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ABSTRACT

Instance-dependent label noise (IDN) widely exists in real-world datasets and usu-
ally misleads the training of deep neural networks. Noise transition matrix (NTM)
(i.e., the probability that clean labels flip into noisy labels) is used to characterize
the label noise and can be adopted to bridge the gap between clean and noisy un-
derlying data distributions. However, most instances are long-tail, i.e., the number
of occurrences of each instance is usually limited, which leads to the gap between
the underlying distribution and the empirical distribution. Therefore, the genuine
problem caused by IDN is empirical, instead of underlying, data distribution
mismatch during training. To directly tackle the empirical distribution mismatch
problem, we propose posterior transition matrix (PTM) to posteriorly model label
noise given limited observed noisy labels, which achieves statistically consistent
classifiers. Note that even if an instance is corrupted by the same NTM, the intrinsic
randomness incurs different noisy labels, and thus requires different correction
methods. Motivated by this observation, we propose an Information Fusion (IF)
approach to fine-tune the NTM based on the estimated PTM. Specifically, we adopt
the noisy labels and model predicted probabilities to estimate the PTM and then
correct the NTM in forward propagation. Empirical evaluations on synthetic and
real-world datasets demonstrate that our method is superior to the state-of-the-art
approaches, and achieves more stable training for instance-dependent label noise.

1 INTRODUCTION

Data labels annotated from human efforts, such as crowdsourcing (Yan et al., 2014; Chen et al.,
2017) and online queries (Divvala et al., 2014), may be heavily noisy in practice (Wei et al., 2022).
To make it worse, the label noise stemmed from human annotations is often instance-dependent.
For example, the images close to the decision boundary are usually prone to be mislabeled (Zhang
et al., 2021b; Zhu et al., 2021b). On the other hand, the remarkable success of deep neural networks
(DNNs) on supervised learning tasks heavily relies on the expressive power and a large number of
data with accurate labels. Unfortunately, deep neural networks memorizes noisy labels leading to
poor generalization (Zhang et al., 2017). It is challenging to learn with practical instance-dependent
label noise (IDN) due to the hidden and complicated label noise properties (Liu, 2021; Zhu et al.,
2022b; Cheng et al., 2021b; Zhu et al., 2022a).

The methods dealing with noisy labels fall into two lines, including heuristically identifying noisy
samples and statistical label noise modeling. The training of deep neural networks often learns clean
labels first (Arpit et al., 2017) and then gradually memorizes noisy labels, which is recognized as
the memorization effect. Based on the general memorization effect, the heuristic methods are all
designed by following the anomaly detection strategy: identify noisy samples based on different
behaviors (e.g., loss values) between clean and noisy samples during training Cheng et al. (2021a).
The typical methods contain sample selection (Yu et al., 2019; Han et al., 2018b), reweight samples
(Cheng et al., 2021a; Jiang et al., 2018; Ren et al., 2018), label correction (Ma et al., 2018; Tanaka
et al., 2018), and regularization (Han et al., 2018a). Although these algorithms empirically work well,
the reliability cannot be guaranteed explicitly without modeling label noise.

Another line of works relies on noise transition matrix (NTM) to model label noise statistically (Xia
et al., 2019; 2020; Patrini et al., 2017) by quantifying the probabilities that clean labels flip into noisy
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labels. Although the NTM-based methods possess theoretical guarantee, NTM estimation for each
instance under IDN is pretty challenging. To ease the estimation, some unrealistic assumptions have
been made on NTM, including instance-independent transition matrix (Liu & Guo, 2020; Wei & Liu,
2021; Li et al., 2021), symmetric transition matrix (Menon et al., 2018), upper bounded noise rate
(Cheng et al., 2020), and part-dependent label noise (Xia et al., 2020). However, under the complex
IDN, the empirical noise distribution could be highly different from the underlying noise distribution.
For example, in Figure 1, the underlying and empirical noisy distributions for long-tail instances
are different since the empirical noisy label can be either the same as or different from the clean
label. Additionally, observed noisy labels provide inductive bias toward label corruption. In other
words, the genuine problem arising from IDN is the empirical, instead of underlying, clean and noisy
distribution mismatch problem.

To mitigate the empirical distribution mismatch problem, we propose the posterior transition matrix
(PTM) to model label noise given the observed noisy labels. We adopt PTM to provably bridge the
gap between clean and noisy underlying data distributions, and empirical distribution of all anchor
points (i.e., data points that belong to a specific class almost surely (Xia et al., 2020)) simultaneously.
We also provide an easy-to-compute PTM estimation method under the low label noise condition.
To further extend the applicability, motivated by Kalman filtering (Kalman, 1960), we propose the
information fusion (IF) method to linearly combine the estimated NTM and PTM, which achieves
lower transition matrix estimation error. We empirically show that the proposed IF method can achieve
higher accuracy and more stable training. The main contributions of this work are summarized below.

• We propose a new concept of PTM to achieve statistically consistent classifiers for underlying
distribution mismatch and anchor point empirical distribution mismatch simultaneously.

• We propose a simple yet effective PTM estimation method based on observed noisy labels under
the condition of low label noise ratio. To extend the applicability, we propose an IF method, which
combines the estimated NTM and PTM to achieve lower estimation error with both theoretical
and experimental justifications.

• We experimentally demonstrate that the proposed IF method achieves higher accuracy and more
stable training under synthetic and real-world label noise.
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Figure 1: Illustration of the thought experiment. Assume we use identified noise transition matrix
(NTM) to corrupt the instance with clean label [0, 1]. From the underlying distribution perspective,
the noisy underlying distribution is [0.3, 0.7]. From the empirical distribution perspective, the label
of this sample is statistically either the same as (case 1) or different from (case 2) the clean label,
leading to different PTM. In other words, the observed noisy labels (posterior information) provide
inductive bias of label correction, which motivates the notion of PTM.

2 PRELIMINARIES

Throughout this paper, we adopt uppercase letters to denote random variables, and lowercase letters
to denote particular realization of the random variables. We target the c-class classification problem
with instance-dependent label noise (IDN). Let P(X,Y ) be the underlying clean distribution of the
random variables (X,Y ), where X and Y represent the instance and clean label, respectively. In
real-world scenarios, clean labels are usually corrupted, and thus only noisy labels, denoted as Ỹ ,
are observed. Given a set of N training instances denoted by D̃ := {(xn, ỹn)}Nn=1, where xn is the
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instance vector of the n-th sample and ỹn ∈ [c] := {1, · · · , c} is the corresponding observed noisy
label, our goal is to predict the clean label yn for any given instance xn.

Data distribution. We assume that the unobserved clean samples (xn, yn) and available noisy
samples (xn, ỹn) are drawn from the unknown underlying clean distribution P(X,Y ) and the under-
lying noisy distribution P(X, Ỹ ), respectively. For the noisy samples D̃, we may approximate the
underlying noisy distribution by the empirical noisy distribution, i.e., P̂D̃(X, Ỹ ) = 1

N

∑N
n=1 δ(X =

xn, Ỹ = ỹn), where δ(X = xn, Ỹ = ỹn) is a Dirac mass centered at (xn, ỹn). Since clean data
samples are unobserved, we define the posterior empirical clean distribution P̂(X,Y |D̃) as the
inferred posterior empirical clean distribution from the noisy samples D̃. Based on Bayes’ rule, the
posterior empirical clean distribution is given by P̂(X,Y |D̃) = 1

N

∑N
n=1

∑c
yn=1 δ(X = xn, Y =

ỹn)P(Y = yn|Ỹ = ỹn, X = xn).

