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ABSTRACT

We propose MoE-F – a formalized mechanism for combining N pre-trained expert
Large Language Models (LLMs) in online time-series prediction tasks. MoE-F
adaptively forecasts the optimal weighting of LLM predictions at each time step by
leveraging the conditional information in each expert’s running performance, en-
abling the best combination of experts for the next step prediction. Diverging from
static (learned) Mixture of Experts (MoE) methods, our approach employs time-
adaptive stochastic filtering techniques to combine experts. By framing the expert
selection problem as a finite state-space, continuous-time Hidden Markov model
(HMM), we can leverage the Wonham-Shiryaev filter. Our approach first constructs
N parallel filters corresponding to each N individual LLMs. Each filter proposes
its best combination of LLMs, given the information that they have access to. Sub-
sequently, the N filter outputs are optimally aggregated to maximize their robust
predictive power, and this update is computed efficiently via a closed-form expres-
sion, thus generating our ensemble predictor. Our contributions are: (I) the MoE-F
algorithm – deployable as a plug-and-play filtering harness over any heterogenous
mixture of LLMs or specialized models, (II) theoretical optimality guarantees of
the proposed filtering-based gating algorithm (via optimality guarantees for its
parallel Bayesian filtering and its robust aggregation steps), and (III) empirical eval-
uation and ablative results using state of the art foundational and MoE LLMs on a
real-world Financial Market Movement task based on streaming news where MoE-
F attains a 17% absolute and 48.5% relative F1-score improvement over the best
performing individual LLM expert. Further, we provide empirical evidence of sub-
stantial performance gains with MoE-F over specialized models in the long-horizon
time-series forecasting domain using electricity-grid datasets. Supplementary
materials available at: https://github.com/raeidsaqur/moe-f.

1 INTRODUCTION

Mixture of expert models (MoEs), such as Liu et al. [2024a;b], Guo et al. [2024] the seminal Switch
Transformers [Fedus et al., 2022], and more recently Mixtral [Jiang et al., 2024], Gemini [Google],
DBRX [MosaicAI, 2024] and many others (e.g. [Saad et al., 2023, Chowdhury et al., 2023, Li et al.,
2024, Puigcerver et al., 2024]), have taken a center stage in the generative AI zeitgeist since they
allow the number of parameters in large language models (LLMs) to be scaled-up while maintaining
a roughly constant computational cost. This is due to the sparse activation strategy employed by
MoEs, wherein several offline experts are banked, and a gating network routes each input to a
small subset of expert models when generating a prediction [Zhou et al., 2022]. Thus, only a
few experts must be loaded into active memory at any given time, to generate a prediction from
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any novel input. Currently, most MoE pipelines are designed for static tasks, i.e. tasks without
temporal structure; consequentially these pipelines are limited to gating mechanisms which are
constant-in-time. However, many prediction problems have a temporal structure which is not being
leveraged by these classical constant-in-time pipelines; examples include time-series data appearing
in physics [Mao, 2007], finance [Sharp, 1990], decision science [Feinberg & Shwartz, 2012], or most
reservoir computing applications [Jaeger, 2002].

Dynamic prediction problems are fundamentally different from static ones, since each time a new
instance arrives a prediction is generated by each expert, hence, the user progressively gains more
information as to which expert models are the strongest predictors for a given task. This information
(observed measurements) can then be fed back to the MoE’s pipeline and used to update its gating
mechanisms to select the optimal combination of experts. The key challenge is that we cannot directly
observe which is the true best expert(s) to use in predicting the target.

We consider the finite state-space process, which selects the optimal expert, as the unobservable signal
process. The problem of best estimating this signal process, given the information from observable
measurements, is precisely the continuous-time and finite state-space stochastic filtering problem
initially studied by Wonham [1964]. The solution to a generalized version of that component of our
problem, considered in Liptser & Shiriaev [1977], is a so-called stochastic (optimal) filter. It is a
closed-form recursion updating the best estimate of the unobservable signal process (the best expert
to use in our case) given the observable measurements (the performance of each expert), formalized
by a precision for the conditional distribution of the signal process.

Our Mixture-of-Experts Filter (MoE-F) mechanism incorporates N stochastic filters, implemented
in parallel, to update the gating mechanism, which routes any new input of the mixture model to an
optimal combination of our N expert models given their measured historical performance. These
N predictions generated by the parallel stochastic filters are then robustly aggregated into a single
robust mixture prediction by a mechanism similar to those used in PAC-Bayes theory, e.g. Alquier
[2008], Rothfuss et al. [2021]. In this way, our proposed MoE-F algorithm optimally predicts the
best mixture of expert models while dynamically adapting itself to the observed performance of each
expert model. We emphasize that this type of dynamic-updating procedure is only possible due to the
temporal structure of the time-series prediction tasks we are interested in.

Contributions. We construct an online gating mechanism (Algorithm 1) for an online mixture
of expert (LLM) models for time-series prediction tasks. Using tools from stochastic calculus and
stochastic filtering theory, we prove the optimality of our online gating mechanism’s first parallel
Bayesian estimation stage (Theorem 1). Using tools from the theory of Markov chains and from
Gibbs-measures we demonstrate the optimality of the robust aggregation phase (Theorem 2).

Outline. Section §2 covers the necessary background, including our probabilistic framework and
continuous-time Markov chains theory. Section §3 explicates the MoE-F algorithm. Section §4
provides theoretical guarantees for the two phases of MoE-F algorithm, with proofs in the appendix.
Section §5 demonstrates the large-scale application of our algorithm on real-world online classification
and regression tasks. For classification, we evaluate the online prediction of financial market
movements using the NIFTY dataset [Saqur et al., 2024] and concurrent SOTA LLM experts. For
regression, we showcase the filter’s utility in long-term time-series forecasting (LTSF) using the
ETTh1, ETTh2 [Zhou et al., 2021] datasets with concurrent specialized LTSF models.
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Figure 1: A visualization of MoE-F ’s application as a filtering harness. Depicts seven SOTA LLMs predicting
market movement direction over three randomly sampled windows of seven (trading) days across varying
market regimes — left: mixed market with high fluctuations, middle: neutral, and right: bearish market. In all
sub-plots, the ground-truth (market) trajectory is in black, and the filtered trajectory is depicted in dotted green.
All other experts’ (Table 2) predictions are overlayed as scatter-plot points. No values for non-trading days.
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2 PRELIMINARIES

Notations for Markov Chains Matrices. For each N ∈ N+, we use PN to denote the set of N×N
row-stochastic matrices; i.e. P ∈ PP if each row of P is a vector in [0, 1]N whose entries sum to
1. We use PU

N to denote the set of “uniform row-stochastic matrices”, meaning the set of P ∈ PN

with identical rows. For each such N , we use QN to denote the set of N ×N Markov Q/intensity
matrices; that is, Q ∈ QN if Qn,m ≥ 0 whenever n ̸= m, for n,m = 1, . . . , N and the rows of Q
sum to 0. For any such Q, the matrix exponential exp(tQ) is a row-stochastic matrix for every t ≥ 0.
The ℓ∞ norm of an N ×M matrix X will be denoted by ∥X∥∞ def.

= max
n=1,...,N
m=1,...,M

|Xn,m|.

Probability Theory. Let x· : [0,∞) → Rd be a continuously differentiable path, and consider
a complete filtered probability space (Ω,F ,F def.

= (Ft)t≥0,P) with right-continuous filtration F and
supporting a 1-dimensional Brownian motion W·

def.
= (Wt)t≥0. We want to predict a 1-dimensional

target (stochastic) process Y·
def.
= (Yt)t≥0 using our MoE models F , as described in § 1. Assume

Y · evolves according to the dynamics in Equation equation (1). The process w· is assumed to be a
hidden Markov process, taking values in the standard basis {en}Nn=1 of RN . Its evolution is governed
by the intensity (or Q) matrix Q· : [0,∞)→ RN×N , which describes the rate at which the transition
probabilities of the Markov chain w· change.

Formally, for i, j = 1, . . . , N and t,∆ > 0 its (i, j)th entry Qi,j
t

def.
= (Qt)i,j is determined by∣∣P(wt+∆ = ei|wt = ej)− Ii=j −∆ ·Qi,j

t

∣∣ ∈ o
(
∆
)
.

We provide additional details on stochastic filtering and matrix operations in Appendix D, that are not
required to formulate our main guarantee (Theorem 1) but are included for completeness of proofs.

3 THE MOE FILTERING (MOE-F) ALGORITHM

Our setting can be formalized as follows. We consider an input signal x·, a d-dimensional smooth
path, and the target process Y·, a continuous-time 1-dimensional stochastic process. We are given N
auto-regressive, causal pre-trained expert models, f (1), . . . , f (N) :

⋃
t≥0 C([0, t),Rd)→ R which

map input paths such as x· to one-dimensional predictions in time such that their predictions do not
depend on future states of x· or Y· when predicting at any time t ≥ 0.

Instead of treating the target as being static we allow it to evolve dynamically in time. We assume
that there is a Hidden Markov process w· dictating which expert best approximates Y·, up to some
Brownian measurement noise W·; thus, we postulate that Y· evolves according to the stochastic
differential equation (SDE) with stochastic drift given by the equation (1):

Yt = Y0 +

∫ t

0

w⊤
s F (x[0,s)) ds︸ ︷︷ ︸

Best Expert Estimate

+

∫ t

0

dWs,︸ ︷︷ ︸
Idiosyncratic Residual Noise

(1)

where the Markov process w· randomly masks all but one expert at any given time and concatenates the
experts F (x[0,t))

def.
= (f (n)(x[0,t)))

N
n=1. The first term in equation (1),

∫ t

0
w⊤

s F (x[0,s)) ds, represents
the true best sparse approximation of Yt — i.e. the maximally sparse “single expert” — by the
ensemble of experts F . The

∫ t

0
dWs term, is an additive Gaussian noise with mean 0 and variance t.

Thus, the mixture coefficients w· act as an unobservable signal which is indirectly observed through
the measurements recorded by each expert’s running performance ℓ

(n)
·

def.
= (ℓ

(n)
t )t≥0, where ℓ

(n)
t is the

loss incurred by the nth expert at time t ≥ 0 as quantified by the chosen loss-function ℓ : R×R→ R.

This online mixture of experts problem is a two-fold problem which can be solved by our proposed
MoE-F procedure. In the first phase, we solve N stochastic filtering problems in parallel, which
optimally estimate w·, at any given time t ≥ 0, given the measurement performance of any one expert
(ℓ

(n)
s )0≤s≤t. The second phase of the MoE-F algorithm aggregates these optimal predictions.
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3.1 THE MOE FILTERING

Our MoE-F procedure (Algorithm 1) summarized in Figure 2 operates in two steps, both of which
are efficiently computable due to closed-form expressions.

Expert N

Expert 1

Input Signal Step 1 - Optimal Parallel Filtering

Mixture 
Mechanism 

Step 2 - Robust Aggregation

Update Q Matrix with Performance
Feedback

Expert 2

... ...

Figure 2: MoE-F Mechanism: conceptual depiction of an input signal x· evolving in Rd with N experts (π).

In the first phase of our algorithm, we solve N distinct stochastic filtering problems in parallel. Each
nth expert provides an optimal Bayesian prediction Ŷ

(n)
t of the Yt in equation (1) based on their

running performance ℓ
(n)
t up to the current time t ≥ 0. Additionally, each expert generates a ranking

π
(n)
t reflecting the reliability of all experts’ performance,including its own, up to that point. The

optimality of this update is guaranteed by Theorem 1.

