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ABSTRACT

Recently spatial-temporal intelligence of Visual-Language Models (VLMs) has
attracted much attention due to its importance for Autonomous Driving, Embod-
ied AI and General Artificial Intelligence. Existing spatial-temporal benchmarks
mainly focus on egocentric perspective reasoning with images/video context, or
geographic perspective reasoning with graphics context (eg. a map), thus fail to
assess VLMs’ geographic spatial-temporal intelligence with both images/video
and graphics context, which is important for areas like traffic management and
emergency response. To address the gaps, we introduce Geo-Temporal Reasoning
benchmark (GTR-Bench), a novel challenge for geographic temporal reasoning
of moving targets in a large-scale camera network. GTR-Bench is more chal-
lenging as it requires multiple perspective switches between maps and videos,
joint reasoning across multiple videos with non-overlapping fields of view, and
inference over spatial-temporal regions that are unobserved by any video con-
text. Evaluations of more than 10 popular VLMs on GTR-Bench demonstrate
that even the best proprietary model, Gemini-2.5-Pro (34.9%), significantly lags
behind human performance (78.61%) on geo-temporal reasoning. Moreover, our
comprehensive analysis on GTR-Bench reveals three primary deficiencies of cur-
rent models for geo-temporal reasoning. (1) VLMs’ reasoning is impaired by an
imbalanced utilization of spatial-temporal context. (2) VLMs are weak in tempo-
ral forecasting, which leads to worse performance on temporal-emphasized tasks
than on spatial-emphasized tasks. (3) VLMs lack the proficiency to comprehend
or align the map data with multi-view video inputs. We believe GTR-Bench of-
fers valuable insights and opens up new opportunities for research and applica-
tions in spatial-temporal intelligence. Benchmark and code will be released at
https://anonymous.4open.science/r/GTR-Bench-5B76.

1 INTRODUCTION

Spatial intelligence is a fundamental capability that underpins our interaction with the physical world
(Feng et al., 2025a). This capability is pivotal for a wide range of applications, including autonomous
driving (Cui et al., 2025; Guo et al., 2024) and embodied AI (Chen et al., 2024; Huang et al.,
2023). With recent advancements in deep learning, the spatial-temporal intelligence, an extension of
spatial intelligence, of Visual-Language Models (VLMs) has emerged as a critical area of research.
It encompasses the ability to understand spatial dimensions such as size, distance, and temporal
dimensions such as time interval and velocity, and to perform spatial-temporal reasoning in the real
world with dynamics.

However, existing benchmarks for the spatial-temporal intelligence of Vision-Language Models
(VLMs) have inherent limitations, as shown in Table 1. Current benchmarks for geographic rea-
soning only focus on static geometry tasks with graphics context such as a subway map (Feng et al.,
2025b; Chen et al., 2025). Meanwhile, current benchmarks for egocentric or allocentric tasks typi-
cally concentrate on a single or a few distinct cameras and emphasize scale reasoning between static
objects and motion state reasoning of dynamic objects with videos or images context (Yang et al.,
2025a; Li et al., 2025a; Yang et al., 2025b; Xu et al., 2025; Chen et al., 2025; Feng et al., 2025b;
Ko et al., 2025; Li et al., 2025b). To address these gaps, we propose Geo-Temporal Reasoning
(GTR), a novel challenge for geographic temporal reasoning of moving targets in a large-scale cam-
era network. For example, understanding vehicle movement patterns and predicting traffic flow
dynamics within a city demands sophisticated reasoning about vehicle appearances, their trajecto-
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Benchmark Perspective Geometry vs. Motion Context Type #Cam Views
ReasonMap(Feng et al., 2025b) Geographic Geometry Graphics 0
MultiSPA(Xu et al., 2025) Egocentric Geometry Image 2
STI-BenchLi et al. (2025b) Egocentric Geometry & Motion Video 1
VSI-BenchYang et al. (2025a) Egocentric Geometry & Motion Video 1
ViewSpatial-BenchLi et al. (2025a) Egocentric & Allocentric Geometry Image 2+
ST-VLMKo et al. (2025) Egocentric Motion Video 1

GTR-Bench (Ours) Geographic Motion Graphics & Video 1 to 3

Table 1: Comparison of GTR-Bench with Previous Benchmarks. Our GTR-Bench is a novel
challenge which can assess VLMs’ geographic spatial-temporal intelligence in a camera network
with both images/video and graphics context.

ries, and motion trends across over 10 camera viewpoints. In the context of GTR, GTR-Bench is
more challenging as it requires multiple perspective switches between maps and videos in a camera
network, joint reasoning across multiple videos with non-overlapping fields of view, and inference
over spatial-temporal regions that are unobserved by any video.

In this work, we introduce the Geo-Temporal Reasoning benchmark (GTR-Bench), as shown in
Figure 1. GTR-Bench features a hierarchical suite of tasks grounded in real-world multi-camera
networks. A key innovation of our benchmark is to extend the context of spatial-temporal reason-
ing tasks to real camera networks within geographic perspective. Grounded in real-world indoor
and outdoor scenarios with a multi-camera network, our benchmark utilizes the actual trajectory
open-source data of pedestrians and vehicles in urban environments (Tang et al., 2019; Woo et al.,
2024) for task context construction, including map, object footprint, and trajectory data constructed
through annotations. Furthermore, GTR-Bench features a series of tasks for unobserved scenarios
that require multi-view joint reasoning across timestamp sequences with non-overlapping field of
view. We propose a multi-level evaluation architecture that dissects model capabilities into basic rea-
soning tasks and combinatorial tasks, covering 420 questions derived from 364 videos. We designed
three basic reasoning tasks, including Geo-location, Arrival Time-Interval, and Motion-State,
to isolate and measure a model’s core inferential strengths. To investigate how models prioritize
these basic skills, we developed four combinatorial tasks, including Causal Reordering, Next Spot
Forecasting, Trajectory Forecasting, and Multi-Target Trajectory Forecasting.

In our evaluation, models demonstrate markedly poor performance on GTR tasks compared to ex-
isting spatial-temporal benchmarks, revealing a critical gap in current VLMs’ ability to achieve
spatial-temporal intelligence. Even the top-performing proprietary model, Gemini-2.5-Pro, achieved
only 34.9% accuracy compared to the human-level performance of 78.61%, while the leading open-
source model, InternVL3-38B, reached just 30.76%. This poor performance is further highlighted
by two key trends: a significant drop in accuracy from basic to combinatorial tasks, and a notable
disparity of performance between outdoor and indoor scenarios. Our in-depth analysis attributes
these shortcomings to three fundamental deficiencies in current models. First, VLMs’ reasoning
is impaired by an imbalanced utilization of context across spatial, temporal, and motion-state di-
mensions. Second, VLMs are weak in temporal forecasting, which leads to worse performance on
spatial-temporal prediction tasks than on spatial reasoning tasks. Third, VLMs lack the proficiency
in comprehending and aligning map data with multi-view video inputs from a camera network.

Our main contributions are summarized as follows:

• We propose Geo-Temporal Reasoning, a novel spatial-temporal challenge for geographic
temporal reasoning of moving targets in a large-scale camera network. It helps assess
VLMs’ geographic spatial-temporal intelligence with both images/video and graphics con-
text, which is important for areas, such as traffic management and emergency response,
beyond conventional Embodied AI.

• We develop GTR-Bench for evaluating geo-temporal reasoning capabilities of VLMs.
GTR-Bench is more challenging due to multiple perspective switches between maps and
videos, joint reasoning across multiple videos with non-overlapping fields of view, and
inference over spatial-temporal regions that are unobserved by any video context, so that
even the best proprietary model, Gemini-2.5-Pro (34.9%), significantly lags behind human
performance (78.61%).
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• We provide a comprehensive analysis on GTR-Bench, which reveals three primary defi-
ciencies of current models for geo-temporal reasoning, namely, imbalanced utilization of
spatial-temporal context, weakness in temporal forecasting capabilities, and lack of pro-
ficiency in comprehending and aligning the map data with multi-view video inputs. We
believe analysis on GTR-Bench offers valuable insights and opens up new opportunities
for research and applications in spatial-temporal intelligence.

2 RELATED WORK

Geographic Reasoning Benchmark. Existing benchmarks for geographic reasoning primarily as-
sess models for geometry tasks with graphics context such as a map. ReasoningMap(Feng et al.,
2025b) designed a geographic reasoning task for structured and information-rich diagrams like
high-resolution transit maps. SpatialLLM(Chen et al., 2025) explores the application of VLMs
to geographic information system data in geometry tasks by transforming multi-modal urban data
into structured scene descriptions to prompt pre-trained LLMs. They evaluate the understanding of
spatial topology and path planning from a geographic view, yet typically only incorporate evalua-
tion tasks for static geometric targets. In the GTR-Bench, we combine geographic data to reason
about dynamic objects. It will bring a new cognitive perspective to the existing spatial-temporal
benchmarks.

Spatial-Temporal Reasoning Benchmark. Existing benchmarks for spatial-temporal reasoning
assess models on video or multi-image tasks from a single or a few camera views. ST-VLM(Ko
et al., 2025) constructs a dataset and benchmark for kinematic instruction tuning (STKit/STKit-
Bench) to propose and validate ST-VLM, which demonstrates outstanding performance in object
dynamics analysis. STI-Bench (Li et al., 2025b) evaluates the capabilities of VLMs on real-world
spatio-temporal understanding tasks such as pose, displacement, and motion. They focus on event
sequencing and state inference within a single video from an egocentric view. ViewSpatial-Bench(Li
et al., 2025a) addresses the core problem of VLMs’ inadequate spatial reasoning when switching
from egocentric to allocentric perspectives. MMSI-Bench (Yang et al., 2025b) is built upon spatial
reasoning tasks that span the positions, attributes, and motions with a multi-step reasoning split that
chains them into long-horizon questions. Multi-MultiSPA(Xu et al., 2025) is designed for multi-
frame spatial reasoning covering depth and visual correspondence perception, camera and object
movement perception, and object size perception. They focused on the challenges of multi-view
tasks and attempted to evaluate models to perform spatial-temporal reasoning under few adjacent
yet distinct views as an egocentric or allocentric observer. Although these spatial-temporal works
have some similarities with GTR, GTR notably combines graphic map and video as context and
proposes a geographic temporal reasoning task of moving targets with multi-view joint reasoning
with little view overlap for unobserved scenes.