Noise transition matrix T (x). To describe the corruption process of the clean label, the NTM
T (x) ∈ Rc×c is defined as Ti,j(x) = P(Ỹ = j|Y = i,X = x), which represents the transition
probability of flipping the instance x’s label from the clean i-th class to the noisy j-th class. The
probability of the underlying noisy label Ỹ given the instance x satisfies:

P(Ỹ = j|X = x) =

c∑
i=1

P(Ỹ = j|Y = i,X = x)P(Y = i|X = x) =

c∑
i=1

Tij(x)P(Y = i|X = x).

The NTM T (x) hence bridges the gap between the underlying clean label probability P(Y|X =

x) =
[
P(Y = 1|X = x), · · · ,P(Y = c|X = x)

]⊤
and underlying noisy label probability

P(Ỹ|X = x) =
[
P(Ỹ = 1|X = x), · · · ,P(Ỹ = c|X = x)

]⊤
given the instance x, i.e.,

P(Ỹ|X = x) = T (x)⊤P(Y|X = x).

Loss correction method. Let function f(·) represent a neural network and f(x) denote the c-
dimensional output probability for instance x, where the ith index of the output fi(x) represents
the predicted probability for class i. The common approach is to minimize the cross-entropy (CE)
loss l(f(x), y) := − log(fy(x)) to force the output fy(x) to approximate 1. However, the label
noise may mislead a deep learning model. The existing NTM-based methods first estimate NTM
T (x) and then adopt it to correct the loss function. For example, in the forward correction procedure
(Patrini et al., 2017), the estimated NTM is adopted to corrupt the predicted probability f(x), i.e., the
corrupted predicted probability is f̃(x) = T (x)⊤f(x), and then the corrupted predicted probability
is enforced to approximate the noisy label ỹ. Suppose T (x) is non-singular and the loss function
is proper and composite. The forward loss correction can achieve a consistent classifier, i.e., the
optimal classifier for the corrected loss with respect to the underlying noisy distribution is the same
as that for the CE loss with respect to the underlying clean distribution:

argmin
f

E(X,Ỹ )∼P(X,Ỹ )[l(Ỹ , T (X)⊤f(X))] = argmin
f

E(X,Y )∼P(X,Y )[l(Y, f(X))]. (1)

3 LEARNING WITH INFORMATION FUSION

Even though the existing loss correction methods could achieve consistent classifiers theoretically,
their performances are still undesirable in practice. Since a deep learning model is often trained on
the empirical distribution with limited samples, the NTM cannot correctly bridge the empirical clean
distribution and empirical noisy distribution, i.e., P̂(Ỹ = j|X = x) ̸=

∑c
i=1 Tij(x)P̂D̃(Y = i|X =

x). In other words, the NTM-based method may not work well in practice due to the empirical clean
and noisy distribution mismatch problem in IDN.

With the goal of utilizing the observed noisy labels, we propose a concept, named posterior transition
matrix (PTM), to describe the transition probabilities given the observed noisy labels (formally defined
in Section 3.1). The motivation for PTM stems from a simple thought experiment as shown in Figure 1,
which shows that PTM can model the empirical label noise better than NTM. Figure 2 illustrates the
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Figure 2: The overview of IF. NTM can be estimated beforehand based on the previous work (Xia
et al., 2020). PTM estimation is iteratively obtained based on model prediction and observed label.
Subsequently, IF adopts a linear combination for NTM and PTM to reduce the estimation error.
Finally, a posterior loss function is proposed to tackle IDN.

overall framework of IF, including NTM and PTM estimations (Section 3.2), information fusion via
linear combination (Section 3.3), and posterior loss function (Section 3.1).

3.1 THE LOSS CORRECTION METHOD

The main goal is to train a c-class neural network classifier f(x, ω) to predict the clean label
probability P(Y |X). Since only the noisy labels are observed, there is a gap between the clean and
noisy label, described via NTM (Goldberger & Ben-Reuven, 2017).

Motivated by the observed noisy labels (i.e., posterior information), we define the PTM W (x) to
describe the posterior clean label probability given noisy labels, where Wi,j(x) = P(Y = i|Ỹ =
j,X = x). We provide the relationship between the PTM W (x) and NTM T (x) via Bayes’ rule:

Wi,j(x) =
P(Y = i, Ỹ = j|X = x)

P(Ỹ = j|X = x)
=

P(Y = i|X = x)Tij(x)∑c
i=1 P(Y = i|X = x)Tij(x)

. (2)

Notice that the summation of any column is 1 for PTM W (x), while the summation of any row is 1
for NTM T (x). Subsequently, we provide a posterior reweight loss correction method via NTM.

Definition 1 (Posterior reweight loss) Assume the model prediction is f(x) for noisy sample (x, ỹ)
and W (x) is the PTM associated with the noisy sample. The posterior reweight loss is defined as

lp−rew

(
ỹ, f(x)

)
=

c∑
i=1

Wi,ỹ(x)l(i, f(x)). (3)

We next analyze the property of the posterior reweight loss and provide the theoretical justification.
Specifically, we analyze the expected risk RP(X,Ỹ )(f) = E(x,ỹ)∼P(X,Ỹ )[lp−rew

(
ỹ, f(x)

)
] and

empirical risk R̂D̂(f) =
1
N

∑N
n=1 lp−rew

(
ỹn, f(xn)

)
under the noisy samples.

Theorem 3.1 (Statistically Consistent Classifier) The posterior reweight loss can achieve an con-
sistent classifier for the underlying distribution and empirical distribution.

(i) For the underlying distribution, the expected risk satisfies

argmin
f

E(x,ỹ)∼P(X,Ỹ )

[
lp−rew

(
ỹ, f(x)

)]
= argmin

f
E(x,y)∼P(X,Y )[l(y, f(x))]. (4)

(ii) For the anchor point samples (xap, ỹap) with the underlying clean probability P(Y = yap|X =
xap), the empirical risk satisfies lp−rew

(
ỹap, f(xap)

)
= l(yap, f(xap)). For the empirical

distribution, the empirical risk satisfies

argmin
f

E(x,ỹ)∼P̂D̃(X,Ỹ )

[
lp−rew

(
ỹn, f(xn)

)]
= argmin

f
E(x,y)∼P̂(X,Y |D̃)

[
l(yn, f(xn))

]
. (5)

We also show that the PTM can be adopted in the forward manner. The definition of the posterior
reweight loss is given below.
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Definition 2 (Posterior forward loss) Assume the model prediction is f(x) for noisy sample (x, ỹ)
and W (x) is the PTM associated with the noisy sample. The posterior forward loss is defined as

lp−fw

(
ỹ, f(x)

)
= l

(
ỹ,

c∑
i=1

Wi,ỹ(x)fi(x)
)
. (6)

We next analyze the property of the posterior forward loss and provide the theoretical justification.

Lemma 3.2 The posterior forward loss is not larger than the posterior reweight loss
lp−rew

(
ỹ, f(x)

)
≥ lp−fw

(
ỹ, f(x)

)
.

