backbone network, producing robust semantic repre-
sentations. BiEnhancer does not require pre-training on synthetic datasets nor rely on enhancement
loss functions, making it a plug-and-play solution. Extensive experiments across three different vi-
sion tasks demonstrate that our method consistently outperforms baseline models, LIE models, and
leading approaches for specific tasks.
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