Geo-Temporal Task in Multi-Camera Systems. Geo-temporal task represents a type of spatial-
temporal tasks that covers large-scale camera networks across multiple regions/districts, necessitat-
ing comprehension of geographic relationships and cross-regional connections. Multi-Target Multi-
Camera Tracking (MTMCT) can be considered as a form of geo-temporal task. Existing benchmarks
for MTMCT include the CityFlow dataset (Tang et al., 2019), which provides vehicle trajectories in
a large urban area, and MTMMC (Woo et al., 2024), which offers pedestrian trajectories in indoor
environments. Complementing these datasets, various methods have been developed for multiple
camera Re-ID. These include two-step matching approaches using semantic parsing and spatial-
temporal attention (He et al., 2020), the integration of language models with graph neural networks
(Nguyen et al., 2024), and noise-robust trajectory recovery frameworks designed to address Re-
ID clustering errors (Li et al., 2025c). However, existing researches still rely primarily on visual
features of objects, which remain within the computer vision domain with limited generalizability.
Given the extensive exploration of VLMs in spatial-temporal intelligence applications, we extend
the geo-temporal task to a novel challenge, Geo-temporal Reasoning(GTR), which leverages the
reasoning capabilities of VLMs to fully utilize geographic and temporal context in solving more
challenge.

3
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Geo-Location Arrival Time-Interval Motion-State

Timeline Reordering Next Spot Forecasting Traj Forecasting Multi-Traj Forecasting

Level 1 Level 2

GTR-Outdoor

Basic Reasoning Tasks Combinatorial Tasks

C016 C017 C018

C019 C020 C021

C007 C008 C003

C012 C009 C016

GTR-Indoor

Target Cam ID

12:00:01-12:00:46 12:01:01-12:01:27 12:01:35-12:01:46

12:01:21-12:01:23 12:01:53-12:02:23 12:02:21-12:02:35

12:00:01-12:00:23 12:00:23-12:00:45 12:00:44-12:01:13

12:00:51-12:01:07 12:01:31-12:01:58 12:01:51-12:02:23

Figure 1: Overview of Geo-temporal Reasoning and GTR-Bench. Given a graphic map and
multiple video clips from non-overlapping cameras, geo-temporal reasoning infers motion state of
moving targets in a large-scale camera network. GTR-Bench comprises 3 basic reasoning tasks,
including Geo-location, Arrival Time-Interval, and Motion-State, and 4 combinatorial tasks includ-
ing Causal Reordering, Next Spot Forecasting, Trajectory Forecasting, and Multi-Target Trajectory
Forecasting. GTR-Bench covers both outdoor (vehicles) and indoor (pedestrians) scenarios.

3 GEO-TEMPORAL REASONING

From a cognitive science perspective, spatial-temporal intelligence can be bifurcated into two cat-
egories: first-person (egocentric) and third-person (allocentric) intelligence (Burgess, 2006). How-
ever, if we move away from the human cognitive perspective and perceive the real world from a
broader perspective, the geographic perspective can provide VLMs with an omniscient understand-
ing for dynamic objects.

When we extend the context of the problem to geographic spatial-temporal intelligence, the issue
becomes more challenging and valuable, requiring the resolution of multi-perspective changes and
transformations of coordinate systems. A typical case involves inferring a target’s geo-location, tem-
poral sequence, and motion state in a camera network comprising more than 10 viewpoints covering
an urban scene. We posit that this represents a crucial challenge of spatial-temporal intelligence,
which we define as Geo-Temporal Reasoning (GTR), as illustrated in Figure 1.

With the expansion of context from the GTR challenge, novel questions have arisen for existing
spatial-temporal intelligence. The introduction of a graphic map requires models to reason between
the map and cameras, handling multiple perspective changes. This contrasts sharply with egocentric
tasks, which rely on a continuous-time sequence inferred from the sequential order of image frames
(Xiong et al., 2024; Su et al., 2024; Bazaga et al., 2025). Furthermore, GTR challenges VLMs to
perform multi-view joint reasoning about unobserved phenomena with little view overlap, such as
inferring a target’s path between camera views. This demands superior inferential capabilities and
context integration. In contrast, egocentric tasks typically involve continuous and unified spatial-
temporal observations, allowing models to reason about directly observed events (Ko et al., 2025;
Li et al., 2025b).

4 GTR-BENCH

4.1 OVERVIEW OF GTR-BENCH

In this work, we constructed the Geo-Temporal Reasoning benchmark (GTR-Bench) to systemati-
cally evaluate VLMs on this geo-temporal reasoning challenge, as detailed in Table 2. (1) The first
level comprises three basic reasoning tasks designed to probe fundamental abilities. Geo-Location
assesses a model’s comprehension of spatial topology and path planning within multi-camera net-
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Task Name Task Definition Metric

Basic Tasks

Geo-Location (GL)

Given the starting and ending locations of a target, infer the intermediate locations the target
passes through.
Example: Based on the provided [start video] and [end video], infer which camera the tar-
get passed through between the start point (C016, 12:00:10-12:00:22) and end point (C018,
12:00:37-12:00:42). Answer: C. C017

MCQ
Acc

Arrival
Time-Interval (ATI)

Given the starting point, ending point, and intermediate location, infer the time interval of the
target’s arrival at a specific intermediate location.
Example: Based on the provided [start video] (C018, 12:00:37-12:00:42) and [end video]
(C020, 12:00:43-12:00:50),and knowing the target passed through camera C019, infer when
the target arrived at the intermediate camera. Answer: A. 12:00:43.279-12:00:43.579

MCQ
Acc

Motion-State (MS)

Given the starting point, ending point, and intermediate location, infer the plausible motion
state of the target at intermediate locations.
Example: Based on the provided [start video] (C016, 12:00:10-12:00:22) and [end video]
(C018, 12:00:37-12:00:42),and the intermediate camera c017 infer the target’s motion state
during the intermediate time period. Answer: B. the target travels west at a speed of 10.0 m/s
for 11.0 seconds, covering a distance of 109.6 meters.

MCQ
Acc

Combinatorial Tasks

Causal Reordering
(CR)

Given a set of unordered video clips from different cameras and a map, determine the correct
chronological sequence of cameras the target passed through.
Example: Based on the provided [local map] and [videos](C019,C021,C020), analyze the
target’s activity trajectory. Please infer the correct order in which the target passed through
these cameras. Answer: D. C019 → C020 → C021

MCQ
Acc

Next Spot
Forecasting (NSF)

Given the target’s last observed appearance in a single camera video and a map, predict the
most probable next camera location and the corresponding time interval of appearance.
Example: Based on the provided [local map] and [video] (C16, 12:00:10-12:00:22), which
camera from the following list will likely capture the target next? You need to select one option
as the answer and infer a time range. Answer: A. C020 12:00:43.905-12:00:50.505

ST-IoU

Trajectory
Forecasting (TF)

Building upon multiple historical observations across several cameras, predict the target’s com-
plete future trajectory by forecasting the sequence of cameras it will pass through.
Example: Based on the provided [local map] and [videos] (C017, 12:01:01-12:01:27, C018,
12:00:37-12:00:42), predict the next two cameras that the target will likely pass through. You
need to select a correct sequence of options and simultaneously infer a corresponding sequence
of time ranges. Answer: A. C019 12:00:43.279-12:00:43.579 → D. C020 12:00:43.905-
12:00:50.505

ST-IoU

Multi-Target
Trajectory

Forecasting
(MTTF)

This extends single-target prediction by requiring the model to forecast the future meeting point
(location and time) of two distinct targets.
Example: Based on the provided [local map] and [videos] (C018, 12:00:37-12:00:42, C019,
12:01:21-12:01:23) showing the movement trajectories of two [Target], predict where and
when these [Target] will most likely meet. Answer: B. C018 12:00:37.755-12:00:42.855

ST-IoU

Table 2: Detailed design and examples of tasks in GTR-Bench. GTR-Bench is divided into basic
and combinatorial levels, evaluated by either Multiple-Choice Question Accuracy (MCQ Acc) or
Spatial-Temporal Intersection over Union (ST-IoU).

works. Arrival Time-Interval evaluates the ability to model temporal sequences and predict event
timing across different camera views. Motion-State examines the understanding of target’s behavior
and the influence of scene semantics on motion state. (2) The second level features four combina-
torial tasks that demand the integration of three basic reasoning skills. Causal Reordering requires
the synthesis of spatial and temporal understanding to reconstruct a coherent event sequence. Next
Spot Forecasting integrates all three basic skills to predict a target’s subsequent location and time
of appearance in the future. Trajectory Forecasting extends this by requiring long-horizon predic-
tion, testing the model’s ability to understand sustained motion patterns. Multi-Target Trajectory
Forecasting testing collaborative reasoning and the capacity to manage multiple spatial-temporal
paths.

