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Abstract
Simile interpretation is a crucial task in natural001
language processing. Nowadays, pre-trained002
language models (PLMs) have achieved state-003
of-the-art performance on many tasks. How-004
ever, it remains under-explored whether PLMs005
can interpret similes or not. In this paper,006
we investigate the ability of PLMs in sim-007
ile interpretation by designing a novel task008
named Simile Property Probing, i.e., to let009
the PLMs infer the shared properties of sim-010
iles. We construct our simile property prob-011
ing datasets from both general textual corpus012
and human-designed questions, which contain013
a total of 1,633 examples covering seven main014
categories. Our empirical study based on the015
constructed datasets shows that PLMs exhibit016
the ability to infer shared properties of sim-017
iles, while they still underperform humans.018
To bridge the gap with human performance,019
we additionally design a knowledge-enhanced020
training objective by incorporating the simile021
knowledge into PLMs via knowledge embed-022
ding methods. Our method brings up to an023
8.58% gain in the probing task, and up to a024
1.37% gain in the downstream task of senti-025
ment classification. The datasets and code will026
be publicly available soon.027

1 Introduction028

A simile is a figure of speech comparing two fun-029

damentally different entities via shared properties030

(Paul, 1970). There are two types of similes as031

illustrated in Figure 1, closed similes explicitly re-032

veal the shared properties between the topic entity033

and the vehicle entity, such as the property “slow”034

shared by “lady” and “snail” in the sentence “The035

old lady walks as slow as a snail”; while open036

similes do not state the shared property such as the037

sentence “The old lady walks like a snail”. Simi-038

les play a vital role in human expression to make039

literal utterances more vivid and graspable and are040

widely used in the corpus of various domains. It is041

estimated that over 30% of the comparisons can be042

Figure 1: Examples of two types of similes. Whether the
component property is stated determines the type of simile.

regarded as similes in the product reviews (Niculae 043

and Danescu-Niculescu-Mizil, 2014). 044

Simile interpretation is a crucial task in natural 045

language processing (Veale and Hao, 2007; Qadir 046

et al., 2016), which can assist several downstream 047

tasks such as understanding more sophisticated fig- 048

urative language (Veale and Hao, 2007) and sen- 049

timent analysis (Niculae and Danescu-Niculescu- 050

Mizil, 2014; Qadir et al., 2015). Take the simile 051

“the lawyer is like a shark” for an example. Al- 052

though “lawyer” and “shark” are neutral words, 053

this simile expresses a negative affect since “lawyer” 054

and “shark” share the negative property “aggres- 055

sive”. 056

In the past few years, large pre-trained language 057

models (PLMs) have achieved state-of-the-art per- 058

formance on many natural language processing 059

tasks (Devlin et al., 2018; Liu et al., 2019b). Recent 060

studies suggest that PLMs have possessed various 061

kinds of knowledge into contextual representations 062

(Goldberg, 2019; Petroni et al., 2019; Lin et al., 063

2019; Cui et al., 2021). However, the ability of 064

PLMs to interpret similes remains under-explored. 065

Although some recent work (Chakrabarty et al., 066

2021a) studies the ability of PLMs in choosing or 067

generating the plausible continuations in narratives, 068

this way cannot fully reveal PLM’s interpretation 069

ability to similes. 070

In this paper, we propose to investigate the abil- 071

ity of PLMs in simile interpretation by designing 072

a novel task named as Simile Property Probing, 073

i.e., to let the PLMs infer the shared properties 074

of similes. Specifically, we design a particular 075
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Category Question Example %

Qualities My client is as [MASK] as a newborn lamb . A. innocent B. delicious C. legal D. guilty 27.78

Condition The toddler was running around as [MASK] as a bee. A. busy B. yellow C. idle D. messy 22.28

Sense His anger was as [MASK] as a burning ember. A. hot B. red C. cold D. warm 17.20

Measurement My new baby brother is as [MASK] as a button. A. red B. tiny C. cute D. hot 14.16

Color He was scared so much. He was as [MASK] as a ghost. A. white B. holy C. gay D. black 06.75

Time The old man walks as [MASK] as a tortoise. A. young B. little C. slow D. quick 06.57

Emotion The boy was as [MASK] as a dog that lost its bone. A. happy B. friendly C. sad D. glad 05.26

Table 1: Percentage and examples for our simile probes of different categories. The option marked with “ ” indicates the
correct answer. The italicized words one by one in each sentence are the topic, masked property, and vehicle, respectively.

