

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 **GTR-BENCH: EVALUATING GEO-TEMPORAL REASONING IN VISION-LANGUAGE MODELS**

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

009 Recently spatial-temporal intelligence of Visual-Language Models (VLMs) has
010 attracted much attention due to its importance for Autonomous Driving, Embod-
011 ied AI and General Artificial Intelligence. Existing spatial-temporal benchmarks
012 mainly focus on egocentric perspective reasoning with images/video context, or
013 geographic perspective reasoning with graphics context (eg. a map), thus fail to
014 assess VLMs' geographic spatial-temporal intelligence with both images/video
015 and graphics context, which is important for areas like traffic management and
016 emergency response. To address the gaps, we introduce Geo-Temporal Reasoning
017 benchmark (GTR-Bench), a novel challenge for geographic temporal reasoning
018 of moving targets in a large-scale camera network. GTR-Bench is more chal-
019 lenging as it requires multiple perspective switches between maps and videos,
020 joint reasoning across multiple videos with non-overlapping fields of view, and
021 inference over spatial-temporal regions that are unobserved by any video con-
022 text. Evaluations of more than 10 popular VLMs on GTR-Bench demonstrate
023 that even the best proprietary model, Gemini-2.5-Pro (34.9%), significantly lags
024 behind human performance (78.61%) on geo-temporal reasoning. Moreover, our
025 comprehensive analysis on GTR-Bench reveals three primary deficiencies of cur-
026 rent models for geo-temporal reasoning. (1) VLMs' reasoning is impaired by an
027 imbalanced utilization of spatial-temporal context. (2) VLMs are weak in tempo-
028 ral forecasting, which leads to worse performance on temporal-emphasized tasks
029 than on spatial-emphasized tasks. (3) VLMs lack the proficiency to comprehend
030 or align the map data with multi-view video inputs. We believe GTR-Bench of-
031 fers valuable insights and opens up new opportunities for research and applica-
032 tions in spatial-temporal intelligence. Benchmark and code will be released at
033 <https://anonymous.4open.science/r/GTR-Bench-5B76>.

1 INTRODUCTION

037 Spatial intelligence is a fundamental capability that underpins our interaction with the physical world
038 (Feng et al., 2025a). This capability is pivotal for a wide range of applications, including autonomous
039 driving (Cui et al., 2025; Guo et al., 2024) and embodied AI (Chen et al., 2024; Huang et al.,
040 2023). With recent advancements in deep learning, the spatial-temporal intelligence, an extension of
041 spatial intelligence, of Visual-Language Models (VLMs) has emerged as a critical area of research.
042 It encompasses the ability to understand spatial dimensions such as size, distance, and temporal
043 dimensions such as time interval and velocity, and to perform spatial-temporal reasoning in the real
044 world with dynamics.

045 However, existing benchmarks for the spatial-temporal intelligence of Vision-Language Models
046 (VLMs) have inherent limitations, as shown in Table 1. Current benchmarks for geographic rea-
047 soning only focus on static geometry tasks with graphics context such as a subway map (Feng et al.,
048 2025b; Chen et al., 2025). Meanwhile, current benchmarks for egocentric or allocentric tasks typi-
049 cally concentrate on a single or a few distinct cameras and emphasize scale reasoning between static
050 objects and motion state reasoning of dynamic objects with videos or images context (Yang et al.,
051 2025a; Li et al., 2025a; Yang et al., 2025b; Xu et al., 2025; Chen et al., 2025; Feng et al., 2025b;
052 Ko et al., 2025; Li et al., 2025b). To address these gaps, we propose **Geo-Temporal Reasoning**
053 (**GTR**), a novel challenge for geographic temporal reasoning of moving targets in a large-scale cam-
era network. For example, understanding vehicle movement patterns and predicting traffic flow
dynamics within a city demands sophisticated reasoning about vehicle appearances, their trajec-

Benchmark	Perspective	Geometry vs. Motion	Context Type	#Cam Views
ReasonMap(Feng et al., 2025b)	Geographic	Geometry	Graphics	0
MultiSPA(Xu et al., 2025)	Egocentric	Geometry	Image	2
STI-BenchLi et al. (2025b)	Egocentric	Geometry & Motion	Video	1
VSI-BenchYang et al. (2025a)	Egocentric	Geometry & Motion	Video	1
ViewSpatial-BenchLi et al. (2025a)	Egocentric & Allocentric	Geometry	Image	2+
ST-VLMKo et al. (2025)	Egocentric	Motion	Video	1
GTR-Bench (Ours)	Geographic	Motion	Graphics & Video	1 to 3

Table 1: **Comparison of GTR-Bench with Previous Benchmarks.** Our GTR-Bench is a novel challenge which can assess VLMs’ geographic spatial-temporal intelligence in a camera network with both images/video and graphics context.

ries, and motion trends across over 10 camera viewpoints. In the context of GTR, GTR-Bench is more challenging as it requires multiple perspective switches between maps and videos in a camera network, joint reasoning across multiple videos with non-overlapping fields of view, and inference over spatial-temporal regions that are unobserved by any video.

In this work, we introduce the **Geo-Temporal Reasoning benchmark (GTR-Bench)**, as shown in Figure 1. GTR-Bench features a hierarchical suite of tasks grounded in real-world multi-camera networks. A key innovation of our benchmark is to extend the context of spatial-temporal reasoning tasks to real camera networks within geographic perspective. Grounded in real-world indoor and outdoor scenarios with a multi-camera network, our benchmark utilizes the actual trajectory open-source data of pedestrians and vehicles in urban environments (Tang et al., 2019; Woo et al., 2024) for task context construction, including map, object footprint, and trajectory data constructed through annotations. Furthermore, GTR-Bench features a series of tasks for unobserved scenarios that require multi-view joint reasoning across timestamp sequences with non-overlapping field of view. We propose a multi-level evaluation architecture that dissects model capabilities into basic reasoning tasks and combinatorial tasks, covering 420 questions derived from 364 videos. We designed three basic reasoning tasks, including **Geo-location**, **Arrival Time-Interval**, and **Motion-State**, to isolate and measure a model’s core inferential strengths. To investigate how models prioritize these basic skills, we developed four combinatorial tasks, including **Causal Reordering**, **Next Spot Forecasting**, **Trajectory Forecasting**, and **Multi-Target Trajectory Forecasting**.

In our evaluation, models demonstrate markedly poor performance on GTR tasks compared to existing spatial-temporal benchmarks, revealing a critical gap in current VLMs’ ability to achieve spatial-temporal intelligence. Even the top-performing proprietary model, Gemini-2.5-Pro, achieved only 34.9% accuracy compared to the human-level performance of 78.61%, while the leading open-source model, InternVL3-38B, reached just 30.76%. This poor performance is further highlighted by two key trends: a significant drop in accuracy from basic to combinatorial tasks, and a notable disparity of performance between outdoor and indoor scenarios. Our in-depth analysis attributes these shortcomings to three fundamental deficiencies in current models. First, VLMs’ reasoning is impaired by an imbalanced utilization of context across spatial, temporal, and motion-state dimensions. Second, VLMs are weak in temporal forecasting, which leads to worse performance on spatial-temporal prediction tasks than on spatial reasoning tasks. Third, VLMs lack the proficiency in comprehending and aligning map data with multi-view video inputs from a camera network.

Our main contributions are summarized as follows:

- We propose Geo-Temporal Reasoning, a novel spatial-temporal challenge for geographic temporal reasoning of moving targets in a large-scale camera network. It helps assess VLMs’ geographic spatial-temporal intelligence with both images/video and graphics context, which is important for areas, such as traffic management and emergency response, beyond conventional Embodied AI.
- We develop GTR-Bench for evaluating geo-temporal reasoning capabilities of VLMs. GTR-Bench is more challenging due to multiple perspective switches between maps and videos, joint reasoning across multiple videos with non-overlapping fields of view, and inference over spatial-temporal regions that are unobserved by any video context, so that even the best proprietary model, Gemini-2.5-Pro (34.9%), significantly lags behind human performance (78.61%).

108 • We provide a comprehensive analysis on GTR-Bench, which reveals three primary defi-
 109 ciencies of current models for geo-temporal reasoning, namely, imbalanced utilization of
 110 spatial-temporal context, weakness in temporal forecasting capabilities, and lack of pro-
 111 ficiency in comprehending and aligning the map data with multi-view video inputs. We
 112 believe analysis on GTR-Bench offers valuable insights and opens up new opportunities
 113 for research and applications in spatial-temporal intelligence.

114
 115
 116
 117 **2 RELATED WORK**

118
 119
 120
 121 **Geographic Reasoning Benchmark.** Existing benchmarks for geographic reasoning primarily as-
 122 sess models for geometry tasks with graphics context such as a map. ReasoningMap(Feng et al.,
 123 2025b) designed a geographic reasoning task for structured and information-rich diagrams like
 124 high-resolution transit maps. SpatialLLM(Chen et al., 2025) explores the application of VLMs
 125 to geographic information system data in geometry tasks by transforming multi-modal urban data
 126 into structured scene descriptions to prompt pre-trained LLMs. They evaluate the understanding of
 127 spatial topology and path planning from a geographic view, yet typically only incorporate evalua-
 128 tion tasks for static geometric targets. In the GTR-Bench, we combine geographic data to reason
 129 about dynamic objects. It will bring a new cognitive perspective to the existing spatial-temporal
 130 benchmarks.

131 **Spatial-Temporal Reasoning Benchmark.** Existing benchmarks for spatial-temporal reasoning
 132 assess models on video or multi-image tasks from a single or a few camera views. ST-VLM(Ko
 133 et al., 2025) constructs a dataset and benchmark for kinematic instruction tuning (STKit/STKit-
 134 Bench) to propose and validate ST-VLM, which demonstrates outstanding performance in object
 135 dynamics analysis. STI-Bench (Li et al., 2025b) evaluates the capabilities of VLMs on real-world
 136 spatio-temporal understanding tasks such as pose, displacement, and motion. They focus on event
 137 sequencing and state inference within a single video from an egocentric view. ViewSpatial-Bench(Li
 138 et al., 2025a) addresses the core problem of VLMs’ inadequate spatial reasoning when switching
 139 from egocentric to allocentric perspectives. MMSI-Bench (Yang et al., 2025b) is built upon spatial
 140 reasoning tasks that span the positions, attributes, and motions with a multi-step reasoning split that
 141 chains them into long-horizon questions. Multi-MultiSPA(Xu et al., 2025) is designed for multi-
 142 frame spatial reasoning covering depth and visual correspondence perception, camera and object
 143 movement perception, and object size perception. They focused on the challenges of multi-view
 144 tasks and attempted to evaluate models to perform spatial-temporal reasoning under few adjacent
 145 yet distinct views as an egocentric or allocentric observer. Although these spatial-temporal works
 146 have some similarities with GTR, GTR notably combines graphic map and video as context and
 147 proposes a geographic temporal reasoning task of moving targets with multi-view joint reasoning
 148 with little view overlap for unobserved scenes.

149 **Geo-Temporal Task in Multi-Camera Systems.** Geo-temporal task represents a type of spatial-
 150 temporal tasks that covers large-scale camera networks across multiple regions/districts, necessitat-
 151 ing comprehension of geographic relationships and cross-regional connections. Multi-Target Multi-
 152 Camera Tracking (MTMCT) can be considered as a form of geo-temporal task. Existing benchmarks
 153 for MTMCT include the CityFlow dataset (Tang et al., 2019), which provides vehicle trajectories in
 154 a large urban area, and MTMMC (Woo et al., 2024), which offers pedestrian trajectories in indoor
 155 environments. Complementing these datasets, various methods have been developed for multiple
 156 camera Re-ID. These include two-step matching approaches using semantic parsing and spatial-
 157 temporal attention (He et al., 2020), the integration of language models with graph neural networks
 158 (Nguyen et al., 2024), and noise-robust trajectory recovery frameworks designed to address Re-
 159 ID clustering errors (Li et al., 2025c). However, existing researches still rely primarily on visual
 160 features of objects, which remain within the computer vision domain with limited generalizability.
 161 Given the extensive exploration of VLMs in spatial-temporal intelligence applications, we extend
 162 the geo-temporal task to a novel challenge, Geo-temporal Reasoning(GTR), which leverages the
 163 reasoning capabilities of VLMs to fully utilize geographic and temporal context in solving more
 164 challenge.