For each task in the GTR-Bench, we have designed specific problem instances and corresponding
evaluation metrics, as detailed in Table 2. Each question is multi-modal, incorporating a map with
one or more video clips, and features a rich diversity of target objects and spatial-temporal contexts.
Overall, the benchmark comprises 420 unique questions derived from 364 distinct video clips with
an average duration of 10.64 seconds. As shown in Table 3, these questions are meticulously bal-
anced across the seven reasoning tasks, with 60 questions per task. Further examples and details are
available in Appendix E.
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Metric Value
Total Questions 420
Unique Videos 364
Avg Images/Question 7.0
Avg Question Length 185.1
Avg Choice Length 132.4

GTR-Outdoor Details
Questions 7x30
Cameras 31
Avg. Distance 984.77m
Max. Distance 2389.42m
Target Vehicles

GTR-Indoor Details
Questions 7x30
Cameras 16
Avg. Distance 30.59m
Max. Distance 60.93m
Avg. FoV 166.30m²
Target Pedestrian

Table 3: Data Statistics

Data Preprocessing Task Generation

Distractor 

Option 

Generation

Quality Check

MTMC Reid Data

Trajectory Information

Camera Sequence

Camera Calibration

1 2 3 4 5

Time 

Interval

Motion 

State

Map Generation Video Annotation

Context Selection

Human Expert Filtering

Question 

Formation

Prompt

Answer

Location

Time Motion

Time Range

Motion 

Diversity

Spatial

Span

Conflict Filtering

Reasoning 

Difficulty Filtering

Figure 2: Benchmark construction pipeline

The benchmark is equally divided into two distinct real-world scenarios, with 210 questions for each.
The first is an outdoor urban environment from the CityFlow dataset (Tang et al., 2019) focused on
vehicles, while the second is an indoor, multi-level setting from the MTMMC dataset (Woo et al.,
2024) for pedestrians. As detailed in Table 3, these environments present vastly different scales of
geo-temporal complexity. The outdoor network spans a city block with 31 cameras and an average
inter-camera distance of 984.77 meters. In contrast, the indoor network provides building-level
coverage with 16 cameras and an average distance of only 30.59 meters. This significant disparity,
with the outdoor scenario being approximately 32 times larger in spatial scale, establishes a testbed
for evaluating the spatial-temporal intelligence of VLMs.

4.2 METRIC DESIGN

We employ two primary metrics for evaluation: standard accuracy for multiple-choice questions
(MCQs) and a novel Spatial-Temporal Intersection over Union (ST-IoU) for predictive tasks, as out-
lined in Table 2. For the basic and CR tasks, which are formatted as MCQs, we report standard
accuracy. In contrast, the forcasting tasks (NSF, TF, and MTTF) require the model to generate both
a Camera ID (e.g., C.C017) and a corresponding time interval (e.g., 12:00:37-12:00:42). To eval-
uate spatial-temporal results, we introduce ST-IoU, a composite metric designed to assess spatial-
temporal performance. Specifically, it combines spatial accuracy—verifying the correctness of the
predicted Camera ID—with Temporal IoU, which measures the overlap between the predicted and
ground-truth time intervals. For a given prediction i, the ST-IoU is calculated as follows:

ST-IoU =
1

N

N∑
i=1

I(Cpi = Cgti)×
|Tpi ∩ Tgti |
|Tpi ∪ Tgti |

(1)

where N is the total number of predictions, I(·) is the indicator function which equals 1 if the
predicted camera Cpi matches the ground truth camera Cgti and 0 otherwise. Tpi and Tgti represent
the predicted and ground-truth time intervals and the fraction calculates their temporal IOU.

4.3 BENCHMARK CONSTRUCTION PIPELINE

We designed an automated benchmark construction pipeline that transforms raw video data into
standardized questions across seven tasks to accommodate the varying temporal, geographic, and
formatting requirements of different tasks, as shown in Figure 2.

Data Preprocessing. Our data preprocessing pipeline transforms raw video from two distinct
datasets, CityFlow (outdoor vehicles)(Tang et al., 2019) and MTMMC (indoor pedestrians)(Woo
et al., 2024), into a structured format suitable for geo-temporal reasoning. The process begins by
segmenting video clips for individual target instances based on bounding box annotations. Next,
we perform camera calibration by computing a homography matrix from manually annotated corre-
spondence points, which establishes a precise projective transformation from the 2D image plane to
a real-world map. Using this matrix, we transform target trajectories by projecting their coordinates
onto the map, scaling them to real-world metrics, and algorithmically deriving key motion param-
eters like velocity and direction. The resulting trajectory data then undergoes a rigorous cleaning,

6
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filtering, and validation process to ensure consistency. Finally, we use a large language model to
synthesize this quantitative data into a qualitative Motion Summary, providing both numerical and
narrative insights for each trajectory. For more details, refer to Appendix A.1.

Task Construction. We employ a systematic pipeline to create standardized questions using task-
specific templates. The process consists of four main steps: (1) Trajectory Selection: We randomly
sample valid trajectory segments, complete with temporal and motion state data, from our prepro-
cessed dataset. (2) Information Integration: The selected trajectory, along with corresponding
map information and video data, is integrated into a standardized template. (3) Question and An-
swer Formulation: We construct a task question aligned with specific reasoning requirements and
establish the ground-truth answer based on the actual trajectory and map data. (4) Distractor Gener-
ation: To ensure a rigorous evaluation, we generate plausible yet incorrect distractor options using a
sophisticated, scenario-specific strategy. This includes sourcing from architecturally distinct indoor
areas, algorithmically creating synthetic outdoor cameras, and randomizing camera IDs to compel
models to perform genuine geo-temporal reasoning rather than relying on superficial heuristics. For
more details, refer to Appendix A.2.

Quality Check. The benchmark has undergone a complete two-stage manual selection process to
ensure the validity of the evaluation. In the first stage, we first manually select the context of each
question to ensure the diversity of spatial spans and temporal durations of the questions. Meanwhile,
we remove questions with large trajectory errors to bring the benchmark more in line with the laws of
spatial-temporal reasoning. In the second stage, human experts select the answers of each question
and select 30 questions per task covering reasonable difficulty levels. This ensures the validity of
the benchmark and provides diversity in evaluation difficulty.

5 EVALUATION ON BENCHMARK

5.1 EVALUATION SETUP

We evaluate 13 models across our benchmark. For proprietary models, we select Claude-
3.7-Sonnet(Anthropic, 2025a), Claude-4-Sonnet(Anthropic, 2025b), GPT-4o(Openai, 2024), GPT-
5(Openai, 2025), and Gemini-2.5-Pro(Deepmind, 2025). For open-source models, we select
InternVL3-2B/8B/38B series(Zhu et al., 2025), Qwen2-VL-2B/7B series(Wang et al., 2024),
Qwen2.5-VL-2B/7B/32B series(Bai et al., 2025), and GLM-4.1V-9B-Thinking(Hong et al., 2025).
Proprietary models are accessed through their respective official APIs, while open-source models
are deployed using LMDeploy and the Pytorch framework on 8 NVIDIA V100 GPUs. Considering
the input limitations of models, we sample the videos, ensuring that the total number of sampled
frames from multiple videos is within 20, to achieve reasonable and effective evaluation. We set the
temperature of all models to 0.1 and set max new token to 16384, enabling the models to perform
sufficient and temperature-appropriate reasoning.

5.2 MAIN RESULTS
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Figure 3: Overview of GTR-Bench Results.
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Figure 4: Task performance of GTR-Bench

Overview of Results. A critical performance gap is notable, with even the best proprietary model,
Gemini-2.5-Pro, achieving a score of only 34.9, compared to the human-level performance of 78.61.
Table 4 presents a comprehensive evaluation of 12 Visual-Language Models on our GTR-Bench,
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Methods Rank
GTR-Outdoor GTR-Indoor

Average
GL ATI MS CR NSF TF MTTF GL ATI MS CR NSF TF MTTF

Proprietary Models (API)
Claude-3-7-Sonnet 7 53.33 66.67 26.67 46.67 25.75 8.90 21.97 36.67 40.00 13.33 46.67 9.48 9.51 3.56 29.23
GPT-4o 4 56.67 76.67 40.00 63.33 20.53 0.00 23.10 30.00 53.33 40.00 50.00 13.00 0.00 2.79 33.53
Claude-4-Sonnet 3 73.33 50.00 50.00 63.33 8.05 6.18 16.94 66.67 33.33 43.33 58.62 2.60 4.01 0.00 34.03
GPT-5 2 53.33 76.67 40.00 40.00 12.04 12.12 7.34 60.00 30.00 43.33 86.21 11.34 2.55 1.75 34.05
Gemini-2.5-Pro 1 60.00 46.67 33.33 56.67 19.13 13.16 19.18 63.33 13.33 26.67 70.00 25.11 28.09 14.37 34.93
Open-source Models
Qwen2-VL-2B-Instruct 13 33.33 16.67 20.00 56.67 0.00 0.28 0.00 30.00 13.33 33.33 43.33 0.00 0.21 0.00 17.65
InternVL3-2B 12 33.33 46.67 23.33 36.67 6.15 0.00 9.95 13.33 23.33 33.33 30.00 0.65 0.08 1.62 18.46
Qwen2.5-VL-7B-Instruct 11 23.33 46.67 3.33 60.00 0.00 0.00 0.51 40.00 30.00 6.67 63.33 0.00 0.00 0.00 19.56
InternVL3-8B 10 26.67 60.00 33.33 50.00 0.00 4.79 5.42 20.00 26.67 30.00 50.00 0.00 0.79 1.67 22.10
Qwen2-VL-7B-Instruct 9 43.33 60.00 16.67 50.00 5.78 0.00 10.01 20.00 40.00 36.67 36.67 3.62 0.00 0.00 23.05
GLM-4.1V-9B-Thinking 8 60.00 57.14 25.00 62.07 10.29 0.00 25.38 26.67 38.46 34.48 55.17 2.87 0.00 1.67 28.51
Qwen2.5-VL-32B-Instruct 6 43.33 60.00 33.33 66.67 0.65 0.00 15.72 33.33 56.67 43.33 70.00 3.33 0.00 0.00 30.45
InternVL3-38B 5 40.00 73.33 30.00 53.33 8.27 8.20 20.58 50.00 56.67 26.67 37.93 11.10 4.37 10.24 30.76

Human Level - 90.00 84.25 90.91 89.75 68.31 51.24 55.83 98.20 90.78 89.45 97.35 74.64 57.36 62.46 78.61

Table 4: GTR-Bench Results. Our evaluation based on more than 10 popular VLMs reveals a
critical performance gap. Bold = best result; Underline = second best result.

spanning two distinct scenarios (GTR-Outdoor and GTR-Indoor) and seven reasoning tasks. The
proprietary models, particularly Gemini-2.5-Pro, GPT-5 and Claude-4-Sonnet, demonstrate better
performance, achieving the highest average scores of 34.93, 34.05 and 34.03, respectively. This in-
dicates that current leading proprietary models possess more robust geo-temporal reasoning capabil-
ities. However, the performance gap is narrowing, with top-tier open-source models like InternVL3-
38B, Qwen2.5-VL-32B, and GLM-4.1V-9B-Thinking showing competitive results with scores of
30.76, 30.45, and 28.51 respectively. The overall scores reveal the challenge of GTR-Bench and
highlight significant room for improvement in the spatial-temporal intelligence of VLMs.