Next, these optimal Bayesian predictions from each expert are robustly aggregated by a central
module. This module first computes a robust version π̄ by aggregating the reliability scores of each
expert’s filter {π(n)

t }Nn=1 and then uses it to compute a robust ensemble prediction
∑N

n=1 π̄n
t Ŷ

(n)
t

for the target Yt. Finally, the dynamics of the hidden Markov chain w· in equation (1), encoded by its
so-called Q/intensity matrix, are re-estimated in a robust fashion using the running performance of
each of the N experts up until the current time t ≥ 0. The optimality of this robust aggregation step
is provided by Theorem 2.

Loss functions. In this paper, we consider either the binary cross entropy (BCE) or mean-squared
error (MSE) as loss functions. These are respectively defined by

ℓ(ŷ, y) def.
=

{
y log(ŷ) + (1− y) log(1− ŷ), BCE,
|y − ŷ|2, MSE,

where y, ŷ belong to R in the regression case and to [0, 1] in the classification case. Though the
setting in equation (1) directly applies to unbounded targets, like in regression, one can also use it
in classification by simply taking Y· to be the logits (inverse logistic transform) of the classification
probabilities. Since the logistic function is a bi-measurable bijection, the filtration generated by the
logits or the classification probability processes are equal; thus, the filter does not change.

Helper Functions. For a concise presentation of our MoE-F algorithm (Algorithm 1), we now
introduce a few helper functions: A, Ā, B, F . Intuitively, the first two helper functions, At and
Āt compute the gradient and average the gradient of the nth expert’s (π(n)

· ) prediction of the target
path y· up to time t, accounting for the sensitivity of the nth expert to changes in the input path at
time t. Here, the averaging is taken uniformly over which “latent expert” is active. We rely on the
time-derivative of the loss function evaluated at the nth expert’s model, which is given in closed-form

A
(n)
t (w, yt)

def.
=

−
(
yt−f(n)(x[0,t))

)
∆f(n)(x[0,t))(

1−f(n)(x[0,t))
)
f(n)(x[0,t))

− log

(
f(n)(x[0,t))

1−f(n)(x[0,t))

)
[w⊤

t F (x[0,t))], if ℓ is BCE,

2
(
yt − f (n)(x[0,t))

) (
w⊤

t F (x[0,t))−∆f (n)(x[0,t)) + 1
)
, if ℓ is MSE.

(2)

We will also use the concatenated and averaged gradients of the loss of each expert, denoted
respectively by At and Āt, and are defined as:

At(w, Yt)
def.
=
(
A

(n)
t (w, Yt)

)
1≤n≤N

and Ā
(n)
t (π(n), yt)

def.
=

N∑
i=1

A
(n)
t (ei, yt)π

(n:i), (3)

where the sensitivity of the nth expert at time t to changes in the input path x· is

∆f (n)(x[0,t))
def.
= lim

ε↓0
1
ϵ (f

(n)(x[0,t))− f (n)(x[0,t−ϵ])) ≈ f (n)(x[0,t))− f (n)(x[0,t−1]).
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Helper function B quantifies the gradient of the loss function (BCE or MSE) of the nth expert’s
prediction w.r.t. the observed target y·, ignoring changes in the input path x· , and is given by:

B
(n)
t (yt)

def.
=

− log

(
f(n)(x[0,t))

1−f(n)(x[0,t))

)
, if ℓ is BCE,

23/2
(
yt − f (n)(x[0,t))

)
, if ℓ is MSE.

(4)

The helper function F concatenates the N experts F (x[0,t))
def.
=
(
f (1)(x[0,t)), . . . , f

(N)(x[0,t))
)
.

As illustrated by Figure 2, our MoE-F (Algorithm 1) operates in two steps. The first step (lines
3-11) implements N parallel stochastic filters yielding optimal Bayesian predictions of Y· given the
information available in the running loss function of each of the N expert models. The second step
(lines 12− 16) aggregates the N predictions of each expert model in a robust manner, and it performs
a bi-level optimization to compute our most robust Markov Q/intensity matrix supporting the running
performance of each expert thus far.

Step 1 – Optimal Parallel Filtering. Lines 3-8 of our MoE-F algorithm is a time discretization of
the stochastic optimal filtering equations in equation (5) according to the standard Euler-Maruyama
scheme, see e.g. Hutzenthaler & Jentzen [2015]. This is performable in parallel, with each parallel
computing branch corresponding to a single expert. As in discrete-time filtering implementations,
e.g. Grewal & Andrews [2014], Kim et al. [2018], the discretized infinitesimal change in the running
loss of the nth expert is given by dℓ

(n)
[0,t) ≈ ℓ

(n)
t − ℓ

(n)
t−∆; provided that t > ∆ > 0. Thus, the

innovations process W̄ is the change in ℓ(n) over the time increment [t − ∆ : t] minus Ā(Y[0,t)),
re-normalized by Bi(Y[0,t)). Importantly, this means that it is computable online from the incoming
target process Y·. In line 8, each expert (still in parallel) proposes their best estimate Ŷ

(n)
t for Yt

using their mixture weights, estimated only using their (local) information in their historical loss.

Finally, in line 10, the reliability of each expert is measured (still in parallel) by evaluating the loss
between the target process Yt and their best (individual) prediction Ŷ

(n)
t of it. This reliability metric

is summarized by their score sn of the nth expert.

Algorithm 1: MoE-F Algorithm
1 Initialize π, P , and Q;
2 /* Step 1: Optimal Parallel Filter */
3 For n = 1, . . . , N in parallel
4 drift← Q⊤

t−1π
(n)
t−1;

5 ∆L← ℓ(f (n)(x[0,t)), Yt)− ℓ(f (n)(x[0,t−1)), Yt−1);
6 ∆W ← (∆L− Āt−1(π

(n)
t−1, Y[0,t−1]))/B

(n)
t−1(Yt−1);

7 diffi ← (π(n:i)(At−1(ei, Y[0,t−1])−
Āt−1(π

(n)
t−1, Y[0,t−1])))/B

(n)
t−1(Yt−1) ;

8 π
(n)
t ← π

(n)
t−1 + drift+diff ∆W ;

9 Ŷ
(n)
t ← (π

(n)
t )⊤F (x[0,t));

10 sn ← ℓ
(
Yt, Ŷ

(n)
t

)
;

11 end
12 /* Step 2: Robust Aggregation */

13 π̄ ←
(
e−λ sn/(

∑N
i=1 e−λ si

))N
n=1

;

14 Ŷt
def.
= π̄⊤(Ŷ

(n)
t )Nn=1;

15 for n = 1, . . . , N do
16 Pn,· ← π̄
17 end for
18 P ← (1− α)P + αIN ;
19 Q← ReLU(log(P ))− diag(1̄⊤N ReLU(log(P ))) ;
20 return MoE-F Prediction Ŷt;

Step 2 – Robust Aggregation.
The prediction quality of each expert
Ŷ

(n)
t has been compressed into a score

sn. These scores are used to aggre-
gate the expert predictions into a single
prediction Ŷt of Yt. This is done us-
ing the well-studied Gibbs-aggregation
approach with the softmin function
(since lower loss implies better score
here). Line 13 computes the aggregation
weights π̄; which are then packaged into
a uniform row-stochastic matrix whose
rows are given by π̄. With these aggre-
gation weights, our MoE-F algorithm
generates a joint predictor in line 14. We
associate P to a Markov Q/intensity ma-
trix Q. The matrix logarithm of P is a
viable candidate for Q, since exp(1 ·Q)
would be a valid transition matrix; how-
ever, in general, the matrix logarithm
of an arbitrary row-stochastic transition
matrix is not a valid intensity matrix.
Upon regularizing P in line 18 to avoid
pathologies, in line 19, we compute the
best intensity matrix approximation of
its matrix logarithm.

4 THEORETICAL GUARANTEES

Our MoE-F algorithm revolves around the following set of stochastic filtering equations. Each
filtering equation corresponds to the best estimate of a single expert on masking process w· given only

5



Published as a conference paper at ICLR 2025

the information available in their running performance. Interpreting “best estimate” in the L2 sense,
each seeks to predict the conditional distribution of w· given the σ-algebra F (n)

t
def.
= σ{ℓ(n)s }0≤s≤t

generated by the running loss process ℓ(n)·
def.
= (ℓ(Yt, Ŷ

(n)
t ))t≥0; i.e.

π
(n)
t

def.
=
(
P
(
wt = ei | F (n)

t

))N
i=1

.

An essential property of our filtering equations are that they provide a closed-form recursion for
π
(n)
·

def.
= (π

(n)
t )t≥0 depending only on each of the expert models and on the accumulating observations

from the target process Y·. This key property is rare in stochastic filtering paradigm, voiding the need
for any Monte-Carlo simulation.

4.1 GUARANTEES FOR STEP 1 - ONLINE PARALLEL FILTERING

Our main result comes in two variants, a binary classification and a regression variant. Both versions
of our guarantees operate under the following regularity conditions of the path x·.

Assumptions 4.1 (Regularity Conditions). The path x· : [0,∞)→ Rd is once continuously differen-
tiable and there is a constant C > 0 such that, for each t ≥ 0 and i, j = 1, . . . , d, (Qt)i,j ≤ C.
The loss function ℓ is either the binary cross entropy loss or the squared-norm loss.

Theorem 1 (Optimal Optimistic Prior for nth Expert). Under Assumption 4.1, the best a posteriori
estimate of the nth expert, π(n)

t , satisfies the SDE

π
(n:i)
t = πi

0 +

∫ t

0

(Qs)
⊤
i π

(n)
s ds+

∫ t

0

π
(n:i)
s

(
As(ei, Y[0,s])− Ās(π

(n)
s , Y[0,s])

)
Bs(Y[0,s])

dW
(n)

u , (5)

where (Qt)i denotes the ith row of the transitions matrix Qt at time t ≥ 0, πi
0

def.
= P(w0 = ei). The

“innovations process” W
(n)

·
def.
= (W

(n)

t )t≥0 is the following (P,Fn
· )-Brownian motion

W
(n)

s
def.
=

∫ s

0

dL
(n)
[0,u] − Āu(Y[0,u])

Bu(Y[0,u])
du, (6)

and each of the n “running loss processes” L
(n)
· satisfy:

(i) Classification: If ℓ is the binary cross entropy loss:

dL
(n)
[0,u] =

(
Ys − f (n)(x[0,t))

)
∆f (n)(x[0,t))(

1− f (n)(x[0,t))
)
f (n)(x[0,t))

+ log

(
f (n)(x[0,t))

1− f (n)(x[0,t))

)
[w⊤

t F (x[0,t))] dt+ log

(
f (n)(x[0,t))

1− f (n)(x[0,t))

)
dWt.

(ii) Regression: If ℓ is the squared-norm loss

dL
(n)
[0,u] = 2

(
Yt − f (n)(x[0,t))

)(
[w⊤

s F (x[0,t))]−∆f (n)(x[0,t)) + et ln(δ
8)
)
+ 2
(
Yt − f (n)(x[0,t))

)
et ln(δ

4) dWt.

4.2 GUARANTEES FOR STEP 2 - ROBUST AGGREGATION

The following bi-level optimality guarantee justifies the second step of our MoE-F algorithm.

Theorem 2 (Bi-level Robust Updates to the Q-Matrix). Let Ŷ (1), . . . , Ŷ (N), Y ∈ R and ℓ : R2 → R
be Borel measurable. Then P def.

= [(π̄)Nn=1]
⊤; where π̄ def.

