
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CodeUpdateArena: BENCHMARKING
KNOWLEDGE EDITING ON API UPDATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly being used to synthesize and
reason about source code. The libraries and API functions they invoke are continu-
ously evolving, with functionality being added or changing. Yet, no prior work has
studied how an LLM’s knowledge about code API functions can be updated. To fill
this gap, we present CodeUpdateArena, a benchmark for knowledge editing in the
code domain. An instance in our benchmark consists of a synthetic API function
update paired with a program synthesis example that uses the updated functionality;
our goal is to update an LLM to be able to solve this program synthesis example
without providing documentation of the update at inference time. Compared to
knowledge editing for facts, success here is more challenging: a code LLM must
reason about the semantics of the modified function rather than just reproduce its
syntax. Our dataset is constructed by first prompting GPT-4 to generate atomic and
executable function updates. Then, for each update, we generate program synthesis
examples whose code solutions are prone to use the update. Our benchmark covers
updates of various types to 54 functions from seven diverse Python packages, with
a total of 670 program synthesis examples. Our experiments show that fine-tuning
open-source code LLMs (i.e., DeepSeek, CodeLlama) on documentation of a new
update does not allow them to incorporate changes for problem-solving. How-
ever, prepending the same information does help, establishing that the information
is present, and careful fine-tuning on examples demonstrating the update shows
improvement, paving the way for better knowledge editing techniques for code.

[Scenario] You are building a software for an online auction site…

[Problem] Create a function that returns the indices of the bidders in the
order of their bids, with the highest bidder first…

[Solution]
def auction_bid_ordering(bids: List[int]) -> List[int]:
[...]
np.argsort(bids, reverse=True)
[...]

[Unit tests]: test case 1, test case 2, …

[Update] numpy.argsort(a, axis=-1, kind=None, order=None, reverse=False)	

[Description]
Adding a new argument 'reverse' which reverses the sorted indices if set to True.",

[Docstring]
A new parameter 'reverse' (default False) for optionally reversing the order. If set to True…

CodeUpdate: Synthetic API updates

Arena: Program synthesis problems using updated API

[Original API] numpy.argsort(a, axis=-1, kind=None, order=None)

1. Update LLM parameters to edit their  
 knowledge about the API usage.

...

Pass rate Specificity
Scores

editing

MBase LLM Edited LLM M(f←u)

add-argument

2. Evaluate whether edited LLMs can apply the 
 updated API on program synthesis problems.

Figure 1: CodeUpdateArena overview. We generate synthetic API updates, and then evaluate whether
an edited model can successfully apply the updated API on a targeted program synthesis instance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

Large language models (LLMs) have demonstrated strong abilities to synthesize code to solve
problems (Chen et al., 2021; Li et al., 2023; DeepSeek-AI et al., 2024; Guo et al., 2024a). This
capability enables them to use external libraries: they can invoke standard libraries for data science-
related tasks (Lai et al., 2023), program SMT solvers (Ye et al., 2023), or use external modules
for tasks like computer vision (Gupta & Kembhavi, 2023). However, such APIs are not static and
adherence to older APIs can cause failures. For example, in a live demo,1 GPT-4 failed to correctly
implement a Discord bot due to outdated API knowledge. To be maximally useful, LLMs for code
generation need to stay in sync with API updates, even those that occur after pre-training.

A separate line of research studies knowledge editing for LLMs on simple facts. Typical use-cases
here are teaching LLMs about new entities (Onoe et al., 2023), updating roles of existing entities like
who the British prime minister is now (De Cao et al., 2021; Mitchell et al., 2022), and other such
temporally-sensitive knowledge (Zhang & Choi, 2021). A number of techniques have been presented
for these settings to efficiently update the parameters of LLMs, such as with a single gradient update
(Mitchell et al., 2022; Meng et al., 2023) or with a small number of updates (De Cao et al., 2021;
Meng et al., 2022; Padmanabhan et al., 2023; Akyürek et al., 2024; Chen et al., 2023).