Theorem 3.3 (Statistically Consistent Classifier) Given that the loss function l(y, f) is convex
with respect to f (the convex condition can be commonly satisfied, e.g., the cross-entropy loss) and
that the minimum expected risk RP(X,Y )(f) can achieve 0, the posterior forward loss can achieve an
consistent classifier for the underlying distribution,

argmin
f

E(x,ỹ)∼P(X,Ỹ )

[
lp−fw

(
ỹ, f(x)

)]
= argmin

f
E(x,y)∼P(X,Y )[l(y, f(x))]. (7)

By comparing the posterior forward loss with the forward loss (Patrini et al., 2017), it can be seen
that both of them correct the output of a neural network with statistically consistent risk guarantee,
while the difference falls into the different transition matrices used in the loss correction. In addition,
the statistically consistent risks for the forward loss and posterior forward loss both require accurate
transition matrix estimation. However, the NTM and PTM estimation is highly challenging since
label noise is instance-dependent in reality. Such an observation motivates us to combine both NTM
T (x) and PTM W (x) to correct the loss.

Motivated by Kalman filtering (Kalman, 1960), a famous estimation method combining prior knowl-
edge and measurement information, we propose an Information Fusion (IF) approach to tackle
instance-dependent label noise via loss correction. Specifically, we first claim that there is prior
knowledge information and measurement information in the label noise, where prior knowledge
information and measurement information correspond to the estimated NTM and PTM, respectively.
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Figure 3: Estimation error for CIFAR10

3.2 PTM ESTIMATION

The posterior loss correction requires knowing
PTM W (x) given any instance x. However, the
PTM is unknown and needs to be estimated. In
this subsection, we provide a simple yet effec-
tive PTM estimation method under the condition
that the neural network output f(X) probability
can well approximate the underlying probability
P(Y |X), i.e., f(x) ≈ W (X = x)P̂(Ỹ|X =
x). Intuitively, this condition seems strong since
a neural network is prone to overfit noisy data. To achieve this condition, the warm-up training
strategy and iterative PTM estimation are adopted. Warm-up training can make “good” neural
network outputs approximating the empirical clean distribution since the network fits clean samples
in the beginning of training (Liu et al., 2020). Subsequently, we iteratively estimate the PTM for loss
correction during training.

For the case that the number of occurrences of instance x is large, the empirical noisy distribution
converges to the underlying noisy distribution, i.e., P̂(Ỹ|X = x) −→ P(Ỹ|X = x). For a long-tail
instance with only a single occurrence (x, ỹ), the empirical noisy label distribution is always one-hot.
Thus, this condition requires that the output of neural network f(x) should approximate to the
underlying posterior clean probability, which is quite strong.

Under this condition, we propose a PTM estimation method based on the noisy labels and the model
predicted probability. Compared with the NTM estimation method (Xia et al., 2019; 2020), the
proposed estimation method does not require the anchor point assumption that some data points
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belong to a specific class almost surely. Specifically, the PTM can be estimated as Ŵi,j(x) = fi(x)
if ỹ = j, otherwise is 0. For the case that the number of occurrences is larger than one, the PTM
estimation is ill-posed since the number of unknown variables c2 is larger than the number of
constraint c (i.e., number of classes). Thus, we choose the PTM with the minimum Frobenius norm,
which is consistent with the case of having only a single occurrence. Specifically, we have the
following theorem.

Theorem 3.4 (Posterior transition matrix estimation) The optimal solution to finding the PTM
with the minimal Frobenius norm, i.e.,

Ŵ (x) = argmin
W

||W ||2F

s.t.W⊤(x)P̂(Ỹ |x) = f(x), for ∀x

is given below:

Ŵ (x) =
f(x)P̂(Ỹ |x)⊤

||P̂(Ỹ |x)||22
. (8)

Theorem 3.4 provides the PTM estimation for general empirical noisy label distributions. For the case
of instance x with only a single occurrence, the empirical noisy distribution satisfies ||P̂(Ỹ |x)||2 = 1,
and achieves consistent estimated PTM in Equation (8).

3.3 INFORMATION FUSION

Section 3.2 introduces the PTM estimation method based on the observed noisy labels. However,
the condition that a neural network approximates clean labels could still be strong even after the
warm-up strategy and iterative estimation are adopted, and PTM estimation error could be large for
large IDN rates. To further reduce the estimation error, motivated by Kalman filtering, we propose the
information fusion (IF) approach to obtain more accurate transition matrix estimation via weighted
average of PTM estimation and NTM estimation with both intuitive and theoretical justifications1.
Intuitively, for each instance, the estimated NTM and PTM may have different estimation accuracy,
and, therefore, it is possible to obtain a more accurate transition matrix estimation by adaptively and
linearly combine these two matrices. Specifically, we first quantify the estimation uncertainty and
assign higher weight for the estimation with lower uncertainty. In this way, a more accurate estimated
transition matrix can be generated.

Before illustrating the information fusion algorithm, we need to quantify the transition matrix
estimation error without ground truth. Suppose posterior forward loss is adopted. For the estimated
NTM T̂ (x), the corrupted model predicted probability is f̃(x) = T̂⊤(x)f(x). If the corrupted
model predicted probability is accurate, the noisy label Ỹ satisfies c-dimension Bernoulli distribution
with parameter f̃(x), i.e., Ỹ ∼ Bernoulli

(
T̂⊤(x)f(x)

)
, where Bernoulli(·) represents a multi-

dimension Bernoulli distribution. Furthermore, we define the uncertainty σT̂ for transition matrix
T̂ (x) as the trace of the covariance matrix for Ỹ , i.e., σT̂ (x) = Tr(KỸ (x)), where Tr(·) means
the trace of a matrix, KỸ (x) represents the covariance matrix of random variable Ỹ . For the
multi-dimension Bernoulli distribution, we have the covariance matrix as follows,

KỸ = E[(Ỹ − E[Ỹ ])(Ỹ − E[Ỹ ])⊤] = diag(T̂⊤(x)f(x))− T̂⊤(x)f(x)f(x)⊤T̂ (x).

Taking trace operation on the covariance matrix, we have the uncertainty for NTM as σT̂ (x) =

||T̂⊤(x)f(x)||1 − ||T̂⊤(x)f(x)||2. Similarly, the uncertainty for the PTM is given by σŴ (x) =

||Ŵ⊤(x)f(x)||1− ||Ŵ⊤(x)f(x)||2. Once the uncertainty has been established, we further integrate
the two estimated transition matrices into a Kalman transition matrix, defined as Wkm(x), via a
weighted average operation. Mathematically, the Kalman transition matrix is given by

Wkm(x) = (1− λ(x))T̂ (x) + λ(x)Ŵ (x), (9)

1The core idea for more accurate estimation is similar to statistical efficiency (Gong et al., 2020) via
generating two “auxiliary” estimators. The key difference is the generation manner: IF generates NTM and PTM
from the prior and posterior perspectives, while statistical efficiency generates two different noisy labels.
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where the Kalman gain λ(x) is carefully selected to minimize the estimation error. Let the true
PTM be W ∗(x), where W ∗

ij(x) = 1 if y = i and ỹ = j, otherwise 0. Subsequently, we define the
reconstruction error for NTM and PTM as eT (x) = W ∗(x)− T̂ (x) 2 and eW (x) = W ∗(x)−Ŵ (x),
respectively. The parameter λ(x) is determined via minimizing the mean square reconstruction error.
We theoretically justify the superiority of IF for a general scenario.