= Softmin
(
λ (ℓ(Y (n), Y ))Nn=1

)
minimizes

min
P∈PU

N

max
m=1,...,N

N∑
n=1

Pm,n ℓ(Ŷ
(n)
t , Yt)︸ ︷︷ ︸

Predictive Power of Ensemble

+
1

λ

N∑
n=1

Pm,n log(Pm,n/N)︸ ︷︷ ︸
Entropic Regularization

. (Inner)

Let α ∈ (0, 1) then Pα def.
= (1− α)(π̄, . . . , π̄) + αIN is a row stochastic matrix and, for α < 1 large

enough, log(Pα) is well-defined. Furthermore, Q def.
= ReLU

(
log(Pα)

)
is a minimizer of

minQ∈Q ∥Q− log(Pα
t )∥∞. (Outer)
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We close our guarantees section by investigating the effect of regularizing the row stochastic matrix
P obtained in the inner-level optimization equation (Inner) to ensure its invertibility and the well-
posedness of its matrix logarithm. We ask whether the probability distributions defined by the rows of
Pα
t (whose state-space is {en}Nn=1) depend continuously on α. Indeed, the next result shows that the

KL-divergence of the rows of Pα
t and those of Pt (i.e. π̄) are necessarily very close when α is small.

Proposition 1 (Stability of Perturbations). In the setting of Proposition 2, we have that

max
i=1,...,N

KL(π̄|(Pα
t )i) ≤ 2α

(
− log(πmin)

1/πmin − 1
− log((1− α)πmin)

1/((1− α)πmin)− 1

)
where πmin = mini=1,...,N π̄(> 0) and (Pα

t )i denotes the ith row of Pα
t .

5 EXPERIMENTS

5.1 FINANCIAL MARKET MOVEMENT (FMM) TASK ON NIFTY USING MOE-F

We show the efficacy of our proposed MoE-F algorithm by using various SOTA class large language
models on the financial market movement prediction task.

Task. The Financial Market Movement (FMM) prediction task for experts’ evaluation can be
defined as a ternary or binary market movement direction classification task among the labels’ set
C = {‘Fall’, ‘Neutral’, ‘Rise’ } conditioned on history (or, expert memory) of window size H (i.e.,
on the time window [t −H + 1, t]) – similar to the auto-regressive or causal generative language
model (causal LM) training objective.

Experts. We consider a diverse list of SOTA general purpose instruction-tuned LLMs as experts
for the experiments on our proposed MoE-F algorithm. For single LLM experts, we use Meta’s open-
weights models: Llama-2 (7B, 70B), Llama-3 (8B, 70B) [Touvron et al., 2023]. For mixture of experts
(MoE) architecture models, we use SOTA open-weights models: Mixtral (8x7B) [Jiang et al., 2024] –
which is a mixture of 8 Mistral (7B) [Jiang et al., 2023] models – and DBRX-Instruct [MosaicAI,
2024] with 132B total parameters and a mixture of 16 (fine-grained, smaller, 65x more combinations
of) experts. For evaluation, we deployed these open-weights models as vLLM [Kwon et al., 2023]
OpenAI compatible API endpoints and ran the dataset queries against them. We use API/model
configurations like guided-choice and max-tokens to format class label converged expert responses
alongside specific prompt instructions. We use the closed-source latest variants of the GPT-4 [OpenAI,
2023] class of models: GPT4o, using the OpenAI API. These experts are leading foundation models
on current performance benchmarks on language understanding (MMLU [Hendrycks et al., 2021]),
programming (HumanEval [Chen et al., 2021]), math (GSM8K [Cobbe et al., 2021]) tasks and other
concurrent LLM benchmarks [Song et al., 2023, Liang et al., 2022].

Datasets. For real-world experiments on the defined FMM task, we use the US equities market
movement (NYSE ticker: $SPY) dataset NIFTY (DLM ) [Saqur et al., 2024]. The test split statistics
which we used are recorded in Table 1.

Table 1: Statistics of NIFTY test split

Category Statistics

Number of days ( T ) / increment (∆t) 317 / 1
Label support (Fall / Neutral / Rise) 73 / 143 / 101
Date range (start to end) 2019-02-13 to 2020-09-21

Each sample of the DLM contains high-quality,
processed (one-turn) conversational queries for
an expert instruction fine-tuned LLM, where
a query, xt

q, comprises of a prompt xt
p and a

response xt
r, i.e., xt

q = (xt
p;x

t
r) corresponding

to a day (or, time-step) t.

For evaluation, at each time step t, an expert LLM is prompted (xt
p) to predict the market movement

the following day (i.e., t+1), based on the market’s current contextual information (relevant financial
news headlines and the market’s financial numerics – like the standard OHLCV and common technical
indicators – from past few days capturing trends). Fig. 3 depicts a snapshot of an expert prompt xt

p
for elucidation. Please see Fig. 6 in Appendix §C.1 for details.

For our ablative experiments, we utilise three additional datasets, namely StockNet aka. ACL18,
BigData22 and CIKM datasets [Xu & Cohen, 2018, Soun et al., 2022, Wu et al., 2018]. These
datasets have similar overarching (FMM) task design, but the prompted contextual information (e.g.
social media opinions) and targeted asset classes (e.g. individual stock tickers, or price of gold) differ.
We delegate the full details of these datasets in C.3 of Appendix §C Datasets.
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Estée Lauder Cuts Profit Goals as Coronavirus Slows Travel Sales | Russia Blocks OPEC Response to Coronavirus | Yum China Shows Coronavirus Outbreak Curbs
China’s Consumption | Hedge-Fund Billionaire’s Deal for Mets Collapses | Fed’s Quarles Calls Current Stance on Interest Rates Appropriate |Pinterest’s Revenue 
Topped $1 Billion in 2019 |NYSE Owner Abandons Potential eBay Deal | T-Mobile Projects More Customer Gains in 2020 | Aurora Cannabis Chief Executive To 
Depart Amid Layoffs |Meredith Shares Rally as Publishing Giant Digests Time Inc. | CBD Producer GenCanna Files for Bankruptcy | Risky Corporate Debt to Take 
Center Stage in 2020 Stress Tests | Tyson Feels Weight of Lower Poultry Prices | China Tariff Relief Boosts Stock Market | Shale Gas Swamps Asia, Pushing LNG 
Prices to Record Lows | FAA Flags Warning-Light Problem with 737 MAX | Juul Raises $700 Million From Investors | Shares of NYSE Owner Slide on Fresh eBay 
Deal Jitters | Deutsche Bank Shares Rally on Capital Group Stake | Kellogg Lowers Expectations for 2020 | New York Times Posts Strong Subscription Growth | 
Mnuchin Says U.S. 2020 Growth to Be Less Than 3% Due to Boeing | ArcelorMittal Posts Earnings Beat Despite Tough Times for Steelmakers | Canadian Antitrust 
Officials Probe Farm Giants | Zantac Recall Weighs on Sanofi’s Earnings |News Corp Posts Lower Profit, Revenue |

Figure 3: Example snapshot of the ‘news‘ component on 2020-02-06, at the upstart of the global coronavirus
epidemic (the text colors here convey negative and positive sentiments). An expert policy, πLM ’s prompt is
composed of a task instruction as prefix, concatenated with the market context, and this news value concatenated:
s.t. xp ← (xprefix;xcontext;xnews).
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Figure 4: Heatmap of expert weights and subsequent rankings for the sampled windows in Fig. 1.

Table 2: Results of applying MoE-F on seven SOTA experts on the NIFTY (test split). All values are mean of 3
(random) runs except GPT-4o. Best value in each metric row is in bold. Confusion matrices in appendix Fig. 7

.
LLM Experts Experts Filter

Metrics ↑ Llama-2
7b-chat

Llama-2
70b-chat

Llama-3
8B-Instruct

Llama-3
70B-Instruct

Mixtral-8x7B
Instruct-v0.1

DBRX
Instruct

OpenAI
GPT-4o

MoE-F
(ours)

F1 0.22 0.33 0.35 0.20 0.34 0.34 0.34 0.52
Acc 0.27 0.37 0.39 0.30 0.33 0.34 0.37 0.57
Precision 0.35 0.33 0.31 0.32 0.36 0.36 0.33 0.61
Recall 0.27 0.37 0.39 0.30 0.33 0.34 0.37 0.57

5.1.1 RESULTS: MOE-F ON MIXTURE OF (MIXTURE OF) EXPERTS

Table 2 shows the results of running MoE-F on the collection of SOTA experts. While none of these
remarkable experts out-performs others exceedingly or has an overall outstanding performance on the
FMM task, filtering the expert decisions using MoE-F yields remarkable performance both in terms of
overall task results and gains — with 17% real and 48.5% relative F1 measure improvement over
the next best performing expert values (≈ 35%). Fig. 1 depicts our MoE-F mechanism’s decisions
trajectory overlayed on the true market movement and expert decision trajectories.

Ablations. We use the Llama [Touvron et al., 2023] instruction-tuned, open-weights class of
experts — specifically, Llama-2 7B, Llama-3 8B variants — to further analyse MoE-F at work. For
ablation experiments, we create 4 additional expert variants (as standard LoRA [Hu et al., 2021]
LLM adapters) by fine-tuning the base expert with the 4 stock movement datasets, namely: {nifty,
acl18, cikm18, bigdata22}, and run them against the same task and evaluation test split
from before. Table 3 shows the combined results of Llama 2 and 3 along with the 4 expert variants.

Table 3: Performance of Llama-2-7b-chat and Llama-3-8B-Instruct base models with (SFT LoRA adapter)
variants on the NIFTY Stock Price Movement Prediction Task (test split).

Llama-2-7b-chat Llama-3-8B-Instruct

Metrics ↑ Base +nifty +acl18 +bigdata22 +cikm18 MoE-F Base +nifty +acl18 +bigdata22 +cikm18 MoE-F

F1 Score 0.22 0.28 0.20 0.29 0.27 0.43 0.34 0.36 0.19 0.23 0.24 0.43
Accuracy 0.27 0.45 0.25 0.29 0.27 0.45 0.39 0.41 0.26 0.26 0.28 0.47
Precision 0.35 0.20 0.36 0.32 0.31 0.44 0.31 0.56 0.44 0.28 0.31 0.48
Recall 0.27 0.45 0.25 0.29 0.27 0.45 0.39 0.41 0.26 0.26 0.28 0.47
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Table 4: Llama-2, 3 experts and MoE-F’s performance decomposition by class labels on NIFTY test split.

Fall (support: 73) Neutral (support: 143) Rise (support: 101)

Expert F1 Precision Recall F1 Precision Recall F1 Precision Recall

Llama-2-7b-chat 0.35 0.23 0.75 0.19 0.40 0.13 0.17 0.34 0.11
nifty 0.00 0.00 0.00 0.62 0.45 1.00 0.00 0.00 0.00
acl18 0.28 0.20 0.45 0.08 0.46 0.04 0.32 0.28 0.39
cikm18 0.21 0.18 0.25 0.34 0.43 0.29 0.29 0.26 0.32
bigdata22 0.21 0.19 0.23 0.31 0.42 0.24 0.31 0.26 0.38

MoE-F 0.30 0.27 0.33 0.60 0.54 0.66 0.30 0.43 0.23

Llama-3-8B-Instruct 0.00 0.00 0.00 0.49 0.46 0.51 0.38 0.31 0.49
nifty 0.00 0.00 0.00 0.48 0.46 0.51 0.42 0.35 0.54
acl18 0.15 0.17 0.14 0.04 0.30 0.02 0.41 0.29 0.70
cikm18 0.13 0.16 0.11 0.27 0.42 0.20 0.39 0.29 0.58
bigdata22 0.14 0.17 0.12 0.20 0.38 0.13 0.40 0.29 0.62

MoE-F 0.12 0.45 0.07 0.56 0.56 0.57 0.48 0.39 0.62

Discussions. As before, using MoE-F delivers superior results for each of the two cases. However,
we notice that the overall performance on the FMM task is lower than from earlier: 43% compared to
52% (Table 2). This aligns with our proposed theoretical performance guarantee relative to experts.
Increasing the quality and quantity of experts with specialized capabilities improves MoE-F results.
Intutitively, in presence of a vastly superior expert, MoE-F will levy higher weight on it for its
decisions. If any under-performing (specialized) expert does better over a certain time-window (say
during bearish market regime), it percolates up the decision weighting map accordingly.