masked-word-prediction probing task in the form076

of multiple-choice questions. This probe masks077

the explicit property of a closed simile and then078

lets the PLMs discriminate it from three distractors.079

To make the questions convincing and challenging,080

the distractors should be not only true-negative as081

they would introduce logical errors once they are082

filled in the sentence, but also challenging as they083

are semantically close to the correct answer. To084

achieve this, we propose to retrieve some similar085

properties to the golden one from ConceptNet (Liu086

and Singh, 2004) and COMET (Bosselut et al.,087

2019), from which we select the three best dis-088

tractors according to their proximity to the golden089

property in the feature space. From two different090

types of data sources: textual corpus collection and091

human-designed questions, we collect a total of092

1,633 probes with various usage frequencies and093

context diversities, covering seven categories as094

listed in Table 1.095

Based on our designed task, we evaluate the abil-096

ity of BERT (Devlin et al., 2018) and RoBERTa097

(Liu et al., 2019b) to infer the shared properties098

of similes. We perform an empirical evaluation099

in two settings: (1) zero-shot, where the models100

are off-the-shelf; (2) fine-tuned, where the models101

are fine-tuned with MLM objective via masking102

properties. We observe that PLMs have been able103

to infer properties of similes in the pre-training104

stage and the ability can be further enhanced by105

fine-tuning. However, fine-tuned PLMs still per-106

form worse than humans. Moreover, we find that107

the simile components vehicle and topic contribute108

the most when inferring the properties.109

Inspired by the sufficient hints offered by the110

components vehicle and topic in our empirical111

study, we propose a knowledge-enhanced training112

objective to further bridge the gap with human per-113

formance. Considering property (p) as the relation 114

between topic (t) and vehicle (v), we design a sim- 115

ile knowledge embedding objective function fol- 116

lowing conventional knowledge embedding meth- 117

ods (Bordes et al., 2013) to incorporate the simile 118

knowledge (t,p,v) into PLMs. To integrate simile 119

knowledge and language understanding into PLMs, 120

we jointly optimize the knowledge embedding ob- 121

jective and the MLM objective in our design. Over- 122

all, the knowledge-enhanced models consistently 123

outperform other models in our probing task and 124

also bring improvement in the downstream task of 125

sentiment classification. 126

To summarize, our contributions are three-fold: 127

(1) To our best knowledge, we are the first work to 128

systematically evaluate the ability of PLMs in in- 129

terpreting similes via a proposed novel simile prop- 130

erty probing task. (2) We construct simile property 131

probing datasets from both general textual corpus 132

and human-designed questions, and the probing 133

datasets contain a total of 1,633 examples cover- 134

ing seven main categories of similes. (3) We also 135

propose a novel knowledge-enhanced training ob- 136

jective by complementing the MLM objective with 137

the knowledge embedding objective. This brings 138

up to an 8.58% gain in the probing task, and up to 139

a 1.37% gain in the downstream task of sentiment 140

classification. 141

2 Preliminaries on Simile 142

A sentence of simile generally consists of five 143

major components (Hanks, 2013; Niculae and 144

Danescu-Niculescu-Mizil, 2014), where four are 145

necessary and the remaining one is optional. The 146

four explicit components are as follows: (1) topic 147

(or tenor): the subject of the comparison acting as 148

source domain; (2) vehicle: the object of the com- 149

parison acting as target domain; (3) event: the pred- 150
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Figure 2: A process for designing our simile property probing task. In Step 1, we collect closed similes from two different
sources. In Step 2, according to four important components in each simile, we generate distractor candidates with three strategies.
In Step 3, we adopt cosine similarity to select more challenging distractors. In Step 4, we ask human annotators to ensure the
quality and obtain our final probing datasets.