Outdoor vs Indoor. A comparative analysis between the GTR-Outdoor and GTR-Indoor scenarios
reveals distinct performance patterns. As shown in Table 4, most models demonstrate better per-
formance in outdoor settings. For instance, Claude-3.7-Sonnet achieves outdoor scores of 25.75,
8.90, and 21.97 for NSF, TF, and MTTF tasks respectively, consistently outperforming its indoor
scores of 9.48, 9.51, and 3.56. This aligns with expectations that outdoor environments provide
clearer spatial cues and more regular motion patterns. However, Gemini-2.5-Pro exhibits counterin-
tuitive behavior, achieving higher indoor scores of 25.11, 28.09, and 14.37 compared to its outdoor
scores of 19.13, 13.16, and 19.18. This pattern, demonstrated by the top-performing model, suggests
that advanced models may better utilize their sophisticated reasoning capabilities when facing more
complex indoor scenarios that demand deeper multi-dimensional reasoning.

5.3 RESULT ANALYSIS
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Figure 5: Context Utilization Analysis. VLMs’ reasoning is im-
paired by an imbalanced utilization of spatial-temporal context.

Context Utilization Analysis.
We designed a prompt to ana-
lyze each model’s reliance on
spatial, temporal, and motion
state context, detailed in Ap-
pendix B, which instructs an
LLM to assess its own reasoning
output for each question. The
model assigns a binary score for
its utilization of each context
type: 0 for no utilization and 1
for appropriate utilization. This method allows us to quantify each model’s dependency on differ-
ent context types and reveal its reasoning patterns. As shown in Figure 5, our analysis reveals that
leading proprietary models like Gemini-2.5-Pro demonstrate balanced utilization across all context
types, which contributes to their superior performance. In contrast, open-source models often exhibit
imbalanced patterns. For instance, InternVL3-38B shows strong spatial and motion understanding
but weaker temporal reasoning. This imbalance creates reasoning blind spots that limit performance
on comprehensive geo-temporal tasks.

Spatial-temporal Reasoning Analysis. To investigate the performance gap between spatial and
spatial-temporal reasoning, we conducted a detailed analysis as detailed in Table 5. Models achieve
higher MCQ accuracy evaluating spatial location understanding compared to ST-IoU scores requir-
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Methods Rank
GTR-Outdoor GTR-Indoor

NSF TF MTTF NSF TF MTTF
MCQ Acc ST-IoU MCQ Acc ST-IoU MCQ Acc ST-IoU MCQ Acc ST-IoU MCQ Acc ST-IoU MCQ Acc ST-IoU

Proprietary Models (API)
Claude-3-7-Sonnet 7 36.67 25.75 41.67 8.90 73.33 21.97 23.33 9.48 18.33 9.51 6.67 3.56
GPT-4o 4 53.33 20.53 41.67 0.00 76.67 23.10 30.00 13.00 38.33 0.00 13.33 2.79
Claude-4-Sonnet 3 36.67 8.05 45.00 6.18 70.00 16.94 30.00 2.60 21.67 4.01 16.67 0.00
GPT-5 2 73.33 12.04 58.33 12.12 83.33 7.34 50.00 11.34 38.33 2.55 26.67 1.75
Gemini-2.5-Pro 1 38.46 19.13 45.45 13.16 51.72 19.18 43.33 25.11 50.00 28.09 36.67 14.37

Open-source Models
Qwen2-VL-2B-Instruct 13 36.67 0.00 30.00 0.28 43.33 0.00 3.33 0.00 23.33 0.21 10.00 0.00
InternVL3-2B 12 33.33 6.15 18.33 0.00 27.59 9.95 6.67 0.65 8.33 0.08 3.57 1.62
Qwen2.5-VL-7B-Instruct 11 43.33 0.00 28.33 0.00 16.67 0.51 16.67 0.00 20.00 0.00 20.00 0.00
InternVL3-8B 10 40.00 0.00 23.33 4.79 36.67 5.42 13.33 0.00 15.00 0.79 6.67 1.67
Qwen2-VL-7B-Instruct 9 43.33 5.78 26.67 0.00 51.72 10.01 26.67 3.62 18.33 0.00 0.00 0.00
GLM-4.1V-9B-Thinking 8 40.00 10.29 30.00 0.00 76.67 25.38 10.34 2.87 0.00 0.00 6.67 1.67
Qwen2.5-VL-32B-Instruct 6 40.00 0.65 26.92 0.00 50.00 15.72 10.00 3.33 26.00 0.00 6.67 0.00
InternVL3-38B 5 23.33 8.27 23.33 8.20 50.00 20.58 23.33 11.10 16.67 4.37 16.67 10.24

Table 5: Spatial-temporal Reasoning Analysis. VLMs are weak in temporal forecasting, which
leads to worse performance on spatial-temporal prediction tasks of ST-IoU than on spatial reasoning
tasks of MCQ Acc.

ing joint spatial-temporal reasoning. GPT-4o achieves 53.33 MCQ accuracy on outdoor NSF but
only 20.53 ST-IoU, a 32.80 point gap. Gemini-2.5-Pro shows 45.45 MCQ accuracy versus 13.16
ST-IoU on outdoor TF, indicating a 32.29 point difference. This pattern persists across all models,
with GLM-4.1V-9B-Thinking demonstrating 76.67 MCQ accuracy on outdoor MTTF but only 25.38
ST-IoU, a 51.29 point difference. These consistent gaps highlight that while models identify spatial
locations adequately, they struggle when temporal constraints are integrated into reasoning, suggest-
ing VLMs lack temporal reasoning mechanisms for comprehensive geo-temporal understanding.

Failure Case Study. We conduct a comprehensive error analysis on representative models, in-
cluding Gemini-2.5-Pro, GPT-4o, and InternVL3-32B. Our analysis reveals novel error patterns
emerging from the complex interplay of multiple discontinuous perspectives and explicit temporal
reasoning, as illustrated in Figure 6. In Example 1, model fails to understand wall obstructions
and calculates routes using direct linear distance, resulting in Topology Error. Model correctly
identifies video direction but encounters failures during world direction transformation, leading to
Motion State Error. In Example 2, model fails to properly map camera FoV to the spatial layout,
erroneously equating location with viewpoint and causing FoV Alignment Error. Model ignores
distance and speed constraints, incorrectly estimating traversal time and resulting in Time Interval
Error. Detailed definitions and comprehensive analysis are provided in Appendix D.

Input

Options: A. c05  B. c02  C. c06  D. c08

GT: D. c08 12:01:35.160-12:01:47.800;

Analysis: Even left-right, map topology (walls) 

implies C06/C05... target walled off from C02.

Reasoning: In the last frame, the target is near the 

center-left of the hallway, indicating they are heading 

towards eastward ...

Answer: B.c02  12:01:36.280-12:01:40.280

Topology Error

Reasoning: Bounding box coordinates confirm the 

target moves left-to-right along the hallway... with its 

path matching map section "2".

Answer: C.c06  12:01:36-12:01:40

Question: Based on the provided [local map] and 
[camera information], which camera from the following 
list will most likely capture the target next? You need to 
select one option as the answer and infer a time range.

Model A

Response

GT: D. c08 12:01:35.160-12:01:47.800;  

Analysis: misalignment during view switching.

Actually, the target is moving westward.

Model B

Motion State Error

Map

1

2

1

2

Video C07

(a) Example 1

Input

Map

1

2

1
2

Video C09

Options: A. c03 B. c16 C. c11 D. c12

GT: B. c16 12:01:18.440-12:01:46.880; 

Analysis: c16’s FoV is east of c09’s, and the model 

failed in FoV alignment and mapping.

Reasoning: an estimated time range of 12:01:23-

12:01:30 based on the target‘s movement speed and 

trajectory. 

Answer: B.c16  12:01:23-12:01:30

Time Interval Error

FoV Alignment Error

Reasoning: c11 is located at the eastern exit of the 

room. The target is walking from west to east. This is 

the most probable next camera.

Answer: C.c11  12:01:23-12:01:33

Question: Based on the provided [local map] and 
[camera information], which camera from the following 
list will most likely capture the target next? You need to 
select one option as the answer and infer a time range.

Model A

Response

GT: B. c16 12:01:18.440-12:01:46.880;  

Analysis: The east-west span of C16 is approximately 

40 meters, and the predicted time interval of 7 seconds 

is too short

Model B

(b) Example 2

Figure 6: Failure Case Study. VLMs lack the proficiency to comprehend or align the map data
with multi-view video inputs. (a) Example 1: Topology Error and Motion State Error. (b) Example
2: FoV Alignment Error and Time Interval Error.