Decomposing Expert Performance by Class Labels. Table 4 tabulates experts’ performance by
each of the three movement labels detailing another insight and verification of MoE-F’s mechanism
at work. While some experts have overall equivalent performance (e.g. the F1 score of ‘+nifty’
and ‘+bigdata22’ adapters), examining their label-specific results show these experts performance
emanates from different decisions. To elucidate, the Llama-2 base expert was far better in predicting
market ‘Fall’ than Llama-3, however, the latter handily outperforms when predicting ‘Rise’. Similarly,
we also see some experts are degenerate for some label predictions, like the ‘+nifty’ expert that only
tends to predict ‘Neutral’ (the imbalanced class label with highest support).

5.2 TIME-SERIES FORECASTING (TSF) USING MOE-F

The mainstream practice of using the classic Mean Squared Error (MSE) in the TSF field makes
problems in the domain a suitable test-bed for our regression-based theorem (Theorem 4).

Task. Letting L represent the length of some historical observation window, and H the prediction
horizon, a generic TSF problem can be formalized as

x̄[t+1:t+H] = f(x[t−L+1:t]),

where x[t−L+1:t] ∈ RL×C and x̄[t+1:t+H] ∈ RH×C . Here, C is the number of distinct features or
channels of an agent’s observation; the (MSE) loss measures the discrepancy between the predicted
values x̄(i)

[t+1:t+H] and the ground truth y
(i)
[t+1:t+H] as L = 1

C

∑C
i=1

∥∥y(i)[t+1:t+H] − x̄
(i)
[t+1:t+H]

∥∥2
2
.

5.2.1 EXPERIMENTAL SETUP

Experts and Datasets. Table 5 presents a few, among a plethora of concurrent models in the busy
TSF research area that come in a variety of flavours, from specialized TSF tasks only models like
N-HiTS, N-BEATS [Challu et al., 2023, Oreshkin et al., 2019] to customized or fine-tuned LLMs
like LLMTime [Gruver et al., 2024]. Immediately recent works in both these categories – like the
SAMFormer [Ilbert et al., 2024] and MoiRai [Woo et al., 2024] – pushes the envelope on ideas and
performance further. The goal of the TSF experiments here is not to achieve superior performance,
but to show the application of our online MoE-F harness over any N arbitrary expert models and
effectively combine their strengths in an inexpensive, heuristic manner. Thus, for applying our filter,
we chose three recent, well-adopted models with standardized implementation: DLinear, PatchTST,
SparseTSF [Zeng et al., 2023, Nie et al., 2022, Lin et al., 2024] – using the author provided code
from the latter to replicate the models’ predictions over varying horizon H .
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Figure 5: Electricity Transformer.

Datasets ETTh1 & ETTh2

Channels 7
Frequency hourly
Timesteps 17,420

Similarly, we picked the most common and widely adopted datasets
among a slew of mainstream TSF datasets (e.g. Electricity
[Dua & Graff, 2017], Traffic [California Department of Trans-
portation, 2023]) from concurrent literature in the LTSF domain:
ETTh1&ETTh2 [Zhou et al., 2021]. Fig. 5 presents the summary of
these TSF datasets.

Results. Table 5 presents MoE-F applied to a set of concurrent TSF experts. While our replicated
performances of the bottom three experts, used for filtering, are lower than published results, the
filtered predictions using MoE-F gains strong performance improvement using only three experts
as-is and without any hyperparameters tuning (like optimal lambda, alpha values).

Table 5: MSE results of multivariate Long-term Time-series Forecasting comparing contemporary SOTA expert
models and applying our proposed filtering harness MoE-F. Best results are highlighted in bold. Second best
results underlined. Replicated performance results are presented using 4 decimal places. Other performances
quoted from respective papers. Only the bottom three models were used to generate MoE-F results.

Dataset ETTh1 ETTh2

Horizon 96 192 336 720 96 192 336 720

Informer [Zhou et al., 2021] 0.865 1.008 1.107 1.181 3.755 5.602 4.721 3.647
Autoformer [Wu et al., 2021] 0.449 0.500 0.521 0.514 0.645 0.788 0.957 0.792
Pyraformer [Liu et al., 2021] 0.664 0.790 0.891 0.963 0.645 0.788 0.907 0.963
FITS (2024) [Xu et al., 2024] 0.375 0.408 0.429 0.427 0.274 0.333 0.340 0.374

PatchTST [Nie et al., 2022] 0.6897 0.6676 0.5997 0.6873 0.4273 0.4964 2.6450 0.4324
DLinear [Zeng et al., 2023] 0.3788 0.4212 0.4520 0.5230 0.2908 0.4091 0.5320 0.7430
SparseTSF [Lin et al., 2024] 0.3631 0.4000 0.4346 0.4238 0.2945 0.3399 0.3595 0.3831

MoE-F (ours) 0.3630 0.4165 0.4178 0.4157 0.2911 0.3294 0.4840 0.3917

6 RELATED WORK
Closed-Form Finite Dimensional Filters. Our proposed MoE-F utilizes finite-dimensional
closed-form filtering equations via the Wonham-Shiryaev filter Wonham [1964], Širjaev [1965].
Such closed-form filtering equations rarely exist as the general stochastic filtering theory is infinite-
dimensional Stratonovich [1959; 1960], Zakai [1969] and thus computationally intractable in practice.
Other than the Wonham-Shiryaev filter, there is only a handful of such finite-dimensional filters with
closed-form recursions. E.g. the Kalman-Bucy filter Kalman [1960], Bucy & Joseph [2005] or the
Beneš filter Beneš [1981], both of which require highly rigid assumptions. Otherwise, one does
typically have access to interacting systems of particles, so-called particle filters Djuric et al. [2003],
Del Moral [2013], which are computationally intractable in high dimensions.

Bayesian Mixture of Experts. In the context of mixtures of experts, or large foundation models, one
typically relies on a gating mechanism, or a learned routing among expert models Jacobs et al. [1991],
Jordan & Jacobs [1994]. These gating mechanisms are often using a static Bayesian optimization
approach via Gibbs posterior mixtures; e.g. Alquier [2008], Alquier et al. [2016], Andrychowicz et al.
[2016], Rothfuss et al. [2021; 2023]. What the gating mechanisms involved in these approaches have
in common is that they all are static in the sense that they do not learn in an online manner from
dynamically arriving inputs and feedback. In contrast to these, our MoE-F model is an online/dynamic
Bayesian optimization algorithm which dynamically generates posteriors using a different (L2) notion
of optimality rather than the extremal version used to define (static) Gibbs posterior mixtures.

Learned Routing vs. Ours. Most concurrent MoE of LLMs build on the idea of trainable/learned
experts mixing, and use a routing layer Zhou et al. [2022] as introduced by Jacobs et al. [1991],
Jordan & Jacobs [1994] in the 90s. Their efficacy was later shown in Shazeer et al. [2017] and
numerous models and variants of this core idea have been successfully showcased in the current LLM
context Fedus et al. [2022], Jiang et al. [2024], Dai et al. [2024], Gale et al. [2023]. Our work is
orthogonal to this approach since this framework has no dependency on learned routing. Our online
heuristic approach alongside with formal optimality guarantee allows online adaptation like adding,
removing or hot-swapping experts on the fly.
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7 CONCLUSION

We introduced a filtering-based gating mechanism for dynamically adapting mixing procedures to
incoming data, unlike static classical MoE methods. Our algorithm enjoys optimality (Theorem 1)
and robustness guarantees (Theorem 2) and effectively performs TSF in two orthogonal settings.

Limitations & Future Work. Our numerical experiments focused solely on LLM experts, excluding
random structures like neural SDEs Kidger et al. [2021], potentially missing technical market
movements and stochastic effects. Future work will integrate both LLM and SDE-based experts to
capture news-driven and technical market dynamics.
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more informed decision-making that is less constrained than conventional methods. However, as this
technology is further refined, it will be important to prevent misuse in situations where advantage may
be unfairly balanced, as in high-frequency trading. This technology should be used in transparent,
accountable, and regularly audited frameworks to ensure its responsible deployment.
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A THE MOE-F ALGORITHM

This section records a detailed version of Algorithm 1, which can also be rolled-forward online as the
target process Y· is dynamically observed.

Algorithm 2: The MoE-F Algorithm

Input: A time-horizon T ∈ N+, N (pre-trained) experts f (1), . . . , f (N), hyperparameters λ > 0,
α ∈ (0, 1) and k ∈ N+, target (Yt)

T−1
t=0 , and input signal x[0:T−1].

Output: A posterior Mixture Weights wt

1 /* Initialize */

2 Initialize π def.
= (π(n:i))Nn,i=1 ← (1/N)Nn,i=1

3 Q← (1/(N − 1)Ii ̸=j − 1 Ii=j)
N
i,j=1

4 (L
(n)
− )Nn=1 ← 0

5 for t = 0, . . . , T − 1 do
6 For n = 1, . . . , N in parallel
7 Ā← Ā

(n)
t (π(n), Yt)

8 B ← B
(n)
t (Yt) π̃ ← π

9 L(n) ← ℓ
(
f (n)(x[0:t])

)
10 ∆L← L(n) − L

(n)
−

11 ∆W ← ∆L−Ā
B

12 L
(n)
− ← L(n)

13 /* Update components of nth expert’s posterior (π(n)) */
14 for i = 1, . . . , N do
15 A← A

(n)
t (ei, Yt)

16 drift← Q⊤
i π̃

(n)

17 diffusion← π̃(n:i) (A− Ā)/B

18 π(n:i) ← π̃(n:i) + drift + diffusion∆W
19 end for
20 π(n) ← π(n)/

∑
i π

(n:i)

21 sn ← ℓ
(
Yt, (π

(n))⊤ F (x[0:t])
)

22 Ŷ
(n)
t ← (π(n))⊤F (x[0:t]) // Calculate expert scores

23 end
24 π̄ ←

(
e−λ sn/

(∑N
i=1 e−λ si

))N
n=1

// Get Expert Scores

25 Ŷt
def.
= π̄⊤ (Ŷ (n)

t

)N
n=1

// Get time t prediction

26 /* Update Q */

27 Q̃← Q
28 for n = 1, . . . , N do
29 P (n) ← π̄
30 end for
31 P ← (1− α)P + αIN
32 Q← ReLU(log(P ))− diag(1̄⊤N ReLU(log(P )))
33 end for
34 return Sequence of Mixture Predictions (Ŷt)

T−1
t=0
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B PROOFS

This section contains the proofs of our main result, generalizations thereof, and variants which apply
to the quadratic (squared) loss. In the latter case, the necessary modifications to the algorithm and the
overall proof structure are relatively similar but with key technical differences.

