
A modified Casteljau algorithm to solve interpolation
problems on Stiefel manifolds I
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Abstract

The main objective of this paper is to propose a new method to generate smooth
interpolating curves on Stiefel manifolds. This method is obtained from a mo-
dification of the geometric Casteljau algorithm on manifolds and is based on
successive quasi-geodesic interpolation. The quasi-geodesics introduced here
for Stiefel manifolds have constant speed, constant covariant acceleration and
constant geodesic curvature, and in some particular circumstances they are true
geodesics.
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1. Introduction

Stiefel and Graßmann manifolds arise naturally in several vision applications,
such as machine learning and pattern recognition, since features and patterns
that describe visual objects may be represented as elements in those spaces.
These geometric representations facilitate the analysis of the underlying geome-5

try of the data. The Graßmann manifold is the space of k-dimensional subspaces
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in Rn and the Stiefel manifold is the space of k orthonormal vectors in Rn. While
a point in the Graßmann manifold represents a subspace, a point in the Stiefel
manifold identifies exactly what frame (basis of vectors) is used to specify that
subspace.10

Although these two manifolds are related, the geometry of the Graßmann
manifold is much simpler than that of the Stiefel manifold. This reflects on
solutions of simple formulated problems, such as the case of geodesics that join
two given points. A formula for the geodesic that joins two points on Graßmann
manifolds and depends explicitly only on those points was recently presented in15

Batzies et al. [1]. Knowing such explicit formulas is also a crucial step to solve
other important problems such as, averaging, fitting and interpolation of data.
Results about geodesics on Stiefel manifolds are not so easy to obtain. Even
the simpler problem of finding a geodesic that starts at a given point with a
prescribed velocity is not so straightforward, as can be seen for instance in the20

work of Edelman et al. [2]. In the present paper we solve a slightly different
but related problem, which consists of joining two points on the Stiefel mani-
fold by quasi-geodesics. These curves have constant speed, constant covariant
acceleration and, therefore, constant geodesic curvature. Moreover, they are
defined explicitly in terms of the points they join. In some cases, depending25

on those points, the quasi-geodesics are true geodesics. Interestingly enough,
these special curves can be used successfully to generate smooth interpolating
curves on the Stiefel manifold, as will be explained later. These results may
have a great impact in computer vision, since a curve that interpolates a set
of time-labeled points on the Stiefel manifold may correspond, for instance, to30

the temporal evolution of an event or dynamic scene from which only a limited
number of observations was captured, as nicely explained in Su et al. [3].

The organization of this paper is the following. After this introduction that
motivates the reader to the importance of the problems studied here in the con-
text of applications, we introduce in Section 2 the manifolds that play a major35

role throughout the paper: Graßmann and Stiefel manifolds. This section also
includes known results about geodesics and, in particular, a closed formula for
the geodesic in the Graßmann manifold that joins two given points. In Sec-
tion 3 we present quasi-geodesics in the Stiefel manifold. These curves have
some interesting properties, such as constant speed, constant covariant accel-40

eration and constant geodesic curvature. We provide an explicit formula for
quasi-geodesics that join two arbitrary points in the Stiefel manifold and show
that in two particular circumstances they are true geodesics. Interpolation prob-
lems are formulated and solved in the next three sections of the paper. First, we
review in Section 4 the Casteljau algorithm on manifolds and then implement45

this algorithm to generate a C1-smooth interpolating curve on the Graßmann
manifold satisfying some prescribed boundary conditions. This algorithm, first
introduced in Park and Ravani [4] and later explored for instance in Crouch et al.
[5], Popiel and Noakes [6], and Nava-Yazdani and Polthier [7], is a generalisation
to manifolds of the classical algorithm to generate Bézier curves in Rn, which50

was derived independently by De Casteljau [8] and Bézier [9]. The algorithm is
based on successive geodesic interpolation, so its implementation requires that
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explicit formulas for the geodesic joining two points is known. Due to the work
in Batzies et al. [1], the implementation of the Casteljau algorithm is possible on
Graßmann manifolds, but not on Stiefel manifolds. To overcome this difficulty,55

we explain in Section 5 how one can modify the Casteljau algorithm in a way
that will prove to be very important in Section 6, where an interpolation prob-
lem on the Stiefel manifold is solved intrinsically, that is, without resorting to
other spaces. This is done using a convenient modification of the Casteljau algo-
rithm, which consists of replacing successive geodesic interpolation by successive60

quasi-geodesic interpolation. This overcomes the difficulties that arise from not
knowing explicit formulas for geodesics that join two arbitrary points on the
Stiefel manifold and justifies the introduction of quasi-geodesics. In Section 7
we include the results of two experiments to illustrate the loss of smoothness
when instead of the interpolating method proposed in Section 6 for data on the65

Stiefel manifold one uses interpolating methods performed on the Graßmann
manifold. The paper ends with some concluding remarks.

2. Preliminaries

In this section we recall the main definitions associated to Graßmann and
Stiefel manifolds and several properties that will be used throughout this paper.70

Due to the important role that these manifolds play in applied areas, they have
been studied in the context of numerical algorithms, for instance in Edelman
et al. [2], Absil et al. [10] and Helmke et al. [11], and in a more abstract form
in Kobayashi and Nomizu [12]. Recently, Batzies et al. [1] found a closed form
expression for a geodesic in the Graßmann manifold that joins two given points.75

This formula turns out to be very important for the developments throughout
the whole paper. If not stated otherwise, the definitions and concepts in this
section are taken from references Edelman et al. [2] and Batzies et al. [1].

2.1. The Graßmann manifold

Let s(n) and so(n) denote the set of all n× n real symmetric matrices and80

the set of all n× n real skew-symmetric matrices respectively.
The (real) Graßmann manifold GGG n,k is the set of all k-dimensional linear

subspaces in Rn, where n ≥ k ≥ 1. This manifold has a matrix representation

GGG n,k :=
{
P ∈ s(n) : P 2 = P and rank(P ) = k

}
so that it is considered a submanifold of Rn×n with dimension k(n− k). Graß-
mann manifold GGG n,k can also be viewed as a homogeneous space85

GGG n,k
∼= O(n)/(O(k)×O(n− k)),

where O(n) is the orthogonal Lie group.
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Given a point P ∈ GGG n,k define the following sets

glP (n) := {X ∈ gl(n) : X = PX +XP } ,
sP (n) := s(n) ∩ glP (n) and

soP (n) := so(n) ∩ glP (n).