icate indicating act or state; (4) comparator: the151

trigger word of a simile such as as or like. The op-152

tional component property reveals the shared char-153

acteristics between the topic and the vehicle. There154

are two types of similes depending on whether the155

property is explicit or implicit (Beardsley, 1981).156

The similes which mention the property directly157

are named as the closed similes, while the others158

are open similes, as shown in Figure 1.159

3 The Simile Property Probing Task160

3.1 Task Formulation161

To estimate the ability of PLMs in simile inter-162

pretation, we design a particular Simile Property163

Probing task, which masks the explicit property164

of a closed simile, and then lets the PLMs infer165

it. Considering that the shared properties between166

topic and vehicle may not be unique (Lacroix et al.,167

2005), we specifically design a multiple-choice168

question answering task (with only one correct an-169

swer) rather than a cloze task to probe the ability of170

PLMs to infer properties of similes, since the latter171

one may result in multiple correct answers.172

Formally, given a simile text sequence S =173

{w1, w2, ..., wi−1[MASK]wi+1, ..., wN}, where174

the shared property wi between the topic and ve-175

hicle is masked, the simile property task requires176

the PLMs to find the correct shared property from177

four options, where the other three options are hard178

distractors.179

3.2 Probing Data Collection 180

The overview of our probing data collection pro- 181

cess is described in Figure 2. 182

3.2.1 Data Sources 183

We construct our datasets from two different 184

sources to detect the capability of PLMs from two 185

perspectives: textual corpus collection and human- 186

designed questions. To avoid laborious human la- 187

beling on the implicit properties of open similes, 188

we choose to collect closed similes with explicit 189

properties. 190

General Corpus. Following (Hanks, 2005; Nic- 191

ulae and Yaneva, 2013), we adopt two general cor- 192

pus, British National Corpus (BNC)1 and iWeb2. 193

To identify closed similes, we extract the sentences 194

matching the syntax as ADJ as (a, an, the) NOUN. 195

Through syntactic pattern matching, we finally col- 196

lect 1,917 sentences. 197

Teacher-Designed Quizzes. Questions about 198

similes designed by teachers from educational re- 199

sources are ideal sources for assessing the ability to 200

understand similes. Hence, we choose Quizizz3, an 201

emerging learning platform founded in 2015. On 202

this platform, users can create quizzes on a specific 203

topic as teachers to assess students’ understanding 204

of related knowledge. We collect a set of quizzes 205

with titles concerning similes and extract the com- 206

1https://www.english-corpora.org/bnc/
2https://www.english-corpora.org/iweb/
3https://quizizz.com/
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Figure 3: Illustration of the distractor selection method.

plete closed simile sentences from the questions207

and answers in these quizzes. Finally, we retrieve208

875 complete closed simile sentences from 1,235209

quizzes.210

To assure the quality of our constructed datasets211

and prepare for further analysis, three annotators212

are required to decide whether the extracted sen-213

tences are similes or not, and annotate their corre-214

sponding simile components. All the properties of215

similes in our datasets are single-token by replac-216

ing multi-token properties with their single-token217

synonyms in the knowledge base WordNet (Miller,218

1995) and ConceptNet (Liu and Singh, 2004).219

3.2.2 Distractor Design220

To make our probes convincing, three distractors221

are designed against the original property in each222

simile with two criteria (Haladyna et al., 2002; Ren223

and Zhu, 2020): true-negative and challenging. We224

argue that well-designed distractors should be con-225

trary to the logic when filled into the questions226

(true-negative) while being semantically related to227

the correct answer (challenging). Our distractor228

design mainly involves three phases: 1) distrac-229

tor generation; 2) distractor selection; 3) Human230

Confirmation.231

Distractor Generation. To meet the require-232

ment of challenging, we generate distractor candi-233

dates from the four semantic-related components234

of a simile, i.e., topic, vehicle, event, and prop-235

erty. Given the original property, we harvest its236

antonyms from the knowledge base WordNet and237

ConceptNet. With regard to three other compo-238

nents, we extract their properties from two sources239

as follows. Given a component, we utilize the240

HasProperty relation from ConceptNet (Liu and241

Singh, 2004) and COMET (Bosselut et al., 2019)242

to retrieve the property. Moreover, we rank the ad-243

Dataset General
Corpus Quizzes

#Sentence 775 858

#Unique topic concept 415 366
#Unique property concept 280 160
#Unique vehicle concept 522 250
#Unique event concept 147 66

#Unique topic-vehicle pair 743 684
#Unique topic-property-vehicle pair 751 701

Maximum sentence length 98 44
Average sentence length 25.80 12.69

Minimum sentence length 7 7

@Start 34.32% 20.40%
@Middle 43.23% 63.29%

@End 22.45% 16.32%

Table 2: Statistics of our simile property probing datasets. @
denotes the position of the simile in the given sentence.

jectives or adverbs concerning4 each component in 244

Wikipedia and BookCorpus corpus5 by frequency 245

and select the top ten candidates with a frequency 246

of more than one. 247

Distractor Selection. To select the most chal- 248

lenging distractors from the generated distractor 249

candidates, we propose to measure the similarity 250

between the original sentence with the correct prop- 251

erty and the sentence with a distractor. Intuitively, 252

the more similar the two sentences, the more chal- 253

lenging the distractor will be. An example of the 254

distractor selection process is depicted in Figure 255

3. Given the original sentence or the new sentence 256

replacing the correct property with a distractor, we 257

first utilize RoBERTaLARGE to extract two types of 258

features. One feature is context embedding, which 259

is the sentence embedding of [CLS], while the 260

other feature is word embedding, which is the token 261

embedding of the answer or distractors. We then 262

concatenate the embeddings of the two features to 263

compute the cosine similarity between sentences 264

with the answer and a distractor. Finally, we select 265

the top 3 distractors with the highest similarities. 266

Human Confirmation. To ensure the selected 267

distractors are true-negative, three human anno- 268

tators are asked to label each selected distractor. 269

If more than two annotators are uncertain about 270

its correctness, we replace it with another suitable 271

candidate. 272

3.2.3 Statistics of the Datasets 273

Table 2 presents the statistics of our constructed 274

datasets. We count unique components and compo- 275

nent pairs to present the usage frequencies of simi- 276

4We adopt dependency parsing via the StanfordNLP tool
to find adjectives and adverbs related to components.