Theorem 3.5 (Theoretical justification of IF) Let the correlation coefficient between reconstruc-
tion error eT (x) and eW (x) be cov(x) ∈ [−1, 1]. The trace of the covariance matrix for error
eT̂ (x) and eŴ can be quantified by σT̂ (x) and σŴ (x), i.e., Tr(eT̂ (x)e

⊤
T̂
(x)) = σT̂ (x) and

Tr(eŴ (x)e⊤
Ŵ
(x)) = σŴ (x). For the Kalman transition matrix Wkm, let the reconstruction error

be Lmse(λ(x)) = Tr
(
(W ∗(x)−Wkm(x))(W ∗(x)−Wkm(x))⊤

)
. Then the optimal Kalman gain

to minimize the reconstruction error is given by

λ∗(x) = argmin
λ

Lmse(λ) =
σT̂ (x)− cov(x)

√
σT̂ (x)σŴ (x)

σT̂ (x) + σŴ (x)− 2cov(x)
√
σT̂ (x)σŴ (x)

, (10)

and the minimum reconstruction error satisfies Lmse(λ
∗(x)) ≤ min(σT̂ (x), σŴ (x)).

Theorem 3.5 implies that the Kalman transition matrix Wkm(x) provably achieves lower estimation
error for general eT (x) and eW (x), either correlated or independent.

4 EXPERIMENTS

In this section, we empirically evaluate the effectiveness and stability of our IF approach on synthetic
and real-world noisy datasets. We aim to answer two questions as follows. Q1: Compared with the
state-of-the-art transition matrix based methods, can IF achieve higher accuracy? Q2: Can IF lead to
more accurate and robust transition matrix estimation and more stable training?

4.1 EXPERIMENTAL SETTINGS

Datasets. We verify the superiority of IF on three manually corrupted datasets, i.e., F-MNIST,
SVHN, CIFAR-10, and one real-world noisy dataset Clothing1M. The first three datasets contain
clean data, and we manually corrupt the labels of the training datasets by following (Xia et al., 2020).
IDN-τ means that the controlled noise rate is τ . All experiments on those datasets with synthetic
instance-dependent label noise are repeated five times. The real-world dataset Clothing1M has 1M
images with real-world noisy labels and 10k images with clean labels for testing. In the experiments,
we leave out 10% of the noisy training samples as a noisy validation set for model selection.

Baselines. We compare the proposed IF method with (i) CE, which trains a standard deep network
with the cross-entropy loss on noisy datasets; (ii) DMI, a novel information-theoretic robust loss
function for instance-independent label noise (Xu et al., 2019); (iii) Forward (Patrini et al., 2017),
Reweight (Liu & Tao, 2015), and T-Revision (Xia et al., 2019); (iv) part-dependent transition matrix
(PTD) (Xia et al., 2020); (v) instance-level forward correction (ILFC) (Berthon et al., 2021). All
these approaches utilize the NTM to correct the loss function.

Implementations. We choose standard neural networks and optimizers. Specifically, we use
a ResNet-18 network for F-MNIST, a ResNet-34 network for SVHN and CIFAR-10. For the
optimization, we first use SGD with 0.9 momentum, 10−4 weight decay, 128 batch size, 50 epochs
and an initial learning rate of 10−2 to initialize the network. Then, we adopt Adam optimizer and
5×10−7 learning rate to learn the NTM following PTD (Xia et al., 2020). Once the NTM is obtained,
we retrain the neural network. In the forward propagation, the Kalman transition matrix is obtained
and then adopted to correct the loss function. In addition, the revision trick (Xia et al., 2019) is also
adopted for our proposed IF method, which introduces the slack variables ∆W for the estimated

2The ideal estimated transition matrix is to approximate the empirical (actual) transition matrix W ∗(x),
instead of the expectation of label transition matrix. Therefore, the estimation error is defined to characterize the
bias–variance tradeoff for transition matrix estimation.
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Table 1: Means and standard deviations (percentage) of classification accuracy with different instance-
dependent label noise levels. Methods with “-F” adopt the Forward correction loss; methods with
“-V” mean that the transition matrices are revised via the slack variable trick.

Dataset Method IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%.

SVHN

CE 90.77± 0.45 90.23± 0.62 86.33± 1.34 65.66± 1.65 48.01± 4.59
DMI 93.51± 1.09 93.22± 0.62 91.78± 1.54 69.34± 2.45 48.93± 2.34

Forward 90.89± 0.60 90.65± 0.27 87.32± 0.59 78.46± 2.58 46.27± 3.90
Reweight 92.49± 0.44 91.09± 0.34 90.25± 0.77 84.48± 0.86 45.46± 3.56

T-Revision 94.24± 0.53 94.00± 0.88 93.01± 0.83 88.63± 1.37 49.02± 4.33
ILFC 92.08 ± 0.12 91.67 ± 0.16 90.80 ± 0.15 89.16 ± 0.67 65.69 ± 6.54

PTD-F 91.92± 0.87 90.21± 1.01 87.11± 1.43 81.10± 2.78 67.81± 5.41
PTD-F-V 92.64± 0.81 93.94± 0.25 92.71± 0.44 90.71± 0.91 80.35± 5.46
PTM-F 93.78 ± 0.12 92.55 ± 0.40 89.25 ± 0.09 81.89 ± 2.82 67.30 ± 3.07

PTM-F-V 93.89 ± 0.10 92.72 ± 0.18 88.97 ± 0.26 81.14 ± 2.06 68.95 ± 3.02
IF-F 94.70 ± 0.14 94.01 ± 0.31 93.33 ± 0.15 91.60 ± 0.29 85.57± 3.17

IF-F-V 94.63± 0.12 93.92± 0.26 93.21± 0.20 91.66 ± 0.23 86.24 ± 2.61

CIFAR10

CE 74.49± 0.29 68.21± 0.72 60.48± 0.62 49.84± 1.27 38.86± 2.71
DMI 75.02 ± 0.45 69.89 ± 0.33 61.88 ± 0.64 51.23 ± 1.18 41.45 ± 1.97

Forward 73.45± 0.23 68.99± 0.62 60.21± 0.75 47.17± 2.96 40.75± 2.09
Reweight 74.55± 0.23 68.42± 0.75 62.58± 0.46 50.12± 0.96 41.08± 2.45

T-Revision 74.61± 0.39 69.32± 0.64 64.09± 0.37 50.38± 0.87 42.57± 3.27
ILFC 80.22 ± 0.33 74.46 ± 0.09 73.27 ± 0.24 57.00 ± 4.07 36.27 ± 0.69

PTD-F 79.77 ± 0.91 74.96 ± 0.71 70.68 ± 0.81 61.92 ± 1.59 45.34 ± 4.67
PTD-F-V 80.08 ± 0.86 74.67 ± 0.36 71.66 ± 1.05 62.45 ± 1.73 46.16 ± 4.48
PTM-F 78.16 ± 0.36 74.81 ± 0.81 70.03 ± 0.38 63.48 ± 0.38 51.03 ± 3.08

PTM-F-V 78.58 ± 0.31 75.06 ± 0.56 69.83 ± 0.58 62.69 ± 0.69 50.53 ± 3.41
IF-F 80.92 ± 0.28 79.58 ± 0.52 74.34 ± 0.86 68.21 ± 2.21 50.07 ± 3.95

IF-F-V 80.94 ± 0.43 79.54 ± 0.45 74.67 ± 0.92 68.03 ± 2.90 52.34 ± 1.31

F-MNIST

CE 88.54± 0.31 88.38± 0.42 84.22± 0.35 68.86± 0.78 51.42± 0.66
DMI 91.98 ± 0.62 90.33 ± 0.21 84.81 ± 0.44 69.01 ± 1.87 51.64 ± 1.78