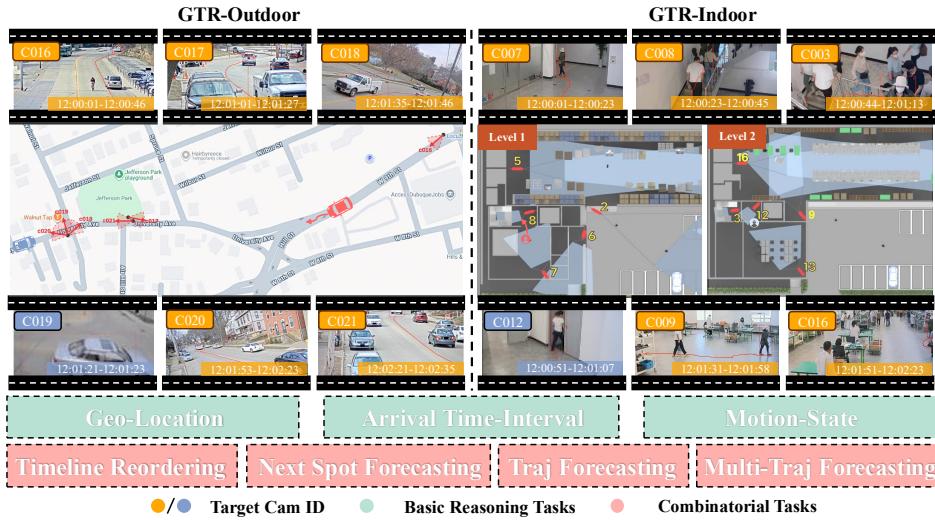


Figure 1: **Overview of Geo-temporal Reasoning and GTR-Bench.** Given a graphic map and multiple video clips from non-overlapping cameras, geo-temporal reasoning infers motion state of moving targets in a large-scale camera network. GTR-Bench comprises 3 basic reasoning tasks, including Geo-location, Arrival Time-Interval, and Motion-State, and 4 combinatorial tasks including Causal Reordering, Next Spot Forecasting, Trajectory Forecasting, and Multi-Target Trajectory Forecasting. GTR-Bench covers both outdoor (vehicles) and indoor (pedestrians) scenarios.

3 GEO-TEMPORAL REASONING

From a cognitive science perspective, spatial-temporal intelligence can be bifurcated into two categories: first-person (egocentric) and third-person (allocentric) intelligence (Burgess, 2006). However, if we move away from the human cognitive perspective and perceive the real world from a broader perspective, the geographic perspective can provide VLMs with an omniscient understanding for dynamic objects.

When we extend the context of the problem to geographic spatial-temporal intelligence, the issue becomes more challenging and valuable, requiring the resolution of multi-perspective changes and transformations of coordinate systems. A typical case involves inferring a target’s geo-location, temporal sequence, and motion state in a camera network comprising more than 10 viewpoints covering an urban scene. We posit that this represents a crucial challenge of spatial-temporal intelligence, which we define as Geo-Temporal Reasoning (GTR), as illustrated in Figure 1.

With the expansion of context from the GTR challenge, novel questions have arisen for existing spatial-temporal intelligence. The introduction of a graphic map requires models to reason between the map and cameras, handling multiple perspective changes. This contrasts sharply with egocentric tasks, which rely on a continuous-time sequence inferred from the sequential order of image frames (Xiong et al., 2024; Su et al., 2024; Bazaga et al., 2025). Furthermore, GTR challenges VLMs to perform multi-view joint reasoning about unobserved phenomena with little view overlap, such as inferring a target’s path between camera views. This demands superior inferential capabilities and context integration. In contrast, egocentric tasks typically involve continuous and unified spatial-temporal observations, allowing models to reason about directly observed events (Ko et al., 2025; Li et al., 2025b).

4 GTR-BENCH

4.1 OVERVIEW OF GTR-BENCH

In this work, we constructed the Geo-Temporal Reasoning benchmark (GTR-Bench) to systematically evaluate VLMs on this geo-temporal reasoning challenge, as detailed in Table 2. (1) The first level comprises three basic reasoning tasks designed to probe fundamental abilities. **Geo-Location** assesses a model’s comprehension of spatial topology and path planning within multi-camera net-

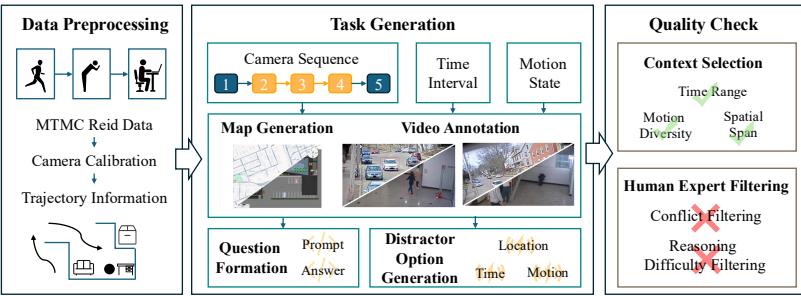
216	217	Task Name	Task Definition	Metric
Basic Tasks				
218	219	Geo-Location (GL)	Given the starting and ending locations of a target, infer the intermediate locations the target passes through. <i>Example: Based on the provided [start video] and [end video], infer which camera the target passed through between the start point (C016, 12:00:10-12:00:22) and end point (C018, 12:00:37-12:00:42). Answer: C. C017</i>	MCQ Acc
220	221	Arrival Time-Interval (ATI)	Given the starting point, ending point, and intermediate location, infer the time interval of the target's arrival at specific intermediate location. <i>Example: Based on the provided [start video] (C018, 12:00:37-12:00:42) and [end video] (C020, 12:00:43-12:00:50), and knowing the target passed through camera C019, infer when the target arrived at the intermediate camera. Answer: A. 12:00:43.279-12:00:43.579</i>	MCQ Acc
222	223	Motion-State (MS)	Given the starting point, ending point, and intermediate location, infer the plausible motion state of the target at intermediate locations. <i>Example: Based on the provided [start video] (C016, 12:00:10-12:00:22) and [end video] (C018, 12:00:37-12:00:42), and the intermediate camera c017 infer the target's motion state during the intermediate time period. Answer: B. the target travels west at a speed of 10.0 m/s for 11.0 seconds, covering a distance of 109.6 meters.</i>	MCQ Acc
Combinatorial Tasks				
224	225	Causal Reordering (CR)	Given a set of unordered video clips from different cameras and a map, determine the correct chronological sequence of cameras the target passed through. <i>Example: Based on the provided [local map] and [videos](C019,C021,C020), analyze the target's activity trajectory. Please infer the correct order in which the target passed through these cameras. Answer: D. C019 → C020 → C021</i>	MCQ Acc
226	227	Next Spot Forecasting (NSF)	Given the target's last observed appearance in a single camera video and a map, predict the most probable next camera location and the corresponding time interval of appearance. <i>Example: Based on the provided [local map] and [video] (C16, 12:00:10-12:00:22), which camera from the following list will likely capture the target next? You need to select one option as the answer and infer a time range. Answer: A. C020 12:00:43.905-12:00:50.505</i>	ST-IoU
228	229	Trajectory Forecasting (TF)	Building upon multiple historical observations across several cameras, predict the target's complete future trajectory by forecasting the sequence of cameras it will pass through. <i>Example: Based on the provided [local map] and [videos] (C017, 12:01:01-12:01:27, C018, 12:00:37-12:00:42), predict the next two cameras that the target will likely pass through. You need to select a correct sequence of options and simultaneously infer a corresponding sequence of time ranges. Answer: A. C019 12:00:43.279-12:00:43.579 → D. C020 12:00:43.905-12:00:50.505</i>	ST-IoU
230	231	Multi-Target Trajectory Forecasting (MTTF)	This extends single-target prediction by requiring the model to forecast the future meeting point (location and time) of two distinct targets. <i>Example: Based on the provided [local map] and [videos] (C018, 12:00:37-12:00:42, C019, 12:01:21-12:01:23) showing the movement trajectories of two [Target], predict where and when these [Target] will most likely meet. Answer: B. C018 12:00:37.755-12:00:42.855</i>	ST-IoU

Table 2: **Detailed design and examples of tasks in GTR-Bench.** GTR-Bench is divided into basic and combinatorial levels, evaluated by either Multiple-Choice Question Accuracy (MCQ Acc) or Spatial-Temporal Intersection over Union (ST-IoU).

works. **Arrival Time-Interval** evaluates the ability to model temporal sequences and predict event timing across different camera views. **Motion-State** examines the understanding of target's behavior and the influence of scene semantics on motion state. (2) The second level features four combinatorial tasks that demand the integration of three basic reasoning skills. **Causal Reordering** requires the synthesis of spatial and temporal understanding to reconstruct a coherent event sequence. **Next Spot Forecasting** integrates all three basic skills to predict a target's subsequent location and time of appearance in the future. **Trajectory Forecasting** extends this by requiring long-horizon prediction, testing the model's ability to understand sustained motion patterns. **Multi-Target Trajectory Forecasting** testing collaborative reasoning and the capacity to manage multiple spatial-temporal paths.

For each task in the GTR-Bench, we have designed specific problem instances and corresponding evaluation metrics, as detailed in Table 2. Each question is multi-modal, incorporating a map with one or more video clips, and features a rich diversity of target objects and spatial-temporal contexts. Overall, the benchmark comprises 420 unique questions derived from 364 distinct video clips with an average duration of 10.64 seconds. As shown in Table 3, these questions are meticulously balanced across the seven reasoning tasks, with 60 questions per task. Further examples and details are available in Appendix E.

Metric	Value
Total Questions	420
Unique Videos	364
Avg Images/Question	7.0
Avg Question Length	185.1
Avg Choice Length	132.4
GTR-Outdoor	Details
Questions	7x30
Cameras	31
Avg. Distance	984.77m
Max. Distance	2389.42m
Target	Vehicles
GTR-Indoor	Details
Questions	7x30
Cameras	16
Avg. Distance	30.59m
Max. Distance	60.93m
Avg. FoV	166.30m ²
Target	Pedestrian

270
271
272
273
274
275
276
277
278
279
280
Table 3: Data Statistics281
282
283
Figure 2: Benchmark construction pipeline

284 The benchmark is equally divided into two distinct real-world scenarios, with 210 questions for each.
 285 The first is an outdoor urban environment from the CityFlow dataset (Tang et al., 2019) focused on
 286 vehicles, while the second is an indoor, multi-level setting from the MTMMC dataset (Woo et al.,
 287 2024) for pedestrians. As detailed in Table 3, these environments present vastly different scales of
 288 geo-temporal complexity. The outdoor network spans a city block with 31 cameras and an average
 289 inter-camera distance of 984.77 meters. In contrast, the indoor network provides building-level
 290 coverage with 16 cameras and an average distance of only 30.59 meters. This significant disparity,
 291 with the outdoor scenario being approximately 32 times larger in spatial scale, establishes a testbed
 292 for evaluating the spatial-temporal intelligence of VLMs.

293
294

4.2 METRIC DESIGN

295 We employ two primary metrics for evaluation: standard accuracy for multiple-choice questions
 296 (MCQs) and a novel Spatial-Temporal Intersection over Union (ST-IoU) for predictive tasks, as out-
 297 lined in Table 2. For the basic and CR tasks, which are formatted as MCQs, we report standard
 298 accuracy. In contrast, the forecasting tasks (NSF, TF, and MTTF) require the model to generate both
 299 a Camera ID (e.g., *C.C017*) and a corresponding time interval (e.g., *12:00:37-12:00:42*). To eval-
 300 uate spatial-temporal results, we introduce ST-IoU, a composite metric designed to assess spatial-
 301 temporal performance. Specifically, it combines spatial accuracy—verifying the correctness of the
 302 predicted Camera ID—with Temporal IoU, which measures the overlap between the predicted and
 303 ground-truth time intervals. For a given prediction i , the ST-IoU is calculated as follows:

$$\text{ST-IoU} = \frac{1}{N} \sum_{i=1}^N \mathbb{I}(C_{p_i} = C_{gt_i}) \times \frac{|T_{p_i} \cap T_{gt_i}|}{|T_{p_i} \cup T_{gt_i}|} \quad (1)$$

304 where N is the total number of predictions, $\mathbb{I}(\cdot)$ is the indicator function which equals 1 if the
 305 predicted camera C_{p_i} matches the ground truth camera C_{gt_i} and 0 otherwise. T_{p_i} and T_{gt_i} represent
 306 the predicted and ground-truth time intervals and the fraction calculates their temporal IOU.

311
312

4.3 BENCHMARK CONSTRUCTION PIPELINE

313 We designed an automated benchmark construction pipeline that transforms raw video data into
 314 standardized questions across seven tasks to accommodate the varying temporal, geographic, and
 315 formatting requirements of different tasks, as shown in Figure 2.