We will need the following properties. Here and in the sequel [A,B] = AB−BA
is the matrix commutator and Ik denotes the k × k identity matrix.

Proposition 1 (Batzies et al. [1]). Let P ∈ GGG n,k and X ∈ glP (n) then

1. PX2i−1P = 0, for any i ≥ 1,90

2. PX2i = PX2iP = X2iP , for any i ≥ 0,

3. [P, [P,X]] = X.

The tangent space to a point P ∈ GGG n,k is given by

TPGGG n,k = { [X,P ] : X ∈ soP (n) } .

The Graßmann manifold will be equipped with the metric inherited from the
Euclidean space Rn×n, cf. [11],95

〈[X1, P ], [X2, P ]〉 = tr(XT
1 X2).

If P ∈ GGG n,k then ΘPΘT ∈ GGG n,k, for any Θ ∈ O(n). Thus γ : (−ε, ε)→ GGG n,k

given by γ(t) = Θ(t)PΘT(t), where Θ is a curve in O(n) satisfying Θ(0) = I, is
a curve in the Graßmann manifold passing through P at t = 0.

Minimal geodesics in the Graßmann manifold satisfy the following second
order differential equation100

γ̈ + [γ̇, [γ̇, γ]] = 0.

A geodesic γ in GGG n,k, starting from P with initial velocity γ̇(0) = [X,P ], is
given by

γ(t) = etXPe−tX .

An explicit formula for a geodesic γ : [0, 1]→ GGG n,k joining a point P to a point
Q was derived in Batzies et al. [1] and gives the initial velocity vector in terms
of the initial and final points only. This geodesic is given by105

γ(t) = etXPe−tX , where X =
1

2
log((I− 2Q)(I− 2P )). (1)

Here ‘log’ stands for the principal logarithm of a matrix.
We recall that, a nonsingular matrix Y without negative eigenvalues always

has a unique logarithm whose spectrum lies in the horizontal strip defined by
{ z ∈ C : −π < Im(z) < π }. This unique matrix is called the principal loga-
rithm of Y and is denoted by log(Y ) (Horn and Johnson [13], Higham [14]).110

It follows from here that if the orthogonal matrix (I − 2Q)(I − 2P ) has no
negative real eigenvalues then (1) defines a unique geodesic. The existence and
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uniqueness of such minimising geodesics joining two points is guaranteed in the
open ball of radius π, which is the injectivity radius of the orthogonal group
Krakowski et al. [15].115

The following property of the velocity vector field along a geodesic will be
used later.

Proposition 2. If γ(t) = etXPe−tX is a geodesic in GGG n,k, then X ∈ soγ(t)(n).

Proof. One needs to show that

X = γ(t)X +Xγ(t). (2)

By the hypothesis, equality (2) holds for t = 0. From the commuting properties
of the matrix exponential with its argument,

γ(t)X +Xγ(t) = etXPe−tXX +XetXPe−tX

= etX(PX +XP )e−tX = etXXe−tX = X.

�120

2.2. The Stiefel manifold

The Stiefel manifold of orthonormal k-frames in Rn has the following matrix
representation:

SSSn,k :=
{
S ∈ Rn×k : STS = Ik

}
.

This is a submanifold of Rn×k, having dimension nk − (k + 1)k/2. Stiefel
manifolds SSSn,k are homogeneous spaces125

SSSn,k
∼= O(n)/O(n− k).

The tangent space to SSSn,k at a point S ∈SSSn,k can be parametrized as

TSSSSn,k =
{
V ∈ Rn×k : V TS + STV = 0

}
.

The Stiefel manifold will be equipped with the canonical metric, given by

〈V1, V2〉 = tr
(
V T

1 (I− 1
2SS

T)V2

)
, where V1, V2 ∈ TSSSSn,k. (3)

The projection onto the tangent space π> : Rn×k → TSSSSn,k is given by

π>(X) := S skew(STX) + (I− SST)X,

where, for a square matrix A, skew(A) denotes (A−AT)/2.
Minimal geodesics in the Stiefel manifold satisfy the following second order130

differential equation, cf. [2],

γ̈ + γ̇γ̇Tγ + γ
(

(γTγ̇)
2

+ γ̇Tγ̇
)

= 0.
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A geodesic γ in SSSn,k starting from a point S = Θ∆, where Θ ∈ O(n) and

∆ =

[
Ik
0

]
n×k

, is given by

γ(t) = ΘetX∆,

where X ∈ so(n) has the following structure:

X =

[
A −BT

B 0

]
.

Compared with what happens for the Graßmann manifolds, solving the geodesic135

equation for Stiefel manifolds is quite hard. Nevertheless, Edelman et al. [2]
have included formulas for geodesics on Stiefel manifolds that start at a given
point with a prescribed velocity. Also, according to Theorem 3 in Harms and
Mennucci [16], any two points in the Stiefel manifold SSSn,k, when n ≥ 2k, can
be connected by a minimal geodesic. However, as far as we know, there are no140

explicit formulas for the geodesic joining two arbitrary points that depends on
these points only.

2.3. Relationships

There are some intimate relationships between SO(n), GGG n,k and SSSn,k that
can be expressed in terms of the following surjective mappings, where ∆ is the145

matrix defined in the previous section and Λ = ∆∆T.

• The projection π : SO(n)→SSSn,k defined by π(Θ) := Θ∆;

• The mapping ϕ : SO(n)→ GGG n,k defined by ϕ(Θ) := ΘΛΘT;

• The mapping ψ : SSSn,k → GGG n,k defined by ψ(S) := SST.

Clearly, (Θ∆)
T

(Θ∆) = ∆T∆ = Ik and (Θ∆)(Θ∆)
T

= ΘΛΘT.150

The following commutative diagram summarises these relationships.

SO(n)

π

��

ϕ

##
SSSn,k

ψ // GGG n,k

Geodesics in GGG n,k and geodesics in SSSn,k are projections of special geodesics on
SO(n), as explained next.

Let γ : [0, 1] → SO(n) be a geodesic given by γ(t) = etXΘ. Define a curve
σ : [0, 1]→ GGG n,k by155

σ(t) := (ϕ ◦ γ)(t) = etXΘΛΘTe−tX .