Forward 89.05± 0.43 88.61± 0.43 84.27± 0.46 70.25± 1.28 57.33± 3.75
Reweight 90.33± 0.27 89.70± 0.35 87.04± 0.35 80.29± 0.89 65.27± 1.33

T-Revision 91.56± 0.31 90.68± 0.66 89.46± 0.45 87.21 ± 1.20 74.22 ± 0.81
ILFC 91.84 ± 0.04 90.47 ± 0.29 87.07 ± 2.89 86.68 ± 0.36 65.93 ± 0.29

PTD-F 91.13 ± 0.34 89.51 ± 0.65 89.01 ± 0.40 89.18 ± 0.20 75.37 ± 3.63
PTD-F-V 91.71 ± 0.28 91.18 ± 0.30 90.62 ± 0.08 89.38 ± 0.69 77.80 ± 7.29
PTM-F 91.39 ± 0.45 90.66 ± 0.07 88.48 ± 0.09 83.20 ± 1.02 63.85 ± 3.92

PTM-F-V 91.73 ± 0.32 91.07 ± 0.14 88.87 ± 0.62 82.20 ± 0.92 64.23 ± 4.73
IF-F 91.58 ± 0.16 91.23 ± 0.09 90.10 ± 0.74 89.37± 0.26 82.78 ± 0.21

IF-F-V 92.08 ± 0.06 91.73 ± 0.19 90.82 ± 0.33 90.32 ± 0.12 83.33 ± 0.73

Kalman transition matrix. Specifically, the slack variable ∆W is initialized as all zero elements in
the experiments and can be optimized during the training. To guarantee valid transition matrices, We
first project their negative entries of Wkm(x) + ∆W to zero and then normalize the summation of
each row to be 1. Following (Xia et al., 2020), we do not use any data augmentation technique in
the experiments. For Clothing1M, we use a ResNet-50 pre-trained model on ImageNet. We do not
use any clean data to learn the transition matrices and classifiers. After the NTM T̂ (x) is obtained
according to (Xia et al., 2020), we use SGD with 0.9 momentum, 10−3 weight decay, 32 batch size,
and run with 10−3 learning rate and 10 epochs. For the evaluation, we adopt the test accuracy of the
epoch with best accuracy on validation datasets.

4.2 EXPERIMENTAL RESULTS

Accuracy on synthetic and real-world noisy datasets. To answer Q1, Figure 3 shows the esti-
mation errors of PTD, PTM (i.e., only adopt PTM in loss correction) and IF methods with noise
rate IDN-10% to IDN-40%, where the estimation error is defined as the average difference of the
transition probability err = 1

N

∑N
n=1(1− Ŵynŷn

). It can be observed that IF can achieve the lowest
estimation error over all noise ratios3. Table 1 reports the classification accuracy on the SVHN,
CIFAR-10 and F-MNIST with noise rate IDN-10% to IDN-50%, where the highest accuracy is bold
faced. We can observe that IF achieves better performance than all baselines across all the three
datasets and five noise rates. For example, in CIFAR-10, the improvements over the strongest baseline

3The transition matrix estimation for instance-dependent label noise is more challenging than the counterpart
for class-dependent label noise (Li et al., 2021).
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Table 2: Classification accuracy on Clothing1M. In the experiments, only noisy samples are exploited
to train and validate the deep model.

CE Forward Reweight T-Revision PTD-F PTD-F-V ELR IF-F IF-F-V
68.94 69.98 70.82 71.27 70.37 70.62 71.86 72.04 72.29

is 1.07%, 0.83%, 4.03%, 9.22%, 9.89% for noise rate IDN-10% to IDN-50%, respectively. The
higher accuracy implies that the posterior information is more important for higher noise rates. In
addition, the methods IF-F and IF-F-V are comparable across the three datasets and noise rates, which
demonstrates that the revision on the transition matrix is not significantly beneficial compared with
the method PTD. This observation validates the effectiveness of posterior information on transition
matrix modification. For the real-world dataset Clothing1M, IF outperforms the baselines as shown
in Table 2. Our IF method achieves 0.5% improvements over the strongest baseline early-learning
regularization (ELR) (Liu et al., 2020).

Transition matrix estimation evaluation. We study the transition matrix estimation error in the
training data for IF and PTM to answer Q2. Figure 4 shows the training accuracy and estimation
error of each epoch on the CIFAR10 dataset with noise rate IDN-10% to IDN-40%, respectively.
The shadow area represents the standard deviation. For all IDN rates, IF can achieve higher training
accuracy and lower estimation error compared with PTM.

Figure 4: The training accuracy and transition matrix estimation error on the CIFAR-10 dataset with
IDN noise 0.1, 0.2, 0.3, and 0.4.

Stability on synthetic noisy datasets. We study the training stability via inspecting the test accuracy
over epochs to further answer Q2. Figure 5 shows the test accuracy with respect to epochs on the
CIFAR10 dataset with noise rate IDN-10% to IDN-40%, respectively. The shadow area represents
the standard deviation of the accuracy on the same epoch across five experiments. We can clearly
observe that, on both low-level and high-level noise, IF shows higher accuracy in a more stable way
since the posterior information of each instance provides reliable guidance on loss correction.

Figure 5: The test accuracy on the CIFAR-10 dataset with IDN noise 0.1, 0.2, 0.3, and 0.4.

5 CONCLUSIONS

This paper presents a novel notion of PTM and a simple yet effective learning paradigm named
information fusion, which trains deep neural networks under instance-dependent label noise. The
main goal of PTM is to characterize the label noise via limited observed noisy labels, which can
bridge the empirical noisy and posterior empirical clean distributions. To effectively combine the
benefits of NTM and PTM, we propose an information fusion approach to integrate both transition
matrices to correct the loss function. Experiments on synthetic and real-world noisy datasets show
that IF can achieve higher accuracy and more stable training compared with state-of-the-art methods,
especially for high noise rates. In the future, we can extend to incorporate more prior knowledge of
the transition matrix, e.g., sparsity or low rank, into the end-to-end learning algorithm.
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In this Appendix, we provide A) theoretical analysis, B) Reproducibility, C) Additional Experimental
Results, and D) Related Works.

A THEORETICAL ANALYSIS

A.1 PROOF OF THEOREM 3.1

Based on the definition of posterior reweight loss, we have lp−rew

(
ỹ, f(x)

)
=

∑c
y=1 P(Y =

y|Ỹ = ỹ, X = x)l(y, f(x)). For noisy underlying distribution, the expected risk can be calculated
as follows,

E(x,ỹ)∼P(X,Ỹ )

[
lp−rew

(
ỹ, f(x)

)]
=

∫
x

c∑
ỹ=1

P(X = x, Ỹ = ỹ)lp−rew

(
ỹ, f(x)

)
dx

=

∫
x

c∑
ỹ=1

P(X = x, Ỹ = ỹ)

c∑
y=1

P(Y = y|Ỹ = ỹ, X = x)l
(
y, f(x)

)
dx

=

∫
x

c∑
ỹ=1

c∑
y=1

P(X = x, Y = y, Ỹ = ỹ)l
(
y, f(x)

)
dx

=

∫
x

c∑
y=1

P(X = x, Y = y)l
(
y, f(x)

)
dx = E(x,y)∼P(X,Y )

[
l
(
y, f(x)

)]
, (11)

which implies that posterior reweight loss over noisy underlying distribution equals to cross entropy
loss over clean underlying distribution and thus posterior reweight loss induces to statistically
consistent classifier.