6 CONCLUSION

In this work, we introduced the Geo-Temporal Reasoning benchmark, a novel challenge for evaluat-
ing the spatial-temporal intelligence of Visual-Language Models through geographic temporal rea-
soning tasks of moving targets in real-world multi-camera networks with large perspective changes.
Our comprehensive evaluation reveals significant limitations in current models. The best-performing

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

proprietary model, Gemini-2.5-Pro, achieves only 34.9% accuracy, highlighting a critical gap behind
human performance (78.61%). Our analysis suggests these shortcomings stem from imbalanced
utilization of spatial-temporal context, weakness in temporal forecasting capabilities, and lack of
proficiency in comprehending and aligning the map data with multi-view video inputs. We believe
GTR-Bench offers valuable insights and opens up new opportunities for research and applications
in spatial-temporal intelligence.
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A MORE DETAILS OF THE BENCHMARK CONSTRUCTION PIPELINE

A.1 DATA PREPROCESSING DETAILS

Data Collection. To obtain richer scenarios and diverse moving targets, we collected data from
two completely distinct scenarios, Outdoor and Indoor, to construct the GTR-Bench. For outdoor
data, we used the CityFlow dataset, which is an urban Multi-Target Multi-Camera (MTMC) video
dataset containing 345 target id of cars and 40 cameras.(Tang et al., 2019) For indoor data, we used
the MTMMC dataset, an indoor MTMC video dataset that includes 3669 target id of people and
32 cameras.(Woo et al., 2024) These datasets provide the Re-identification (ReID) information of
each target in the video as well as the temporal information of bounding boxes (bbox). Starting with
the raw video sequences and associated detection annotations, we segment and crop frames based
on target bounding boxes. This procedure isolates individual target instances, forming a discretized
visual dataset that serves as the foundation for subsequent analysis.

1
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Figure 7: Camera Calibration

Outdoor
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Video Map

Start

End

Figure 8: Trajectory Transformation

Camera Calibration. We perform geometric calibration for each camera to accurately map target
trajectories from 2D image coordinates to real-world positions, as shown in Figure 7. This process
involves computing a homography matrix that establishes a precise projective transformation be-
tween the camera’s image plane and a top-down map of the environment. The matrix is derived by
manually annotating a minimum of eight correspondence points between the image and the map.
The resulting 3×3 homography matrix enables the transformation of a target’s pixel coordinates into
accurate real-world map coordinates, forming the basis for trajectory analysis.

Trajectory Transformation. We proceed to spatial-temporal feature derivation with the geometric
mapping established, as shown in Figure 8. This process begins by projecting the target’s bounding
box coordinates onto the map using the calibrated homography matrix, followed by applying scaling
factors to convert pixel measurements into real-world metrics such as meters. Subsequently, key
motion parameters—including distance, velocity, and direction—are algorithmically computed for
each timestamp. The resulting trajectory data undergoes a rigorous cleaning and filtering stage,
where we remove anomalous points, apply interpolation for continuity, and implement multi-layer
validation for temporal, spatial, and identity consistency. Finally, the quantitative motion data is
synthesized into qualitative textual descriptions using a large language model, producing a ”Motion
Summary” that provides both numerical and narrative insights for each trajectory segment.

A.2 MORE DETAILS ON TASK CONSTRUCTION

Map Generation and Video Annotation. The foundation of our task construction pipeline rests on
two core components: detailed environmental maps and corresponding video data. Depending on
the scenario, we utilize either indoor floor plans or outdoor road network maps, each richly annotated
with essential camera deployment details, including their precise coordinates, field-of-view (FOV)
coverage, viewing orientation, and references for scale and direction. Complementing this spatial
information, the video data consists of video clips which we extract based on target movement.
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Within these clips, targets are highlighted with red bounding box annotations, providing the critical
visual, temporal, and behavioral context required for our comprehensive reasoning tasks.

Distractor Option Generation. To ensure a rigorous evaluation and prevent models from relying
on superficial heuristics, we have developed a sophisticated, scenario-specific strategy for gener-
ating plausible yet incorrect distractor options. For indoor environments, distractors are sourced
from cameras located on different floors or in functionally distinct areas, creating choices that are
spatially diverse yet architecturally coherent. In outdoor scenarios, we algorithmically generate syn-
thetic camera locations along the road network. These virtual cameras are endowed with realistic
attributes, including strategically positioned coordinates, plausible viewing orientations, and stan-
dard field-of-view (FOV) coverage. Furthermore, to mitigate biases arising from numerical patterns,
we implement an ID randomization system that reassigns camera identifiers. This forces the model
to reason based on fundamental spatial and temporal relationships rather than exploiting simple nu-
merical sequences. These carefully designed distractor strategies are crucial for ensuring that our
benchmark robustly assesses genuine geo-temporal reasoning capabilities.

B PROMPT FOR CONTEXT UTILIZATION ANALYSIS

We employ the Qwen-max closed-source model to analyse the reasoning content of various models
across seven tasks in GTR-Bench, examining whether the reasoning process contains the three key
elements of Location, Time, and Motion State for the cameras specified in the given questions.
The objective is to evaluate the utilization rate of models for spatial, temporal and motion modal
context. Notably, for Timeline Reordering tasks, since no Camera Time information is provided,
Time elements are not included in the statistical analysis. The specific prompt used is shown in
Figure 9.

[Reasoning Text]
The video from camera c07 shows the target (ID 4) entering an indoor 
lobby area from the right side of the frame and walking towards the left. 
The last frame at 12:00:28.040 shows the target moving towards a 
hallway… the location as the southern entrance of the building…

[Rule]
Please analyze [Reasoning Text] and determine whether it contains the 
specified key elements. For each element, mark it as 1 if it is explicitly 
mentioned or referenced in the text, otherwise mark it as 0.
Camera { i } 
1. Location: Whether the specific position, direction, or area of 

camera {i} is mentioned
2. Time: Whether the specific time information of camera {i} 

recording is mentioned

3. Motion: Whether the movement, direction, or behavior of targets in 

camera {i} is described

Camera{ i+1 }…

[Output]

Please return the result in JSON format:{"camera{i}_analysis": 

{"Location”: 0 or 1, "Time": 0 or 1, "Motion": 0 or 1}…}

Context Utilization Analysis Prompt

Figure 9: Context Utilization Analysis Prompt
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C DETAILS OF DATA DISTRIBUTION

As detailed in Table 6, our benchmark features two scenarios with vastly different spatial scales to
create a diverse testbed. The outdoor network spans a city block with 31 cameras and an average
inter-camera distance of 984.77 meters. In contrast, the indoor network provides building-level cov-
erage across three floors with 16 cameras and a much smaller average distance of only 30.59 meters.
This significant disparity, with the outdoor scenario being approximately 32 times larger in spatial
scale, establishes a robust and diverse challenge for evaluating the spatial-temporal intelligence of
VLMs across both expansive and compact environments.

Environment Location Cameras Avg. Dist. (m) Distance Range (m) Avg. FoV (m2) FoV Range (m2)

Indoor

Level-1 7 31.38 5.41–60.93 222.81 11.39–449.99
Level-2 7 30.81 4.71–56.49 141.93 5.29–407.52
Level-3 2 9.35 9.35–9.35 53.83 6.44–101.21

Overall 16 30.59 4.71–60.93 166.30 5.29–449.99

Outdoor CityFlow S03/04/05 31 984.77 0.00*–2389.42 N/A N/A

Indoor measurements based on pixel coordinates (0.089 m/pixel conversion).
Outdoor measurements calculated using GPS coordinates and Haversine formula.

FoV data available only for indoor cameras with detailed polygon annotations.
Zero distance indicates cameras at identical GPS coordinates with different orientations.

Table 6: Detailed Camera Network Analysis by Environment and Location

D DETAILED FAILURE CASE STUDY

D.1 DETAILED ERROR DEFINITIONS

Our detailed error analysis reveals systematic failure patterns across different task categories and
model types. Based on our experimental results, we categorize the error patterns into four main
dimensions: spatial reasoning errors, temporal reasoning errors, motion reasoning errors, and rea-
soning mechanism errors.

Spatial Reasoning Errors. We identify two primary categories of spatial reasoning failures:

• Topology Error: Models frequently fail to understand complex spatial constraints and re-
lationships. This includes (1) constraint understanding errors, such as failing to account for
road network constraints (one-way streets, restricted areas) and indoor architectural con-
straints (walls, obstacles); (2) connection relationship errors, where models misunderstand
the connectivity between roads or indoor floor transitions.

• FoV Alignment Error: Models struggle to understand the correspondence between cam-
era field-of-view (FoV) regions and their mapping to environmental maps, particularly in
scenarios involving multiple cameras with overlapping coverage areas.

Temporal Reasoning Errors. Our analysis reveals one critical temporal reasoning limitation:

• Time Interval Error: Models misestimate distance, speed, or related quantities, leading
to erroneous time interval estimates. Models demonstrate significant errors in temporal
interval estimation, often making predictions that deviate substantially from actual time
spans, particularly in scenarios involving variable movement speeds or complex temporal
patterns.

Motion Reasoning Errors. We observe one category of motion-related reasoning failure:

• Motion State Error: Models fail to correctly transform motion states from video coordi-
nates to world coordinates, leading to errors in directional and other world motion states.
This coordinate transformation failure affects the prediction of future target motion trajec-
tories.
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Reasoning Mechanism Errors. Our analysis identifies three fundamental issues in the reasoning
process itself:

• Information Bias: Models exhibit systematic preferences and over-reliance on certain
types of information (temporal, spatial, or motion) while neglecting others. This bias leads
to imbalanced reasoning where models may prioritize spatial information while ignoring
temporal constraints, or vice versa.

• Step Jump Error: Models frequently skip crucial intermediate reasoning steps, jumping
directly from observations to conclusions without proper logical progression. This results
in incomplete reasoning chains that lack the necessary intermediate analysis.

• Reasoning Inconsistency Error: Within the same reasoning task, models often generate
contradictory reasoning steps, indicating a lack of coherent internal reasoning processes
and logical consistency.

D.2 DETAILED ANALYSIS

Benchmark-Specific Error Patterns. Our analysis identifies several error categories that are
uniquely characteristic of geo-temporal reasoning scenarios and rarely appear in conventional
spatial-temporal intelligence evaluations. These errors stem from our benchmark’s distinctive fea-
tures: (1) multi-camera networks spanning large geographic areas with 2-3 distinct viewpoint types
(camera views and map perspective), (2) explicit temporal reasoning requirements beyond simple
sequence ordering, and (3) the need to infer unobserved states between fragmented observations.