Denote P = ΘΛΘT ∈ GGG n,k and suppose that X ∈ soP (n). Then, σ is a
geodesic in GGG n,k starting from P , with initial velocity equal to [X,P ], cf. [1].
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A simple calculation shows that the condition X ∈ soP (n) is equivalent to
ΘTXΘ ∈ soΛ(n), and the latter implies a particular matrix structure for ΘTXΘ,
namely160

ΘTXΘ =

[
0 −BT

B 0

]
.

In a similar way, one may analyse which geodesics in SO(n) project to
geodesics in the Stiefel manifold. Edelman et al. [2] proved that the curve
defined by

α(t) = etZS = etZΘ∆ = π(etZΘ)

is a geodesic in SSSn,k starting at S when the skew-symmetric matrix Z satisfies
the following block structure165

ΘTZΘ =

[
A −BT

B 0

]
.

But a closed form expression for Z, given the initial and final points, is not yet
known.

To overcome this difficulty and being able to propose a solution for an in-
terpolating problem on Stiefel manifolds, we are going to introduce, in the next
section, other interesting curves in SSSn,k that will play an important role.170

We end this section with two properties that are immediate consequences of
those in Proposition 1 and will be useful later on.

Proposition 3. Let S ∈SSSn,k and X ∈ glSST(n). Then

1. STXS = 0;

2. SSTX2S = X2SSTS = X2S.175

3. Quasi-Geodesics in Stiefel Manifolds

In this section we define certain smooth curves in the Stiefel manifold SSSn,k

that join two arbitrary points S1 and S2 and have many interesting properties.
In some cases these curves are geodesics, but in general their velocity vector field
may fail to have zero covariant derivative. The generic term for these curves180

will be quasi-geodesics because they have constant geodesic curvature and are
associated to certain retractions on SSSn,k. We use here the notion of a retraction
introduced in [17] for general manifolds.

Definition 4. A retraction R on the Stiefel manifold SSSn,k is a smooth mapping
from the tangent bundle TSSSn,k to SSSn,k that, when restricted to each tangent185

space at a point S ∈ SSSn,k (restriction denoted by RS), satisfies the following
properties:

(i) RS(0) = S.

(ii) dRS(0) = id.
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If V ∈ TSSSSn,k, one can define a smooth curve βV : t 7→ RS(tV ) associated to190

the retraction R. The curve βV which satisfies βV (0) = S and β̇V (0) = V is
called a quasi-geodesic. In the sequel we will present a quasi-geodesic on the
Stiefel manifold, which is different from the example included in Absil et al.
[17] or in Nishimori and Akaho [18], but has other very interesting properties.
Before that, we present a representation of the tangent space to SSSn,k at a point195

S, which differs from that considered in Edelman et al. [2] but will prove to be
very important for further derivations.

Proposition 5. Let S ∈SSSn,k, so that P = SST ∈ GGG n,k. Then,

TSSSSn,k = {XS + SΩ, where X ∈ soP (n) and Ω ∈ so(k) } . (4)

Moreover, if V = XS + SΩ ∈ TSSSSn,k, then

X = V ST − SV T + 2SV TSST and Ω = STV. (5)

Proof. LetM := {XS + SΩ, where X ∈ soP (n) and Ω ∈ so(k) }. Notice that200

the dimensions of M and TSSSSn,k match. Indeed,

dim(sP (n)) = dim(TPGGG n,k) = k(n− k), dim(so(k)) = k(k − 1)/2,

and so,

dim(M) = k(n− k) + k(k − 1)/2 = nk − k(k + 1)/2 = dim(TSSSSn,k).

To show that (4) is a good parametrisation of TSSSSn,k, we must prove that
M ⊂ TSSSSn,k and TSSSSn,k ⊂ M . For the first part, a trivial calculation shows
that if V = XS+SΩ ∈M then, since X and Ω are skew symmetric, V satisfies205

the equation V TS + STV = 0, that is, V ∈ TSSSSn,k. For the second part, we
show that if V ∈ TSSSSn,k, there exists Ω ∈ so(k) and X ∈ soP (n) such that
V = XS + SΩ. This is done by construction:

Ω := STV and X := V ST − SV T + 2SV TSST.

It is just a matter of simple calculations, using the fact that V ∈ TSSSSn,k,
to check that indeed V = XS + SΩ, Ω ∈ so(k), X ∈ so(n), and moreover210

X = XSST + SSTX, that is X ∈ soP (n).
The last statement in the proposition follows from the previous considera-

tions. �

Proposition 6. Let S, X and Ω be as in the Proposition 5. Then, the mapping
R : TSSSn,k → SSSn,k whose restriction to TSSSSn,k is defined by RS(V ) = eXSeΩ

215

is a retraction on the Stiefel manifold, and β : t 7→ etXSetΩ is a quasi-geodesic
in SSSn,k that satisfies

1. β(0) = S;
2. β̇(t) = etX(XS + SΩ)etΩ;
3. β̈(t) = etX(X2S + 2XSΩ + SΩ2)etΩ.220

Proof. This statement is true because the mapping R satisfies both conditions
of the Definition 4 and β is the quasi-geodesic associated to the retraction. The
formulas for the derivatives of β are also straightforward. �
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3.1. Joining points in the Stiefel manifold by quasi-geodesics

Given two distinct points S1 and S2 in the Stiefel manifold, our objective225

now is to choose X ∈ soP1(n) (P1 = S1S
T
1 ) and Ω ∈ so(k) so that the quasi-

geodesic defined by β(t) = etXS1e
tΩ joins the point S1 (at t = 0) to the point

S2 (at t = 1).

Theorem 7. Let S1 and S2 be two distinct points in SSSn,k so that, for i = 1, 2,
Pi = SiS

T
i ∈ GGG n,k. Then, if230

X =
1

2
log
(
(I− 2S2S

T
2 )(I− 2S1S

T
1 )
)

and Ω = log
(
ST

1 e
−XS2

)
, (6)

the quasi-geodesic β : [0, 1]→SSSn,k defined by

β(t) := etXS1e
tΩ, (7)

has the following properties:

1. β(0) = S1;

2. β(1) = S2;

3. ‖β̇(t)‖2 = − tr
(
ST

1 X
2S1 + 1

2Ω2
)

(constant speed);235

4. L1
0(β) =

√
− tr

(
ST

1 X
2S1 + 1

2Ω2
)

(length of β);

5. Dtβ̇(t) = Xβ(t)Ω;

6. ‖Dtβ̇(t)‖2 = tr
(
Ω2ST

1 X
2S1

)
(constant covariant acceleration).