5https://huggingface.co/datasets/
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les. The length of the sentences in each dataset indi-277

cates the diversities of context. Additionally, we an-278

alyze the distribution of the position of simile in the279

sentences in each dataset, where start, middle and280

end correspond to the positions of the three equally281

divided parts of each sentence. We also investigate282

the categories covered by our datasets. The results283

and details about the category classification are pro-284

vided in Appendix C. Overall, the Quizzes dataset285

provides similes commonly expressed by people,286

while the General Corpus dataset presents similes287

with more diverse contexts.288

3.3 Supervision for Fine-Tuning PLMs289

Besides evaluating the ability of PLMs in the zero-290

shot setting where the models are off-the-shelf,291

we also study whether the performance could be292

improved through fine-tuning with the MLM ob-293

jective via masking properties. To achieve this,294

we collect training data from Standardized Project295

Gutenberg Corpus6 (SPGC) (Gerlach and Font-296

Clos, 2020). SPGC is a 3 billion words corpus297

collected from about 60 thousand eBooks. We298

extract similes via matching the syntactic pattern299

(Noun ... as ADJ as ... NOUN) and end up with300

4,510 sentences. Additionally, we adopt depen-301

dency parsing to automatically annotate the simile302

components of each sentence without human labor.303

4 Empirical Study on PLMs304

In this section, we first conduct a set of experiments305

to probe the ability of PLMs to infer properties306

in similes and then evaluate the influence of each307

component on the model performance.308

4.1 Ability to Infer Shared Properties309

4.1.1 Experiment Set-up310

To disentangle what is captured by the original311

representations and what is introduced from fine-312

tuning stage, we apply two different types of set-313

tings: (1) zero-shot; (2) fine-tuning. In our first set-314

ting, we use BERT and RoBERTa with pre-trained315

masked-word-prediction heads to perform our prob-316

ing task. In the second setting, we utilize the MLM317

training objective inherited from PLMs to fine-tune318

the models. We replace the property of each simile319

with the special token [MASK] in our constructed320

supervised datasets (Section 3.3) and ask models321

to recover the original property. The experimental322

details are provided in the Appendix B.323

6https://github.com/pgcorpus/gutenberg/

Setting Models General
Corpus Quizzes Gain

EMB (Qadir et al., 2016) 28.27 47.90 -

Zero-Shot

BERTBASE 64.13 74.36 -
BERTLARGE 72.39 83.22 -

RoBERTaBASE 69.55 82.87 -
RoBERTaLARGE 78.97 87.41 -

Fine-tuned

MLM-BERTBASE 67.74 82.05 +5.65
MLM-BERTLARGE 73.85 84.58 +1.40

MLM-RoBERTaBASE 70.58 84.69 +1.43
MLM-RoBERTaLARGE 78.97 88.97 +0.78

Human Performance 87.60 93.60 -

Table 3: Accuracy of different models in our simile property
probing task.

We mainly compare the model accuracy of 324

PLMs with two baselines. The first baseline is 325

embedding similarity with composite simile vec- 326

tor (EMB) (Qadir et al., 2016). EMB obtains the 327

composite simile vector by performing an element- 328

wise sum of the word embedding for the vehicle 329

and event, then selects the answer with the shortest 330

cosine distance from the composite vector. The 331

other baseline is human performance. We sam- 332

ple 250 random questions from both datasets and 333

for each question we gather answers from three 334

people. We take the majority vote as the human 335

performance of our probing task and ensure that 336

three annotators agree on the questions that they 337

gave completely different annotation results. 338

4.1.2 Results 339

The accuracies of different methods under two dif- 340

ferent settings on our datasets are listed in Table 3, 341

where the last column represents the average abso- 342

lute gains of each PLM after fine-tuning with the 343

MLM objective. All the results of our experiments 344

are averaged over 3 random seeds. First of all, the 345

prediction accuracies of both BERT and RoBERTa 346

in the zero-shot setting are much higher than EMB, 347

which indicates that the knowledge learning from 348

the pre-train stage can help infer the simile proper- 349

ties. Moreover, the performance can be further im- 350

proved by training with the MLM objective, demon- 351

strating the fine-tuning phase with the supervised 352

dataset can introduce related knowledge about sim- 353

iles. However, models still underperform humans 354

by several points of accuracy, leaving room for 355

improvement in our probing task. 356

Overall, all the models perform better on 357

Quizzes Dataset than on General Corpus Dataset, 358

which indicates that more diverse contexts increase 359

the difficulty to infer the shared properties. Also, 360

RoBERTa consistently outperforms BERT, likely 361
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due to a larger pre-training corpus containing a362