The most prevalent errors reflect these unique challenges. Topology Error (28.6%) and FoV Align-
ment Error (16.8%) dominate our error distribution, representing failures in understanding com-
plex spatial constraints that are absent in single-scene benchmarks. These include road network
topology (one-way streets, restricted areas), architectural constraints (walls, obstacles), and camera
field-of-view mapping—challenges that only emerge when reasoning across multiple, discontinu-
ous viewpoints. Motion State Error (20.4%) represents another benchmark-specific failure mode,
where models struggle with coordinate system transformations and precise velocity calculations
based on map scale, rather than the simple directional motion understanding required in traditional
benchmarks. Time Interval Error (12.4%) occurs when models fail to understand how temporal
constraints (too long or too short time windows) invalidate certain path predictions—a challenge
that doesn’t exist in implicit temporal reasoning scenarios.

Category Topology FoV Time Int Motion Info Bias Step Jump Reasoning Inc

Overall 97 57 42 69 23 40 11
Percentage 28.6% 16.8% 12.4% 20.4% 6.8% 11.8% 3.2%

By Task Type:
Geo-location 22 6 0 6 12 10 5
Arrival Time-Interval 7 17 12 1 3 4 0
Motion-State 10 11 11 13 5 4 3
Causal Reordering 9 9 0 17 2 7 0
Next Spot Forecasting 16 4 2 12 1 4 2
Trajectory Forecasting 20 6 9 4 0 8 1
Multi-Target Trajectory Forecasting 13 4 8 16 0 3 0

By Scenario:
Outdoor 50 30 20 37 10 23 6
Indoor 46 27 22 32 13 16 5

By Model:
Gemini-2.5-Pro 26 25 20 30 3 1 4
GPT-4o 34 19 14 22 5 4 4
InternVL3-38B 37 13 8 17 15 35 3

Table 7: Detailed error statistics. Statistics of 177 cases, each error type is counted independently,
resulting in a total error count of 339 across all categories.

D.3 DETAILED FOV ALIGNMENT ERROR

To provide a more in-depth analysis of Map-Video Alignment Errors, specifically FoV Alignment
Error, we first distinguish between two forms of Field of View (FoV) defined in GTR-Bench.
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FoV to Map Misalignment. This error type represents a conventional failure where the model
identifies an object in the video but fails to locate its corresponding position on the map. As illus-
trated in Figure 10, the model successfully reasons from the video content that the target enters a
”stairwell” (observed in camera c07). However, it fails to align this visual feature with the map struc-
ture, specifically missing that this stairwell corresponds to the location of the ground-truth camera
c08. Consequently, the model provides an incorrect answer despite correct visual perception.

Camera 07

Camera 03

Context

2

1

2

1
2

2

1

1

Question

Based on the provided [start video] and [end video], infer which camera the target 

passed through between the start point (c07, 12:00:32.760-12:00:40.600) and end point 

(c03, 12:00:48.600-12:00:59.920).

Options: A. c05 B. c02 C. c01 D. c08 GT: D.c08

：The target‘s path is from the main hall on level 1, up the stairs, to level 2. The 

start video (c07) shows the target entering the stairwell on level 1 at 12:00:40. The 

end video (c03) shows her on the stairs arriving at level 2 at 12:00:48. The 8-second 

gap is the time spent on the stairs, where no cameras are located. Therefore, the 

question likely refers to a camera the target passed immediately before the start 

point. On the level 1 map, to reach the stairwell at location 7, the target must have 

come from the main hall. Camera c02 is positioned in the main hall looking west, 

directly covering the path towards the corridor where c07 is. Thus, the target must 

have passed through c02_s field of view just before reaching c07.

：In this case, the model correctly understood from the video that the target entered 

the stairwell, and it also utilized the map to acquire the starting and ending locations 

(i.e., camera c07 in the first-floor hall and camera c03 in the second-floor stairwell). 

However, an error occurred during the process of aligning the "stairwell" from the 

video to the map. The correct alignment should have been at the c08 location, but 

the model erroneously selected c02. This is a typical case of incorrectly locating a 

view item on the map.

Figure 10: FoV to Map Misalignment. The model correctly identifies the semantic location (”stair-
well”) from the concrete video view but fails to map it to the geometric location on the map.

FoV Misinterpretation. This error occurs when the model struggles to interpret the geometric
representations of FoVs on the map, particularly when multiple FoVs overlap. Figure 11 depicts a
scenario where the model fails to understand the spatial relationship between cameras. For example,
when analyzing a trajectory involving overlapping cameras (e.g., moving from c12 through c09
to c14), the model may incorrectly assume disjoint time intervals. This stems from a failure to
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recognize that the FoV of the intermediate camera (c09) spatially overlaps with the destination
camera (c14), leading to logical errors in trajectory or timeline prediction.

Camera 12

Camera 16

Context

2

1

2

2

2

1

1

Question

Based on the provided [start video] (c12, 12:02:14.560-12:02:19.240) and [end video] 

(c16, 12:02:25.840-12:02:32.320), and knowing the target passed through camera c09, 

infer the time period when the target appears at the middle camera.

Options:
GT: C

：The target‘s appearance at the intermediate camera (c09) must occur 

chronologically between the last sighting at the start camera (c12) and the first 

sighting at the end camera (c16). The target is last seen by c12 at 12:02:19.240 and 

first seen by c16 at 12:02:25.840. Therefore, the time window for c09 must fall 

entirely between these two timestamps. Option B, 12:02:24.000-12:02:25.200, is the 

only interval that fits completely within this logical time gap. Options A and C end 

after the target is already seen in c16, and Option D starts before the target has left 

the view of c12.

：In this case, the model needed to predict the time interval for the intermediate 

camera(s) passed. However, the model failed to successfully perform the abstract 

Field-of-View (FOV) alignment and did not correctly handle FOV overlapping. 

Consequently, it was unable to deduce the fact that the FOVs of c09 and c16 

partially overlap, which led to an incorrect time window setting, ultimately resulting 

in the inability to select the correct answer.

1

A. 12:02:21.400-12:02:32.320   B. 12:02:24.000-12:02:25.200

C. 12:02:23.360-12:02:30.840   D. 12:02:17.200-12:02:24.800

Figure 11: FoV Misinterpretation. The model fails to perceive the overlap between the Abstract
FoVs of adjacent cameras on the map, leading to incorrect temporal or spatial reasoning.

In summary, while current MLLMs encounter challenges with both alignment types, the misinter-
pretation of FoVs is a more prevalent and critical issue in geographic reasoning tasks involving
complex map topologies.
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E MORE EXAMPLES

Level 2

Level 1

2

4
3

2

3 4

1

1

Geo-Location

Question: Based on the provided [start video ] and [end 

video ], infer which camera the target passed through between 

the start point (c07, 12:01:28.160-12:01:36.280) and end point

 (c03, 12:01:50.560-12:02:04.800).

1

Map Video

3

A. c13 B. c04 C. c08 D. c11Options:

5 66

5

C07 C08

C03 C12

C09 C16

Arrival Time-Interval

Question: Based on the provided [start video     ] (c07, 

12:01:28.160-12:01:36.280) and [end video.    ] (c03, 

12:01:50.560-12:02:04.800),and knowing the target passed 

through camera c08, infer when the target arrived at the 

intermediate camera.

A. 12:01:35.160-12:01:47.800

B. 12:01:34.110-12:01:40.560

Options:

1

3

C. 12:01:47.900-12:01:48.740

D. 12:01:34.900-12:01:49.200

Motion-State

Question: Based on the provided [start video.    ] (c12, 

12:02:14.560-12:02:19.240) and [end video.     ] (c16, 

12:02:25.840-12:02:32.320),and the intermediate camera c09, 

infer the target's motion state during the intermediate time 

period.

A. The target moved south for 2.1 meters…

B. The target moves northeast at a speed of 1.6 m/s for 

4.4 meters, then moves east at a speed of 1.5 m/s for 1.8 

meters, and finally moves northeast again at a speed of 

1.0 m/s for 1.6 meters.

Options:

4

6

C.  The target quickly moves 6.1 meters to the northeast 

at a speed of 3.9 m/s…

D. …a distance of 1.9 meters…a distance of 0.6 meters.

Causal Reordering

Question: Based on the provided [local map] and 

[videos.              ], analyze the target's activity trajectory. 

Please infer the correct order in which the target passed 

through these cameras.

A. c16 → c09 → c12 B. c09 → c12 → c16

C. c12 → c01 → c16 D. c12 → c09 → c16

Options:

4 5 6

Next Spot Forecasting

Question: Based on the provided [local map] and [video     ], 

which camera from the following list will most likely capture 

the target next? You need to select one option as the answer 

and infer a time range.

1

A. c05 B. c02 C. c06 D. c08Options:

Trajectory Forecasting

Question: Based on the provided [local map] and 

[videos            ], predict the next two cameras that the target 

will likely pass through. You need to select a correct option 

sequence and infer a time range sequence simultaneously.

A. c09 B. c14 C. c13 D. c03Options::

2 3

E. c12

GT: E. c12 12:02:14.560-12:02:19.240

        A. c09 12:02:23.360-12:02:30.840

Multi-Target Trajectory Forecasting

Question: Based on the provided [local map] and 

[videos.           ] showing the movement trajectories of two 

[Target], predict where and when these [Target] person will 

most likely meet.

A. c14 B. c03

C. c09 D. c12

Options:

2 7

GT: B. c03 

12:02:03.480-12:02:04.800

7 C12

GT: D. c08 12:01:35.160-12:01:47.800

Figure 12: Indoor Examples
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C016 C017 C018

C019 C020 C021654

321

Geo-Location
Question: Based on the provided [start 

video ] and [end video ], infer which 

camera the target passed through between 

the start point (c016, 12:00:10.200-

12:00:22.200) and end point (c018, 

12:00:37.755-12:00:42.855).