For the anchor point samples (xap, ỹap) with underlying clean probability P(Y = yap|X = xap),
based on equation (2), the PTM value satisfies Wyap,ỹap(x) = 1 and Wk,ỹap = 0 for any k ̸= yap,
which implies that empirical distribution mismatch on anchor points samples can be completely
mitigated. As for empirical distribution, the empirical risk satisfies

lp−rew

(
ỹap, f(xap)

)
= l(yap, f(xap)). (12)

For noisy empirical distribution, the expected risk satisfies

E(x,ỹ)∼P̂D̃(X,Ỹ )

[
lp−rew

(
ỹ, f(x)

)]
=

1

N

N∑
n=1

lp−rew

(
ỹi, f(xi)

)
=

1

N

N∑
n=1

c∑
y=1

P(Y = y|Ỹ = ỹn, X = xn)l(y, f(x))

= E(x,y)∼P̂(X,Y |D̃)

[
l(yn, f(xn))

]
. (13)

which implies that posterior reweight loss over noisy empiricial distribution equals to cross entropy
loss over posterior clean empirical distribution.

A.2 PROOF OF LEMMA 3.2

Note that the loss function l(y, f) is convex with respect to f and
∑c

i=1 Wi,ỹ(x) =
∑c

i=1 P(Y =

i|Ỹ = ỹ, X = x) = 1 for any ỹ and x, according to Jensen’s inequality, we have

lp−rew

(
ỹ, f(x)

)
=

c∑
y=1

Wi,ỹ(x)l(y, f(x))

≥ l
(
ỹ,

c∑
i=1

Wi,ỹ(x)f(x)
)
= lp−fw

(
ỹ, f(x)

)
, (14)

which shows the relation between posterior reweight loss and posterior forward loss.
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A.3 PROOF OF THEOREM 3.3

Based on Lemma 3.2 and Theorem 3.1, we have the inequality on the expected risk as follows,

E(x,ỹ)∼P(X,Ỹ )

[
lp−fw

(
ỹ, f(x)

)]
≤ E(x,ỹ)∼P(X,Ỹ )

[
lp−rew

(
ỹ, f(x)

)]
= E(x,y)∼P(X,Y )[l(y, f(x))],

Define the optimal classifier f∗ to minimize expected risk for underlying clean distribution and cross
entropy loss as

f∗ = argmin
f

RP(X,Y )(f) = argmin
f

E(x,y)∼P(X,Y )[l(y, f(x))], (15)

then RP(X,Y )(f
∗) = 0 and for lp−rew

(
ỹ, f∗(x)

)
= 0 for any x. Note that the expected risk for

posterior forward loss is non-negative and not larger than that for posterior reweight loss, we also
have lp−fw

(
ỹ, f∗(x)

)
= 0 for any x. In addition, the difference of expected risk for two different

classifiers satisfies

E(x,ỹ)∼P(X,Ỹ )

[
lp−fw

(
ỹ, f∗(x)

)]
− E(x,ỹ)∼P(X,Ỹ )

[
lp−fw

(
ỹ, f(x)

)]
= −E(x,ỹ)∼P(X,Ỹ )

[
lp−fw

(
ỹ, f(x)

)]
≤ 0, (16)

which implies that the classifier f∗ can also minimize expected risk for underlying noisy distribution
and posterior reweight loss. This completes the proof.

A.4 PROOF OF THEOREM 3.4

Aiming to standardize the constraint, we vectorize W (x) as c2 × 1 dimension wvec(x) :=
[W11(x), · · · ,Wc1(x), · · · ,W1c(x), · · · ,Wcc(x)]

⊤ and define the coefficient matrix A(x) as fol-
lows,

A(x) =


P̂⊤(Ỹ|x) · · · 0 · · · 0

0 P̂⊤(Ỹ|x) 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · P̂⊤(Ỹ|x)


c×c2

(17)

where P⊤(Ỹ|x) = [P(Ỹ = 1|x), · · · ,P(Ỹ = c|x)]1×c. Therefore, the constraint W⊤(x)P̂(Ỹ |x) =
f(x) can be transformed as A(x)wvec(x) = f(x), which is a least-norm problem with undetermined
equations constraint. Note that matrix A(x) is full column rank, we can prove that the least-norm
solutions is

w∗
vec(x) = A⊤(x)

(
A(x)A⊤(x)

)−1

f(x). (18)

Considering any possible solution wvec(x) satisfying the constraint A(x)wvec(x) = f(x), then
A(x)[wvec(x)−w∗

vec(x)] = 0 and

[wvec(x)−w∗
vec(x)]

⊤w∗
vec(x) = [wvec(x)−w∗

vec(x)]
⊤A⊤(x)

(
A(x)A⊤(x)

)−1

f(x)

=
[
A(x)[wvec(x)−w∗

vec(x)]
]⊤(

A(x)A⊤(x)
)−1

f(x) = 0,

which implies that the vectors wvec(x) − w∗
vec(x) and w∗

vec(x) are perpendicular. Thus, the L2

norm of wvec(x) satisfies

||wvec(x)||2 = ||w∗
vec(x) +wvec(x)−w∗

vec(x)||2

= ||w∗
vec(x)||2 + ||wvec(x)−w∗

vec(x)||2 ≥ ||w∗
vec(x)||2. (19)

which shows that the equation (18) is the optimal solution. Via direct calculation, it is easy to obtain
that A(x)A⊤(x) =

∑c
j=k P̂2(Ỹ = k|x)Ic×c. Therefore, the element of PTM satisfies

W ∗
ij(x) =

c∑
k=1

P̂2(Ỹ = k|x)P̂(Ỹ = i|x)fj(x), (20)

i.e., W ∗(x) = f(x)P̂(Ỹ |x)⊤

||P̂(Ỹ |x)||22
and completes the proof.
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A.5 PROOF OF THEOREM 3.5

Considering the general reconstruction error relationship, the trace of the covariance matrix for
reconstruction error satisfies Tr(eT̂ (x)e

⊤
Ŵ
(x)) = cov(x)

√
σT (x)σW (x). For Kalman transition

matrix, the reconstruction deviation satisfies W ∗(x)−Wkm(x) = (1− λ)eT (x) + λeW (x). For
simplicity, we remove the instance x to abbreviate the notations. Therefore, the reconstruction error
is given by

Lmse(λ) = E
[
Tr

((
(1− λ)eT + λeW

)(
(1− λ)eT + λeW

)⊤)]
= (1− λ)2σT + λ2σW + 2λ(1− λ)cov

√
σTσW , (21)

For such quadratic function, it is easy to obtain the optimal parameter via the local minimal

∂Lmse

∂λ
= 2(1− λ)σT + 2λσW + 2(1− 2λ)cov

√
σTσW = 0, (22)

and thus the optimal weight is given by λ∗ =
σT−cov

√
σTσW

σT+σW−2cov
√
σTσW

. Plugging in the optimal weight
into the reconstruction error, we obtain the minimal reconstruction error is given by

Lmse(λ
∗) =

1

[σT + σW − 2cov
√
σTσW ]2

{
σT

[
σW − cov

√
σTσW

]2
+σW

[
σT − cov

√
σTσW

]2
+2

[
σW − cov

√
σTσW

][
σT − cov

√
σTσW

]
cov

√
σTσW

}
(23)

Aiming to investigate the relation between minimal reconstruction error for IF, PTM and PTD,
we adopt variable substitution t = σT + σW − 2cov

√
σTσW ≥ 0 to further simplify minimal

reconstruction error Lmse(λ
∗), then we have

Lmse(λ
∗) =

σT [(σW − σT ) + t]

4t2
+

σW [(σT − σW ) + t]

4t2

+
[(σT − σW ) + t][(σW − σT ) + t][(σW + σT )− t]

4t2

=
σW + σT

2
−
[ t
4
+

(σW − σT )
2

4t
]

≤ σW + σT

2
− 2

√
t

4
· (σW − σT )2

4t
= min{σW , σT } (24)

where the inequality holds according to arithmetic mean-geometric mean inequality. Therefore, the
linear combination can provably achieve lower estimation error for general eT (x) and eW (x), either
correlated or independent.