Proof. Before starting the proof, we show that X and Ω agree with the
parametrization of the tangent space given in Proposition 5. According to (1),
[X,P1] is the initial velocity vector of the geodesic in the Graßmann manifold
that joins the point P1 (at t = 0) to P2 (at t = 1), so X ∈ soP1

(n). Moreover,
ST

1 e
−XS2 is orthogonal as can be easily checked. Indeed, from the expression

for X we immediately get(
ST

1 e
−XS2

)(
ST

1 e
−XS2

)T
= ST

1 e
−XS2S

T
2 e

XS1 = ST
1 S1S

T
1 S1 = Ik;(

ST
1 e
−XS2

)T(
ST

1 e
−XS2

)
= ST

2 e
XS1S

T
1 e
−XS2 = ST

2 S2S
T
2 S2 = Ik.

Now, the first two properties follow from the definition of the curve β. To
simplify notations we omit the dependency on t. With the canonical metric on240

the Stiefel manifold, we can write

‖β̇‖2 = 〈β̇, β̇〉 = tr
(
β̇T(I− 1

2ββ
T)β̇

)
= tr

(
β̇Tβ̇ − 1

2 β̇
TββTβ̇

)
But

β̇Tβ̇ = −e−tΩST
1 X

2S1e
tΩ − Ω2,

βTβ̇ = Ω, hence β̇Tβ = −Ω.
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So

‖β̇‖2 = − tr
(
ST

1 X
2S1

)
− tr

(
Ω2
)

+ 1
2 tr
(
Ω2
)

= − tr
(
ST

1 X
2S1 + 1

2Ω2
)
.

This concludes the proof of 3.. The property 4. follows immediately from the

formula L1
0(β) =

∫ 1

0
‖β̇(t)‖ dt and the property 3.. To prove property 5., we take

into consideration the formulas for β̇ and β̈ in Proposition 6 and the following
formula for the covariant derivative of β̇ along β, given in [2]:245

Dtβ̇ = β̈ + β̇β̇Tβ + β
(

(βTβ̇)
2

+ β̇Tβ̇
)
.

Using the properties in Proposition 3, this can be simplified to obtain Dtβ̇(t) =
Xβ(t)Ω. Finally, we show that the acceleration vector field along β has constant
length. This requires some tedious calculations that are partially omitted be-
cause simplifications only require properties that have already been used before.

‖Dtβ̇‖2 = tr
(

(Dtβ̇)
T

(I− 1
2ββ

T)(Dtβ̇)
)

= tr
(
ΩβTX(XβΩ− 1

2ββ
TXβΩ)

)
= tr

(
ΩST

1 X
2S1Ω

)
= tr

(
Ω2ST

1 X
2S1

)
.

This completes the proof. �

Remark 8. It is immediate to check that if β(t) := etXS1e
tΩ is the quasi-

geodesic given in Theorem 7, which joins S1 (at t = 0) to S2 (at t = 1), then
β(t) := β(1 − t) = e−tXS2e

−tΩ is the reversed quasi-geodesic that joins S2 (at
t = 0) to S1 (at t = 1). This quasi-geodesic is associated with the retraction250

RS2
(−V ), where V = XS2 − S2Ω.

Remark 9. Some restrictions on S1 and S2 must be imposed so that the princi-
pal logarithm of the orthogonal matrices (I− 2S2S

T
2 )(I− 2S1S

T
1 ) and ST

1 e
−XS2

exists and is unique. As already mentioned in Subsection 2.1, if these matrices
have no eigenvalues in R−, the quasi-geodesic joining S1 to S2 exists and is255

unique.
The numerical computation of a quasi-geodesic only requires the computation

of matrix logarithms of orthogonal matrices and exponentials of skew-symmetric
matrices. An overview of numerical methods to compute these matrix functions
is available, for instance, in Higham [14], where numerical stability and com-260

putational costs are also analysed. The problem of computing geodesics in the
Stiefel manifold is also briefly addressed in Rentmeesters [19], but only for the
case of a minimal geodesic joining S1 to a point in the orbit of S2, that is, to
a frame that generates the same subspace as the frame S2, not necessarily S2.
Using our approach, this corresponds to the case when Ω = 0 and the quasi-265

geodesic reduces to a geodesic, as will be better explained after this remark. Our
results open the door to further research on finding algorithms to compute effi-
ciently geodesics and quasi-geodesics associated to the canonical metric, but this
is not the goal of the present paper.
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There are two situations when the quasi-geodesic defined in (7) is a true270

geodesic, as will be detailed in the next Corollary. Figures 1 and 2 illustrate
these situations. For the situation in Figure 3, no explicit form for the geodesic
joining the frames S1 and S2 is known. In this case, what can be easily exhibited
is a two-piece broken geodesic joining those frames, each piece being a geodesic
of one of the two types illustrated in Figures 1 and 2.

Figure 1: The frames S1 and S2 span the same subspace

275

Corollary 10. 1. If the frames S1 and S2 generate the same subspace, then
the curve defined in (7) is a geodesic in SSSn,k joining S1 to S2. This

geodesic, denoted by β1, has length equal to
√
− 1

2 tr(Ω2).

2. If the frames S1 and S2 do not generate the same subspace but the frame
eXS1, where X = 1

2 log
(
(I− 2S2S

T
2 )(I− 2S1S

T
1 )
)
, coincides with S2, then280

the curve defined in (7) is also a geodesic in SSSn,k joining S1 to S2. This

geodesic, denoted by β2, has length equal to
√
− tr(ST

1 X
2S1).

Proof. In the first case X = 0 and β1(t) = S1e
tΩ. In the second case Ω = 0

and β2(t) = etXS1. Clearly both curves are geodesics because, according to
Theorem 7, item 5., Dtβ̇i(t) ≡ 0, for i = 1, 2. The formulas for the length of285

these geodesics follow from Theorem 7, item 4.. �

Figure 2: The frames S1 and S2 span two different subspaces, but eXS1 = S2

Remark 11. For the two extreme cases when k = 1 and k = n, the Stiefel
manifold becomes respectively a sphere and an orthogonal group. The quasi-
geodesics are then true geodesics since both cases fit into the two exceptions in
Corollary 10. Indeed, Ω = 0 if k = 1 and X = 0 if k = n. In the later case,290

Ω = log(ST
1 S2) ∈ so(n).
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Figure 3: The frames S1 and S2 span two different subspaces, but eXS1 6= S2

Proposition 12. The geodesic curvature κ of the quasi-geodesic defined in (7)
is constant and given by

κ = −

√
tr
(
Ω2ST

1 X
2S1

)
tr
(
ST

1 X
2S1 + 1

2Ω2
) .