316 **Data Preprocessing.** Our data preprocessing pipeline transforms raw video from two distinct
 317 datasets, CityFlow (outdoor vehicles)(Tang et al., 2019) and MTMMC (indoor pedestrians)(Woo
 318 et al., 2024), into a structured format suitable for geo-temporal reasoning. The process begins by
 319 segmenting video clips for individual target instances based on bounding box annotations. Next,
 320 we perform camera calibration by computing a homography matrix from manually annotated corre-
 321 spondence points, which establishes a precise projective transformation from the 2D image plane to
 322 a real-world map. Using this matrix, we transform target trajectories by projecting their coordinates
 323 onto the map, scaling them to real-world metrics, and algorithmically deriving key motion param-
 324 eters like velocity and direction. The resulting trajectory data then undergoes a rigorous cleaning,

filtering, and validation process to ensure consistency. Finally, we use a large language model to synthesize this quantitative data into a qualitative *Motion Summary*, providing both numerical and narrative insights for each trajectory. For more details, refer to Appendix A.1.

Task Construction. We employ a systematic pipeline to create standardized questions using task-specific templates. The process consists of four main steps: **(1) Trajectory Selection:** We randomly sample valid trajectory segments, complete with temporal and motion state data, from our preprocessed dataset. **(2) Information Integration:** The selected trajectory, along with corresponding map information and video data, is integrated into a standardized template. **(3) Question and Answer Formulation:** We construct a task question aligned with specific reasoning requirements and establish the ground-truth answer based on the actual trajectory and map data. **(4) Distractor Generation:** To ensure a rigorous evaluation, we generate plausible yet incorrect distractor options using a sophisticated, scenario-specific strategy. This includes sourcing from architecturally distinct indoor areas, algorithmically creating synthetic outdoor cameras, and randomizing camera IDs to compel models to perform genuine geo-temporal reasoning rather than relying on superficial heuristics. For more details, refer to Appendix A.2.

Quality Check. The benchmark has undergone a complete two-stage manual selection process to ensure the validity of the evaluation. In the first stage, we first manually select the context of each question to ensure the diversity of spatial spans and temporal durations of the questions. Meanwhile, we remove questions with large trajectory errors to bring the benchmark more in line with the laws of spatial-temporal reasoning. In the second stage, human experts select the answers of each question and select 30 questions per task covering reasonable difficulty levels. This ensures the validity of the benchmark and provides diversity in evaluation difficulty.

5 EVALUATION ON BENCHMARK

5.1 EVALUATION SETUP

We evaluate 13 models across our benchmark. For proprietary models, we select Claude-3.7-Sonnet(Anthropic, 2025a), Claude-4-Sonnet(Anthropic, 2025b), GPT-4o(Openai, 2024), GPT-5(Openai, 2025), and Gemini-2.5-Pro(Deepmind, 2025). For open-source models, we select InternVL3-2B/8B/38B series(Zhu et al., 2025), Qwen2-VL-2B/7B series(Wang et al., 2024), Qwen2.5-VL-2B/7B/32B series(Bai et al., 2025), and GLM-4.1V-9B-Thinking(Hong et al., 2025). Proprietary models are accessed through their respective official APIs, while open-source models are deployed using LMDeploy and the Pytorch framework on 8 NVIDIA V100 GPUs. Considering the input limitations of models, we sample the videos, ensuring that the total number of sampled frames from multiple videos is within 20, to achieve reasonable and effective evaluation. We set the *temperature* of all models to 0.1 and set *max_new_token* to 16384, enabling the models to perform sufficient and temperature-appropriate reasoning.

5.2 MAIN RESULTS

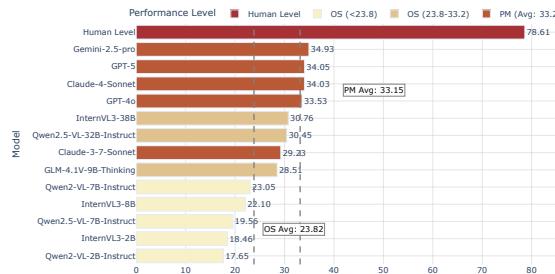


Figure 3: Overview of GTR-Bench Results.

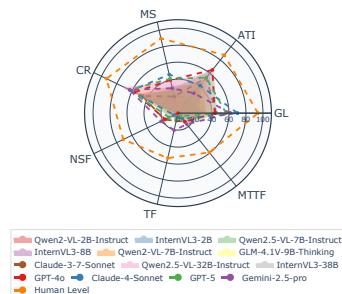


Figure 4: Task performance of GTR-Bench

Overview of Results. A critical performance gap is notable, with even the best proprietary model, Gemini-2.5-Pro, achieving a score of only 34.9, compared to the human-level performance of 78.61. Table 4 presents a comprehensive evaluation of 12 Visual-Language Models on our GTR-Bench,

378	379	Methods	Rank	GTR-Outdoor							GTR-Indoor							Average
				GL	ATI	MS	CR	NSF	TF	MTTF	GL	ATI	MS	CR	NSF	TF	MTTF	
Proprietary Models (API)																		
Claude-3.7-Sonnet	7	53.33	66.67	26.67	46.67	25.75	8.90	<u>21.97</u>	36.67	40.00	13.33	46.67	9.48	9.51	3.56	29.23		
GPT-4o	4	56.67	76.67	40.00	<u>63.33</u>	<u>20.53</u>	0.00	23.10	30.00	<u>53.33</u>	<u>40.00</u>	50.00	<u>13.00</u>	0.00	2.79	33.53		
Claude-4-Sonnet	3	73.33	50.00	50.00	<u>63.33</u>	8.05	6.18	16.94	66.67	33.33	43.33	58.62	2.60	4.01	0.00	34.03		
GPT-5	2	53.33	76.67	40.00	40.00	12.04	<u>12.12</u>	7.34	60.00	30.00	43.33	86.21	11.34	2.55	1.75	<u>34.05</u>		
Gemini-2.5-Pro	1	60.00	46.67	33.33	56.67	19.13	13.16	19.18	<u>63.33</u>	13.33	26.67	<u>70.00</u>	25.11	28.09	14.37	34.93		
Open-source Models																		
Qwen2-VL-2B-Instruct	13	33.33	16.67	20.00	56.67	0.00	0.28	0.00	30.00	13.33	33.33	43.33	0.00	0.21	0.00	17.65		
InternVL3-2B	12	33.33	46.67	23.33	36.67	6.15	0.00	9.95	13.33	23.33	33.33	30.00	0.65	0.08	1.62	18.46		
Qwen2.5-VL-7B-Instruct	11	23.33	46.67	3.33	60.00	0.00	0.00	0.51	40.00	30.00	6.67	63.33	0.00	0.00	0.00	19.56		
InternVL3-8B	10	26.67	60.00	33.33	50.00	0.00	4.79	5.42	20.00	26.67	30.00	50.00	0.00	0.79	1.67	22.10		
Qwen2-VL-7B-Instruct	9	43.33	60.00	16.67	50.00	5.78	0.00	10.01	20.00	40.00	36.67	36.67	3.62	0.00	0.00	23.05		
GLM-4.1V-9B-Thinking	8	60.00	57.14	25.00	62.07	10.29	0.00	25.38	26.67	38.46	34.48	55.17	2.87	0.00	1.67	28.51		
Qwen2.5-VL-32B-Instruct	6	43.33	60.00	33.33	66.67	0.65	0.00	15.72	33.33	56.67	43.33	70.00	3.33	0.00	0.00	30.45		
InternVL3-38B	5	40.00	<u>73.33</u>	30.00	53.33	8.27	8.20	20.58	50.00	56.67	26.67	37.93	11.10	4.37	<u>10.24</u>	30.76		
Human Level	-	90.00	84.25	90.91	89.75	68.31	51.24	55.83	98.20	90.78	89.45	97.35	74.64	57.36	62.46	78.61		

Table 4: **GTR-Bench Results.** Our evaluation based on more than 10 popular VLMs reveals a critical performance gap. **Bold** = best result; Underline = second best result.

spanning two distinct scenarios (GTR-Outdoor and GTR-Indoor) and seven reasoning tasks. The proprietary models, particularly Gemini-2.5-Pro, GPT-5 and Claude-4-Sonnet, demonstrate better performance, achieving the highest average scores of 34.93, 34.05 and 34.03, respectively. This indicates that current leading proprietary models possess more robust geo-temporal reasoning capabilities. However, the performance gap is narrowing, with top-tier open-source models like InternVL3-38B, Qwen2.5-VL-32B, and GLM-4.1V-9B-Thinking showing competitive results with scores of 30.76, 30.45, and 28.51 respectively. The overall scores reveal the challenge of GTR-Bench and highlight significant room for improvement in the spatial-temporal intelligence of VLMs.

Outdoor vs Indoor. A comparative analysis between the GTR-Outdoor and GTR-Indoor scenarios reveals distinct performance patterns. As shown in Table 4, most models demonstrate better performance in outdoor settings. For instance, Claude-3.7-Sonnet achieves outdoor scores of 25.75, 8.90, and 21.97 for NSF, TF, and MTTF tasks respectively, consistently outperforming its indoor scores of 9.48, 9.51, and 3.56. This aligns with expectations that outdoor environments provide clearer spatial cues and more regular motion patterns. However, Gemini-2.5-Pro exhibits counterintuitive behavior, achieving higher indoor scores of 25.11, 28.09, and 14.37 compared to its outdoor scores of 19.13, 13.16, and 19.18. This pattern, demonstrated by the top-performing model, suggests that advanced models may better utilize their sophisticated reasoning capabilities when facing more complex indoor scenarios that demand deeper multi-dimensional reasoning.

5.3 RESULT ANALYSIS

Context Utilization Analysis.

We designed a prompt to analyze each model’s reliance on spatial, temporal, and motion state context, detailed in Appendix B, which instructs an LLM to assess its own reasoning output for each question. The model assigns a binary score for its utilization of each context type: 0 for no utilization and 1 for appropriate utilization. This method allows us to quantify each model’s dependency on different context types and reveal its reasoning patterns. As shown in Figure 5, our analysis reveals that leading proprietary models like Gemini-2.5-Pro demonstrate balanced utilization across all context types, which contributes to their superior performance. In contrast, open-source models often exhibit imbalanced patterns. For instance, InternVL3-38B shows strong spatial and motion understanding but weaker temporal reasoning. This imbalance creates reasoning blind spots that limit performance on comprehensive geo-temporal tasks.

Spatial-temporal Reasoning Analysis. To investigate the performance gap between spatial and spatial-temporal reasoning, we conducted a detailed analysis as detailed in Table 5. Models achieve higher MCQ accuracy evaluating spatial location understanding compared to ST-IoU scores requir-

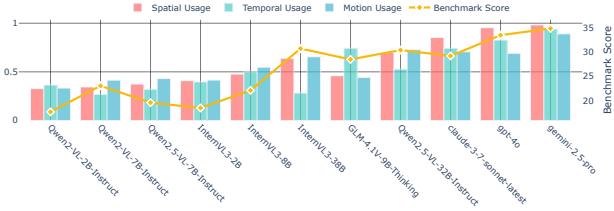


Figure 5: **Context Utilization Analysis.** VLMs’ reasoning is improved by an imbalanced utilization of spatial-temporal context. For appropriate utilization. This method allows us to quantify each model’s dependency on different context types and reveal its reasoning patterns. As shown in Figure 5, our analysis reveals that leading proprietary models like Gemini-2.5-Pro demonstrate balanced utilization across all context types, which contributes to their superior performance. In contrast, open-source models often exhibit imbalanced patterns. For instance, InternVL3-38B shows strong spatial and motion understanding but weaker temporal reasoning. This imbalance creates reasoning blind spots that limit performance on comprehensive geo-temporal tasks.