These studies suggest a natural parallel in the code setting: can we efficiently update a pre-trained
model’s knowledge of an API? In this work, we construct a benchmark to evaluate this capability.
Our benchmark instances, shown in Figure 1, consist of a problem setting defined by a synthetic API
update, such as an additional boolean flag in a function like numpy.argsort. We choose synthetic
updates, as information about any real API function update will likely be used as a pre-training corpus
by the next generation of pre-trained models. Then, for each function update, we have a number of
program synthesis problems requiring the use of that update. Although there are solutions that do not
use the update, the most parsimonious solutions do use the API functionality in question, and models
are prompted to do so.

Our evaluation assesses whether LLMs can, after being updated on the synthetic API function update
(docstring, example usage, etc.), solve these program synthesis examples using the given API function
without being provided the update at inference time.

Our final benchmark, CodeUpdateArena, contains 670 program synthesis tasks, covering 54 functions
from 7 Python packages. Our benchmark is synthetically constructed by a carefully designed data
generation pipeline driven by GPT-4, enabling it to be scaled or updated with new instances in the
future. We manually filter our generated API updates and conduct a number of additional intrinsic
evaluations of dataset quality to establish the correctness of dataset instances.

Our experimental evaluation focuses on how existing small-scale LLMs (e.g., CodeLlama (Rozière
et al., 2023)) perform at this update setting when combined with existing knowledge updating
techniques. GPT-4 and Claude-3.5 are able to solve program synthesis examples when prompted
with the API update in context, with Claude-3.5 outperforming GPT-4 on its own generated data. We
then present two intuitive baselines for how practitioners would utilize API update information. The
first method, fine-tuning models on a docstring explaining the update does not improve performance.
However, fine-tuning on examples of the update being used does lead to improvement, and even
outperforms having the API update in context. Through our ablation study, we found that the mix of
training examples and learning rate are important for successful fine-tuning, but there is a tradeoff
between efficacy and specificity of the update (impact on unrelated settings). We believe our dataset
can provide a testbed for developing better methods for code knowledge editing in the future. Our
code is released at ©.

2 BACKGROUND AND RELATED WORK

Knowledge editing Knowledge editing involves updating a pre-trained model’s parameters to
contain additional knowledge that was not present in its pre-training corpus. Suppose we have a
model M and let (c, u) denote the additional knowledge u that should be returned in context c.

1https://youtu.be/outcGtbnMuQ?t=789

2

https://github.com/leo-liuzy/CodeUpdateArena
https://youtu.be/outcGtbnMuQ?t=789

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Past work has focused on finding a modelM′ such thatM′ ≈M andM′(c) returns u with high
probability. For instance, suppose c = “the prime minister of the UK is” and u = “Rishi Sunak”; we
want to update the model’s knowledge about the UK’s prime minister with as little change to other
facts (e.g. Eiffel tower is in Rome) as possible.

Prior work quantifies model editing success by measuring whetherM′ can return u when prompted
with c. A second goal is to preserve the originalM as closely as possible, measured by ensuring that
the model’s predictions on irrelevant contexts are not changed. The techniques for knowledge editing
typically involve gradient updates (De Cao et al., 2021), including meta-learned updates (Mitchell
et al., 2022), localized updates leveraging interpretability methods (Meng et al., 2022), and updates
on a collection of related examples (Padmanabhan et al., 2023; Akyürek et al., 2024).

A third goal involves knowledge propagation (Onoe et al., 2023; Padmanabhan et al., 2023; Cohen
et al., 2024; Powell et al., 2024; Zhong et al., 2023), where an LLM must be able to reason about the
injected knowledge in contexts that may seem unrelated on the surface. However, current literature
has many negative results for this setting (Cohen et al., 2024; Hua et al., 2024). Our benchmark will
allow us to evaluate the state of affairs in the code setting, and whether functional competence around
code updates is more easily obtained than functional competence around textual knowledge.

Updates in Source Code Despite a large body of work on knowledge editing (Wang et al., 2023),
past work in this space has not explored the ramifications for code language models. Rather than
just reproduce an update like in knowledge editing settings (e.g. be able to generate Python 3.12
has lifted restrictions on the usage of f-strings), a user would likely expect a code LLM to be able to
generate, debug, or otherwise reason about code containing these updates.