B REPRODUCIBILITY

B.1 DATASET STATISTICS

For fairly comparison with previous work, we performance the image classification task on the three
manually corrupted datasets, i.e., F-MNIST, SVHN, CIFAR-10, and one real-world noisy dataset
Clothing1M. They have been widely adopted to study label noise problem. The detailed statistics are
listed in Table 3.

Table 3: Dataset statistics on F-MNIST, SVHN, CIFAR-10, and Clothing1M

F-MNIST SVHN CIFAR-10 Clothing1M

# training/noisy images 60,000 73,257 50,000 1,000,000
# test/clean images 10,000 26,032 10,000 10,000

label noise synthetic synthetic synthetic real-world
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B.2 RUNNING ENVIRONMENT

All baselines and IF approaches are implemented in PyTorch, and tested on a machine with AMD
EPYC 7282 16-core processors, 4 GeForce GTX-3090 Ti GPUs with 24GB memory size.

B.3 ALGORITHMS

We summarize the IF algorithm to correct the loss and provide the pseudo codes in Algorithm 1. For
instance-dependent Label noise generation, we provide pseudo codes with controllable noise rate are
provided in Algorithm 2. This algorithm follows the state-of-the-art method (Xia et al., 2020; Zhu
et al., 2021a), where the overall noise rate is τ .

Algorithm 1: Information Fusion Algorithm

Input :Noisy dataset D̃ = (xn, ỹn)
N
n=1; Noisy validation data; tolerant epochs t.

Output :The robust neural network over noisy label.
1 Estimate the NTM T̂ (x) according to (Xia et al., 2020) ;
2 while Validation accuracy has increases in the last t epochs do
3 Calculate the PTM Ŵ (x) based on Equation (8) ;
4 Obtain the uncertainty for noise and PTM ;
5 Calculate the Kalman gain and Kalman transition matrix based on Equations (9) and (10) ;
6 Correct the loss function as posterior forward loss with Kalman transition matrix Wkm(x) ;
7 end

Algorithm 2: Instance-Dependent Label Noise Generation

Input :Clean samples (xn, yn)
N
n=1; Overall noise rate τ ; Number of classes c; Size of input

features: 1× d.
Output :Noisy samples (xi, ỹn)

N
n=1.

1 Sample flip rate qi based on truncated normal distribution N (τ, 0.12, [0, 1]) ;
2 Sample the projection matrix W ∈ Rd×K based on normal distribution N (0, 12);
3 for n = 1 to N do
4 p = xnW // Genrate instance dependent flip rate ;
5 pyn = −∞ // Control the diagonal elements of the transition matrix ;
6 p = qn·softmax(p) // Make the sum of the off-diagonal elements to be qn ;
7 pyn = 1− qn // Set the diagonal element to be 1− qn ;
8 end

B.4 LEARNING NOISE TRANSITION MATRIX VIA DECOMPOSITION

For the instance-dependent label noise, the NTM may be different for different samples. Thus,
the complexity of NTM estimation is O(Nc2), which leads to ill-posed estimation problem. (Xia
et al., 2020) introduces a part-dependent decomposition on the NTM, i.e., the noise of an instance
depends only on its parts. Specifically, given L part-dependent transition matrix, e.g, P l ∈ [0, 1]c×c,
where j = 1, · · · , L, the instance-dependent matrix can be approximated by a combination of part-
dependent transition matrix and the combination coefficients, defined as h(x) ∈ [0, 1]L, depend on
the feature vectors. Then the instance-dependent transition matrix W (x) can be approximated as
follows

T̂ (x) =

L∑
l=1

hj(x)P
l. (25)

where hj(x) represents the j-th elements of h(x) and satisfies the normalization condition ||h(x)|| =
1 for any features vector to maintain that the summation of column is 1 for NTM.

In this work, we follow (Xia et al., 2020) to learn the NTM in three steps: (i) learning combination
coefficients h(x) via parts-based features representation (Lee & Seung, 1999; Tao et al., 2017); (ii)
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learning the instance-dependent transition matrix by exploiting anchor points (Liu & Tao, 2015; Xia
et al., 2019); (iii) learning the part-dependent transition matrices via minimization of reconstruction
error for instance-dependent transition matrix.

(Xia et al., 2020) justifies the part-dependent decomposition assumption via parts-based represen-
tations. For example, (Hosseini-Asl et al., 2016) shows that the input features rely on parts-based
representations in object recognition. Thus, it is natural to approximate the label noise in the part
level. In display advertising, the delay feedback of the label (Ktena et al., 2019; Yasui et al., 2020)
introduces label noise. Earlier the data is generated, the less probability the feedback exists. Thus,
the label noise highly depends on part of features.

Since the instance-dependent NTM may be poorly learned, the slack variable trick (Xia et al., 2019;
2020) is also adopted to modify the instance-dependent transition matrix, which significantly improve
the accuracy. However, the slack variable trick ignores the posterior information for each instance,
which limits the accuracy. In addition, the variance of accuracy in (Xia et al., 2020) is large since
there is not any guide information to modify the instance-dependent NTM except minimization of the
corrected loss. In this paper, we claim that the measurement information is useful to modify the NTM.
We will introduce how to estimate the PTM and information fusion in the next two subsections.

B.5 IMPLEMENTATION DETAILS

Warm-up Training Strategy Aiming to estimate the transition matrix, we adopt warm-up training
strategy that training the neural network via cross entropy loss with noisy data. we use SGD as the
optimizer with 0.9 momentum, 128 batch size, and 10 epochs. With the benefit of memorization
effect (Arpit et al., 2017), warm-up training with appropriate epochs can guarantee that the predicted
probability of neural network is reliable and can approximate underlying clean probability.

Training with Corrected Loss Our proposed PTM estimation relies on the neural network predicted
probability. Although the warm-up training can guarantee the prediction accuracy for clean instances
with the benefits of memorization effect, the prediction of the PTM estimation may still be not reliable.
To ease the dilemma, we adopt sample selection to choose the reliable prediction and thus guarantee
the reliable PTM estimation for specific instance. Similar to (Cheng et al., 2021a), the small-loss
criteria is adopted to select the instances with small training loss for training. Specifically, we select
the instance via the weighted loss if the instance loss is less than the average loss over all classes.