Mild Generalizations and Further Discussion. We will consider the slightly more general case
where the target process Y· follows the generalized dynamics

Yt = Y0 +

∫ t

0

w⊤
t F (xs) ds︸ ︷︷ ︸

Best Expert Estimate

+

∫ t

0

σs dWs︸ ︷︷ ︸
(Generalized) Idiosyncratic Residual

, (7)

where, there are constants α,C ≥ 0 with C ≤ 1 such that: for each t ≥ 0 one has σt = C e−α t. By
the Itô-isometry, see [Cohen & Elliott, 2015, Lemma 12.1.4], we have that the variance of

∫ t

0
σs dWs

is given by

ς2t
def.
= E

[(∫ t

0

σs dWs

)2
]
=

{
C2 (1− e−α2t)/(2α) if α > 0

t if α = 0
(8)

Observe that, if α > 0 then the variance of
∫ t

0
σs dWs asymptotically stabilizes at 1, as t becomes

arbitrarily large. In contrast, the variance of
∫ t

0
σs dWs diverges in the case where α = 0 (which is

the case considered in the main body of our paper).

Intuition behind the choice of assumed fluctuations/diffusion. The intuition behind this modelling
choice for the diffusion coefficient σ· is based on ideas behind concentration of measure. Consider
the case where α > 0 in equation (8). Since we will be considering classification applications, then
we will not want the idiosyncratic residual

∫ t

0
σs Ws to push fluctuate outside the unit interval [0, 1],

or rather the probability that any fluctuation of
∫ t

0
σs Ws is “large” should be small. Since

∫ t

0
σs Ws

has a Gaussian distribution, then note, by standard Gaussian concentration inequalities, we have that

P
(∣∣∣ ∫ t

0

σs Ws

∣∣∣ ≥ 1/2

)
≤ e(1/2)

2/(2ς2t ) = e−α/
(
4C2(1−e−α2t)

)
≤ e−α/(C24) ≤ e−α/4. (9)

We can control the probability that any fluctuation is “large”, meaning larger than 1/2, by setting
the right-hand side of equation (9) to be a prespecified “small” value δ ∈ (0, 1] and solving for the
required α > 0 parameter in terms of δ yields the specification α = ln(1/δ4). If d ≥ 2, then we may
set C =

√
2
d purely for convenience in simplifying expressions below.

In this case, for any hyperparameter 0 < δ ≤ 1, the quantities in Theorem 1 become

π
(n:i)
t = wi

0 +

∫ t

0

(Qs)
⊤
i π

(n)
s ds+

∫ t

0

π
(n:i)
s

(
As(ei, Y[0,s])− Ās(Y[0,s])

⊤π
(n)
s

)
Bs(Y[0,s])

dW
(n)

u , (10)

where (Qt)i denotes the ith row of the transitions matrix Qt at time t ≥ 0, wi
0

def.
= P(w0 = ei) and

where the “innovations process” W
(n)

·
def.
= (W

(n)

t )t≥0 is the following (P,Fn
· )-Brownian motion

W
(n)

s
def.
=

∫ s

0

dL
(n)
[0,u] − Āu(Y[0,u])

Bu(Y[0,u])
du,

where the “stochastic differential” dL
(n)
[0,u] is given by

dL
(n)
[0,u] =

(
2
(
Yu − f (n)(xu)

)
[∇uf

(n)(xu) + w⊤
u F (xu)]− e−2t ln(1/δ4)

)
du

+
23/2

d
(Yu − f (n)(xu))e

−t ln(1/δ4) dWu.
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B.1 PROOF OF THEOREM 1

We are now ready to state and prove two versions, one of which generalizes, our first main result
(Theorem 1). We consider two cases. We obtain our main result by customizing Theorem 1 to our
classification problem, where D = 1 and the range of each expert is in {0, 1} ⊂ R, and setting σ
to be a specific constant in (0,∞). For convenience, if we postulate that σt = 1; i.e. it is a constant
function of the path y[0,t] and of time t ≥ 0. Note that, by the Itô-isometry, see [Cohen & Elliott,
2015, Lemma 12.1.4] the idiosyncratic residual term

∫ t

0
σs(Y[0,s]) dWs in equation (1) has a centred

normal random distribution with variance
∫ t

0
σ2
s ds = t.

B.1.1 CASE I: BINARY CROSS-ENTROPY CASE

We now state and prove a mild generalization of Theorem 1.
Theorem 3 (Optimal Optimistic Prior for nth Expert - Squared Loss Case). Consider the binary
cross-entropy loss

ℓ(ŷ, y) def.
= y log(ŷ) + (1− y) log(1− ŷ)

and fix a continuously differentiable path x· ∈ C1(R).
Under Assumptions 4.1, the best a posteriori estimate of the nth expert, π(n)

t , satisfies the following
stochastic differential equation

π
(n:i)
t = πi

0 +

∫ t

0

(Qt)
⊤
i π

(n)
s ds+

∫ t

0

π
(n:i)
s

(
As(ei, Y[0,s])− Ās(π

(n), Y[0,s])
)

Bs(Y[0,s])
dW

(n)

u , (11)

where (Qt)i denotes the ith row of the transitions matrix Qt at time t ≥ 0, πi
0

def.
= P(w0 = ei),

A
(n)
t (w, y[0,t])

def.
= −

(
Ys − f (n)(x[0,t))

)
∆f (n)(x[0,t))(

1− f (n)(x[0,t))
)
f (n)(x[0,t))

− log

(
f (n)(x[0,t))

1− f (n)(x[0,t))

)
[w⊤

s F (x[0,s))]

Ā
(n)
t (π(n), y[0,t])

def.
=

d∑
i=1

At(ei, Y[0,t])π
(n:i)

B
(n)
t (y[0,t])

def.
= − log

(
f (n)(x[0,t))

1− f (n)(x[0,t))

)
es ln(δ

4)

F (x[0,t))
def.
=
(
f (1)(x[0,t)), . . . , f

(N)(x[0,t))
)

and the “innovations process” W
(n)

·
def.
= (W

(n)

t )t≥0 is the following (P,Fn
· )-Brownian motion

W
(n)

s
def.
=

∫ s

0

dL
(n)
[0,u] − Āu(Y[0,u])

Bu(Y[0,u])
du,

where

dL
(n)
[0,u] = dℓ(Yt, f̂

(n)(x[0,t)) =

(
Ys − f (n)(x[0,t))

)
∆f (n)(x[0,t))(

1− f (n)(x[0,t))
)
f (n)(x[0,t))

+ log

(
f (n)(x[0,t))

1− f (n)(x[0,t))

)
[w⊤

s F (x[0,s))]

+ log

(
f (n)(x[0,t))

1− f (n)(x[0,t))

)
es ln(δ

4) dWs.

Proof. Fix a continuously differentiable path x· ∈ C1(R). Define ∆f(x[0,t))
def.
= ∂tf(x[0,t)) and set

ℓ : R ∋ y 7→ (y − f(x[0,t)))
2.

21



Published as a conference paper at ICLR 2025

First, observe that: for all t ≥ 0, all x· ∈ C1(R) and all y ∈ R one has

ℓt(y) = −
(
y log(f (n)(x[0,t))) + (1− y) log(1− f (n)(x[0,t)))

)
∂ℓt
∂t

(y) = −
(
y − f (n)(x[0,t))

)
∆f (n)(x[0,t))(

1− f (n)(x[0,t))
)
f (n)(x[0,t))

,

∂ℓt
∂y

(y) = − log

(
f (n)(x[0,t))

1− f (n)(x[0,t))

)
,

∂2ℓt
∂y2

(y) = 0.

(12)

Since ℓ ∈ C∞(Rd ×Rd), we assumed that the path x· ∈ C1([0,∞),Rd) then this, together with the
postulated dynamics on Y

(n)
· imply that Itô’s Lemma/Formula, see [Cohen & Elliott, 2015, Theorem

14.2.4], used on the map ℓ
(n)
t : [0,∞)× RD ∋ (t, y)→ (y − f (n)(xt))

2 ∈ R pre-composed with Y·
applies. Whence, our and the assumed dynamics on Y·, postulated in equation (1), imply that the
process L(n)

t
def.
= ℓ

(n)
t (Yt) satisfies the following stochastic differential equation

L
(n)
t = L

(n)
0 +

∫ t

0

∂ℓ
(n)
s

∂s
(Ys)

+
∂ℓ

(n)
s

∂y
(Ys) [w

⊤
s F (x[0,s))]

+
1

2

∂2ℓ
(n)
t

∂y2
(Ys) 2e

s ln(δ8)ds

+

∫ t

0

∂ℓ
(n)
t

∂y
(Ys)e

s ln(δ4) dWs

= L
(n)
0 +

∫ t

0

(−1)
(
Ys − f (n)(x[0,t))

)
∆f (n)(x[0,t))(

1− f (n)(x[0,t))
)
f (n)(x[0,t))

(13)

+ (−1) log
(

f (n)(x[0,t))

1− f (n)(x[0,t))

)
[w⊤

s F (x[0,s))]

+
1

2
0 ds

+

∫ t

0

(−1) log
(

f (n)(x[0,t))

1− f (n)(x[0,t))

)
es ln(δ

4) dWs

(14)

= L
(n)
0 +

∫ t

0

−
(
Ys − f (n)(x[0,t))

)
∆f (n)(x[0,t))(

1− f (n)(x[0,t))
)
f (n)(x[0,t))

− log

(
f (n)(x[0,t))

1− f (n)(x[0,t))

)
[w⊤

s F (x[0,s))] ds

− log

(
f (n)(x[0,t))

1− f (n)(x[0,t))

)∫ t

0

es ln(δ
4) dWs

Synchronizing our notation with [Liptser & Shiryaev, 2001a, Equation (9.1)], we write

At(w, y[0,t])
def.
= −

(
Ys − f (n)(x[0,t))

)
∆f (n)(x[0,t))(

1− f (n)(x[0,t))
)
f (n)(x[0,t))

− log

(
f (n)(x[0,t))

1− f (n)(x[0,t))

)
[w⊤

s F (x[0,s))]

Bt(y[0,t])
def.
= − log

(
f (n)(x[0,t))

1− f (n)(x[0,t))

)
es ln(δ

4)

(15)
Under Assumptions 4.1, we may apply [Liptser & Shiryaev, 2001a, Theorem 9.1] to deduce that
Then the a posteriori probability π

(n:i)
t

def.
= (πt)i, satisfies a system of equations

π
(n:i)
t = πi

0 +

∫ t

0

(Qt)
⊤
i π

(n)
s ds+

∫ t

0

π
(n:i)
s

(
As(ei, Y[0,s])− Ās(π

(n), Y[0,s])
)

Bs(Y[0,s])
dWu, (16)
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where (Qt)i denotes the ith row of the Qt/transitions matrix Qt at time t ≥ 0, πi
0

def.
= P(w0 = ei), and

the “innovations process” is the (P,Fn
· )-Brownian motion given by

W
(n)

s
def.
=

∫ s

0

dL
(n)
[0,u] − Āu(π

(n), Y[0,u])

Bu(Y[0,u])
du (17)

and where

Āt(π
(n), y[0,t])

def.
=

d∑
i=1

As(ei, Y[0,t])π
(n:i).

This completes the proof.

Remark 1. Setting δ = 1 in the previous derivation yields the formulation of Theorem 1 found in the
main body of the paper.