greater number of similes. More complementary363

results are provided in the Appendix A.1.364

4.2 Influence of Important Components365

4.2.1 Experiment Set-up366

Due to the high performance of off-the-shelf PLMs,367

we are interested in the contributions of each com-368

ponent to infer shared properties in the zero-shot369

setting. First, the information of each component370

is hidden through a certain strategy. Specifically,371

for topic, vehicle and comparator, we replace their372

tokens with a special token [UNK] which means373

unknown. With regard to event, we convert it into374

a suitable copula, such as “am” and “is”, to ensure375

the integrity of syntax. Furthermore, we also set376

up a baseline by randomly replacing a token with377

[UNK] in the context. Examples corresponding to378

all settings are shown in Table 8 in the Appendix B.379

We finally report the model accuracy and declined380

absolute accuracy after hiding the information of381

each component.382

4.2.2 Results383

The results in Table 4 show varying degrees of384

the decline of all settings. If the performance of385

the model decreases more, it means that the in-386

fluence of the component is greater. Four major387

components obtain higher declined absolute accu-388

racy than random token, which demonstrates that389

the information of simile components is more valu-390

able than other words to infer the shared properties.391

Among all the components, removing the compara-392

tor may cause the most significant performance393

drop. This result is mostly because PLMs cannot394

even identify the sentence as a simile without an395

obvious indicator. When it comes to the remaining396

3 semantic-related properties, vehicle contributes397

the most, followed by topic. Hence, we argue that398

it may be beneficial to explicitly leverage both the399

information of vehicle and topic to infer the shared400

properties.401

5 Enhancing PLMs with Knowledge402

5.1 Knowledge-enhanced Objective403

Benefiting from the result that topic and vehicle are404

the two most important components for predicting405

the shared properties of similes, we catch an insight406

that property can be seen as the relation between407

topic and vehicle following a set of knowledge em-408

bedding (KE) methods (Bordes et al., 2013; Wang409

Figure 4: An overview of our objective function design

et al., 2014; Ji et al., 2015). 410

To integrate the insight mentioned above into our 411

training procedure, we design an objective function 412

as shown in Figure 4. Inspired by triplets repre- 413

senting the relational facts, we can also extract 414

the topic, property, and vehicle from a simile as a 415

triplet (t, p, v). The plausibility of the property can 416

be seen as the distance between topic and vehicle in 417

the embedding space and measured by the scoring 418

function. To this end, we follow the scoring func- 419

tion from TransE (Bordes et al., 2013) and define 420

the following Mean Square Error (MSE) loss as 421

our KE loss: 422

LKE = MSE(Et + Ep, Ev) (1) 423

where Et, Ep, Ev are the representations of topic, 424

property and vehicle encoded by PLMs. We also 425

try more advanced methods such as TransH (Wang 426

et al., 2014) and TransD (Ji et al., 2015) for the 427

knowledge embedding objective, and their results 428

are presented in Table 7 in the Appendix A.2. 429

Finally, our training procedure is to jointly opti- 430

mize MLM loss and KE loss: 431

LOurs = αLKE + LMLM (2) 432

where α is a hyperparameter used to balance two 433

objective functions. 434

5.2 Results 435

Table 5 presents the performance of the mod- 436

els fine-tuned with the MLM objective and our 437

knowledge-enhanced objective on the two datasets, 438

where the last column presents the performance 439

gains brought by our improvement to the train- 440

ing objective. Overall, each model trained with 441

our knowledge-enhanced objective outperforms 442

the one trained with the MLM objective on both 443

datasets, demonstrating the effectiveness of our ob- 444

jective in the probing task. 445
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Datasets Models Topic Vehicle Event Comparator Random

General
Corpus

BERTBASE 59.87(-04.26) 54.58(-09.55) 62.84(-01.29) 46.32(-17.81) 63.05(-01.08)
BERTLARGE 67.74(-04.65) 61.16(-11.23) 70.19(-02.20) 46.06(-26.33) 69.07(-03.32)

RoBERTaBASE 65.29(-04.26) 61.03(-08.52) 68.52(-01.03) 50.32(-19.23) 67.31(-02.24)
RoBERTaLARGE 76.90(-02.07) 69.68(-09.29) 77.55(-01.42) 54.97(-24.00) 77.72(-01.25)

Quizzes

BERTBASE 67.02(-07.34) 62.35(-12.01) 73.43(-00.93) 52.80(-21.56) 71.91(-02.45)
BERTLARGE 77.86(-05.36) 64.57(-18.65) 82.63(-00.59) 55.24(-27.98) 79.91(-03.31)

RoBERTaBASE 76.11(-06.76) 69.00(-13.87) 81.47(-01.40) 55.24(-27.63) 77.58(-05.29)
RoBERTaLARGE 83.80(-03.61) 74.24(-13.17) 86.60(-00.81) 60.84(-26.57) 85.12(-02.29)

Table 4: Accuracy of PLMs in the zero-shot setting before and after hiding the information of each component on two datasets.