To the best of our knowledge, existing benchmarks mainly focus on general coding capabilities
of LLMs rather than their capability in dealing with API updates or historical versions existent in
pretraining corpus. Although some recent research has also explored providing documentations of
functions (or tools) (Zhou et al., 2022; Su et al., 2024; Zhang et al., 2023b; Hsieh et al., 2023) and
code snippets (Su et al., 2024; Zhang et al., 2023a; Phan et al., 2024; Shrivastava et al., 2022) to
LLMs in a retrieval-augmented framework (Chen et al., 2017; Guu et al., 2020; Lewis et al., 2020),
our main focus is on enabling LLMs to internalize this knowledge in an update (in-weight) and
propagate it during program synthesis as opposed to using it in-context. Therefore, our work also
relates to more general program synthesis using LLMs (Austin et al., 2021), especially those on
developing benchmarks (Chen et al., 2021; Liu et al., 2023; 2024; Gu et al., 2024; Jimenez et al.,
2024; Ding et al., 2023; Du et al., 2023; Guo et al., 2024b; Xie et al., 2024; Lai et al., 2023).

Defining an update taxonomy The goal of this work is to assess models’ abilities to be updated
with realistic changes to functions in APIs. Most of the time when new functionality is introduced,
the update extends existing methods in an atomic way. For example, a new sorting algorithm is
supported for argument kind in numpy.argsort. To systematically capture different types of updates,
we create a taxonomy for function updates, capturing what operation (add/modify/delete) is used to
update what component (function/argument/output) in what way.

3 TASK: CodeUpdateArena

We define f ← u to be the update made to an existing function f when providing it with new
semantics u. Our task involves understanding whether a pretrained code language modelM can be
updated with f ← u. We assume that some kind of parametric update is made to yield a new model
M(f←u); this can be done via various fine-tuning methods that have been proposed for knowledge
editing. We will describe exactly how u is conveyed to the language model in Section 6.1; here, we
focus on what capabilities we want the updated modelM(f←u) to exhibit.

To evaluate M(f←u), we provide a set of program synthesis examples P(f←u). Each program
synthesis example consists of a problem scenario si, a problem specification pi, and a set of T unit
test cases T (f←u)

i = {(ti,1, ai,1), (ti,2, ai,2), · · · (ti,T , ai,T)}.

P(f←u) :=
{(

si, pi, T (f←u)
i

)}T

i=1

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Each example scenario and specification is related to the updated semantics u. Let c̃i ←
M(f←u)(si, pi) denote the result of predicting a code solution to problem i for update u. We
want to evaluateM(f←u) for three broad capabilities: (1) edit success: ∀j, c̃i(ti,j) = aj (the update
passes all test cases); (2) use of f : c̃i contains a call to the updated function f ; (3) specificity: the
update minimally changes the language model. See examples in Figure A.1.

Measuring whether samples from a code LLM pass test cases is typically done with pass@k (Chen
et al., 2021). Drawing k samples from an LLM, what is the probability that one of those samples
passes the test cases? This can be computed analytically without bias by drawing n > k samples,
observing what number c of those samples pass the test cases, and using the formula from Chen et al.
(2021) (reproduced in Appendix D). In this work, we set n = 5 and k ∈ {1, 2, 5}.

UPass@k Our main evaluation metric captures both edit success and use of f . We define UPass@k
as the standard pass@k except that it only counts solutions that meaningfully use the updated function
as “correct”.

We run a solution against test cases with different function implementations at runtime:

a) when executing with the updated function in the environment, the solution must pass all tests.
b) when executing with the old function in the environment, the solution must fail some tests.

Details of how to do this execution are described in Appendix D. The first check is the standard one
used in pass@k. This second check ensures that the new functionality of f is leveraged in a nontrivial
way. Detecting a call to f is insufficient; if, for example, the update provides a new argument, we
want the model to use that new argument rather than use f in its pre-update form.