432	433	434	435	436	437	438	439	440	441	442	GTR-Outdoor						GTR-Indoor							
											Methods	Rank	NSF		TF		MTTF		NSF	TF	MTTF			
													MCQ Acc	ST-IoU	MCQ Acc	ST-IoU	MCQ Acc	ST-IoU	MCQ Acc	ST-IoU	MCQ Acc	ST-IoU		
<i>Proprietary Models (API)</i>											Claude-3-7-Sonnet	7	36.67	25.75	41.67	8.90	73.33	21.97	23.33	9.48	18.33	9.51	6.67	3.56
											GPT-4o	4	53.33	20.53	41.67	0.00	76.67	23.10	30.00	13.00	38.33	0.00	13.33	0.00
											Claude-4-Sonnet	3	36.67	8.05	45.00	6.18	70.00	16.94	30.00	2.60	21.67	4.01	16.67	0.00
											GPT-5	2	73.33	12.04	58.33	12.12	83.33	7.34	50.00	11.34	38.33	2.55	26.67	1.75
											Gemini-2.5-Pro	1	38.46	19.13	45.45	13.16	51.72	19.18	43.33	25.11	50.00	28.09	36.67	14.37
											<i>Open-source Models</i>													
											Qwen2-VL-2B-Instruct	13	36.67	0.00	30.00	0.28	43.33	0.00	3.33	0.00	23.33	0.21	10.00	0.00
											InternVL3-2B	12	33.33	6.15	18.33	0.00	27.59	9.95	6.67	0.65	8.33	0.08	3.57	1.62
											Qwen2-VL-7B-Instruct	11	43.33	0.00	28.33	0.00	16.67	0.51	16.67	0.00	20.00	0.00	20.00	0.00
											InternVL3-8B	10	40.00	0.00	23.33	4.79	36.67	5.42	13.33	0.00	15.00	0.79	6.67	1.67
											Qwen2-VL-7B-Instruct	9	43.33	5.78	26.67	0.00	51.72	10.01	26.67	3.62	18.33	0.00	0.00	0.00
											GLM-4.1V-9B-Thinking	8	40.00	10.29	30.00	0.00	76.67	25.38	10.34	2.87	0.00	0.00	6.67	1.67
											Qwen2-VL-32B-Instruct	6	40.00	0.65	26.92	0.00	50.00	15.72	10.00	3.33	26.00	0.00	6.67	0.00
											InternVL3-38B	5	23.33	8.27	23.33	8.20	50.00	20.58	23.33	11.10	16.67	4.37	16.67	10.24

Table 5: **Spatial-temporal Reasoning Analysis.** VLMs are weak in temporal forecasting, which leads to worse performance on spatial-temporal prediction tasks of ST-IoU than on spatial reasoning tasks of MCQ Acc.

ing joint spatial-temporal reasoning. GPT-4o achieves 53.33 MCQ accuracy on outdoor NSF but only 20.53 ST-IoU, a 32.80 point gap. Gemini-2.5-Pro shows 45.45 MCQ accuracy versus 13.16 ST-IoU on outdoor TF, indicating a 32.29 point difference. This pattern persists across all models, with GLM-4.1V-9B-Thinking demonstrating 76.67 MCQ accuracy on outdoor MTTF but only 25.38 ST-IoU, a 51.29 point difference. These consistent gaps highlight that while models identify spatial locations adequately, they struggle when temporal constraints are integrated into reasoning, suggesting VLMs lack temporal reasoning mechanisms for comprehensive geo-temporal understanding.

Failure Case Study. We conduct a comprehensive error analysis on representative models, including Gemini-2.5-Pro, GPT-4o, and InternVL3-32B. Our analysis reveals novel error patterns emerging from the complex interplay of multiple discontinuous perspectives and explicit temporal reasoning, as illustrated in Figure 6. In Example 1, model fails to understand wall obstructions and calculates routes using direct linear distance, resulting in Topology Error. Model correctly identifies video direction but encounters failures during world direction transformation, leading to Motion State Error. In Example 2, model fails to properly map camera FoV to the spatial layout, erroneously equating location with viewpoint and causing FoV Alignment Error. Model ignores distance and speed constraints, incorrectly estimating traversal time and resulting in Time Interval Error. Detailed definitions and comprehensive analysis are provided in Appendix D.

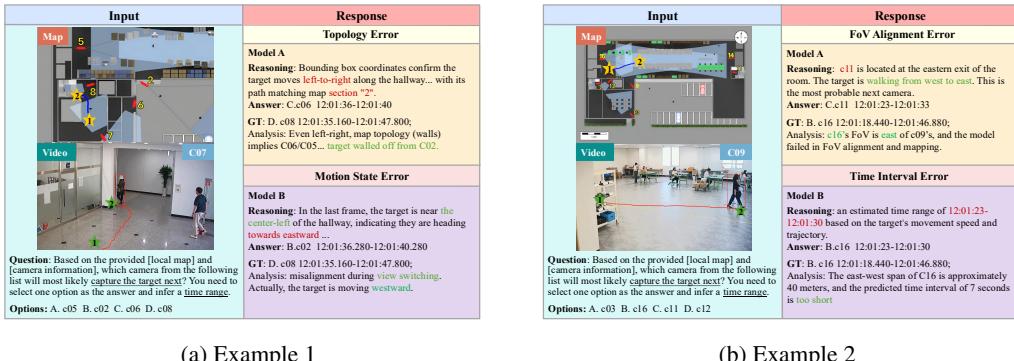


Figure 6: **Failure Case Study.** VLMs lack the proficiency to comprehend or align the map data with multi-view video inputs. (a) Example 1: Topology Error and Motion State Error. (b) Example 2: FoV Alignment Error and Time Interval Error.

6 CONCLUSION

In this work, we introduced the Geo-Temporal Reasoning benchmark, a novel challenge for evaluating the spatial-temporal intelligence of Visual-Language Models through geographic temporal reasoning tasks of moving targets in real-world multi-camera networks with large perspective changes. Our comprehensive evaluation reveals significant limitations in current models. The best-performing

486 proprietary model, Gemini-2.5-Pro, achieves only 34.9% accuracy, highlighting a critical gap behind
487 human performance (78.61%). Our analysis suggests these shortcomings stem from imbalanced
488 utilization of spatial-temporal context, weakness in temporal forecasting capabilities, and lack of
489 proficiency in comprehending and aligning the map data with multi-view video inputs. We believe
490 GTR-Bench offers valuable insights and opens up new opportunities for research and applications
491 in spatial-temporal intelligence.

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 ANNOUNCEMENT
541542 In an effort to clearly convey the innovative ideas presented in this paper, we utilized a Large Lan-
543 guage Model to polish and optimize the manuscript's expression, thereby making the content more
544 accessible to the reader.
545546 REFERENCES
547548 Anthropic. Claude 3.7 Sonnet and Claude Code — anthropic.com. <https://www.anthropic.com/news/clause-3-7-sonnet>, 2025a. [Accessed 13-08-2025].
549550 Anthropic. Claude Sonnet 4 — anthropic.com. <https://www.anthropic.com/clause-sonnet>, 2025b. [Accessed 24-09-2025].
551552 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
553 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
554 2025.
555556 Adrián Bazaga, Rexhina Blloshmi, Bill Byrne, and Adrià de Gispert. Learning to reason over time:
557 Timeline self-reflection for improved temporal reasoning in language models. *arXiv preprint
558 arXiv:2504.05258*, 2025.
559560 Neil Burgess. Spatial memory: how egocentric and allocentric combine. *Trends in cognitive
561 sciences*, 10(12):551–557, 2006.
562563 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia.
564 SpatialIllum: Endowing vision-language models with spatial reasoning capabilities. In *Proceedings
565 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14455–14465,
566 2024.
567568 Jiabin Chen, Haiping Wang, Jinpeng Li, Yuan Liu, Zhen Dong, and Bisheng Yang. SpatialIllum: From
569 multi-modality data to urban spatial intelligence. *arXiv preprint arXiv:2505.12703*, 2025.
570571 Yixin Cui, Haotian Lin, Shuo Yang, Yixiao Wang, Yanjun Huang, and Hong Chen. Chain-of-
572 thought for autonomous driving: A comprehensive survey and future prospects. *arXiv preprint
573 arXiv:2505.20223*, 2025.
574575 Deepmind. Gemini 2.5 Pro — deepmind.google. <https://deepmind.google/models/gemini/pro/>, 2025. [Accessed 13-08-2025].
576577 Jie Feng, Jinwei Zeng, Qingyue Long, Hongyi Chen, Jie Zhao, Yanxin Xi, Zhilun Zhou, Yuan
578 Yuan, Shengyuan Wang, Qingbin Zeng, et al. A survey of large language model-powered spatial
579 intelligence across scales: Advances in embodied agents, smart cities, and earth science. *arXiv
580 preprint arXiv:2504.09848*, 2025a.
581582 Sicheng Feng, Song Wang, Shuyi Ouyang, Lingdong Kong, Zikai Song, Jianke Zhu, Huan Wang,
583 and Xinchao Wang. Can mllms guide me home? a benchmark study on fine-grained visual
584 reasoning from transit maps. *arXiv preprint arXiv:2505.18675*, 2025b.
585586 Xianda Guo, Ruijun Zhang, Yiqun Duan, Yuhang He, Chenming Zhang, Shuai Liu, and Long Chen.
587 Drivemllm: A benchmark for spatial understanding with multimodal large language models in
588 autonomous driving. *arXiv e-prints*, pp. arXiv–2411, 2024.
589590 Yuhang He, Jie Han, Wentao Yu, Xiaopeng Hong, Xing Wei, and Yihong Gong. City-scale multi-
591 camera vehicle tracking by semantic attribute parsing and cross-camera tracklet matching. In
592 *IEEE Conference on Computer Vision and Pattern Recognition Workshops*, pp. 1–8. IEEE, 2020.
593594 Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
595 Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
596 with scalable reinforcement learning. *arXiv preprint arXiv:2507.01006*, 2025.
597

594 Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
 595 Composable 3d value maps for robotic manipulation with language models. *arXiv preprint*
 596 *arXiv:2307.05973*, 2023.

597 Dohwan Ko, Sihyeon Kim, Yumin Suh, Minseo Yoon, Manmohan Chandraker, Hyunwoo J Kim,
 598 et al. St-vlm: Kinematic instruction tuning for spatio-temporal reasoning in vision-language
 599 models. *arXiv preprint arXiv:2503.19355*, 2025.

600 Dingming Li, Hongxing Li, Zixuan Wang, Yuchen Yan, Hang Zhang, Siqi Chen, Guiyang Hou,
 601 Shengpei Jiang, Wenqi Zhang, Yongliang Shen, et al. Viewspatial-bench: Evaluating multi-
 602 perspective spatial localization in vision-language models. *arXiv preprint arXiv:2505.21500*,
 603 2025a.

604 Yun Li, Yiming Zhang, Tao Lin, XiangRui Liu, Wenxiao Cai, Zheng Liu, and Bo Zhao. Sti-
 605 bench: Are mllms ready for precise spatial-temporal world understanding? *arXiv preprint*
 606 *arXiv:2503.23765*, 2025b.

607 Zhishuai Li, Ziyue Li, Xiaoru Hu, Guoqing Du, Yunhao Nie, Feng Zhu, Lei Bai, Rui Zhao, and
 608 Yisheng Lv. Visiontraj: A noise-robust trajectory recovery framework based on large-scale cam-
 609 era network. *IEEE Transactions on Intelligent Transportation Systems*, 26(6):1–15, 2025c. doi:
 610 10.1109/TITS.2025.3583187.

611 Tuan T. Nguyen, Hoang H. Nguyen, Mina Sartipi, and Marco Fischella. Lammon: Language
 612 model combined graph neural network for multi-target multi-camera tracking in online scenarios.
 613 *Machine Learning*, 113:6811–6837, 2024.

614 Openai. Hello GPT-4o — openai.com. <https://openai.com/index/hello-gpt-4o/>,
 615 2024. [Accessed 13-08-2025].

616 Openai. Introducing GPT-5 — openai.com. <https://openai.com/index/introducing-gpt-5/>, 2025. [Accessed 24-09-2025].

617 Zhaochen Su, Jun Zhang, Tong Zhu, Xiaoye Qu, Juntao Li, Min Zhang, and Yu Cheng. Timo:
 618 Towards better temporal reasoning for language models. *arXiv preprint arXiv:2406.14192*, 2024.

619 Zheng Tang, Milind Naphade, Ming-Yu Liu, Xiaodong Yang, Stan Birchfield, Shuo Wang, Rat-
 620 nesh Kumar, David Anastasiu, and Jenq-Neng Hwang. Cityflow: A city-scale benchmark for
 621 multi-target multi-camera vehicle tracking and re-identification. In *Proceedings of the IEEE/CVF*
 622 *conference on computer vision and pattern recognition*, pp. 8797–8806, 2019.

623 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 624 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 625 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

626 Sanghyun Woo, Kwanyong Park, Inkyu Shin, Myungchul Kim, and In So Kweon. Mtmmc: A
 627 large-scale real-world multi-modal camera tracking benchmark. In *Proceedings of the IEEE/CVF*
 628 *Conference on Computer Vision and Pattern Recognition*, pp. 22335–22346, 2024.

629 Siheng Xiong, Ali Payani, Ramana Kompella, and Faramarz Fekri. Large language models can learn
 630 temporal reasoning. *arXiv preprint arXiv:2401.06853*, 2024.

631 Runsen Xu, Weiyao Wang, Hao Tang, Xingyu Chen, Xiaodong Wang, Fu-Jen Chu, Dahua Lin, Matt
 632 Feiszli, and Kevin J Liang. Multi-spatialmlm: Multi-frame spatial understanding with multi-
 633 modal large language models. *arXiv preprint arXiv:2505.17015*, 2025.

634 Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
 635 space: How multimodal large language models see, remember, and recall spaces. In *Proceedings*
 636 *of the Computer Vision and Pattern Recognition Conference*, pp. 10632–10643, 2025a.