Datasets Models LMLM LOurs Gain

General
Corpus

BERTBASE 67.74 69.25 +1.51
BERTLARGE 73.85 74.07 +0.22

RoBERTaBASE 70.58 71.74 +1.16
RoBERTaLARGE 78.97 78.97 +0.00

Quizzes

BERTBASE 82.05 82.94 +0.89
BERTLARGE 84.58 85.94 +1.36

RoBERTaBASE 84.69 84.89 +0.20
RoBERTaLARGE 88.97 89.40 +0.43

Table 5: Accuracy of PLMs using MLM and our objectives in
our probing task.

For the Quizzes dataset, BERT achieves more446

performance gains than RoBERTa does, which is447

probably because RoBERTa has better modeled the448

relationship among topic, property and vehicle in449

the similes with simple syntactic structure during450

fine-tuning with the MLM objective. For the Gen-451

eral Corpus dataset, the BASE version of models452

tends to yield higher performance improvements,453

which is probably because the models with larger454

parameter sizes can better capture the relationship455

among simile components in the similes with more456

diverse contexts when fine-tuning with the MLM457

objective.458

5.3 Experiments with Downstream Tasks459

Similes generally transmit a positive or negative460

view due to the shared properties (Fishelov, 2007;461

Li et al., 2012; Qadir et al., 2015). Taking the462

simile “the lawyer is like a shark” as an exam-463

ple, the implicit shared property “aggressive” be-464

tween “lawyer” and “shark” indicates the negative465

polarity. Therefore, we design a sentiment polarity466

downstream task to validate the improvement of467

our method to infer shared properties.468

Our experiments are based on the Amazon re-469

views dataset7 which provides reviews and their470

corresponding sentiment ratings. Following (Mu-471

dinas et al., 2012; Haque et al., 2018), we first472

process the dataset into a binary sentiment classifi-473

7https://www.kaggle.com/bittlingmayer/amazonreviews

Models Original LMLM LOurs

BERTBASE 84.96 85.45 85.63
BERTLARGE 86.02 86.65 86.95

RoBERTaBASE 88.51 88.61 89.51
RoBERTaLARGE 88.84 89.08 90.21

Table 6: Accuracy of PLMs with three settings in the down-
stream task of sentiment classification.

cation task by defining the 1-star and 2-star ratings 474

as negative, the 4-star, and 5-star ratings as posi- 475

tive, while excluding the 3-star neutral ratings. To 476

further address the label imbalance problem, we 477

then sample the positive and negative reviews at 478

1:1. The final dataset consists of 5,023 reviews and 479

is split into a ratio of 6:2:2 for the train/dev/test set. 480

We conduct the experiment on the models in 481

the zero-shot setting and the models fine-tuned 482

with our proposed objective. The results are 483

shown in the Table 6. First of all, fine-tuning 484

with the MLM objective improves the perfor- 485

mance of all models in the sentiment classification 486

task, demonstrating that improving models’ abil- 487

ity to infer the properties of similes can enhance 488

models’ understanding of the sentiment polarity. 489

Moreover, the performance is further improved 490

by our knowledge-enhanced objective, especially 491

for RoBERTa whose main gains are mostly con- 492

tributed by our additional knowledge embedding 493

objective. This indicates the effectiveness of our 494

knowledge-enhanced objective in the downstream 495

task of sentiment analysis. 496

5.4 Analysis 497

Furthermore, we investigate the mechanism of how 498

knowledge-enhanced objective brings improve- 499

ment. We first calculate the L2 distance between 500

the representations in the last hidden states of each 501

pair of components. The results are shown in Fig- 502

ure 5. In all pairs, the distance given by our objec- 503

tive is generally shorter than MLM-BERT, which 504

indicates that modeling the relationships among the 505

7



Figure 5: The average semantic distances between the repre-
sentations of topic(t), property(p), and vehicle(v) in the last
layer’s hidden state given by BERTBASE with MLM and our
objectives.