Moreover, 0 ≤ κ < 1.

Proof. We use the following formula, obtained from Lee [20, p. 137], for295

computing the geodesic curvature

κ =
‖Dtβ̇‖
‖β̇‖2

− 〈Dtβ̇, β̇〉
‖β̇‖3

. (8)

Since β has constant speed, the second term in (8) vanishes and the expression
for the geodesic curvature reduces to the first term that is immediately obtained
from the formulas in Theorem 7.

To show that 0 ≤ κ < 1, we use a trace inequality due to von Neumann (see,
for instance, von Neumann [21] or Marques de Sá [22]), which states that for
any k × k complex matrices A and B with singular values a1 ≥ a2 ≥ · · · ≥ ak
and b1 ≥ b2 ≥ · · · ≥ bk respectively, |tr(AB)| ≤

∑
i aibi. If we consider A =

−ST
1 X

2S1 and B = −Ω2 which are real symmetric and nonnegative definite,
their singular values coincide with their eigenvalues and so tr(AB) ≤

∑
i aibi.

Consequently,

κ2 =
tr(AB)

tr2(A+ 1
2B)

=
tr(AB)

tr2(A) + 1
4 tr2(B) + tr(A) tr(B)

≤
∑
i(aibi)

(
∑
i ai)

2 + 1
4 (
∑
i bi)

2 +
∑
i6=j(aibj) +

∑
i(aibi)

.

Since the eigenvalues of A and B are nonnegative and not simultaneously equal300

to zero and κ is nonnegative, the geodesic curvature has the required bounds.
�

Note that the geodesic curvature is zero whenever A or B is zero, that is,
when X = 0 or Ω = 0. As expected, this result is consistent with the statements
in Corollary 10.305

12



3.2. Comparison results

In this subsection we make some comparison between geodesics and the
quasi-geodesics defined by (7).

1. The quasi-geodesic β(t) = etXS1e
tΩ is not a geodesic unless X = 0 or

Ω = 0.310

This follows from Theorem 7, item 5..

2. If X 6= 0 and Ω 6= 0, the points S1 and S2 can also be joined by a broken
geodesic, which is the concatenation of two geodesics, the first one defined315

by β1(t) = etXS1 and the second one defined by β2(t) = eXS1e
tΩ. More-

over, these two geodesics intersect at a right angle, i.e., 〈β̇1(1), β̇2(0)〉 = 0.

This can be easily checked, since β1(0) = S1, β1(1) = β2(0) = eXS1, and
β2(1) = eXS1e

Ω = S2. Also, β̇T
1 (1) = −sT

1 Xe
−X and β̇2(0) = eXS1Ω. So,

using formula (3) and Proposition 3, it follows after simplification

〈β̇1(1), β̇2(0)〉 = tr
(
β̇T

1 (1)β̇2(0)
)
− 1

2
tr
(
β̇T

1 (1)eXS1S
T
1 e
−X β̇2(0)

)
=

1

2
tr(−ST

1 XS1) = 0.

3. In the previous situation, i.e., when X 6= 0 and Ω 6= 0, we have the
following relationship between the length of the quasi-geodesic β joining
the points S1 and S2 and the length of the broken geodesic joining the
same points: (

L1
0(β)

)2
=
(
L1

0(β1)
)2

+
(
L1

0(β2)
)2
.

So, we can conclude that the quasi geodesic is shorter than the broken
geodesic.320

This follows immediately from the formulas for the lengths in Theorem 7,
item 4. and in Corollary 10. (Note that the previous equality in Euclidean
geometry is the Pythagorean theorem and in this geometry the quasi-
geodesic would have to be a geodesic.)325

4. The projection ψ of the quasi-geodesic β(t) = etXS1e
tΩ on the Graßmann

manifold is a geodesic joining P1 = S1S
T
1 to P2 = S2S

T
2 .

This follows immediately from β(t)βT(t) = etXS1S
T
1 e

tΩ = etXPT
1 e

tΩ and330

the fact that X = 1
2 log((I− 2P2)(I− 2P1)).

5. The projection ψ on the Graßmann manifold of a geodesic in the Stiefel
manifold is not necessarily a geodesic.

335
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We justify this statement with an example. According to Subsection 2.2,
the curve defined by

γ(t) = etX∆, with X =

[
A 0
0 0

]
and A ∈ so(k)

is a geodesic in the Stiefel manifold starting at ∆. However, its projection
on the Graßmann manifold is the curve γ(t)γT(t) = etX∆∆Te−tX =
etXΛe−tX , which is not a geodesic since XΛ + ΛX = 2X, that is, X
doesn’t belong to soΛ(n).

4. The Casteljau Algorithm on manifolds340

The classical Casteljau algorithm, introduced independently by De Casteljau
[8] and Bézier [9], is a geometric construction to generate polynomial curves in
Rn based on successive linear interpolation techniques. After the basic idea of
Park and Ravani [4] of replacing linear interpolation by geodesic interpolation,
the Casteljau algorithm was generalized to accommodate geometric polynomial345

curves and also interpolating splines on Riemannian manifolds (see, for instance,
the work of Crouch et al. [5], Popiel and Noakes [6], Nava-Yazdani and Polth-
ier [7], and Nava-Yazdani [23]). We next give a succinct description of this
algorithm for generating polynomials of degree m on a complete Riemannian
manifold M, where for the sake of simplicity we parametrize the curves on the350

[0, 1] interval.
If x0, . . . , xm are distinct points in M and σ1(t, xi, xi+1) is the geodesic arc

joining xi (at t = 0) to xi+1 (at t = 1), a smooth curve t 7→ σm(t), joining x0 (at
t = 0) to xm (at t = 1), may be constructed by recursive geodesic interpolation
and depends on the given points. The curves produced by this recursive process355

which involves m steps are defined by

σk(t, xi, . . . , xi+k) = σ1 (t, σk−1(t, xi, . . . , xi+k−1), σk−1(t, xi+1, . . . , xi+k)) ,

k = 2, . . . ,m; i = 0, . . . ,m− k.