637 Sihan Yang, Runsen Xu, Yiman Xie, Sizhe Yang, Mo Li, Jingli Lin, Chenming Zhu, Xiaochen
 638 Chen, Haodong Duan, Xiangyu Yue, et al. Mmsi-bench: A benchmark for multi-image spatial
 639 intelligence. *arXiv preprint arXiv:2505.23764*, 2025b.

640 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 641 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
 642 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

648 A MORE DETAILS OF THE BENCHMARK CONSTRUCTION PIPELINE
649650 A.1 DATA PREPROCESSING DETAILS
651

652 **Data Collection.** To obtain richer scenarios and diverse moving targets, we collected data from
653 two completely distinct scenarios, **Outdoor** and **Indoor**, to construct the GTR-Bench. For outdoor
654 data, we used the CityFlow dataset, which is an urban Multi-Target Multi-Camera (MTMC) video
655 dataset containing 345 target id of cars and 40 cameras.(Tang et al., 2019) For indoor data, we used
656 the MTMMC dataset, an indoor MTMC video dataset that includes 3669 target id of people and
657 32 cameras.(Woo et al., 2024) These datasets provide the Re-identification (ReID) information of
658 each target in the video as well as the temporal information of bounding boxes (bbox). Starting with
659 the raw video sequences and associated detection annotations, we segment and crop frames based
660 on target bounding boxes. This procedure isolates individual target instances, forming a discretized
661 visual dataset that serves as the foundation for subsequent analysis.

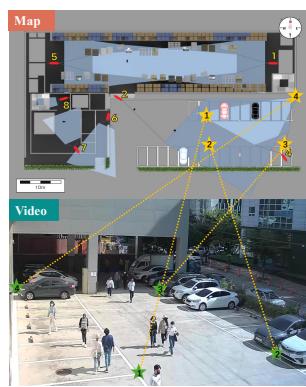
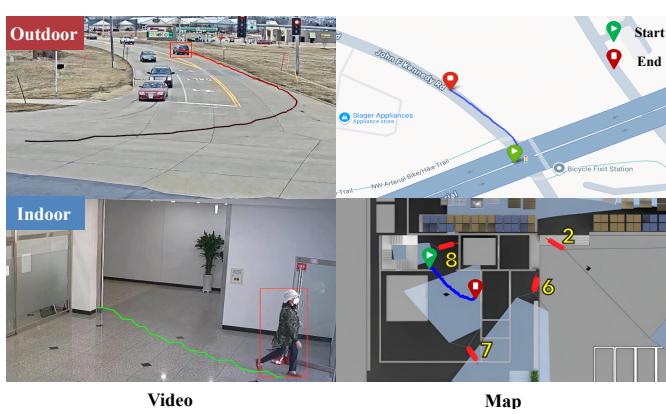
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
Figure 7: Camera Calibration

Figure 8: Trajectory Transformation

678 **Camera Calibration.** We perform geometric calibration for each camera to accurately map target
679 trajectories from 2D image coordinates to real-world positions, as shown in Figure 7. This process
680 involves computing a homography matrix that establishes a precise projective transformation
681 between the camera’s image plane and a top-down map of the environment. The matrix is derived by
682 manually annotating a minimum of eight correspondence points between the image and the map.
683 The resulting 3×3 homography matrix enables the transformation of a target’s pixel coordinates into
684 accurate real-world map coordinates, forming the basis for trajectory analysis.

685 **Trajectory Transformation.** We proceed to spatial-temporal feature derivation with the geometric
686 mapping established, as shown in Figure 8. This process begins by projecting the target’s bounding
687 box coordinates onto the map using the calibrated homography matrix, followed by applying scaling
688 factors to convert pixel measurements into real-world metrics such as meters. Subsequently, key
689 motion parameters—including distance, velocity, and direction—are algorithmically computed for
690 each timestamp. The resulting trajectory data undergoes a rigorous cleaning and filtering stage,
691 where we remove anomalous points, apply interpolation for continuity, and implement multi-layer
692 validation for temporal, spatial, and identity consistency. Finally, the quantitative motion data is
693 synthesized into qualitative textual descriptions using a large language model, producing a "Motion
694 Summary" that provides both numerical and narrative insights for each trajectory segment.

695 A.2 MORE DETAILS ON TASK CONSTRUCTION
696

697 **Map Generation and Video Annotation.** The foundation of our task construction pipeline rests on
698 two core components: detailed environmental maps and corresponding video data. Depending on
699 the scenario, we utilize either indoor floor plans or outdoor road network maps, each richly annotated
700 with essential camera deployment details, including their precise coordinates, field-of-view (FOV)
701 coverage, viewing orientation, and references for scale and direction. Complementing this spatial
information, the video data consists of video clips which we extract based on target movement.

702 Within these clips, targets are highlighted with red bounding box annotations, providing the critical
 703 visual, temporal, and behavioral context required for our comprehensive reasoning tasks.
 704

705 **Distractor Option Generation.** To ensure a rigorous evaluation and prevent models from relying
 706 on superficial heuristics, we have developed a sophisticated, scenario-specific strategy for gener-
 707 ating plausible yet incorrect distractor options. For indoor environments, distractors are sourced
 708 from cameras located on different floors or in functionally distinct areas, creating choices that are
 709 spatially diverse yet architecturally coherent. In outdoor scenarios, we algorithmically generate syn-
 710 synthetic camera locations along the road network. These virtual cameras are endowed with realistic
 711 attributes, including strategically positioned coordinates, plausible viewing orientations, and stand-
 712 ard field-of-view (FOV) coverage. Furthermore, to mitigate biases arising from numerical patterns,
 713 we implement an ID randomization system that reassigns camera identifiers. This forces the model
 714 to reason based on fundamental spatial and temporal relationships rather than exploiting simple nu-
 715 mercial sequences. These carefully designed distractor strategies are crucial for ensuring that our
 716 benchmark robustly assesses genuine geo-temporal reasoning capabilities.

717 B PROMPT FOR CONTEXT UTILIZATION ANALYSIS 718

719 We employ the Qwen-max closed-source model to analyse the reasoning content of various models
 720 across seven tasks in GTR-Bench, examining whether the reasoning process contains the three key
 721 elements of Location, Time, and Motion State for the cameras specified in the given questions.
 722 The objective is to evaluate the utilization rate of models for spatial, temporal and motion modal
 723 context. Notably, for Timeline Reordering tasks, since no Camera Time information is provided,
 724 Time elements are not included in the statistical analysis. The specific prompt used is shown in
 725 Figure 9.
 726

727 Context Utilization Analysis Prompt 728

729 [Reasoning Text]

730 The video from camera c07 shows the target (ID 4) entering an indoor
 731 lobby area from the right side of the frame and **walking towards the left**.
 732 The last frame at **12:00:28.040** shows the target moving towards a
 733 hallway... **the location** as the southern entrance of the building...

734 [Rule]

735 Please analyze [Reasoning Text] and determine whether it contains the
 736 specified key elements. For each element, mark it as 1 if it is explicitly
 737 mentioned or referenced in the text, otherwise mark it as 0.
 738 Camera { i }

739

1. **Location:** Whether the specific position, direction, or area of
 740 camera {i} is mentioned
2. **Time:** Whether the specific time information of camera {i}
 741 recording is mentioned
3. **Motion:** Whether the movement, direction, or behavior of targets in
 742 camera {i} is described

743 Camera{ i+1 }...

744 [Output]

745 Please return the result in JSON format: {"camera{i}_analysis":
 746 {"Location": 0 or 1, "Time": 0 or 1, "Motion": 0 or 1}...}

747
 748
 749
 750
 751
 752
 753
 754
 755 Figure 9: Context Utilization Analysis Prompt

756 C DETAILS OF DATA DISTRIBUTION

758 As detailed in Table 6, our benchmark features two scenarios with vastly different spatial scales to
 759 create a diverse testbed. The outdoor network spans a city block with 31 cameras and an average
 760 inter-camera distance of 984.77 meters. In contrast, the indoor network provides building-level cov-
 761 erage across three floors with 16 cameras and a much smaller average distance of only 30.59 meters.
 762 This significant disparity, with the outdoor scenario being approximately 32 times larger in spatial
 763 scale, establishes a robust and diverse challenge for evaluating the spatial-temporal intelligence of
 764 VLMs across both expansive and compact environments.

766 Environment	767 Location	768 Cameras	769 Avg. Dist. (m)	770 Distance Range (m)	771 Avg. FoV (m ²)	772 FoV Range (m ²)
Indoor	Level-1	7	31.38	5.41–60.93	222.81	11.39–449.99
	Level-2	7	30.81	4.71–56.49	141.93	5.29–407.52
	Level-3	2	9.35	9.35–9.35	53.83	6.44–101.21
	Overall	16	30.59	4.71–60.93	166.30	5.29–449.99
Outdoor	CityFlow S03/04/05	31	984.77	0.00 [*] –2389.42	N/A	N/A

773 Indoor measurements based on pixel coordinates (0.089 m/pixel conversion).

774 Outdoor measurements calculated using GPS coordinates and Haversine formula.

775 FoV data available only for indoor cameras with detailed polygon annotations.

776 Zero distance indicates cameras at identical GPS coordinates with different orientations.

777 Table 6: Detailed Camera Network Analysis by Environment and Location

778 D DETAILED FAILURE CASE STUDY

779 D.1 DETAILED ERROR DEFINITIONS

780 Our detailed error analysis reveals systematic failure patterns across different task categories and
 781 model types. Based on our experimental results, we categorize the error patterns into four main
 782 dimensions: spatial reasoning errors, temporal reasoning errors, motion reasoning errors, and rea-
 783 soning mechanism errors.

784 **Spatial Reasoning Errors.** We identify two primary categories of spatial reasoning failures:

- 785 • **Topology Error:** Models frequently fail to understand complex spatial constraints and re-
 786 lationships. This includes (1) constraint understanding errors, such as failing to account for
 787 road network constraints (one-way streets, restricted areas) and indoor architectural con-
 788 straints (walls, obstacles); (2) connection relationship errors, where models misunderstand
 789 the connectivity between roads or indoor floor transitions.
- 790 • **FoV Alignment Error:** Models struggle to understand the correspondence between cam-
 791 era field-of-view (FoV) regions and their mapping to environmental maps, particularly in
 792 scenarios involving multiple cameras with overlapping coverage areas.

793 **Temporal Reasoning Errors.** Our analysis reveals one critical temporal reasoning limitation:

- 794 • **Time Interval Error:** Models misestimate distance, speed, or related quantities, leading
 795 to erroneous time interval estimates. Models demonstrate significant errors in temporal
 796 interval estimation, often making predictions that deviate substantially from actual time
 797 spans, particularly in scenarios involving variable movement speeds or complex temporal
 798 patterns.

799 **Motion Reasoning Errors.** We observe one category of motion-related reasoning failure:

- 800 • **Motion State Error:** Models fail to correctly transform motion states from video coordi-
 801 nates to world coordinates, leading to errors in directional and other world motion states.
 802 This coordinate transformation failure affects the prediction of future target motion trajec-
 803 tories.

810
811 **Reasoning Mechanism Errors.** Our analysis identifies three fundamental issues in the reasoning
812 process itself:

813
814
815
816
817
818
819
820
821
822
823

- **Information Bias:** Models exhibit systematic preferences and over-reliance on certain types of information (temporal, spatial, or motion) while neglecting others. This bias leads to imbalanced reasoning where models may prioritize spatial information while ignoring temporal constraints, or vice versa.
- **Step Jump Error:** Models frequently skip crucial intermediate reasoning steps, jumping directly from observations to conclusions without proper logical progression. This results in incomplete reasoning chains that lack the necessary intermediate analysis.
- **Reasoning Inconsistency Error:** Within the same reasoning task, models often generate contradictory reasoning steps, indicating a lack of coherent internal reasoning processes and logical consistency.

824 D.2 DETAILED ANALYSIS
825

826 **Benchmark-Specific Error Patterns.** Our analysis identifies several error categories that are
827 uniquely characteristic of geo-temporal reasoning scenarios and rarely appear in conventional
828 spatial-temporal intelligence evaluations. These errors stem from our benchmark’s distinctive features:
829 (1) multi-camera networks spanning large geographic areas with 2-3 distinct viewpoint types
830 (camera views and map perspective), (2) explicit temporal reasoning requirements beyond simple
831 sequence ordering, and (3) the need to infer unobserved states between fragmented observations.