Our program synthesis examples are designed to be naturally suited to the updated function f ← u.
It is, of course, possible for a code LLM to produce a solution that passes the tests but sidesteps the
usage of f altogether; however, in Section 6, we will see that prompted GPT-4 frequently does use
the update in successful solutions.

SPass@k captures how well the update is specific in that model’s other capabilities are not affected
(specificity) before (M) and after (M(f←u)) injecting each update. We discuss details in Section 6.1.

4 Update AND Arena GENERATION

We generate our data by prompting GPT-4 (Achiam et al., 2023) to instantiate our proposed task
CodeUpdateArena, following recent work on generating synthetic datasets for complex tasks with
LLMs (Sprague et al., 2024; Lee et al., 2024; Tang et al., 2024; Yehudai et al., 2024; Oh et al.,
2024; Zhao et al., 2024). Each data instance requires an update semantics u and program synthesis
examples P(f←u) to evaluate the integration of the updates. We first generate the update semantics
(described in Section 4.1) and generate program synthesis examples (Section 4.2). The output from
each generation step is validated through manual inspection and heuristics. Figure 2 outlines our
generation process.

4.1 Update (NEW API FUNCTION) GENERATION

Step 1: Generate update specification u Given an update type (e.g., add new argument) and a
function f (e.g., numpy.argsort), we generate an update u consisting of four pieces:

• a description of the update: e.g., adding a new boolean argument ‘reverse’, which controls
whether the sorting is descending or ascending.

• the new function signature: e.g., numpy.argsort(..., reverse=False)

• a docstring describing expected new behavior
• the rationale behind this update

See Appendix B.5 for the details of the prompt. Notably, we generate the update providing the model
only the function path and the function’s docstring, obtained from the importlib library. See more
details in Appendix B.1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Implementation

Implementation

 For each test:

Update Generation

Arena Generation

Step 1: Specific Update Generation

DocString: …a new argument `reverse` is added… If
True, sort in descending order…along `axis`… If False,…

numpy.argsort(a, axis=-1, kind=None, order=None, reverse=False)

Description: Adding a new argument 'reverse' which
reverses the sorted indices if set to True.",

Based on [API function], generate an update
for [Update type] …

Step 3: Update Implementation Generation

def argsort(a, ..., reverse=False):
 if reverse:
 return old_argsort(-a,...)
 else:
 return old_argsort(a,...)

Given: [DocString, Description, Unit Tests]
Now generate an implementation for [Signature]

API function: numpy.argsort: Sort an array […]  
Update type: add-argument: Add a new argument to the function

Unit Test 1
def test_reverse_true():
 array = np.random.rand(5)
 result = np.argsort(array,
 reverse=True)
 # @ANSWER@
 # @ASSERT@
Unit Test 2
def test_reverse_true():
...

- # @ANSWER@
+ expected_result = old_argsort(-array)

- # @ASSERT@
+ assert np.equal(result, expected_result)

Unit Test 1
def test_reverse_true():
 array = np.random.rand(5)
 result = np.argsort(array,
 reverse=True)
 expected_result = old_argsort(-array)
 assert np.equal(result, expected_result)

Step 1: Problem Specification Generation
Based on this function and [Rationale], generate a
problem setting and specification requiring it…

Scenario: You are building a software for an online
auction site…

Problem: Create a function that returns the indices of
the bidders in the order of their bids, with the highest
bidder first…

Step 3: Reference Solution Generation

def auction_bid_ordering(bids: List[int]) -> List[int]:
[...]
bids_big_to_small = np.argsort(bids, reverse=True)
[...]

Rationale: …avoid additional operation…less error-
prone…better readability…

Given: [Scenario, Unit Tests]
Now generate an solution for [Problem]

Now generate code to produce the
expected answer

Given: [DocString, Signature, Description]
Generate unit tests… use argsort by old_argsort …

Now generate an assert statement…

Final test:

Step 2: Unit test generation (shared)

Generates:

Func Signature

Generates:

Generates:

Execute against tests,
keep if passes 70%+

Execute against tests,
keep if passes 60%+

Unit Test 1

...