three important components is efficient to enhance506

the model performance.507

Specifically, we visualize the final layer repre-508

sentation of a simile into two-dimensional spaces509

via Principal Component Analysis (PCA) (Pearson,510

1901) in Figure 6. In both MLM and our objective,511

the models are required to fill in the masked token512

in the same simile sentence. The model fine-tuned513

with the MLM objective predicts wrongly, while514

our fine-tuned model predicts correctly. We find515

that our representations of the three components516

are closer to each other.517

6 Related Work518

Simile Processing. Simile processing mainly in-519

volves 3 fields: simile detection, simile generation,520

and simile interpretation. The bulk of work in simi-521

les mainly focuses on identifying similes and their522

components (Niculae, 2013; Niculae and Danescu-523

Niculescu-Mizil, 2014; Liu et al., 2018; Zeng et al.,524

2020). Recent years have witnessed a growth of525

work to transfer literal sentences to similes (Zhang526

et al., 2020; Chakrabarty et al., 2020). (Chakrabarty527

et al., 2021b) study the ability of PLMs to recog-528

nize textual entailment related to similes. With529

regard to simile interpretation, (Qadir et al., 2016)530

generate candidate properties from simile compo-531

nents and rank candidates by their influence from532

certain components. (Chakrabarty et al., 2021a)533

interpret similes by choosing or generating continu-534

ation for narratives via PLMs. Different from these535

works, we investigate the ability of PLMs to infer536

shared properties of similes.537

Probing Tasks for PLMs. Many studies inves-538

tigate whether PLMs encode knowledge in their539

contextual representations by designing probing540

tasks. Early studies mainly focus on the linguistic541

knowledge captured by PLMs (Liu et al., 2019a;542

Tenney et al., 2019). (Petroni et al., 2019) first543

propose a word prediction task to probe factual544

Figure 6: PCA representations of tokens in the last layer’s hid-
den state given by BERTBASE with MLM and our objectives.

knowledge stored in PLMs. Similar methods are 545

utilized to evaluate various commonsense knowl- 546

edge, such as symbolic reasoning ability (Talmor 547

et al., 2020; Zhou et al., 2020), numerical com- 548

monsense knowledge (Lin et al., 2020), properties 549

associated with concepts (Weir et al., 2020). To 550

our best knowledge, we are the first work to inves- 551

tigate the simile interpretation ability of PLMs by 552

proposing a simile property probing task. 553

Enhance PLMs via Knowledge Regulariza- 554

tion. Recently, many researchers integrate exter- 555

nal knowledge with PLMs by complementing the 556

MLM objective with an auxiliary knowledge-based 557

objective. For example, there are works that intro- 558

duce span-boundary objective for span-level pre- 559

diction (Joshi et al., 2020), copy-based training ob- 560

jective for mention reference prediction (Ye et al., 561

2020), knowledge embedding objective for factual 562

knowledge (Wang et al., 2021) and arithmetic rela- 563

tionships of linguistic units for universal language 564

representation (Li and Zhao, 2021). Different from 565

these works, we incorporate simile knowledge with 566

the training objective by modeling the relationship 567

between the salient components of similes. 568

7 Conclusion 569

In this work, we are the first to investigate the abil- 570

ity of PLMs in simile interpretation via a proposed 571

novel simile property probing task. We construct 572

two multi-choice probing datasets covering two 573

data sources. By conducting a series of empirical 574

experiments, we prove that PLMs exhibit the ability 575

to infer simile properties in the pre-training stage 576

and further induce more related knowledge during 577

the fine-tuning stage, but there is still a gap between 578

PLMs and humans in this task. Furthermore, we 579

propose a knowledge-enhanced training objective 580

to bridge the gap, which shows effectiveness in the 581

probing task and the downstream task of sentiment 582

classification. In future work, we are interested in 583

exploring the interpretation of more sophisticated 584

figurative language, such as metaphor or analogy. 585
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Ethical Consideration586

We provide details of our work to address poten-587

tial ethical concerns. In our work, we propose a588

simile property probing task and construct prob-589

ing datasets from both general textual corpus and590

human-designed questions. First of all, all the591

data sources used in the data collection process592

are publicly available. Specifically, we follow the593

robots.txt8 to respect the copyright when we col-594

lect similes from the learning platform Quizizz595

(Sec. 3.2.1). Moreover, there are three steps involv-596

ing human annotation to ensure the quality of the597

datasets: simile and simile components recognition598

(Sec. 3.2.1), human confirmation for distractors599

(Sec. 3.2.2), and human performance (Sec. 4.1). To600

ensure the quality of annotation, all the annotators601

do not participate in our probing data collection,602

and they always label a small set of 50 examples603

to reach an agreement on the labeling criteria be-604

fore the formal labeling. We protect the privacy605

rights of annotators and pay them above the local606

minimum wage.607
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A Additional Experimental Results812