For the instance satisfying the small loss criterion, we have confidence that the instance is clean,
which means the PTM is identity. To put it simply, we sum the estimated PTM and identity and
then adopt column normalization. It is worth noting that the noisy labels are adopted in forward
propagation, which is highly different with previous transition matrix-based works (Xia et al., 2019;
Liu & Tao, 2015; Patrini et al., 2017; Xia et al., 2020). Compared with hard sample selection based
methods (Cheng et al., 2021a), our method achieves the soft sample selection and adaptively correct
the loss for “clean" instance.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 STABILITY ON SYNTHETIC NOISY DATASETS

We study the training stability via inspecting the test accuracy over epochs. Figures 6 and 7 show
the test accuracy with respect to epochs on SVHN and F-MNIST datasets with noise rate IDN-10%
to IDN-40%. It is seen that our proposed method IF can achieve better accuracy and stable training
compare with baseline PTD, which implies that the PTM fusion can decrease the transition matrix
estimation error and improve the training stability. T-Revision trick (-V method) proposed in (Xia
et al., 2019) aims to compensate the NTM and thus improve the accuracy performance. It is seen that
PTD-F-V can achieve better performance than PTD-F, which verifies that the learned NTM is not
very accurate. For our proposed method, IF-V can achieve comparable performance than IF-F and
demonstrates that transition matrix revision trick can not improve the performance since PTM has
already been employed to compensate the transition matrix error.

Compared with different noise rates, it is seen that the accuracy of PTD method may decrease with
respect to epochs, especially for large noise rate. Under large noise rate, the number of clean samples
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Figure 6: The test accuracy on SVHN datasets with different levels of IDN noise.
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Figure 7: The test accuracy on F-MNIST datasets with different levels of IDN noise.

is limited and the neural network may already overfit noisy samples during warm-up training and thus
hurt the transition matrix estimation. In this scenario, PTD method does not have the capability to
adjust such poor NTM estimation and thus leads to the accuracy drop during training. Our proposed
method IF and T-Revision trick both adjust the estimated transition matrix and mitigate the accuracy
drop.

C.2 EXPERIMENTAL RESULTS ON HIGH NOISE RATIO

We investigate the performance of IF for a high noise ratio compared with PTM and PTD. Table. 4
shows the test accuracy for high noise ratio IDN-70%, IDN-80% and IDN-90% in CIFAR 10 dataset.
We have two observations: (1) Comparing with PTD at the noise ratios of IDN-80% and IDN-90%,
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our PTM could still outperform PTD. Although the network output is not perfect, the performance
deterioration of PTD is still higher than PTM. (2) Our IF consistently delivers the most superior
performance no matter under the low or high noise. That is because IF adaptively and linearly
combines NTM and PTM in instance level and thus achieves more accurate estimation.

Table 4: Means and standard deviations (percentage) of classification accuracy with high instance-
dependent label noise levels for CIFAR10 dataset. Methods with “-F” adopts the Forward correction
loss; methods with “-V” means that the transition matrices are revised via slack variable trick.

Method IDN-70% IDN-80% IDN-90%
PTD-F 20.25 ± 1.56 13.48 ± 0.81 9.22 ± 0.23

PTD-F-V 20.35 ± 1.56 13.58 ± 0.80 9.44 ± 0.24
PTM-F 16.79 ± 3.86 14.13 ± 0.34 10.34 ± 0.71

PTM-F-V 18.95 ± 2.89 13.89 ± 0.42 10.57 ± 0.82
IF-F 21.26 ± 1.46 15.78 ± 1.65 10.58 ± 0.53

IF-F-V 21.09 ± 0.45 16.72 ± 0.61 10.86 ± 0.40

C.3 EXPERIMENTAL RESULTS ON MORE BASELINES

Although many transition matrix-based methods are compared in Table. 1, we are also interested
in several more baselines, including label smoothing (LS) (Szegedy et al., 2016), early-learning
regularization (ELR) (Liu et al., 2020), (Berthon et al., 2021), progressive label correction (PLC)
(Zhang et al., 2021a), confidence regularized sample sieve (CORES) (Cheng et al., 2021a). It could
be observed that our method can still achieve state-of-the-art performance compared with all other
baselines. Table. 5 demonstrates the test accuracy over IDN-10% to IDN-50% label noise ratio in
CIFAR 10. It could be observed that our method can still achieve state-of-the-art performance, based
on which we can confidently validate the effectiveness of our method.

Table 5: Means and standard deviations (percentage) of classification accuracy with more baselines
for CIFAR10 dataset. Methods with “-F” adopts the Forward correction loss; methods with “-V”
means that the transition matrices are revised via slack variable trick.

Method IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%
LS 63.19 ± 0.25 57.67 ± 0.10 49.50 ± 0.17 41.57 ± 1.85 34.89 ± 2.47

ELR 66.20 ± 0.09 60.58 ± 0.75 51.65 ± 0.33 43.83 ± 1.61 34.44 ± 0.12
PLC 66.38 ± 0.61 60.42 ± 0.65 51.60 ± 0.58 42.77 ± 0.50 36.00 ± 1.73

CORES 67.39 ± 0.44 60.85 ± 0.38 51.47 ± 0.80 43.96 ± 0.68 34.85 ± 1.66
PTD-F 79.77 ± 0.91 74.96 ± 0.71 70.68 ± 0.81 61.92 ± 1.59 45.34 ± 4.67

PTD-F-V 80.08 ± 0.86 74.67 ± 0.36 71.66 ± 1.05 62.45 ± 1.73 46.16 ± 4.48
PTM-F 78.16 ± 0.36 74.81 ± 0.81 70.03 ± 0.38 63.48 ± 0.38 51.03 ± 3.08

PTM-F-V 78.58 ± 0.31 75.06 ± 0.56 69.83 ± 0.58 62.69 ± 0.69 50.53 ± 3.41
IF-F 80.92 ± 0.28 79.58 ± 0.52 74.34 ± 0.86 68.21 ± 2.21 50.07 ± 3.95

IF-F-V 80.94 ± 0.43 79.54 ± 0.45 74.67 ± 0.92 68.03 ± 2.90 52.34 ± 1.31

D RELATED WORK

Label Noise Model There are three types of label noise model, including the random classification
noise (RCN) model (Manwani & Sastry, 2013; Natarajan et al., 2013), the class-conditional label
noise (CCN) model (Patrini et al., 2017; Xia et al., 2019; Zhang & Sabuncu, 2018; Liu & Guo,
2020) and the e instance-dependent label noise (IDN) model (Cheng et al., 2020; Xia et al., 2020;
Cheng et al., 2021a; Berthon et al., 2021; ?). Specifically, RCN means that each label is flipped
independently with a constant probability, CCN assumes that the flip probability (noise rates) are
the same for the instance with the same clean labels. IDN is the most general case, where the flip
probability depends on its instance.

Loss Correction via Transition Matrix The transition matrix bridges the gap between the model
predicted probability for noisy and clean data, which can achieve risk-consistent classifier with label
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noise. The transition matrix can be estimated via cross-validation method (Natarajan et al., 2013),
anchor points assumption (Xia et al., 2019; Yu et al., 2018; Yao et al., 2020). Subsequently, the
estimated transition matrix can be adopted to correct the loss function via forward correction (Patrini
et al., 2017), backward correction (Patrini et al., 2017) and reweight (Xia et al., 2019; Liu & Tao,
2015).

Loss Correction via Sample Selection Due to the experiments observation– the neural network
learns clean instances first (Arpit et al., 2017) and memorizes the instances gradually, there are lots
of methods attempting to identify mislabeled training examples and then filter them out (Brodley &
Friedl, 1999; Jiang et al., 2018; Han et al., 2018b; Yu et al., 2019; Angelova et al., 2005; Huang et al.,
2019; Li et al., 2019). The core idea is to select the “small loss" samples as clean one.
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