Unit Test 10

Unit Test 1

...

Unit Test 10

Specific Update

Specific Update:
[Func Signature] 
[Description]  
[DocString] 
[New implementation]

[Rationale]

Arena (Program
Synthesis):
[Scenario] 
[Problem] 
[Implementation] 
[Unit Tests]…

Figure 2: Overview of CodeUpdateArena generation pipeline. We first generate a spec for an update,
unit tests for an update, and then the update’s implementation. To generate program synthesis
examples, we take an update, generate a problem specification, tests, and then a reference solution.

Step 2: Generate a suite of unit tests Once the description of the update is available, we create a
set of unit tests to verify the correctness of the updated function f ← u.

To make the tests comprehensive, we ask GPT-4 to generate 10 unit test functions, testing edge cases
(e.g., empty input) and interaction with existing arguments (e.g. reverse=True and axis=1).

See Appendix B.5 for the details of the prompt. We first generate unit test “skeletons”, unit test
function with initialization of the input. Fig. 2 shows an example. Each skeleton takes the format of a
unit test function with two placeholders — @ANSWER@ for answer and @ASSERT@ for assertion. Given
a unit test skeleton, GPT-4 generates the answer and assertion statement(s). The details of answer
and assertion generation can be found in Appendix B.2.

Step 3: Generate an updated function f ← u We now prompt GPT4 to generate the source code
for the updated function f ← u given the function f and update specification u. We prompt using
the original function implementation (e.g. original argsort) to implement the new version. This
typically involves an implementation that wraps the original version of the function; for instance,
if a new boolean flag is added, call the function normally in one case and otherwise call it with a
transformed input or output.

We validate the generated function with unit tests from the previous step. Specifically, we accept
the updated function if (1) it passes 70% of unit tests and (2) it passes more unit tests than the
original implementation.2 To improve the coverage, we sample up to three implementations if earlier
implementation does not satisfy two criteria above. After this process, on average, around 41% of
update specifications are paired with an updated function implementation. The rest are discarded.

Step 4: Filtering and deduplication Lastly, to verify the quality of generated data, the authors
of this paper manually examine the update specifications and filter duplicates and trivial update
specifications (e.g., change the return type from list to tuple). This process removes roughly
53% of examples on average, and the filtering percentage differs per package. We also filter update
specifications for which we could not generate at least 3 valid program synthesis examples (37% of
update specifications), as described in the next section.

2When a small number of unit tests are failed, they are often incorrect unit tests.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Dataset size of CodeUpdateArena over seven python packages.

Total # of unique functions Total # updates Total # PS examples Total # unit tests in PS

54 161 670 6.3

Table 2: The average number of tokens in generated update specs and program synthesis examples.

Update: lengths in tokens Program synthesis: lengths in tokens
description docstring function impl scenario problem specification solution impl

20.9 129.0 164.8 65.1 73.6 174.1

4.2 Arena (PROGRAM SYNTHESIS EXAMPLES) GENERATION

Having generated update semantics u and the updated function implementation f ← u, we now gen-
erate program synthesis (PS) examples; see bottom half of Figure 2 and more details in Appendix B.6.

Step 1: Problem specification Given the update rationale generated as a part of update specification
u, GPT4 generates: (1) a scenario si that a problem is situated in; (2) the problem specification pi
that a solution function is mean to fulfill; and (3) the solution’s function signature, according to the
problem specification. See an example at Appendix A.2.

Step 2: Unit tests We then generate a set of unit tests meant to test that the solution to the program
synthesis example is correct. Note that these do not necessarily depend on the update, but only on the
specification of the problem from Step 1; they do not test whether the function is used.

We allow GPT-4 to include updated function in its generation, in contrast with update generation,
where GPT-4 could only call the old function through old_[function name]. Other than the
difference above, the generation process is identical to Step 2 in update generation.

Step 3: Reference Solution The prompt instructs GPT-4 to solve the problem by using the new
function as part of its solution. This helps to ensure that there exists a solution that uses the updated
function. We define a threshold δ = 0.6 of a fraction of tests that the implementation must pass
in order to be included in the benchmark. We found this quality bar to be high enough given the
presence of bad tests, which we discard next.