832 The most prevalent errors reflect these unique challenges. **Topology Error** (28.6%) and **FoV Align-
833 ment Error** (16.8%) dominate our error distribution, representing failures in understanding complex
834 spatial constraints that are absent in single-scene benchmarks. These include road network
835 topology (one-way streets, restricted areas), architectural constraints (walls, obstacles), and camera
836 field-of-view mapping—challenges that only emerge when reasoning across multiple, discontinuous
837 viewpoints. **Motion State Error** (20.4%) represents another benchmark-specific failure mode,
838 where models struggle with coordinate system transformations and precise velocity calculations
839 based on map scale, rather than the simple directional motion understanding required in traditional
840 benchmarks. **Time Interval Error** (12.4%) occurs when models fail to understand how temporal
841 constraints (too long or too short time windows) invalidate certain path predictions—a challenge
842 that doesn’t exist in implicit temporal reasoning scenarios.

843
844
845

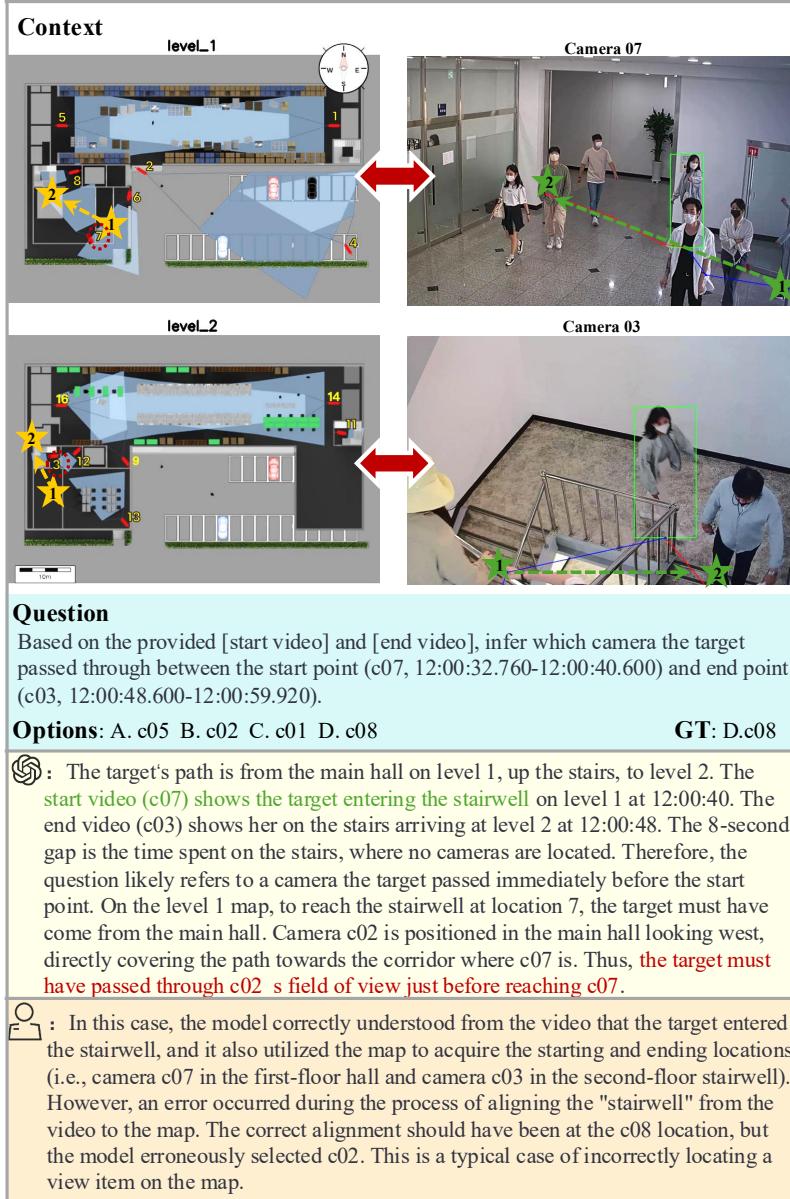
Category	Topology	FoV	Time.Int	Motion	Info.Bias	Step.Jump	Reasoning.Inc
Overall Percentage	97 28.6%	57 16.8%	42 12.4%	69 20.4%	23 6.8%	40 11.8%	11 3.2%
By Task Type:							
Geo-location	22	6	0	6	12	10	5
Arrival Time-Interval	7	17	12	1	3	4	0
Motion-State	10	11	11	13	5	4	3
Causal Reordering	9	9	0	17	2	7	0
Next Spot Forecasting	16	4	2	12	1	4	2
Trajectory Forecasting	20	6	9	4	0	8	1
Multi-Target Trajectory Forecasting	13	4	8	16	0	3	0
By Scenario:							
Outdoor	50	30	20	37	10	23	6
Indoor	46	27	22	32	13	16	5
By Model:							
Gemini-2.5-Pro	26	25	20	30	3	1	4
GPT-4o	34	19	14	22	5	4	4
InternVL3-38B	37	13	8	17	15	35	3

856 Table 7: Detailed error statistics. Statistics of 177 cases, each error type is counted independently,
857 resulting in a total error count of 339 across all categories.

859
860 D.3 DETAILED FoV ALIGNMENT ERROR
861

862 To provide a more in-depth analysis of Map-Video Alignment Errors, specifically **FoV Alignment
863 Error**, we first distinguish between two forms of Field of View (FoV) defined in GTR-Bench.

864
 865 **FoV to Map Misalignment.** This error type represents a conventional failure where the model
 866 identifies an object in the video but fails to locate its corresponding position on the map. As illus-
 867 trated in Figure 10, the model successfully reasons from the video content that the target enters a
 868 "stairwell" (observed in camera c07). However, it fails to align this visual feature with the map struc-
 869 ture, specifically missing that this stairwell corresponds to the location of the ground-truth camera
 870 c08. Consequently, the model provides an incorrect answer despite correct visual perception.
 871



910 Figure 10: FoV to Map Misalignment. The model correctly identifies the semantic location ("stair-
 911 well") from the concrete video view but fails to map it to the geometric location on the map.
 912
 913

914 **FoV Misinterpretation.** This error occurs when the model struggles to interpret the geometric
 915 representations of FoVs on the map, particularly when multiple FoVs overlap. Figure 11 depicts a
 916 scenario where the model fails to understand the spatial relationship between cameras. For example,
 917 when analyzing a trajectory involving overlapping cameras (e.g., moving from c12 through c09
 918 to c14), the model may incorrectly assume disjoint time intervals. This stems from a failure to

recognize that the FoV of the intermediate camera (c09) spatially overlaps with the destination camera (c14), leading to logical errors in trajectory or timeline prediction.

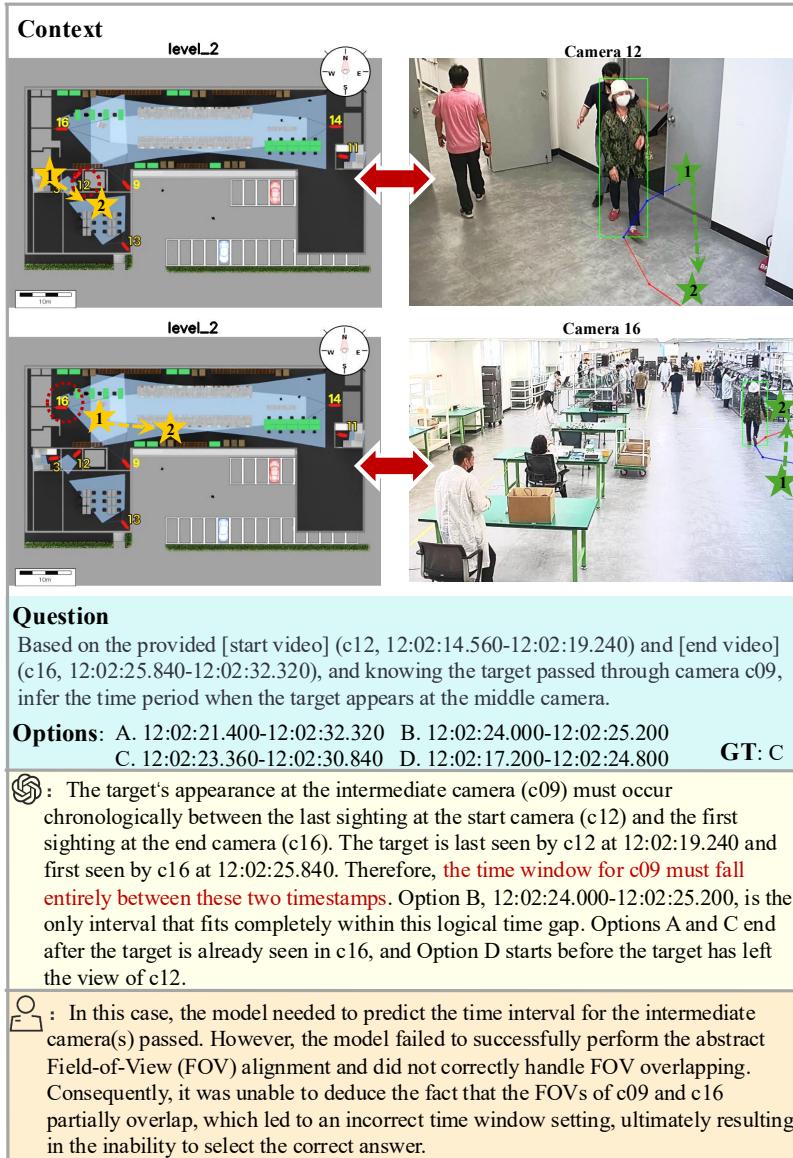


Figure 11: FoV Misinterpretation. The model fails to perceive the overlap between the Abstract FoVs of adjacent cameras on the map, leading to incorrect temporal or spatial reasoning.

In summary, while current MLLMs encounter challenges with both alignment types, the misinterpretation of FoVs is a more prevalent and critical issue in geographic reasoning tasks involving complex map topologies.

972 E MORE EXAMPLES
973
974

Map		Video	
Level 1 		★	★ C07 ★
Level 2 		★	★ C08 ★
Geo-Location Question: Based on the provided [start video ★] and [end video ★], infer <u>which camera</u> the target passed through <u>between</u> the start point (c07, 12:01:28.160-12:01:36.280) and end point (c03, 12:01:50.560-12:02:04.800). Options: A. c13 B. c04 <u>C. c08</u> D. c11		Causal Reordering Question: Based on the provided [local map] and [videos ★ ★ ★], analyze the target's activity trajectory. Please infer the <u>correct order</u> in which the target passed through these cameras. Options: A. c16 → c09 → c12 B. c09 → c12 → c16 C. c12 → c01 → c16 <u>D. c12 → c09 → c16</u>	
Arrival Time-Interval Question: Based on the provided [start video ★] (c07, 12:01:28.160-12:01:36.280) and [end video ★] (c03, 12:01:50.560-12:02:04.800), and knowing the target passed through camera c08, infer <u>when</u> the target <u>arrived at the intermediate camera</u> . Options: <u>A. 12:01:35.160-12:01:47.800</u> B. 12:01:34.110-12:01:40.560 C. 12:01:47.900-12:01:48.740 D. 12:01:34.900-12:01:49.200		Next Spot Forecasting Question: Based on the provided [local map] and [video ★], which camera from the following list will most likely <u>capture</u> the target next? You need to select one option as the answer and infer a <u>time range</u> . Options: A. c05 B. c02 C. c06 D. c08 GT: D. c08 12:01:35.160-12:01:47.800	
Motion-State Question: Based on the provided [start video ★] (c12, 12:02:14.560-12:02:19.240) and [end video ★] (c16, 12:02:25.840-12:02:32.320), and the intermediate camera c09, infer the target's <u>motion state</u> during the intermediate time period. Options: <ul style="list-style-type: none"> A. The target moved <u>south</u> for 2.1 meters... <u>B. The target moves northeast at a speed of 1.6 m/s for 4.4 meters, then moves east at a speed of 1.5 m/s for 1.8 meters, and finally moves northeast again at a speed of 1.0 m/s for 1.6 meters.</u> C. The target quickly moves 6.1 meters to the northeast at a speed of <u>3.9 m/s</u>... D. ... a distance of <u>1.9 meters</u>... a distance of <u>0.6 meters</u>. 		Trajectory Forecasting Question: Based on the provided [local map] and [videos ★ ★], predict the <u>next two cameras</u> that the target will likely pass through. You need to select a correct option sequence and infer a time range sequence simultaneously. Options: A. c09 B. c14 C. c13 D. c03 E. c12 GT: E. c12 12:02:14.560-12:02:19.240 A. c09 12:02:23.360-12:02:30.840	
Multi-Target Trajectory Forecasting Question: Based on the provided [local map] and [videos ★ ★] showing the movement trajectories of two [Target], predict <u>where and when</u> these [Target] person will most likely <u>meet</u> . Options: A. c14 B. c03 C. c09 D. c12 GT: B. c03 12:02:03.480-12:02:04.800		★ C12 ★	