The curve σm obtained in the last step, that is σm(t) := σm(t, x0, . . . , xm),
generalizes the Euclidean polynomials of degree m and is called geometric poly-
nomial in M. This curve doesn’t interpolate the points x1, . . . , xm−1. They are
only used to generate the curve that joins x0 to xm but, of course, influence the360

shape of the curve. For that reason, they are called control points. Alternatively,
one can prescribe other boundary conditions, such as m − 1 initial conditions
Dk
t σ̇m(0), k = 0, . . . ,m− 2, and compute from them the control points needed

for the algorithm. This is theoretically possible, but the complexity of the com-
putations increases significantly with m. This algorithm can also be used to365

generate geometric polynomial splines, which are interpolating curves obtained
by piecing together several geometric polynomials in a smooth manner.

Figure 4 illustrates the idea behind the Casteljau algorithm in the 2-sphere.
It shows how to generate several points (points in red) of a quadratic curve.
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Figure 4: Illustration of the Casteljau algorithm to generate a quadratic polynomial in S2

4.1. The Casteljau algorithm on Graßmann manifolds370

The generalisation of the classical Casteljau algorithm will be used to solve
the following problem on the Graßmann manifolds.

Problem 1. Given a set of points P0, . . . , Pm in the Graßmann
manifold GGG n,k and Ω0 ∈ soP0(n), find a C1-smooth curve σ that
interpolates the points Pi at time i and has initial velocity equal to375

[Ω0, P0], that is

σ(i) = Pi, for i = 0, 1, . . . ,m and σ̇(0) = [Ω0, P0].

4.1.1. Solving Problem 1 using the Casteljau algorithm

Since the Casteljau algorithm is based on geodesic interpolation, its imple-
mentation on a specific Riemannian manifold requires that an explicit formula
for the geodesic that joins two points is available. Although this is not the case380

in general, it happens that for the Graßmann manifold such a formula has been
derived recently in Batzies et al. [1]. This is the explicit formula (1) included in
Section 2.

The interpolating curve σ may be generated by piecing together quadratic
polynomials defined on each subinterval [i, i + 1], and joining Pi to Pi+1 with385

control point Ci, that is

σ(t)|[i,i+1] = σ2(t− i, Pi, Ci, Pi+1).

The first control point C0 is computed from P0, P1 and Ω0, Figure 5. In order
to ensure that σ is C1-smooth, the initial velocity of each subsequent spline
segment must equal the final velocity of the previous segment.

15



σ 1
(t
, P
,C

)

σ
1 (t, C,Q)

σ 1
(t
,M

1
,M

2
)

σ2(t, P,C,Q)

P

C

Q

M1

M2

X

Figure 5: The generalised Casteljau algorithm; segments σ1(t, P, C) and σ1(t, C,Q) form the
first step of the algorithm. Then, given t0 ∈ [0, 1], X = σ1(t0,M1,M2) is a point in the spline,
where M1 = σ1(t0, P, C) and M2 = σ1(t0, C,Q)

4.1.2. Generating a second order spline390

Given a sequence of data points P0, P1, . . . , Pm and an initial Ω0, the al-
gorithm produces a second order spline σ : [0,m] → GGG n,k, passing through the
data points, such that

σ(i) = Pi, for 0 ≤ i ≤ m and σ̇(0) = [Ω0, P0].

Each segment σ([i, i+ 1]) joins Pi to Pi+1. The algorithm is based on a general
version of the Casteljau algorithm described at the beginning of the section.395

To find a point σ(t) of the spline, first iterate Algorithm 2 to find the compo-
nent of initial velocity vector Ωi, for the segment σ([i, i+1]), where t ∈ [i, i+1].
Then with the triple Ωi, Pi and Pi+1, apply Algorithm 1 to get the desired
point.

5. A modification of the Casteljau algorithm400

Although the Casteljau algorithm appeared as a geometric tool to construct
polynomials of any order by successive linear interpolation, it can be modified
to accommodate curves with other properties. This has been done, for instance,
in Jakubiak et al. [24] and Rodrigues et al. [25]. On manifolds where explicit
formulas for geodesics are not available, this is particularly useful and will also405

be used to generate a C1 interpolating curve on the Stiefel manifold in the next
section. For now we proceed with some generic results for curves obtained with
only one control point and two steps and first prove a result involving the initial
and final velocity of a curve generated with two steps, but not necessarily a
quadratic polynomial.410

Given a set of three points {xi }2i=0 in a manifold M, let t 7→ σ1(t, xi, xi+1) be
curves joining xi to xi+1, for i = 0, 1. Define a family of curves γ : [0, 1]×[0, 1]→
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Algorithm 1: calculate a point σ(t), for t ∈ [0, 1], such that: σ(0) = P , σ(1) =
Q, and σ̇(0) = 2[Ω, P ] (note that C and Ω do not depend on t and can be pre-
computed to improve the efficiency)

Input: t ∈ [0, 1], P,Q ∈ GGG n,k, Ω ∈ soP (n)
Output: X = σ(t)

1 Calculate control point C:

C = exp(Ω) · P · exp(−Ω)

Calculate first step end points M1 and M2:

M1 = exp(tΩ) · P · exp(−tΩ)

Θ0 =
1

2
log
(
(I− 2Q) · (I− 2C)

)
M2 = exp(tΘ0) · C · exp(−tΘ0)

Compute the point on the geodesic from M1 to M2 at t:

Θ1 =
1

2
log
(
(I− 2M2) · (I− 2M1)

)
X = exp(tΘ1) ·M1 · exp(−tΘ1)

return X

Algorithm 2: calculate Ω̃ so that the final velocity σ̇1(1, C,Q) = [Ω̃, Q], where σ
satisfies: σ(0) = P , σ(1) = Q, and σ̇1(0, P, C) = [Ω, P ] (note that to improve the
efficiency, all quantities can be computed in advance, once this data is known)

Input: P,Q ∈ GGG n,k, Ω ∈ soP (n)

Output: Ω̃ such that σ̇(1) = [Ω̃, Q]
1 Calculate control point C:

C = exp(Ω) · P · exp(−Ω)

Calculate a component of the initial velocity vector for a geodesic from C to Q:

Ω̃ =
1

2
log
(
(I− 2Q) · (I− 2C)

)
return Ω̃
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M as follows. For a fixed t0 ∈ [0, 1], the map t 7→ γ(t, t0) is a curve joining
σ1(t0, x0, x1) to σ1(t0, x1, x2), as illustrated in Figure 6. Then σ2 : [0, 1] → M
given by σ2(t) = γ(t, t) is a curve joining x0 to x2. If the curves considered415

above are geodesics then σ2 is a second order polynomial.