Step 4: Filtering and Deduplication Finally, we implement several filters of low-quality examples.
First, we discard unit tests that generated solution doesn’t pass, as well as unit tests checking for
exceptions (try/catch behavior). Our inspection of these cases showed that failed unit tests are
almost invariably incorrect while the generated reference solutions are correct. Second, for each
update, we remove program synthesis cases for which reference solutions are too similar, to avoid
GPT-4 generating essentially similar solutions. Example of duplicate reference function in Figure 9.
See more detailed description at Appendix B.3

Step 5: Literalize answers in unit tests During generation, many unit tests initially rely on calling
updated APIs themselves to produce the correct answer to the test programmatically. However, this
causes unintended failures in the unit tests when running the old API updates in the environment,
leading to false positives for UPass@k even when the synthesis code does not use the new function. We
“literalize” the unit tests to remove these usages of the API; we provide more details in Appendix B.4.

5 CHARACTERIZING THE DATASET

Table 1 gives the statistics of our updates (161) and Table 2 gives the statistics of the final arena
program synthesis examples (670). Each update features at least three program synthesis examples.
Figure 7 in the Appendix shows the distribution of how many program synthesis examples are
included per update. We give further statistics about the diversity of function updates in the Appendix:
Figures 5 and 6 and Table 8 to show the diversity of packages and update types that our function
updates reflect. Finally, Figure 8 shows the average edit distances between solutions to our program

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: GPT-4’s pass@5 score on our benchmark and the number of instances per package

Package itertools math numpy pandas re sympy torch Avg.

pass@5 75.6 89.0 85.8 87.1 75.8 91.7 86.8 85.1
count 45 182 141 93 91 12 106 −

synthesis examples. Despite using the same prompt, we see that the sampled solutions to different
examples differ substantially. A full example from our dataset can be found in Appendix A.2.

Solvability We also demonstrate that our program synthesis examples are solvable: do the problem
scenario and specification provide enough detail to actually synthesize the correct code? To test this,
we run an experiment prepending the update docstring to GPT-4’s context and evaluating pass@k
without checking for whether the update was correctly used. As shown in Table 3, GPT-4 achieves
pass@5 of 85.1; this means, in most scenarios, GPT-4 is able to provide a correct solution to the
program synthesis examples within 5 trials. The performance is reasonably high across all packages
in the benchmark.

Human Inspection We conducted manual inspection on predicted solution that GPT-4 fails in
Table 3, and categorized sources of error. See details in Appendix C.2. We found errors mostly come
from “Wrong Solution” and “Incomplete Solution”, meaning failure to handle the edge cases of
the problem statement, real mistakes due to misinterpretation of the problem statement, etc. These
errors can be avoided by using stronger language models, as we will demonstrate in Section 6.2. We
observed relatively few cases of incorrect test cases or bad specifications, indicating that our dataset
is of sufficient quality to test knowledge editing methods. We also verify the quality of our generated
data by measuring the unit test coverage on our reference solution in Appendix C.3.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTING

Base LLMs We tested two proprietary models for our prepending experiment: GPT-4 (gpt-4-0613)
(Achiam et al., 2023) and Claude-3.5 (claude-3-5-sonnet-20240620) (Anthropic, 2024). For fine-
tuning experiments, we consider three open-source code LLMs that are instruction-tuned: CodeLlama
(7B-sized; Rozière et al. (2023)), DS-Coder-v1 (6.7B), and DS-Coder-v1.5 (7B; Guo et al. (2024a)).

Evaluation Scenario We evaluate approaches in the single-edit scenario, where we inject one
update at a time about a single API. For measuring efficacy (UPass), we consider whether the
predicted solution passes all the unit tests with the updated API but fails to do so with the old API
(see Section 3 and Appendix D). To measure specificity (SPass), we measure the change in model
performance on a random sample of 82 HumanEval (Chen et al., 2021) instances across 25 random
single edits.