A.1 Performance on Different Categories813

We investigate whether PLMs are better at infer-814

ring the properties of certain categories. Figure 7815

presents the performance of the strongest version816

from each group of models for each category in the817

zero-shot setting. We found that models perform818

significantly well when inferring the color, which819

is probably because each object often has a specific820

color which in many cases can be inferred without821

context. However, when it comes to the properties822

requiring an understanding of the context, such as823

the personality and qualities (intelligent, brave),824

temporal properties (ancient, swift) and short-term825

state (busy, safe), models tend to have relatively826

lower accuracy.827

A.2 Comparison of Knowledge Embedding828

Methods829

We also exploit the effects of different knowl-830

edge embedding methods when designing our831

knowledge-enhanced objective. Table 7 shows the832

performance given by the objectives applying dif-833

ferent knowledge embedding methods. First of834

all, complementing the MLM objective with our835

knowledge embedding methods generally improves836

the performance, demonstrating the effectiveness837

of our approach to enhancing PLMs with simile838

knowledge. Moreover, following the scoring func-839

tion from TransE (Bordes et al., 2013) brings the840

best result in most cases, which indicates that the841

knowledge embedding methods of simple design842

are sufficient to incorporate simile knowledge into843

PLMs in our objective design.844

Figure 7: The average accuracy for each category in the zero-
shot setting. We select the strongest version from each group
of models.

Datasets Models LMLM LOurs LTransH LTransD

General
Corpus

BERTBASE 67.74 69.25 69.72 68.38
BERTLARGE 73.85 74.07 74.33 73.85

RoBERTaBASE 70.58 71.74 71.18 70.97
RoBERTaLARGE 78.97 78.97 78.97 78.97

Quizzes

BERTBASE 82.05 82.94 82.25 82.05
BERTLARGE 84.58 85.94 85.24 84.69

RoBERTaBASE 84.69 84.89 84.81 84.81
RoBERTaLARGE 88.97 89.40 89.32 88.96

Table 7: Comparison of different knowledge embedding meth-
ods when designing the knowledge-enhanced objective in our
probing task.

B Experimental Details 845

We introduce details about the implementation of 846

our experiments. The implementations of all the 847

PLMs in our paper are based on the HuggingFace 848

Transformers9. During fine-tuning for the probing 849

task, the experiments are run with batch sizes in 850

{8, 16}, α in {3, 5, 10}, a max sequence length 851

of 128, and a learning rate of 1e-5 for 10 epochs. 852

For each model, we use the same hyper-parameters 853

when applying different training objectives. During 854

fine-tuning for the sentiment analysis task, we only 855

update the parameters of the multi-layer perceptron 856

(MLP) classifiers on top of PLM’s contextualized 857

representation. We set the learning rate in {2e-5, 858

3e-5, 4e-5}, batch size of 32, max sequence length 859

of 128 and train for 200 epochs. Additionally, we 860

present examples of the experimental setup for eval- 861

uating the influence of important components in 862

Table 8. 863

C Dataset Description 864

We introduce details about our classification of the 865

categories of properties. We ask two annotators 866

to label the category of each property in the given 867

sentence and ensure that they agree on the ques- 868

9https://github.com/huggingface/transformers/
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Component Sentence Example

Original Johan runs as [MASK] as a deer to the toilet
after he had some spicy gravy .

Topic [UNK] runs as [MASK] as a deer to the toilet
after he had some spicy gravy .

Vehicle Johan runs as [MASK] as [UNK] to the toilet
after he had some spicy gravy .

Event Johan is as [MASK] as a deer to the toilet
after he had some spicy gravy .

Comparator Johan runs [UNK] [MASK] [UNK] a deer to the toilet
after he had some spicy gravy .

Random Johan runs as [MASK] as a deer [UNK] the toilet
after he had some spicy gravy .

Table 8: Examples of experiment set-up for evaluating the
influence of important components.

Category Property Example %

Qualities strong, weak, cruel, intelligent, brave 27.78
Condition bad, busy, idle, safe, vain 22.28

Sense cold, warm, bitter, soft, loud 17.20
Measurement big, scarce, numerous, tall, tiny 14.16

Color red, black, green, white, blue 06.75
Time ancient, new, swift, slow, regular 06.57

Emotion excited, angry, sad, mad, nervous 05.26

Table 9: Percentage and examples of each category of proper-
ties in constructed simile property probing datasets.

tions that they gave completely different annotation869

results. Table 9 shows the percentage and five ex-870

amples for each category (possibly more than one871

category per property). In particular, properties in872

Quialities describe the long-term feature of a mate-873

rial or a person’s character, while properties in Con-874

dition depict a short-term state. Table 1 presents875

the percentage and examples for our simile probes876

of different categories.877
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