σ 1
(t,
x 0
, x

1
) σ

1 (t, x
1 , x

2 )γ(t
, t0

)

σ2(t)

x0

x1

x2

Figure 6: A modification of the two-step Casteljau algorithm

We are interested in finding out how the velocities of σ2 at the end points
are related with the velocities of the curves used along the algorithm steps. The
answer is given in the following proposition.

Proposition 13. Suppose that the curves σ1 are differentiable and that420

γ(t, 0) = σ1(t, x0, x1) and γ(t, 1) = σ1(t, x1, x2). (9)

Then
σ̇2(0) = 2σ̇1(0, x0, x1) and σ̇2(1) = 2σ̇1(1, x1, x2).

Proof. The following identities follow from the definition of the curve γ:

γ(0, t) = σ1(t, x0, x1) and γ(1, t) = σ1(t, x1, x2). (10)

Note that

σ̇2(t) =
∂

∂s

∣∣∣∣
s=t

γ(s, t) +
∂

∂s

∣∣∣∣
s=t

γ(t, s).

Therefore, from the hypothesis (9) and by identities (10) it follows that

σ̇2(0) =
∂

∂s

∣∣∣∣
s=0

γ(s, 0) +
∂

∂s

∣∣∣∣
s=0

γ(0, s) = 2σ̇1(0, x0, x1).

Similarly425

σ̇2(1) =
∂

∂s

∣∣∣∣
s=1

γ(s, 1) +
∂

∂s

∣∣∣∣
s=1

γ(1, s) = 2σ̇1(1, x1, x2).

�

This result easily generalizes to higher order curves.
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6. Solving Interpolation problems on Stiefel manifolds

For interpolation problems where orientation is irrelevant, one could simply
interpolate points on the Graßmann using the Casteljau algorithm described in430

Section 4. This would be the case if a frame and a rotated version of that same
frame produce equivalent visual scenes. However, when orientation matters, if
the interpolating data on the Stiefel manifold is projected on the Graßmann
manifold and the interpolating problem is solved at the level of subspaces, there
is no guarantee that lifting the solution to the level of frames will produce a435

reasonable solution. Most likely, the smoothness conditions will not be met in
the final curve. This main drawback is due to the fact that all frames SΘ,
with Θ ∈ SO(k), generate the same subspace as the frame S, that is, the
projection from Stiefel to Graßmann is many to one. Yet another situation in
which orientation is irrelevant arises in certain optimisation problems on the440

Stiefel manifold where the objective function is invariant with respect to right
multiplication by elements in SO(k).

The objective of this section is to present an alternative to generate a smooth
interpolation curve on the Stiefel manifold which is intrinsic to this manifold
and results from replacing geodesics in the Casteljau algorithm by the quasi-445

geodesics introduced in Section 3. This procedure may be extended to other
more general interpolation problems with the appropriate adaptations.

Problem 2. Given a set of points {Si }mi=0 belonging to the Stiefel
manifold SSSn,k, and a vector V0 ∈ TS0

SSSn,k, find a C1 interpolating
curve passing through these points and having initial velocity equal450

to V0.

6.1. Solving the interpolation problem using quasi-geodesics

Since we know how to join two points on the Stiefel manifold by a quasi-
geodesic, we use these curves to perform a modified Casteljau algorithm where
successive linear interpolation is replaced by successive quasi-linear interpola-455

tion.
The crucial procedure is the generation of the first curve segment, joining

S0 to S1 and having prescribed initial velocity equal to V0. Without loss of
generality, we assume that all segments are parameterised in the [0, 1] time
interval.460

6.2. Generating the first spline segment

First we need to find a control point C0, which is the end point of the quasi-
geodesic that starts at the point S0 with initial velocity equal to 1

2V0. This
quasi-geodesic is given by

β0(t) = etX0S0e
tΩ0 ,

where, according to (5) in Proposition 5,465

X0 =
1

2
V0S

T
0 −

1

2
S0V

T
0 + S0V

T
0 S0S

T
0 and Ω0 =

1

2
ST

0 V0. (11)
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So, C0 = eX0S0e
Ω0 defines the control point.

We now proceed to the construction of the second quasi-geodesic β1 that
joins C0 to S1, using Theorem 7 with the obvious adaptations. That is,

β1(t) = etX1C0e
tΩ1 ,

where

X1 =
1

2
log
(
(I− 2S1S

T
1 ) · (I− 2C0C

T
0 )
)

and Ω1 = log(CT
0 · e−X1 · S1).

The first curve segment, joining S0 to S1 with prescribed initial velocity equal470

to V0 can now be obtained from quasi-linear interpolation of β0 and β1. More
precisely, we can state the following result for the first spline segment.

Theorem 14. The curve γ in the Stiefel manifold, defined by

γ(t) = etX(t)β0(t)etΩ(t),

where
X(t) = 1

2 log
(
(I− 2β1(t)βT

1 (t)) · (I− 2β0(t)βT
0 (t))

)
,

Ω(t) = log(βT
0 (t) · e−X(t) · β1(t)),

satisfies the boundary conditions

γ(0) = S0, γ(1) = S1, γ̇(0) = V0,

so it solves Problem 2 when m = 1. Moreover, γ̇(1) = 2(X1S1 + S1Ω1).475

Proof. Clearly, γ(0) = β0(0) = S0. Since X(1) = 1
2 log

(
(I − 2S1S

T
1 ) · (I −

2C0C
T
0 )
)

= X1 and Ω(1) = log(CT
0 · e−X1 · S1) = Ω1, then γ(1) = eX1C0e

Ω1 =
eX1C0C

T
0 e
−X1S1 = S1S

T
1 S1 = S1. Finally, for the initial velocity, notice that

γ is a particular case of the curve described in Section 5 for which Proposition
13 holds. As a consequence, γ̇(0) = 2β̇0(0) = 2(X0S0 + S0Ω0). Now it is480

enough to use (11) to write X0 and Ω0 in terms of V0 and S0, and the condition
V T

0 S0 = −ST
0 V0 for a vector V0 ∈ TS0SSSn,k, to obtain, after simplifications,

γ̇(0) = V0. Finally, the expression for γ̇(1) also follows from Proposition 13. �

6.3. Generating consecutive spline segments:

After having generated the first spline segment, one continues in a similar485

way for the second spline segment. Since the interpolating curve is required
to be C1-smooth, the initial velocity for this second curve segment must equal
the end velocity of the previous curve segment, which is known. So, we repeat
the steps in the proof of last theorem for the boundary data S1, S2 and V1 =
2(X1S1 +S1Ω1) instead of S0, S1 and V0 = 2(X0S0 +S0Ω0). The control point490

is now C1 = eX1S1e
Ω1 .