975 Figure 12: Indoor Examples
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991

1026
1027
1028
1029
1030

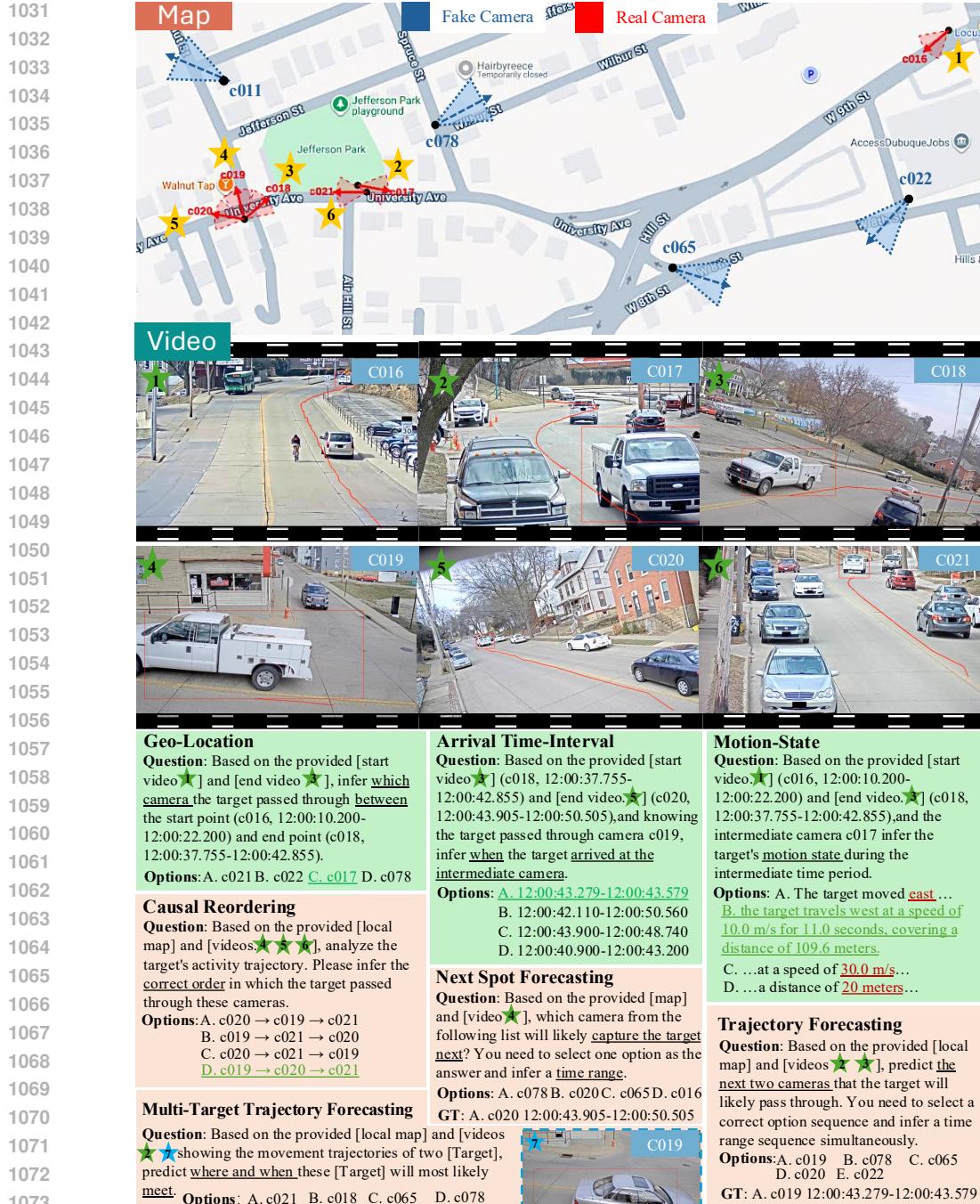
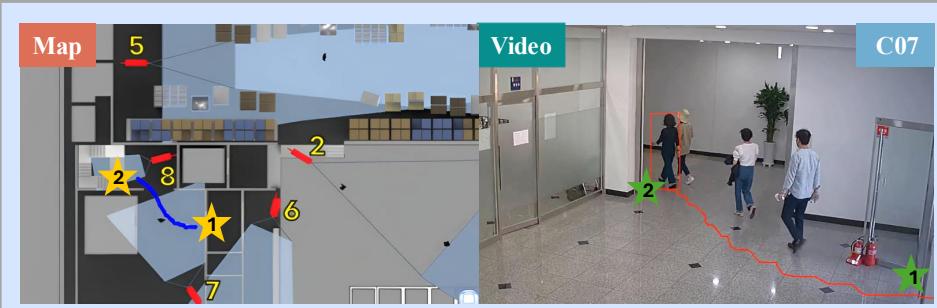


Figure 13: Outdoor Examples

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101



Question: Based on the provided [local map] and [camera information], which camera from the following list will most likely capture the target next? You need to select one option as the answer and infer a time range.

Options: A. c05 B. c02 C. c06 D. c08

GT: D. c08 12:00:26.600-12:00:37.040

Reasoning:

1. **Analyze Current Location and Trajectory:** The video from camera c07 shows the target (ID 4) entering an indoor lobby area from the right side of the frame and walking towards the left. The last frame at 12:00:28.040 shows the target moving towards a hallway. By comparing the visual elements in the video (glass doors, open hallway) with the map, we can identify the location as the southern entrance of the building. The target's path is from this entrance (covered by c07) moving north-west into the building.

2. **Evaluate Potential Next Cameras:**

D. c08: The map shows camera c08 is located in the hallway directly adjacent to the lobby where c07 is. Its field of view covers the path the target is taking. This makes it the immediate and most probable next camera.

A. c05: This camera is located in the large hall to the north. To be seen by c05, the target must first pass through the area covered by c08.

B. c02: This camera is outside in the parking lot. The target is inside and moving further into the building, away from c02.

C. c06: This camera is also outside, near the entrance. The target would have likely been in its view before entering the building and being captured by c07, not after.

3. **Time Estimation:** The last known timestamp for the target in c07's view is 12:00:28.040. Since the field of view of c08 is contiguous with c07's along the target's path, the target will enter c08's view almost immediately. A reasonable estimated time range for the capture by c08 would start right after the last sighting, approximately from 12:00:28 to 12:00:38, allowing a few seconds to traverse the camera's view.

Answer: D. c08 12:00:28-12:00:38

ST-IoU: 0.87

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Figure 14: Correct Example

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

Question: Based on the provided [local map] and [camera information], which camera from the following list will most likely capture the target next? You need to select one option as the answer and infer a time range.

Options: A. c04 B. c06 C. c01 D. c02 **GT:** A.c04 12:03:09.680-12:03:18.400

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Reasoning:

1. Initial Observation and Target Movement

The provided video frames are from camera c02, which is positioned on the building and overlooks the outdoor parking lot. The target (ID: 10) is observed walking from the open area of the parking lot towards the building entrance on the west side. The timestamps from 12:02:57 to 12:03:14 show the target getting progressively further from the camera and moving towards the left of the frame, which corresponds to a north-westerly direction on the map.

2. Current Position Analysis and Next Camera Prediction

The target's last known position at 12:03:14 is at the edge of c02's field of view, right before the building entrance. According to the map, camera c06 is positioned to monitor this specific entrance area. Therefore, as the target continues on their path, they will immediately enter the field of view of camera c06. Camera c04 is on the far eastern side of the parking lot, and the target is walking away from it. Camera c01 is inside the main building at the eastern end, which is not along the target's path. Thus, c06 is the only logical next camera.

3. Time Estimation

Given the last timestamp of 12:03:14, the target will enter c06's view within a few seconds. A time range of 12:03:15 to 12:03:30 is a reasonable estimate for the duration of the capture.

Answer: B. c06 12:03:15-12:03:30

ST-IoU: 0

Figure 15: Incorrect Example

1188 **F DETAILED HUMAN ANNOTATION AND EVALUATION PROTOCOL**
11891190 To ensure the reliability of our human evaluation results, we implemented a rigorous screening and
1191 training process for the personnel involved in data annotation and performance assessment.
11921193 **F.1 COMPOSITION OF QUESTION ANNOTATORS AND BENCHMARK EVALUATORS**
11941195 We established strict qualification criteria and organizational protocols to maintain high data quality
1196 and evaluation independence:
11971198

- **Professional Field:** The dataset was constructed by researchers with profound academic
1199 backgrounds in 3D vision.
- **Professional Experience:** These researchers possess extensive experience in multi-view
1200 geometry, scene understanding, and spatial intelligence.
- **Knowledge Requirements:** All were required to have a deep understanding of core con-
1201 cepts such as spatial relationships, camera poses, and object motion, and be capable of
1202 complex spatial reasoning.
- **Distinction between Annotators and Evaluators:** The personnel responsible for question
1203 annotation were a separate group from those who conducted the benchmark evaluation,
1204 ensuring the independence of the evaluation results.

12051206 **F.2 ANNOTATION GUIDELINES**
12071208 To maintain high standards of data integrity and annotation quality, we implemented the following
1209 guidelines:
12101211

- **Multi-reviewer Mechanism:** During the dataset construction, each sample generated by
1212 our rules was cross-validated by multiple other independent annotators.
- **Dependence on Maps and Camera Videos:** We ensured that questions could not be an-
1213 swered solely through the map, camera video, or common sense, but required the synthesis
1214 of information from all provided map and video inputs.
- **Clarity and Unambiguity of Context and Questions:** We ensured that the content of
1215 the map images and camera videos was clear and that the question text was precise and
1216 unambiguous.
- **Uniqueness of Answer:** We ensured that there was only one correct answer and that the
1217 distractors were designed to be plausible.
- **Spatio-Temporal Span Coverage:** All seven question types in the benchmark were re-
1218 quired to have diversity in their temporal and spatial spans to ensure the variety of the
1219 problems across different spatio-temporal dimensions.
- **Ethics and Licensing:** We ensured that all videos and maps were either fully copyrighted
1220 or used with the author's consent, and we maintained the same strict standards for personal
1221 privacy information as the reference datasets.

12221223 **F.3 EVALUATION GUIDELINES**
12241225 The final human performance score was determined by multiple independent evaluators, and their
1226 average accuracy was taken. This multi-evaluator mechanism effectively reduces the randomness
1227 caused by individual differences, making the evaluation results more statistically significant and
1228 stable.
12291230 **F.4 CONSISTENCY WITH MODEL CONSTRAINTS**
12311232 During the evaluation, evaluators had access only to the exact same information as the model input,
1233 namely the map, the camera videos and the question text. They were strictly forbidden from using
1234 any external knowledge or tools for assistance.
1235

1242 To maximize the evaluators' ability to utilize visual information, we also designed a flexible and
 1243 professional front-end evaluation page, as shown in Figure 16. This interface was built to: (1)
 1244 Display Map and Camera Information: Fully present all map and camera information necessary to
 1245 answer the question.(2) Enable Interaction: Allow evaluators to zoom in on and draw on the images
 1246 from both contexts to mark key elements during their reasoning process.This design ensured that
 1247 evaluators could fully leverage the provided visual information for accurate reasoning and decision-
 1248 making.

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

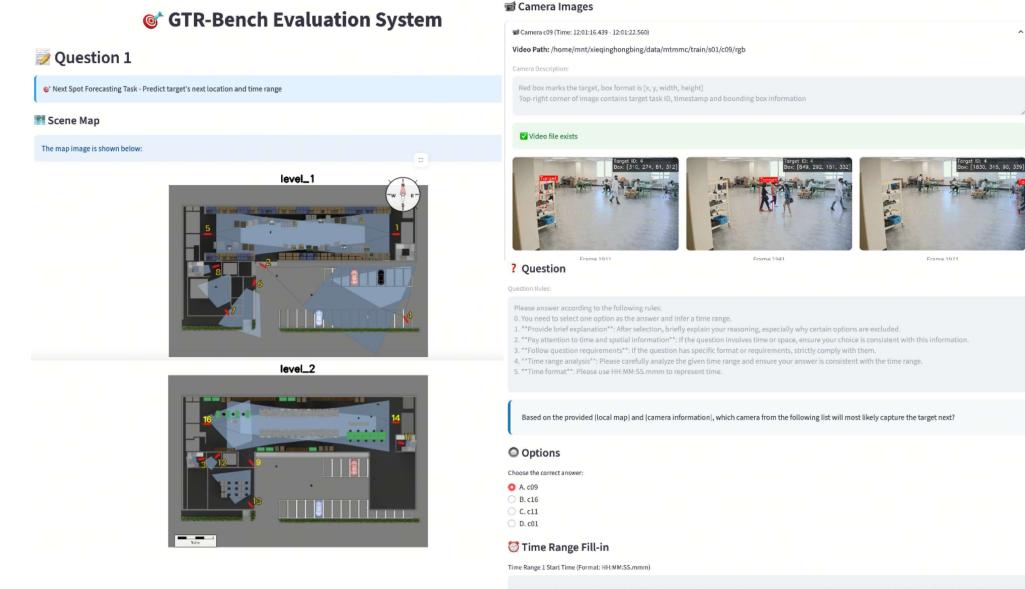
1268

1269

1270

1271

1272



1273 Figure 16: Evaluation System. The interface is designed to facilitate human reasoning by fully
 1274 presenting necessary map and camera information. It enables interaction, allowing evaluators to
 1275 zoom in and draw on the images to mark key elements during the reasoning process.