B.1.2 CASE II: SQUARED LOSS

Theorem 4 (Optimal Optimistic Prior for nth Expert - Squared Loss Case). Let ℓ(ŷ, y) def.
= (y − ŷ)2

and fix a continuously differentiable path x· ∈ C1(R).
Under Assumptions 4.1, the best a posteriori estimate of the nth expert, π(n)

t , satisfies the following
stochastic differential equation

π
(n:i)
t = wi

0 +

∫ t

0

(Qt)
⊤
i π

(n)
s ds+

∫ t

0

π
(n:i)
s

(
As(ei, Y[0,s])− Ās(π

(n), Y[0,s])
)

Bs(Y[0,s])
dW

(n)

u , (18)

where (Qt)i denotes the ith row of the transitions matrix Qt at time t ≥ 0, wi
0

def.
= P(w0 = ei),

A
(n)
t (w, y[0,t])

def.
= 2
(
yt − f (n)(x[0,t))

) (
w⊤

t F (x[0,t))−∆f (n)(x[0,t)) + es ln(δ
8)
)

Ā
(n)
t (π(n), y[0,t])

def.
=

d∑
i=1

At(ei, Y[0,t])π
(n:i)

B
(n)
t (y[0,t])

def.
= 23/2(yt − f (n)(x[0,t)))e

t ln(δ4)

F (x[0,t))
def.
=
(
f (1)(x[0,t)), . . . , f

(N)(x[0,t))
)

and the “innovations process” W
(n)

·
def.
= (W

(n)

t )t≥0 is the following (P,Fn
· )-Brownian motion

W
(n)

s
def.
=

∫ s

0

dL
(n)
[0,u] − Āu(Y[0,u])

Bu(Y[0,u])
du,

where

dL
(n)
[0,u] = dℓ(Yt, f̂

(n)(x[0,t)) =2
(
Yt − f (n)(x[0,t))

)(
[w⊤

s F (x[0,t))]−∆f (n)(x[0,t)) + et ln(δ
8)
)

+ 2
(
Yt − f (n)(x[0,t))

)
et ln(δ

4) dWt.

Proof. Fix a continuously differentiable path x· ∈ C1(R). Define ∆f(x[0,t))
def.
= ∂tf(x[0,t)) and set

ℓ : R ∋ y 7→ (y − f(x[0,t)))
2.

First, observe that: for all t ≥ 0, all x· ∈ C1(R) and all y ∈ R one has

ℓ
(n)
t (y) =

(
y − f (n)(x[0,t))

)2
∂ℓt
∂t

(y) = 2
(
y − f (n)(x[0,t))

) (
−∆f (n)(x[0,t))

)
,

∂ℓt
∂y

(y) = 2
(
y − f (n)(x[0,t))

)
,

∂2ℓt
∂y2

(y) = 2.

(19)
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Since ℓ ∈ C∞(Rd ×Rd), we assumed that the path x· ∈ C1([0,∞),Rd) then this, together with the
postulated dynamics on Y

(n)
· imply that Itô’s Lemma/Formula, see [Cohen & Elliott, 2015, Theorem

14.2.4], used on the map ℓ
(n)
t : [0,∞) × RD ∋ (t, y) → (y − f (n)(xt))

2 ∈ R pre-composed with
Y· applies. Whence, the computations in equation (19) and the assumed dynamics on Y·, postulated
in equation (1), imply that the process L(n)

t
def.
= ℓ

(n)
t (Yt) satisfies the following stochastic differential

equation

L
(n)
t = L

(n)
0 +

∫ t

0

∂ℓ
(n)
s

∂s
(Ys) +

∂ℓ
(n)
s

∂y
(Ys) [w

⊤
s F (x[0,s))] +

1

2

∂2ℓ
(n)
t

∂y2
(Ys) 2e

s ln(δ8)ds

+

∫ t

0

∂ℓ
(n)
t

∂y
(Ys)e

s ln(δ4) dWs

= L
(n)
0 +

∫ t

0

2
(
Ys − f (n)(x[0,s))

)(
[w⊤

s F (x[0,s))]−∆f (n)(x[0,s)) + es ln(δ
8)
)
ds (20)

+

∫ t

0

2
(
Ys − f (n)(x[0,s))

)√
2es ln(δ

4) dWs

Synchronizing our notation with [Liptser & Shiryaev, 2001a, Equation (9.1)], we write

At(w, y[0,t])
def.
= 2
(
yt − f (n)(x[0,t))

)(
w⊤

t F (x[0,t))−∆f (n)(x[0,t)) + es ln(δ
8)
)

Bt(y[0,t])
def.
= 23/2(yt − f (n)(x[0,t)))e

t ln(δ4)
(21)

Under Assumptions 4.1, we may apply [Liptser & Shiryaev, 2001a, Theorem 9.1] to deduce that
Then the a posteriori probability πn:0

t
def.
= (πt)0, satisfies a system of equations

π
(n:i)
t = wi

0 +

∫ t

0

(Qt)
⊤
i π

(n)
s ds+

∫ t

0

π
(n:i)
s

(
As(ei, Y[0,s])− Ās(π

(n), Y[0,s])
)

Bs(Y[0,s])
dWu, (22)

where (Qt)i denotes the ith row of the Qt/transitions matrix Qt at time t ≥ 0, wi
0

def.
= P(w0 = ei),

and the “innovations process” is the (P,Fn
· )-Brownian motion given by

W
(n)

s
def.
=

∫ s

0

dL
(n)
[0,u] − Āu(π

(n), Y[0,u])

Bu(Y[0,u])
du (23)

and where

Āt(π
(n), y[0,t])

def.
=

d∑
i=1

As(ei, Y[0,t])π
(n:i).

This completes the proof.

Remark 2. Setting δ = 1 in the previous derivation yields the formulation of Theorem 1 found in the
main body of the paper.

B.2 PROOF OF THEOREM 2

The proof of Theorem 2 relies on the following result. Briefly, this result guarantees for the validity
of the perturbation to the transition probability defined by

Pα
t

def.
= (1− α)Pt + αIN (24)

for arbitrary N ∈ N+, Pt ∈ PU
N , α ∈ (0, 1), and where IN is the N ×N identity matrix.

In what follows, we will use ∆N
def.
= {w ∈ [0, 1]N :

∑N
n=1 wn} to denote the probability N -simplex;

which corresponds to the probability (measures) distributions supported on N points. Here, these
N points are the experts themselves, and the probability of selecting any expert is interpreted as the
relative credibility we ascribe to its historical predictive power.
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Proposition 2 (Regularity of Perturbations). Let N ∈ N+, λ > 0, s1, . . . , sN ∈ R, π̄ ∈ ∆N be
given by

π̄ def.
= Softmin

(
λ (sn)

N
n=1

)
and Pt

def.
= [(π̄)Nn=1]

N .

For every α ∈ (0, 1), the matrix Pα
t in equation (24), is invertible and (row) stochastic. If, moreover,

all its real eigenvalues are non-negative, then log(Pα
t ) is well-defined and its rows sum to 0. In

particular, setting α ≥ 1− 1/N guarantees that log(Pα
t ) exists, if Pα

t has real eigenvalues.

We will now show our second main result, and the intermediate lemmata leading up to it. The next
lemma states that if a (row) stochastic matrix is constructed by filling each of its rows with an element
of the probability simplex, then shining it by an arbitrarily small abound and growing its diagonal
proportionally yields a (row) stochastic matrix, which is necessarily invertible.
Lemma 1 (Invertible Perturbations). Let N ∈ N+ let π ∈ ∆N . If P is a (row) stochastic matrix,
then, for any α ∈ (0, 1), the matrix (1− α)P + αIN is an invertible (row) stochastic matrix.

Proof of Lemma 1. Let 1N ∈ RN be such that: for each i = 1, . . . , N we have (1N )i = 1 (i.e. 1N

is a matrix of ones). By construction P = (π, . . . , π)⊤. Therefore, P can be written as an outer
product via

P = 1N π⊤ (25)
Therefore, for any α ∈ (0, 1), the perturbed matrix (1− α)P + αIN can be expressed as

(1− α)P =
(
(1− α) · 1N )π⊤, (26)

i.e. (1− α)P can be expressed as an outer product of vectors in RN ; namely of
(
(1− α) · 1N ) and

π⊤. Consequentially, our matrix of interest can be written as

(1− α)P + αIN =
(
(1− α) · 1N )π⊤ + αIN . (27)

Note that, α IN is invertible since det(αIN ) = αN > 0. Thus, the main result of Bartlett [1951] can
be applied, which yields the condition: if αIN is invertible (which it is) and if

1 + 1⊤
N

(
α IN

)−1
π ̸= 0 (28)

then αIN +
(
(1− α) · 1N )π⊤ is invertible. Thus, we only need to verify that the condition holds in

our case. Simplifying equation (28) yields

−1 ̸= 1⊤
N

(
α IN

)−1
π (29)

=
1

α
1⊤
Nπ (30)

=
1

α

N∑
n=1

πn (31)

=
1

α
1 =

1

α
, (32)

where equation (32) held since π ∈ ∆N . Consequentially, the identity in equation (27) and the
computation in equation (29)-equation (32) imply that (1− α)P + αIN is invertible if α ̸= −1.

Finally, since P is (row) stochastic and so is IN then, for each i = 1, . . . , N , we have that

N∑
j=1

(
(1− α)Pi + αIN

)
j
= (1− α)

N∑
j=1

Pi,j + α1 = (1− α) 1 + α = 1.

Whence, (1− α)P + αIN is (row) stochastic also.

We now provide a set of sufficient condition on α, guaranteeing that the principal logarithm of Pα
t is

well-defined. Furthermore, this lemme also shows that for α ∈ (0, 1) large enough, as a function of
N , the matrix log(Pα

t ) is necessarily a valid candidate for a Markov transition matrix (i.e. each of its
rows sum to 0).
Lemma 2 (Sufficient Condition for Existence). If α ≥ 1− 1

N2 then if either of the following holds:
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(i) Real Case: Pα
t has no complex eigenvalues,

(ii) Complex Case: P is doubly stochastic (i.e. row and column stochastic),

then log(Pα
t ) exists and its rows sum to 0.

Proof of Lemma 2. Since Pα
t is an N ×N real (thus complex) matrix with real eigenvalues, then

define

m def.
= tr(Pα

t )/N and s2 def.
= tr((Pα

t )
2)/N −m2. (33)

First, observe that since the entries of Pt (in particular its diagonal elements) are all positive then

m = tr(Pα
t )/N (34)

=
1

N

N∑
i=1

(
(1− α)πi + α

)
(35)

=
1

N

(
(1− α)

N∑
i=1

πi + α

N∑
i=1

1
)

(36)

=
1

N

(
(1− α) + αN

)
(37)

=
1

N

(
1 + α(N − 1)

)
. (38)

Next, we compute s2. By Lemma 1, we have that Pα
t is a stochastic matrix and, therefore, so is its

square (as the product of stochastic matrices is stochastic). Note that

tr((Pα
t )

2) ≤ max
S∈Stoch(N)

tr(S) = tr(IN ) = N (39)

where Stoch(N) is the set of N ×N stochastic matrices. Therefore, we bound s2, defined in equa-
tion (33) using the “extremal trace bound” in equation (39) via

s2 = tr(Pα
t )/N −m2 (40)

≤ N/N −m2 (41)

= 1− 1

N2

(
1 + α(N − 1)

)2
. (42)

That is
−s ≥ −

(
1− 1

N2

(
1 + α(N − 1)

)2)1/2
.