The other m− 2 consecutive segments are generated similarly. The solution
of Problem 2 is the spline curve resulting from the concatenation of the m con-
secutive segments.

495
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Remark 15. The mapping ψ : SSSn,k → GGG n,k defined by ψ(S) := SST trans-
forms quasi-geodesics on the Stiefel manifold into geodesics on the Graßmann
manifold. As a consequence, the algorithm presented in this section projects
on the Graßmann manifold GGG n,k as the true Casteljau algorithm presented in
Subsection 4.1.500

7. Illustrative examples

In this section we include the results of two simple experiments in order
to illustrate the importance of the interpolating method proposed in the last
section. In order to understand the results of these experiments we need to
explain how data can be represented as points in the Stiefel or in the Graßmann505

manifolds.
Figure 7 below represents the set of 3D points that draw the number 8 and

the number 3 in 3D-space, in five different configurations. In each one of the
configurations, the representation of the number varies not just in orientation
but also on scale and shape. Each configuration is represented by a n × m510

matrix Xi, where i = 1, · · · , 5, n = 3, and m = 200. Non-centered principal
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Figure 7: Five representations of the number 8 (top row) and of the number 3 (bottom row)
in 3D-space.

component analysis (PCA) is applied to all matrices Xi, producing i orthogonal
matrices Θi in SO(3). By projecting each Θi on the Stiefel manifold SSS3,2, we
produce i matrices Si = π(Θi) = Θi∆, representing i orthonormal 2D-frames
in 3D-space. Each one of these frames generates a subspace of dimension 2,515

that is, a point in GGG3,2. After applying the algorithm presented in the previous
section we select K frames or subspaces by sampling the interpolating curves.
To illustrate the smoothness of the interpolating curve on the Stiefel manifold,
the 3D samples of one of the initial configurations Xi are projected in the K
sampled frames through Xj = ST

j Xi, j = 1, . . .K.520
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Instead of interpolating the points Si on the Stiefel manifold we could first
project them on the Graßmann manifold, through ψ(Si) = SiS

T
i = Pi, and

then generate the smooth curve on GGG3,2 interpolating the points (subspaces)
Pi. In order to lift this curve to SSS3,2, one can perform an SVD of the PK
interpolating subspaces to obtain one point SK in the Stiefel manifold such that525

SKS
T
K = PK . However, since ψ−1(PK) = {SKeΩ : Ω ∈ so(k)}, that is, there

are infinitely many frames generating the same subspace, smoothness and even
continuity of the lifted curve is lost. This is the main drawback of performing the
interpolation on the Graßmann manifold when the objective is to have smooth
changes of the initial configurations in the reduced space.530

Figures 8 and 9 show several sequences resulting from the interpolation on
the Stiefel manifold (using the modified Casteljau algorithm), compared with
the same sequences resulting from the interpolation on the Graßmann manifold.
Note that smooth changes are observed in the Stiefel case and jumps are ob-
served in the Graßmann case. These experiments illustrate the advantages of535

solutions obtained with the modified Casteljau algorithm when compared with
solutions that result from interpolating the projected data on the Graßmann
manifold and then projecting back on the Stiefel manifold. While the former
guarantees a smooth interpolating curve, the later doesn’t guarantee smooth-
ness, not even continuity, of the curve interpolating the subspaces representing540

the data sets.

8. Conclusion

The generalisation of the classical Casteljau algorithm can be used to gen-
erate interpolating polynomial splines on manifolds. This algorithm is based on
successive linear interpolation and can be successfully used whenever explicit545

formulas for the geodesic joining two points are available. We have imple-
mented the Casteljau algorithm on the Graßmann manifold. However, since
explicit formulas for geodesics on the Stiefel manifold that join two points are
not known, this algorithm can not be applied. To overcome this problem, we
presented a convenient modification of the Casteljau algorithm, where instead550

of geodesics we use quasi-geodesics. These curves possess very interesting prop-
erties. In particular, they have constant speed, constant covariant acceleration
and constant geodesic curvature not greater than one. The result of the imple-
mentation of the modified Casteljau algorithm is a smooth curve interpolating
data on the Stiefel manifold. The theoretical results have been tested through555

several experiments. The advantage of using interpolation on the Stiefel mani-
fold as opposed to interpolation on the Graßmann manifold is illustrated in the
previous section with two simple experiments.

The work presented here opens up new directions for research, from nume-
rical issues to more abstract questions, such as: Are quasi-geodesics optimal in560

some sense? How can quasi-geodesics be described in terms of the action of the
full isometry group of the Stiefel manifold? It is our intention to address these
issues in the near future.
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Figure 8: What is observed in the reduced 2-space when the modified Casteljau algorithm
is applied to data on Stiefel manifold SSS3,2 representing figures 8, compared with what is
observed in the reduced 2-space when the Casteljau altorithm is applied to the data projected
on the Graßmann manifold GGG3,2 and then lifted to the Stiefel manifold. Odd rows show results
from the Stiefel and even rows show results from the Graßmann.
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Figure 9: What is observed in the reduced 2-space when the modified Casteljau algorithm
is applied to data on Stiefel manifold SSS 3,2 representing figures 3, compared with what is
observed in the reduced 2-space when the Casteljau altorithm is applied to the data projected
on the Graßmann manifold GGG3,2 and then lifted to the Stiefel manifold. Odd rows show results
from the Stiefel and even rows show results from the Graßmann.
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[11] U. Helmke, K. Hüper, J. Trumpf, Newton’s method on Graßmann mani-
folds, arXiv preprint - arXiv:0709.2205 .

[12] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. 2 of595

Interscience Tracts in Pure and Applied Mathematics, Interscience Pub-
lishers, 1969.

[13] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge Univer-
sity Press, New York, 1991.

[14] N. J. Higham, Functions of Matrices: Theory and Computation, Society600

for Industrial and Applied Mathematics, Philadelphia, PA, USA, ISBN
978-0-898716-46-7, 2008.
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