Map
1

23
4

5
6

c078

c065

c011

c022

Fake Camera Real Camera

A. c021 B. c022 C. c017 D. c078Options:

Arrival Time-Interval
Question: Based on the provided [start 

video     ] (c018, 12:00:37.755-

12:00:42.855) and [end video.    ] (c020, 

12:00:43.905-12:00:50.505),and knowing 

the target passed through camera c019, 

infer when the target arrived at the 

intermediate camera.

A. 12:00:43.279-12:00:43.579

B. 12:00:42.110-12:00:50.560

Options:

3

5

C. 12:00:43.900-12:00:48.740

D. 12:00:40.900-12:00:43.200

1 3

Motion-State
Question: Based on the provided [start 

video.    ] (c016, 12:00:10.200-

12:00:22.200) and [end video.    ] (c018, 

12:00:37.755-12:00:42.855),and the 

intermediate camera c017 infer the 

target's motion state during the 

intermediate time period.

A. The target moved east …
B. the target travels west at a speed of 

10.0 m/s for 11.0 seconds, covering a 

distance of 109.6 meters.

Options:

3

C. …at a speed of 30.0 m/s…

D. …a distance of 20 meters…

1

Causal Reordering
Question: Based on the provided [local 

map] and [videos.              ], analyze the 

target's activity trajectory. Please infer the 

correct order in which the target passed 

through these cameras.

A. c020 → c019 → c021
B. c019 → c021 → c020
C. c020 → c021 → c019
D. c019 → c020 → c021

Options:

4 5 6

Next Spot Forecasting
Question: Based on the provided [map] 

and [video     ], which camera from the 

following list will likely capture the target 

next? You need to select one option as the 

answer and infer a time range.

4

A. c078 B. c020 C. c065D. c016Options:

Trajectory Forecasting
Question: Based on the provided [local 

map] and [videos            ], predict the 

next two cameras that the target will 

likely pass through. You need to select a 

correct option sequence and infer a time 

range sequence simultaneously.

A. c019 B. c078 C. c065
D. c020

Options:

2 3

E. c022

GT: A. c019 12:00:43.279-12:00:43.579        

D. c020 12:00:43.905-12:00:50.505

Video

Multi-Target Trajectory Forecasting

Question: Based on the provided [local map] and [videos   

1111 showing the movement trajectories of two [Target], 

predict where and when these [Target] will most likely 

meet.
A. c021 B. c018 C. c065 D. c078Options：

2 7
7 C019

GT: A. c020 12:00:43.905-12:00:50.505

GT: B. c018 12:00:37.755-12:00:42.855

Figure 13: Outdoor Examples
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Question: Based on the provided [local map] and [camera information], which camera 

from the following list will most likely capture the target next? You need to select one 

option as the answer and infer a time range.

Reasoning:

1. Analyze Current Location and Trajectory: The video from camera c07 shows the 

target (ID 4) entering an indoor lobby area from the right side of the frame and walking 

towards the left. The last frame at 12:00:28.040 shows the target moving towards a 

hallway. By comparing the visual elements in the video (glass doors, open hallway) with 

the map, we can identify the location as the southern entrance of the building. The 

target_s path is from this entrance (covered by c07) moving north-west into the building.

2. Evaluate Potential Next Cameras:

 D. c08: The map shows camera c08 is located in the hallway directly adjacent to 

the lobby where c07 is. Its field of view covers the path the target is taking. This makes it 

the immediate and most probable next camera.

 A. c05: This camera is located in the large hall to the north. To be seen by c05, the 

target must first pass through the area covered by c08.

 B. c02: This camera is outside in the parking lot. The target is inside and moving 

further into the building, away from c02.

 C. c06: This camera is also outside, near the entrance. The target would have likely 

been in its view before entering the building and being captured by c07, not after.

3. Time Estimation: The last known timestamp for the target in c07_s view is 

12:00:28.040. Since the field of view of c08 is contiguous with c07_s along the target_s 

path, the target will enter c08_s view almost immediately. A reasonable estimated time 

range for the capture by c08 would start right after the last sighting, approximately from 

12:00:28 to 12:00:38, allowing a few seconds to traverse the camera_s view.

ST-IoU: 0.87

Options: A. c05 B. c02 C. c06 D. c08 GT: D. c08 12:00:26.600-12:00:37.040

Answer: D. c08 12:00:28-12:00:38

Video C07

1

2

1

2

Map

Figure 14: Correct Example
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Question: Based on the provided [local map] and [camera information], which camera 

from the following list will most likely capture the target next? You need to select one 

option as the answer and infer a time range.

Reasoning:

1. Initial Observation and Target Movement

The provided video frames are from camera c02, which is positioned on the building and 

overlooks the outdoor parking lot. The target (ID: 10) is observed walking from the open 

area of the parking lot towards the building entrance on the west side. The timestamps 

from 12:02:57 to 12:03:14 show the target getting progressively further from the camera 

and moving towards the left of the frame, which corresponds to a north-

westerly direction on the map.

2. Current Position Analysis and Next Camera Prediction

The target's last known position at 12:03:14 is at the edge of c02's field of view, right 

before the building entrance. According to the map, camera c06 is positioned to monitor 

this specific entrance area. Therefore, as the target continues on their path, they will 

immediately enter the field of view of camera c06. Camera c04 is on the far eastern side 

of the parking lot, and the target is walking away from it. Camera c01 is inside the main 

building at the eastern end, which is not along the target's path. Thus, c06 is the only 

logical next camera.

3. Time Estimation

Given the last timestamp of 12:03:14, the target will enter c06's view within a few 

seconds. A time range of 12:03:15 to 12:03:30 is a reasonable estimate for the duration of 

the capture.

ST-IoU: 0

Options: A. c04 B. c06 C. c01 D. c02 GT: A.c04  12:03:09.680-12:03:18.400

Answer: B. c06 12:03:15-12:03:30

Video C02

1

2

1

2

Map

Figure 15: Incorrect Example
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F DETAILED HUMAN ANNOTATION AND EVALUATION PROTOCOL

To ensure the reliability of our human evaluation results, we implemented a rigorous screening and
training process for the personnel involved in data annotation and performance assessment.

F.1 COMPOSITION OF QUESTION ANNOTATORS AND BENCHMARK EVALUATORS

We established strict qualification criteria and organizational protocols to maintain high data quality
and evaluation independence:

• Professional Field: The dataset was constructed by researchers with profound academic
backgrounds in 3D vision.

• Professional Experience: These researchers possess extensive experience in multi-view
geometry, scene understanding, and spatial intelligence.

• Knowledge Requirements: All were required to have a deep understanding of core con-
cepts such as spatial relationships, camera poses, and object motion, and be capable of
complex spatial reasoning.

• Distinction between Annotators and Evaluators: The personnel responsible for question
annotation were a separate group from those who conducted the benchmark evaluation,
ensuring the independence of the evaluation results.

F.2 ANNOTATION GUIDELINES

To maintain high standards of data integrity and annotation quality, we implemented the following
guidelines:

• Multi-reviewer Mechanism: During the dataset construction, each sample generated by
our rules was cross-validated by multiple other independent annotators.

• Dependence on Maps and Camera Videos: We ensured that questions could not be an-
swered solely through the map, camera video, or common sense, but required the synthesis
of information from all provided map and video inputs.

• Clarity and Unambiguity of Context and Questions: We ensured that the content of
the map images and camera videos was clear and that the question text was precise and
unambiguous.

• Uniqueness of Answer: We ensured that there was only one correct answer and that the
distractors were designed to be plausible.

• Spatio-Temporal Span Coverage: All seven question types in the benchmark were re-
quired to have diversity in their temporal and spatial spans to ensure the variety of the
problems across different spatio-temporal dimensions.

• Ethics and Licensing: We ensured that all videos and maps were either fully copyrighted
or used with the author’s consent, and we maintained the same strict standards for personal
privacy information as the reference datasets.

F.3 EVALUATION GUIDELINES

The final human performance score was determined by multiple independent evaluators, and their
average accuracy was taken. This multi-evaluator mechanism effectively reduces the randomness
caused by individual differences, making the evaluation results more statistically significant and
stable.

F.4 CONSISTENCY WITH MODEL CONSTRAINTS

During the evaluation, evaluators had access only to the exact same information as the model input,
namely the map, the camera videos and the question text. They were strictly forbidden from using
any external knowledge or tools for assistance.
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To maximize the evaluators’ ability to utilize visual information, we also designed a flexible and
professional front-end evaluation page, as shown in Figure 16. This interface was built to: (1)
Display Map and Camera Information: Fully present all map and camera information necessary to
answer the question.(2) Enable Interaction: Allow evaluators to zoom in on and draw on the images
from both contexts to mark key elements during their reasoning process.This design ensured that
evaluators could fully leverage the provided visual information for accurate reasoning and decision-
making.

Figure 16: Evaluation System. The interface is designed to facilitate human reasoning by fully
presenting necessary map and camera information. It enables interaction, allowing evaluators to
zoom in and draw on the images to mark key elements during the reasoning process.

We provided human evaluators with unrestricted evaluation time, which differs from the constraints
set for the model evaluation. This was primarily because our goal was to measure the optimal
performance of humans under ideal conditions, thereby more clearly revealing the gap between the
current model’s capabilities and human abilities in complex spatial reasoning.

G ABLATION EXPERIMENT OF MAP CONTEXT

We utilized graphic maps as prompts to maintain spatial consistency across cameras. To validate
the effectiveness of this design in preserving inter-camera spatial relationships within our dataset
construction pipeline, we conducted a ablation study on map context.