Now, using lower-bound on the minimal eigenvalue of a square complex matrix with real eigenvalues
using m and s in [Wolkowicz & Styan, 1980, Theorem 2.1] we have that

λmin(P
α
t ) ≥m− s(N − 1)1/2 (43)

≥ 1

N

(
1 + α(N − 1)

)
−
(
1− 1

N2

(
1 + α(N − 1)

)2)1/2
(N − 1)1/2 (44)

=
1

N

(
1 + α(N − 1)

)
−
(
N2 −

(
1 + α(N − 1)

)2)1/2 (N − 1)1/2

N
(45)

=
1

N

((
1 + α(N − 1)

)
(46)

−
[
(N − 1)

(
(1− α2)N2 + 2α(α− 1)N − (α− 1)2

)]1/2)
. (47)

If α ≥ 1− 1
N2 and N > 1 (which is always the case) then((

1 + α(N − 1)
)
−
[
(N − 1)

(
(1− α2)N2 + 2α(α− 1)N − (α− 1)2

)]1/2)
> 0. (48)
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Therefore, equation (48) together with equation (46) imply that

λmin(P
α
t ) > 0

whenever α ≥ 1− 1
N2 .

Therefore, [Dunford & Schwartz, 1958, Theorem VII.1.10] implies that log(Pα
t ) exists, since Pα

t is
a matrix whose spectrum does not contain (−∞, 0]. Moreover, [Davies, 2010, Lemma 1] guarantees
that the rows of log(Pα

t ) sum to 0.

Finally, we note that since IN is doubly stochastic then so is Pα
t provided that P is. Therefore, P̄α

t is
also a stochastic matrix and so is the product P̄α

t P
α
t (as the product of (row) stochastic matrices is

again a (row) stochastic matrix). Whence

s2a
def.
= tr(Pα

t P
α
t )/N −m2 ≤ 1− 1

N2

(
1 + α(N − 1)

)2
(49)

and the same argument may be applied with s2a in place of s2 upon using [Wolkowicz & Styan, 1980,
Theorem 3.1] in place of [Wolkowicz & Styan, 1980, Theorem 2.1]; however, in this case we do not
need to assume that the eigenvalues of Pα

t are real. In either case, this concludes our proof.

B.2.1 COMPLETION OF THE PROOF OF THEOREM 2

Proof of Theorem 2. Step 1 - Minimizer of Inner Problem equation (Inner):
Since the elements of the set of N ×N uniform stochastic matrices PU

N all have identical rows then,
P is an optimizer of equation (Inner) if and only if its first row is a minimizer of

min
P∈PU

N

N∑
n=1

P1,n ℓ(Y
(n)
t , Yt) +

1

λ

N∑
n=1

P1,n log(wn/N). (50)

Since the matrices in PU
N are row-stochastic, then all their rows belong to the N simplex ∆N .

Therefore, P is a minimizer of equation (50) if and only if its first row, which we denote by
π def.
= (P1,1, . . . , P1,N ) ∈ ∆N is a minimizer of

min
π∈∆N

N∑
n=1

πj ℓ(Y
(n)
t , Yt) +

1

λ

N∑
n=1

πn log(wn/N). (51)

Since the elements of ∆N are in bijection with the set of probability measures on the N -point set
{1, . . . , N}, λ > 0, and

∑N
n=1 πn log(wn/N) is the KL-divergence (relative entropy) between

the probability measure
∑N

n=1 πnδn and the uniform measure
∑N

n=1
1
N δN (both on {1, . . . , N})

then [Wang et al., 2020, Proposition 1] the unique minimizer of equation (51) is given by

π̄ def.
= Softmin

(
λ (ℓ(Y (n), Y ))Nn=1

)
.

Consequentially, the matrix P ∈ PU
N whose rows are π is a minimizer of equation (Inner).

Step 2 - Minimizer of Outer Problem equation (Outer):
By Proposition 2, for every α(0, 1) the matrix

Pα def.
= (1− α)P + αIN

is row-stochastic and for α “large enough”; meaning for α ∈ (1 − 1/N, 1), the matrix Pα has
all its eigenvalues in (0,∞). Therefore, by [Davies, 2010, Theorem 12] there is a minimizer
of equation (Outer) and it is given in closed-form by

Q def.
= ReLU

(
log(Pα

t )
)
.

This concludes our proof.

Proof of Proposition 2. By Lemma 1, the matrix Pα
t is (row) stochastic and invertible. Thus, it

has no zero-eigenvalues. If, moreover, the assumption holds that Pα
t has no negative eigenvalues

then [Dunford & Schwartz, 1958, Theorem VII.1.10] guarantees that the (principle branch) of the
matrix logarithm of Pα

t exists. Consequentially, [Davies, 2010, Lemma 1] applies from which we
deduce that the rows of log(Pα

t ) sum to 0. The last claim follows directly from Lemma 2 (i).
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B.3 PROOF OF THE STABILITY GUARANTEE IN PROPOSITION 1

The following generalizes, thus implies, Proposition 1.
Lemma 3 (Maximal KL Divergence for Perturbation in Lemma 1). Let π ∈ ∆N , α ∈ [0, 1),
i = 1, . . . , N , and let for each i = 1, . . . , N let πα,i = (1 − α)π + α ei where {ei}Ni=1 is the
standard basis of RN . If pmin

def.
= mini=1,...,N pi > 0 then

max
i=1,...,N

KL(π|πα,i) ≤ 2α
(
− log(pmin)

1/pmin − 1
− log((1− α) pmin)

1/((1− α) pmin)− 1

)
.

Proof of Lemma 3. By the (sharp) reverse Pinsker inequality in [Binette, 2019, Theorem 1], as
formulated in [Binette, 2019, Example A], yields the bound

KL(π|πα,i) ≤ TV(π|πα,i)
( log(1/pmin)

1/pmin − 1
+

log(1/pα,imin)

1/pα,imin − 1

)
(52)

where TV is the total variation distance between π and πα,i, and pα,imin = mini=1,...,N πα,i. By
construction

(1− α)pmin ≤ pα,imin ≤ (1− α)pmin + α.

Whence,

1

pα,imin

≤ 1

(1− α)pmin
and

1

1/pα,imin − 1
≤ 1

1/((1− α)pmin + α)− 1
. (53)

Incorporating equation (53) into equation (52) yields

KL(π|πα,i) ≤TV(π, πα,i)
(
− log(pmin)

1/pmin − 1
− log((1− α) pmin)

1/((1− α) pmin)− 1

)
=

N∑
j=1

∣∣πj − πα,i
j

∣∣ (− log(pmin)

1/pmin − 1
− log((1− α) pmin)

1/((1− α) pmin)− 1

)

=

N∑
j=1

∣∣απj + αIj=i

∣∣ (− log(pmin)

1/pmin − 1
− log((1− α) pmin)

1/((1− α) pmin)− 1

)

≤
( N∑

j=1

∣∣απj

∣∣+ α
)(
− log(pmin)

1/pmin − 1
− log((1− α) pmin)

1/((1− α) pmin)− 1

)

≤
(
α

N∑
j=1

∣∣πj

∣∣+ α
)(
− log(pmin)

1/pmin − 1
− log((1− α) pmin)

1/((1− α) pmin)− 1

)

≤
(
α

N∑
j=1

πj + α
)(
− log(pmin)

1/pmin − 1
− log((1− α) pmin)

1/((1− α) pmin)− 1

)
(54)

≤
(
α + α

) (
− log(pmin)

1/pmin − 1
− log((1− α) pmin)

1/((1− α) pmin)− 1

)
(55)

=2α
(
− log(pmin)

1/pmin − 1
− log((1− α) pmin)

1/((1− α) pmin)− 1

)
.

where equation (54) held since π ∈ ∆N and therefore, πi ≥ 0 for each i = 1, . . . , N , and equa-
tion (55) held since

∑N
i=1 πi = 1 again due to the fact that π ∈ ∆N .
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C DATASETS AND BENCHMARKS

C.1 NIFTY DATASET

The News-Informed Financial Trend Yield (NIFTY) dataset Saqur et al. [2024] is a processed and
curated daily news headlines dataset for the stock (US Equities) market price movement prediction
task. NIFTY is comprised of two related datasets, NIFTY-LM and NIFTY-RL. In this section we
outline the composition of the two datasets, and comment on additional details.

Dataset statistics . Table 6 and Table 7 present pertinent statistics related to the dataset.

Table 6: Statistics and breakdown of splits sizes

Category Statistics

Number of data points 2111
Number of Rise/Fall/Neutral label 558 / 433 / 1122
Train/Test/Evaluation split 1477 / 317 / 317

Table 7: Date Ranges of news headlines in splits

Split Num. Samples Date range

Train 1477 2010-01-06 to 2017-06-27
Valid 317 2017-06-28 to 2019-02-12
Test 317 2019-02-13 to 2020-09-21

Anticipate the direction of the $SPY by analyzing market data and news from 2020-02-06.

(a) Instruction component of a πLM policy query xq .

date, open, high, •••,  pct_change, macd, boll_ub, boll_lb, rsi_30,  •••, close_60_sma

2020-01-27, 323.03, 325.12, •••,  -0.016, 2.89, 333.77, 319.15, 56.26, ••• , 317.40
2020-01-28, 325.06, 327.85, •••, 0.0105, 2.59, 333.77, 319.55, 59.57, ••• , 317.78

•••.          ••••

2020-02-04, 328.07, 330.01, •••, 0.0152, 1.3341, 333.60, 321.26, •••, 319.41
2020-02-05, 332.27, 333.09, •••, 0.0115, 1.7247, 334.15, 321.73, •••, 319.82

(b) The market’s history is provided as the past t days of numerical statistics like the (OHLCV) price (in blue)
and common technical indicators (in orange) (e.g. moving averages) data.

Figure 6: Breaking down the instruction or prompt prefix, and market context components of a prompt, xp.

C.1.1 NIFTY-LM: SFT FINE-TUNING DATASET

The NIFTY-LM prompt dataset was created to finetune and evaluate LLMs on predicting future
stock movement given previous market data and news headlines. The dataset was assembled by
aggregating information from three distinct sources from January 6, 2010, to September 21, 2020.
The compilation includes headlines from The Wall Street Journal and Reuters News, as well as
market data of the $SPY index from Yahoo Finance. The NIFTY-LM dataset consists of:

• Meta data: Dates and data ID.
• Prompt (xp): LLM question (xquestion), market data from previous days (xcontext), and news

headlines (xnews).
• Response: Qualitative movement label (xr) ∈ {Rise, Fall,Neutral}, and percentage change of

the closing price of the $SPY index.

To generate LLM questions, (xquestion), the authors used the self-instruct Wang et al. [2023]
framework and OpenAI GPT4 to create 20 synthetic variations of the instruction below:

Create 20 variations of the instruction below.
Examine the given market information and news headlines data on DATE to
forecast whether the $SPY index will rise, fall, or remain unchanged. If you think
the movement will be less than 0.5%, then return ’Neutral’. Respond with Rise,
Fall, or Neutral and your reasoning in a new paragraph.
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Where DATE would be substituted later, during the training phase with a corresponding date.

Context. The key ‘context’ (xcontext) was constructed to have newline delimited market metrics
over the past T (≈ 10) days (N.B. Not all market data for the past days for were available and therefore
prompts might have less than 10 days of market metrics.).

Table 8 show the details of financial context provided in each day’s sample.

Table 8: Summary of the dataset columns with their respective descriptions.