Knowledge Editing Approaches

• Prepend In this setting, we simply prepend the function update’s docstring in-context at inference
time (see Prompt E.3). This represents a retrieval-augmented (RAG) setting (Su et al., 2024; Zhou
et al., 2022), which leads to higher inference cost and does not represent model updates. This
is not considered a knowledge editing approach but establishes the performance of an effective
alternative method (Onoe et al., 2023; Padmanabhan et al., 2023).

• Fine-tune on update information: FT (U) In this setting, we conduct continued pretraining
on the docstring describing the new behavior (Gururangan et al., 2020). This setting captures the
scenario where the package designer provides a release note about the updated API function while
no examples of the function being used are available.

• Fine-tune on program synthesis examples: FT (PS) In this setting, we conduct supervised
finetuning on the program synthesis examples, informing LLM how the new functions should be
used. Such program synthesis examples can be collected from the API documentation, cutting-
edge repositories, or generated to update code LLMs. To implement this, we select Nu examples

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Knowledge editing results on CodeUpdateArena. ∗: comparing against the base model, the
gap is significant according to a paired bootstrap test with p < 0.05.

UPass (Efficacy) ↑ SPass (Specificity) ↑ Pass with updated API ↑
Base Model Approach @1 (∆) @5 (∆) @1 (∆) @5 (∆) @1 (∆) @5 (∆)

GPT-4 Base Model 2.7 5.7 – – 54.1 74.5
Prepend 34.1∗

+31.4 57.0∗
+51.3 – – 63.9∗

+9.7 83.0∗
+8.5

Claude-3.5 Base Model 2.9 3.6 – – 51.8 61.0
Prepend 58.7∗

+55.9 71.9∗
+68.4 – – 68.4∗

+16.6 77.2∗
+16.1

CODELLAMA

Base Model 4.4 7.6 39.8 50.0 28.4 39.4
Prepend 6.7∗

+2.4 10.6∗
+3.0 – – 32.0∗

+3.6 44.6∗
+5.2

FT (U) 4.3 −0.1 7.3 −0.3 28.8∗
−10.9 45.9∗

−4.1 28.0 −0.4 40.9 +1.5

FT (PS) 22.9∗
+18.6 37.6∗

+30.0 17.0∗
−22.8 37.1∗

−12.9 28.6 +0.1 45.7∗
+6.3

DS-CODER-V1

Base Model 2.9 5.2 49.3 79.3 30.3 46.6
Prepend 10.3∗

+7.5 19.6∗
+14.3 – – 35.1∗

+4.8 53.4∗
+6.9

FT (U) 3.1 +0.3 6.1 +0.9 40.0∗
−9.2 74.0∗

−5.2 33.5∗
+3.2 51.6∗

+5.1

FT (PS) 27.7∗
+24.8 44.0∗

+38.8 52.5∗
+3.3 78.4 −0.8 38.3∗

+7.9 58.7∗
+12.1

DS-CODER-V1.5

Base Model 3.2 6.4 67.1 79.3 46.8 64.3
Prepend 11.8∗

+8.6 22.1∗
+15.7 – – 50.9∗

+4.1 70.7∗
+6.4

FT (U) 3.6 +0.4 7.0 +0.6 56.4∗
−10.7 77.3∗

−2.0 47.0 +0.2 65.4 +1.0

FT (PS) 29.4∗
+26.2 47.2∗

+40.7 37.3∗
−29.8 61.2∗

−18.0 38.7∗
−8.1 61.3 −3.0

demonstrating the target update and repeat them c times, combined with Nr examples from r
random updates in the rest of our dataset. We found adding such random examples improves the
performance, potentially because it helps the model learn the update style and retain information
about existing functions. In this work, Nu is fixed to be 2 because many updates only have 3
examples; we adopt a cross-validation scheme for evaluation. See more description on evaluation
in Appendix E.3. We provide detailed ablation for our design choices in Section 6.3.

Training Details We use LoRA for all finetuning experiments (Hu et al., 2022). We choose our
learning rate of 1e-3 from 1e-8 to 1e-2 on a subset of our data to balance UPass and SPass. See more
details for experiments configuration and prompt for training and testing in Appendix E.