G.1 PROMPT DESIGN OF MAP CONTEXT

We elaborate on how our prompt design endows the model with rich spatio-temporal context by
incorporating spatial relationships through two primary mechanisms, as Figure 17 and 18:

• Graphic Map Context: We utilize a rendered map image based on real-world geographi-
cal information from OpenStreetMap. This map precisely annotates the locations, orienta-
tions, and FoV of all candidate cameras. Furthermore, we explicitly included a north-arrow
and a scale bar on the map to provide the model with absolute geographical orientation and
scale references.
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• Textual Map Context: As a supplement and abstraction of the map information, we de-
signed a text-only prompt to describe the spatial relationships between cameras. This ap-
proach translates topological relations and relative positions (e.g., Camera A is located 50
meters northeast of Intersection B, facing southeast) into structured natural language de-
scriptions.

G.2 CONSTRUCTION OF TEXTUAL MAP CONTEXT

We constructed the textual map context using distinct strategies for indoor and outdoor environ-
ments, tailored to their specific spatial characteristics:

• Indoor Scenarios: Given the smaller spatial span and finite number of cameras in indoor
settings, we employed a manual annotation process structured into three hierarchical levels:

1. Region and Connectivity: We divided the environment into distinct functional re-
gions and identified key spatial connection points—such as entrances, exits, and stair-
wells—to define the topology.

2. Camera Geographic Attributes: We described the camera’s location, orientation, and
FoV. The FoV corresponds to the visual representation on the map, specifically the
blue area enclosed by a thin black line originating from the red camera icon.

3. Camera View Attributes: We provided a detailed description of the camera’s actual
field of view, summarizing the visual content observed in the video from camera.

• Outdoor Scenarios: Due to the extensive spatial coverage of outdoor environments, we
adopted an automated approach leveraging geospatial data. Using the latitude and longitude
coordinates of each camera, we queried OpenStreetMap to retrieve the surrounding road
network topology. The resulting textual context integrates information regarding roads,
intersections, and specific camera metadata to reconstruct the outdoor spatial environment.

G.3 RESULTS AND ANALYSIS.

We benchmarked two SOTA models, Gemini-1.5-pro and InternVL-38B, on GTR-Bench. The quan-
titative results are presented in Table 8.

GTR-Outdoor GTR-Indoor
Model Map Type ATI MS GL CR NCF TF MTTF ATI MS GL CR NCF TF MTTF
Gemini-Pro image 60.00 46.67 33.33 56.67 19.13 13.16 19.18 63.33 13.33 26.67 70.00 25.11 28.09 14.37
Gemini-Pro text 43.33 56.67 60.00 66.67 6.83 0.00 1.11 13.33 43.33 73.33 83.33 27.76 19.76 21.42
InternVL-38B image 40.00 73.33 30.00 53.33 8.27 8.20 20.58 50.00 56.67 26.67 37.93 11.10 4.37 10.24
InternVL-38B text 38.33 33.33 76.67 36.36 3.06 1.08 3.99 50.00 33.33 56.67 73.33 4.36 0.55 9.20

Table 8: Ablation Study of Map Context. The table compares the performance of models using
Image-based vs. Text-based map contexts across Indoor and Outdoor subsets.

The results clearly indicate that there is no single best method for encoding spatial relationships.
The choice between visual (image) and textual context significantly impacts performance, and the
optimal choice varies by task and environment: (1) Text-based prompts tend to excel in tasks requir-
ing abstract or logical spatial reasoning. For instance, both models perform significantly better on
the GL and CR tasks with textual context, particularly in the indoor setting. This suggests that for
tasks involving topological understanding and logical inference, a structured textual description is
more effectively utilized by the models. (2) Image-based prompts demonstrate a strong advantage
in tasks that rely on understanding physical motion and trajectories. In GTR-Outdoor, both models
show improved performance on motion-related tasks such as MS , TF , and MTTF when provided
with a graphic map.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Primary Areas & Key Connection:

The primary areas 

- a large Warehouse occupying the northern portion of the level, extending approximately 60 meters east-west 

and 30 meters north-south; 

- a Lobby situated in the southwest quadrant, measuring roughly 15 meters by 20 meters; 

- an outdoor Parking Lot to the southeast, spanning approximately 40 meters east-west and 25 meters north-

south. 

Key connection points 

- a door at the south end of the Warehouse’s west wall (approximately 10 meters from the southwest corner) 

that leads directly into the Left Stairwell; immediately east of this door, an external entrance exits to the 

Parking Lot; 

- the south end of the Left Stairwell connects to the Lobby via a doorway positioned about 5 meters west of the 

Lobby’s southeast corner; 

- the Lobby’s eastern entrance opens directly into the Parking Lot, located approximately 15 meters east of the 

stairwell access point; 

- the southeast corner of the Warehouse connects to the Right Stairwell via a doorway, which also links to the 

northeast corner of the Parking Lot through an additional entrance roughly 10 meters east of the stairwell base. 

Camera Location and Abstract View:

- Camera 1 is mounted on the east wall of the Warehouse, near its southeast corner, approximately 5 meters 

north of the door to the Right Stairwell. Its field of view (FOV), depicted as a blue sector, extends 

northwestward across the central aisle of the Warehouse, covering a span of roughly 35 meters and capturing 

activity along the southern storage racks. 

- Camera 2 is positioned at the transition point between the Lobby’s eastern exit and the Parking Lot, facing 

southeast. Its FOV spans approximately 25 meters diagonally across the parking area, encompassing the 

entrance zone and the first two rows of parking spaces. 

- Camera 4 is located at the northeast corner of the Parking Lot, near the entrance connecting to the Right 

Stairwell, oriented southwestward. Its FOV covers the entire width of the lot’s northern section, extending 

about 30 meters southwest to include three parked vehicles and the adjacent walkway. 

- …..

Camera Concrete FoV :

- Camera 1 FOV: This camera (ID: 1) overlooks a wide central aisle in a large warehouse. The view spans the 

main corridor running north-south, flanked by tall storage racks on both east and west sides. Stacks of 

palletized boxes occupy the floor space along the aisle, with workstations or staging areas visible at the far end 

(north). No named roads or external areas are visible — it is entirely an indoor industrial storage space.

- Camera 2 FOV: Camera ID 2 covers a multi-level outdoor parking lot adjacent to a modern building with an 

open garage entrance marked “3”. The view spans the central paved walkway between parked vehicles, 

extending toward a street lined with orange traffic cones and bordered by trees and a second building. No 

named roads are visible, but the scene includes pedestrian pathways within the parking area and access to an 

underground or covered garage structure. Directionally, the camera faces southeast, capturing movement from 

the garage exit toward the outer lot and roadside.

- Camera 4 FOV: Camera 4 covers a covered outdoor parking area adjacent to a building entrance. It captures a 

row of parked vehicles (white SUV, black SUV, gray sedan) aligned along marked parking spaces. The view 

includes a pedestrian walkway in front of the building’s glass facade and extends toward an open entryway or 

driveway on the left, where people are entering/exiting. No named roads are visible; the scene is confined to a 

private or semi-private parking/entry zone of a commercial or institutional building.

- ….

Graphic Map Context

Textual Map Context

Figure 17: Graphic Map vs Textual Map (Indoor)
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Map layout:

- Asbury Road: runs Southeast-Northwest, intersects with intersects with University Avenue.

- Ashton Place: runs Southeast-Northwest, intersects with intersects with Decorah Street.

- Decorah Street: runs West-East, intersects with intersects with Ashton Place, Irving Street.

- Irving Street: runs Southeast-Northwest, intersects with intersects with Decorah Street, University Avenue.

- O'Hagen Street: runs North-South, intersects with intersects with University Avenue.

- University Avenue: runs West-East, intersects with intersects with Asbury Road, Irving Street, O'Hagen Street.

Intersection relationships:

- Asbury Road & University Avenue:

- 118 meters north from intersection of University Avenue & O'Hagen Street

- 257 meters north from intersection of University Avenue & Irving Street

- 260 meters northeast from intersection of Ashton Place & Decorah Street

- 199 meters northeast from intersection of Decorah Street & Irving Street

- University Avenue & O'Hagen Street:

- 118 meters south from intersection of Asbury Road & University Avenue

- 138 meters north from intersection of University Avenue & Irving Street

- 170 meters northeast from intersection of Ashton Place & Decorah Street

- 120 meters northeast from intersection of Decorah Street & Irving Street

- University Avenue & Irving Street:

- 257 meters south from intersection of Asbury Road & University Avenue

- 138 meters south from intersection of University Avenue & O'Hagen Street

- 142 meters east from intersection of Ashton Place & Decorah Street

- 146 meters southeast from intersection of Decorah Street & Irving Street

- Ashton Place & Decorah Street:

- 260 meters southwest from intersection of Asbury Road & University Avenue

- 170 meters southwest from intersection of University Avenue & O'Hagen Street

- 142 meters west from intersection of University Avenue & Irving Street

- 62 meters south from intersection of Decorah Street & Irving Street

- Decorah Street & Irving Street:

- 199 meters southwest from intersection of Asbury Road & University Avenue

- 120 meters southwest from intersection of University Avenue & O'Hagen Street

- 146 meters northwest from intersection of University Avenue & Irving Street

- 62 meters north from intersection of Ashton Place & Decorah Street

Camera details:

- c035:

- Location: 17 meters northeast from intersection of Asbury Road & University Avenue

- Orientation: facing southeast

- Field of View: Covering Main Street westward range approximately 150 meters, capturing traffic flow and 

adjacent commercial properties including Finley-Hartig Homecare. The view extends from the grassy median 

barrier to the far side of the road, encompassing multiple lanes and parked vehicles.

- c039:

- Location: 26 meters east from intersection of University Avenue & Irving Street

- Orientation: facing west

- Field of View: 

- c091:

- Location: 26 meters east from intersection of University Avenue & Irving Street

- Orientation: facing southwest

- Field of View: covering Main Street westward range approximately 50 meters, with visibility extending to 

adjacent parking lots and cross-street traffic signals.

Graphic Map Context

Textual Map Context

Figure 18: Graphic Map vs Textual Map (Outdoor)
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