1276 We provided human evaluators with unrestricted evaluation time, which differs from the constraints
 1277 set for the model evaluation. This was primarily because our goal was to measure the optimal
 1278 performance of humans under ideal conditions, thereby more clearly revealing the gap between the
 1279 current model's capabilities and human abilities in complex spatial reasoning.

G ABLATION EXPERIMENT OF MAP CONTEXT

1284 We utilized graphic maps as prompts to maintain spatial consistency across cameras. To validate
 1285 the effectiveness of this design in preserving inter-camera spatial relationships within our dataset
 1286 construction pipeline, we conducted a ablation study on map context.

G.1 PROMPT DESIGN OF MAP CONTEXT

1289 We elaborate on how our prompt design endows the model with rich spatio-temporal context by
 1290 incorporating spatial relationships through two primary mechanisms, as Figure 17 and 18:
 1291

- 1292 **• Graphic Map Context:** We utilize a rendered map image based on real-world geographical
 1293 information from OpenStreetMap. This map precisely annotates the locations, orientations,
 1294 and FoV of all candidate cameras. Furthermore, we explicitly included a north-arrow
 1295 and a scale bar on the map to provide the model with absolute geographical orientation and
 1296 scale references.

1296
 1297
 1298
 1299
 1300
 1301

- **Textual Map Context:** As a supplement and abstraction of the map information, we de-
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

1301

G.2 CONSTRUCTION OF TEXTUAL MAP CONTEXT

We constructed the textual map context using distinct strategies for indoor and outdoor environments, tailored to their specific spatial characteristics:

- **Indoor Scenarios:** Given the smaller spatial span and finite number of cameras in indoor settings, we employed a manual annotation process structured into three hierarchical levels:
 1. *Region and Connectivity:* We divided the environment into distinct functional regions and identified key spatial connection points—such as entrances, exits, and stairwells—to define the topology.
 2. *Camera Geographic Attributes:* We described the camera’s location, orientation, and FoV. The FoV corresponds to the visual representation on the map, specifically the blue area enclosed by a thin black line originating from the red camera icon.
 3. *Camera View Attributes:* We provided a detailed description of the camera’s actual field of view, summarizing the visual content observed in the video from camera.
- **Outdoor Scenarios:** Due to the extensive spatial coverage of outdoor environments, we adopted an automated approach leveraging geospatial data. Using the latitude and longitude coordinates of each camera, we queried *OpenStreetMap* to retrieve the surrounding road network topology. The resulting textual context integrates information regarding roads, intersections, and specific camera metadata to reconstruct the outdoor spatial environment.

G.3 RESULTS AND ANALYSIS.

We benchmarked two SOTA models, Gemini-1.5-pro and InternVL-38B, on GTR-Bench. The quantitative results are presented in Table 8.

Model	Map Type	GTR-Outdoor							GTR-Indoor						
		ATI	MS	GL	CR	NCF	TF	MTTF	ATI	MS	GL	CR	NCF	TF	MTTF
Gemini-Pro	image	60.00	46.67	33.33	56.67	19.13	13.16	19.18	63.33	13.33	26.67	70.00	25.11	28.09	14.37
Gemini-Pro	text	43.33	56.67	60.00	66.67	6.83	0.00	1.11	13.33	43.33	73.33	83.33	27.76	19.76	21.42
InternVL-38B	image	40.00	73.33	30.00	53.33	8.27	8.20	20.58	50.00	56.67	26.67	37.93	11.10	4.37	10.24
InternVL-38B	text	38.33	33.33	76.67	36.36	3.06	1.08	3.99	50.00	33.33	56.67	73.33	4.36	0.55	9.20

Table 8: Ablation Study of Map Context. The table compares the performance of models using Image-based vs. Text-based map contexts across Indoor and Outdoor subsets.

The results clearly indicate that there is no single best method for encoding spatial relationships. The choice between visual (image) and textual context significantly impacts performance, and the optimal choice varies by task and environment: (1) Text-based prompts tend to excel in tasks requiring abstract or logical spatial reasoning. For instance, both models perform significantly better on the GL and CR tasks with textual context, particularly in the indoor setting. This suggests that for tasks involving topological understanding and logical inference, a structured textual description is more effectively utilized by the models. (2) Image-based prompts demonstrate a strong advantage in tasks that rely on understanding physical motion and trajectories. In GTR-Outdoor, both models show improved performance on motion-related tasks such as MS, TF, and MTTF when provided with a graphic map.

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

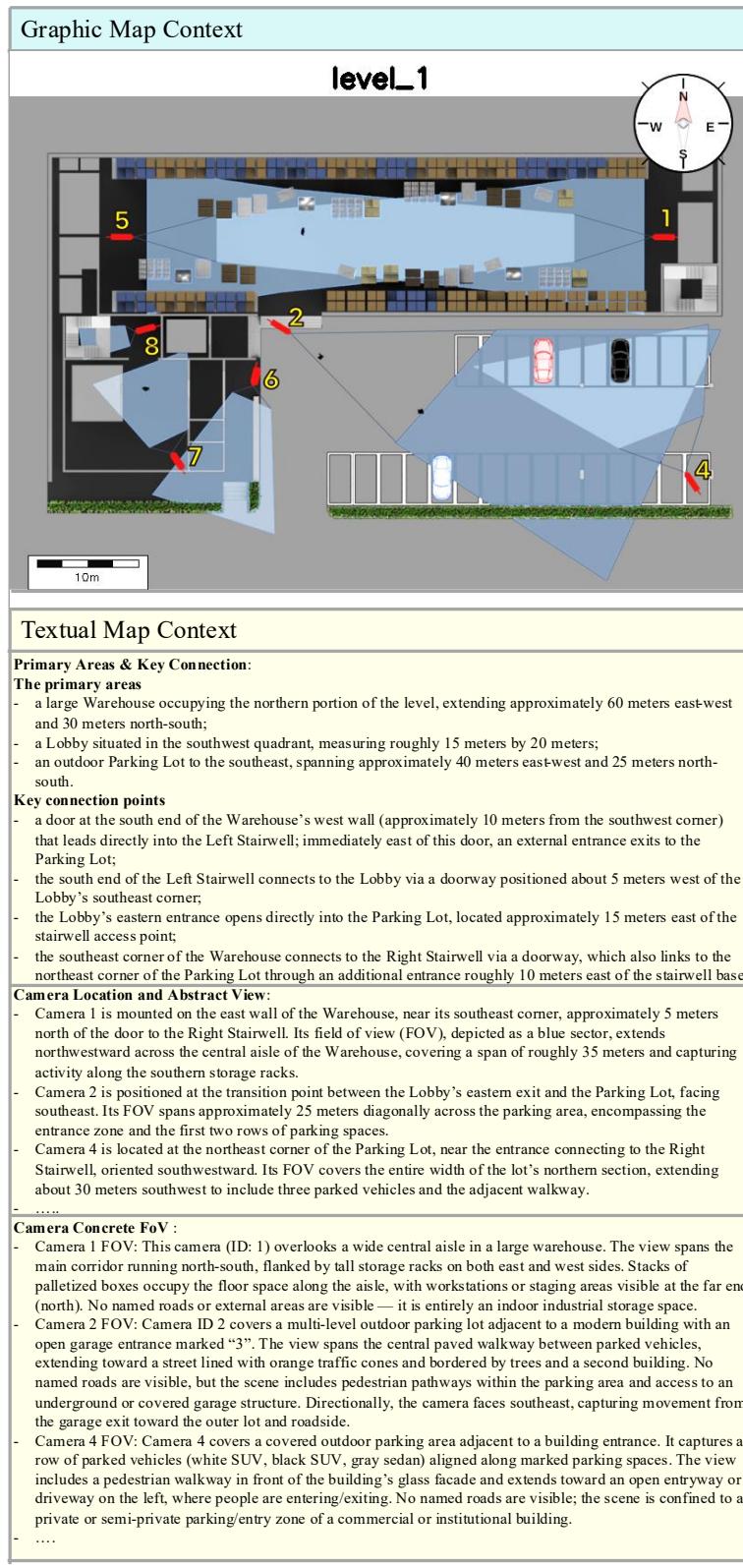


Figure 17: Graphic Map vs Textual Map (Indoor)

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

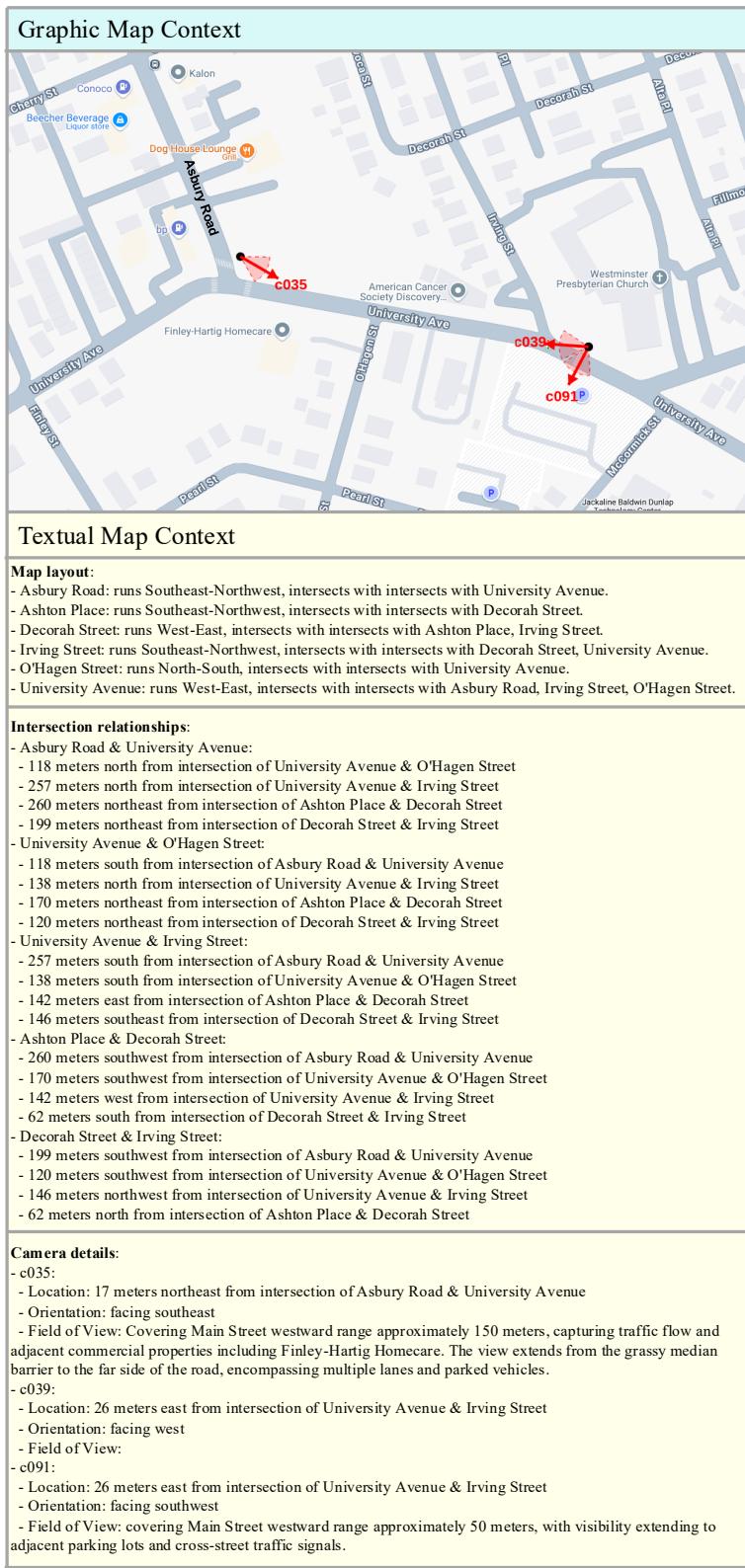


Figure 18: Graphic Map vs Textual Map (Outdoor)