Column Name Description

Date Date of the trading session
Opening Price Stock’s opening market price
Daily High Highest trading price of the day
Daily Low Lowest trading price of the day
Closing Price Stock’s closing market price
Adjusted Closing Price Closing price adjusted for splits and dividends
Volume Total shares traded during the day
Percentage Change Day-over-day percentage change in closing price
MACD Momentum indicator showing the relationship between two moving averages
Bollinger Upper Band Upper boundary of the Bollinger Bands, set at two standard deviations above the average
Bollinger Lower Band Lower boundary, set at two standard deviations below the average
30-Day RSI Momentum oscillator measuring speed and change of price movements
30-Day CCI Indicator identifying cyclical trends over 30 days
30-Day DX Indicates the strength of price trends over 30 days
30-Day SMA Average closing price over the past 30 days
60-Day SMA Average closing price over the past 60 days

News Headlines. (xnews): Final list of filtered headlines from the aggregation pipeline. The
non-finance related headlines were filtered out by performing a similarity search with SBERT model,
"all-MiniLM-L6-v2" Reimers & Gurevych [2019]. Each headline was compared to a set of artificially
generated financial headlines generated by GPT-4, with the prompt "Generate 20 financial news
headlines". Headlines with a similarity score below 0.2, were excluded from the dataset. To respect
the prompting ‘context length’ of LLMs, in instances where the prompt exceeded a length of 3000
words, a further refinement process was employed. This process involved the elimination of words
with a tf-idf Sammut & Webb [2010] score below 0.2 and truncating the prompt to a maximum of
3000 words.

It is also important to note that the dataset does not encompass all calendar dates within the specified
time range. This limitation emanates from the trading calendar days, and absence of relevant financial
news headlines for certain dates.

Label. (xr): The label is determined by the percentage change in closing prices from one day to
the next, as defined in equation 56. This percentage change is categorized into three labels: {Rise,
Fall, Neutral}, based on the thresholds specified in equation 57.

PCTchange =

(
Closing Pricet − Closing Pricet−1

Closing Pricet−1

)
× 100% (56)

xr =


Fall if PCTchange < −0.5%
Neutral if − 0.5% ≤ PCTchange ≤ 0.5%

Rise if PCTchange > 0.5%

(57)

C.2 NIFTY-RL: PREFERENCES DATASET

The preference dataset is a variation of the fine-tuning dataset and it is designed for alignment training
of LLMs using reward model. In NIFTY-RL, labels are omitted and replaced with chosen and rejected

30



Published as a conference paper at ICLR 2025

results. The chosen result is a label corresponding to a rise, a fall or neutral movement in the stock
market and is equivalent to the response in NIFTY-LM. The rejected result is a random label not
equal to the chosen label.

• Metadata: Includes dates and data identifiers.
• Prompt (xp): Includes an LLM instruction (xquestion), preceding market data (xcontext), and

relevant news headlines (xnews).
• Chosen Result: A qualitative movement label (xr) from {Rise, Fall,Neutral} indicating the

predicted market trend.
• Rejected Result: A label (xr) randomly selected from {Rise, Fall,Neutral, Surrender}\{xr},

representing an incorrect market prediction.

C.3 FLARE BENCHMARK DATASETS

Stock Movement Prediction Datasets and Tasks: Flare-SM tasks. FLARE proposed by Xie
et al. [2023], extends to include one financial prediction task – the CIKM dataset Wu et al. [2018] as
an evaluation task among (four) other general financial NLP tasks. Under the hood, this benchmark
is a fork of the ‘lm-eval‘ harness Gao et al. [2021] with addendums. Other stock price movement
prediction from social dataset include what is referred to as ACL18 (or, ‘acl18’) in this paper is
essentially the StockNet Xu & Cohen [2018] dataset which comprises of stock tweets of 88 stock
tickers from 9 financial market industries from Twitter over two years (from 2014-2015) aligned with
their corresponding historical price data. BigData22 [Soun et al., 2022] is another more recent tweets
dataset comprising of tweets about 50 stock tickers during the period 2019-07-05 to 2020-06-30.

Table 9: Summary of Flare stock price movement datasets. The ‘Stocks’ column indicates the total number of
different stock tickers referenced. The ‘Tweets’ and ‘Days’ columns represent the number of tweets and days
respectively in each dataset.

Data Stocks Tweets Days Start Date End Date
ACL18 87 106,271 696 2014-01-02 2015-12-30
BigData22 50 272,762 362 2019-07-05 2020-06-30
CIKM18 38 955,788 352 2017-01-03 2017-12-28

D ADDITIONAL BACKGROUND MATERIAL

In an effort to keep our paper as self-contained as possible, this section contains additional background
material used in our derivations and in the formulations of our technical results.

D.1 MATRIX LOGARITHMS

The (principal) logarithm of an N ×N matrix A whose spectrum does not contain (−∞, 0] in C is
defined by

log(A) def.
=

1

2πi

∫
γ

log(z) (zIN −A)−1 dz

where log(z) is the principal logarithm of z (in the complex plane) and γ is a closed curve in
C \ (−∞, 0] containing the eigenspectrum of A.

D.2 THE SHIRAYEV-WONHAM FILTER

To keep our paper as self-contained as possible, we included some brief background on stochastic
filtering. Namely, this appendix contains background material on the Shirayev-Wonham (stochastic)
filter, studied in [Liptser & Shiryaev, 2001b, Chapter 9].

Consider a complete probability space (Ω,F , P ) equipped with a non-decreasing sequence of
right-continuous sub-σ-algebras Ft, 0 ≤ t ≤ T . Let θ = (θt,Ft), 0 ≤ t ≤ T , denote a real
right-continuous Markov process taking values in the countable set E = {α, β, γ, . . .}. Additionally,
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let W = (Wt,Ft), 0 ≤ t ≤ T , be a standard Wiener process independent of θ, and let ξ0 be
a F0-measurable random variable independent of θ. We assume the existence of nonanticipative
functionals At(ϵ, x) and Bt(x) that define

dξt = At(θt, ξ)dt+Bt(ξ)dWt (58)

and satisfy the following conditions.

A2
t (ϵt, x) ≤ L1

∫ t

0

(1 + x2
s)dK(s) + L2(1 + ϵ2t + x2

t ), (59)

0 < C ≤ B2
t (x) ≤ L1

∫ t

0

(1 + x2
s)dK(s) + L2(1 + x2

t ), (60)

|At(ϵt, x)−At(ϵt, y)|2 + |Bt(x)−Bt(y)|2 ≤ L1

∫ t

0

(xs − ys)
2dK(s) + L2(xt − yt)

2, (61)

where C,L1, L2 are certain constants, K(s) is a non-decreasing right continuous function, 0 ≤
K(s) ≤ 1, x ∈ CT , y ∈ CT , ϵt ∈ E, 0 ≤ t ≤ T .

Along with Equations (59) to (61) it will also be assumed that

Mξ20 <∞, (62)

and

M

∫ T

0

θ2t dt <∞. (63)

Define

pβ(t)
def.
= P (θt = β),

pβα(t, s)
def.
= P (θt = β|θs = α), 0 ≤ s < t ≤ T, β, α ∈ E,

and assume there exist a function λαβ(t), 0 ≤ t ≤ T, α, β ∈ E, that is

continuous over t, (uniformly over α, β) (64)
|λαβ(t)| ≤ K (65)

|pβα(t+∆, t)− δ(β, α)− λαβ(t) ·∆| ≤ o(∆), (66)

where δ(β, α) is a Kronecker’s symbol and the value o(∆)/∆→ 0 as ∆→ 0 (uniformly over α, β).

Let the Equations (59) to (66) be fulfilled. Then the a posteriori probability πβ(t), β ∈ E , satisfies a
system of equations

πβ(t) = pβ(0) +

∫ t

0

L∗πβ(u)du+

∫ t

0

πβ(u)
Au(β, ξ)− Āu(ξ)

Bu(ξ)
dWu,

where

L∗πβ(u) =
∑
γ∈E

λγβ(u)πγ(u) and Āu(ξ) =
∑
γ∈E

Au(γ, ξ)πγ(u),

and W = (W t,Ft) is a Wiener process with

W t =

∫ t

0

dξu − Āu(ξ)

Bu(ξ)
du.
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E ADDITIONAL DISCUSSIONS

We have updated the anonymous git repo with all the experiment results and added script to easily
replicate the main results of the paper in Table 2.

E.1 F1-MEASURE IN FMM TASK

For evaluation of model performances on the financial market movement (FMM) task using ternary
class labels, we use the scikit-learn library methods. For multi-class, n, labels (with n > 2), the
choice of averaging is important. The tabulated results were evaluated with default averaging
set to “weighted” – where metrics for each label were calculated, then average weighted by their
corresponding support (the number of true instances for each label). This alters the global averaging
‘macro’ (equal weight) for label imbalance. Imbalanced label support can result in an F-score that is
lower or not in between precision and recall.
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(a) Llama-class models.

Fall Neutral Rise
Predicted

Fa
ll

Ne
ut

ra
l

Ri
se

Tr
ue

 L
ab

el

21 18 34

23 45 75

27 34 40

Mixtral-8x7B-Instruct-v0.1

Fall Neutral Rise
Predicted

13 22 38

21 50 72

23 34 44

dbrx-instruct

Fall Neutral Rise
Predicted

20 48 5

27 87 29

32 59 10

OpenAI-gpt-4o

(b) Mixture-of-experts class models and the state-of-the-art GPT-4 model.

Figure 7: Confusion matrices for Table 2. The first row highlights the Llama-class models, and the second row
focuses on mixture-of-experts and GPT-4 models.

E.2 TIME-SERIES FORECASTING EXPERIMENTS: ADDITIONAL DETAILS

This section provides additional discussion in support of the long-horizon time-series forecasting
(LTSF) experiment covered in §5.2.

E.2.1 FORECASTING GRANULARITY IN TIME-SERIES FORCASTING: IMS VS. DMS

In LTSF works, the decoding granularity is dichotomized in the following two categories:

I) Iterated/Incremental Multi-step (IMS). : This is auto-regressive language-modeling or gen-
erative style prediction decoding where each step in prediction horizon H is iteratively predicted:
x̂t+1, and is used for the prediction for the subsequent time-step. The common limitations of such
forecasting granularity is ‘error accumulation’ over time as the decoder builds on the error from
previous steps while iteratively making subsequent predictions. Additionally, the run-time complexity
is to the order of the length of the horizon H .

II) Direct Multi-step (DMS). : As the name implies, in this decoding or forecasting approach, the
entire forecasting horizon H is predicted at one go: x̂t+1:t+H . While computationally more attractive
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(much faster than IMS), this approach may not incorporate seasonality/periodicity in the time-series.
Modern TSF specialist models, especially the transformer-based TSF architectures, tend to follow
this scheme to avoid the quadratic cost (to the length of input) associated with attention.

E.2.2 CHANNEL INDEPENDENT STRATEGY

Recent advancements in Long-Term Series Forecasting (LTSF) have increasingly embraced a Channel
Independent (CI) approach for handling multivariate time series data Han et al. [2024]. The CI
strategy simplifies forecasting by isolating each (channel or feature as) univariate time series within
the dataset, allowing the model to focus on predicting individual channels independently. Unlike
traditional methods that leverage the entire multivariate historical data to make forecasts, the CI
approach seeks a shared function f : x

(i)
t−L+1:t ∈ RL → x̂

(i)
t+1:t+H ∈ RH for each univariate series,

providing a streamlined model for each channel and reducing the need to account for inter-channel
dependencies.

E.2.3 OUR SETUP

For our experiments, the historical observation window (aka. look-back window or lag period), L,
is kept constant at 720 time-steps to be consistent and comparable with the literature. We follow
the channel-independent strategy similar to the three expert models used for filtering - giving us C
number of distinct features or channels of an agent’s observation. The (MSE) loss is then measured
as the discrepancy between the predicted values x̄(i)

t+1:t+H and the ground truth y
(i)
t+1:t+H as

L =
1

C

C∑
i=1

∥∥y(i)t+1:t+H − x̄
(i)
t+1:t+H

∥∥2
2
. (67)
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