Non-applicability of existing knowledge editing methods Although a number of methods for
knowledge editing have been proposed, not all of them are applicable to our setting. A line of methods
including ROME, MEMIT, and REMEDI (Meng et al., 2022; 2023; Hernandez et al., 2023) assume
the injected data follows a strict knowledge triplet format of (subject, relation, object);
this triplet structure is required for localization. Applying those methods to CodeUpdateArena is
not straightforward, as code entities do not exhibit these knowledge graph-like relations. Other
methods designed for similar settings do not assume this structure. However, even these more flexible
approaches like MEND (Mitchell et al., 2022) and others (Hartvigsen et al., 2023; Huang et al.,
2023) are optimized for models regurgitating the right short phrase response, typically less than 10
tokens. Our reference solutions contain 175.3 tokens on average. Furthermore, these methods have
not proven effective in more related natural language settings such as Onoe et al. (2023).

6.2 RESULTS AND DISCUSSIONS

We present the experimental results in Table 4. All of the open-source models perform worse than
proprietary models in the Prepend setting. GPT-4 and Claude-3.5 both achieve high performance.
Interestingly, Claude-3.5 outperforms GPT-4 despite GPT-4 having been used to generate the dataset;
this suggests that GPT-4 is not strongly favored on this benchmark beyond other frontier models.

Similar to the results in entity knowledge editing (Onoe et al., 2023), continuing training on update
information (FT (U)) does not improve efficacy and hurts specificity. On the other hand, training the
model on program synthesis examples (FT (PS)) works well, outperforming the prepend setting (See
Table 4). We observe that, except on DS-Coder-v1, the open models suffer a large drop in performance
on specificity. This means that although our method can use the updated API to solve downstream

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Experiments with different training set construct controlled by (c, r). Our standard setting is
(2, 1). We see that the update itself is required to do well; training on unrelated examples is much
worse (compare (0, 3)). However, including random update(s) in training data is beneficial when
paired with the update (compare (3, 0)). ∗: comparing against base model, the gap is significant
according to a paired bootstrap test with p < 0.05. See additional results in Table 11.

UPass (Efficacy) ↑ SPass (Specificity) ↑
Method c r @1 (∆) @5 (∆) @1 (∆) @5 (∆)

DS-Coder-v1.5 — — 2.6 4.3 67.1 79.3

+ Prepend — — 12.4∗
+8.8 21.7∗

+14.3 — —

+ FT (PS)

2 1 34.8∗
+31.2 50.3∗

+42.9 37.3∗
−29.8 61.2∗

−18.0

1 2 28.1∗
+25.5 45.3∗

+41.0 32.3∗
−34.8 63.8∗

−15.5

3 0 31.9∗
+28.3 44.7∗

+37.3 40.2∗
−26.9 61.9∗

−17.4

0 3 9.6∗
+6.0 21.1∗

+13.7 35.7∗
−31.4 66.3∗

−13.0

tasks better than other baselines, retaining performance and avoiding catastrophic forgetting remains
a key challenge.

Our results echo with prior work in that training models to regurgitate the injected knowledge does
not help models to pragmatically use the knowledge for downstream tasks (Zhong et al., 2023) or
update the status of related knowledge (Cohen et al., 2024; Jiang et al., 2024; Allen-Zhu & Li, 2024).
In contrast, providing models with a more direct training signal like in our FT (PS) baseline or related
context (Padmanabhan et al., 2023; Akyürek et al., 2024) helps with knowledge propagation and
utilizing the knowledge pragmatically.

In the following section, we will conduct an ablation study on our methods to understand the
importance of different design choices of our methods across different injected models.

6.3 ABLATION STUDY

Our method FT (PS) serves as a starting point for future editing methods on our dataset to build on. In
this section, we study its design choices and demonstrate the difficulties and the trade-offs to achieve
efficacy and specificity at the same time. For efficiency, we follow the same evaluation procedure as
Table 4 and but only use 1 random program synthesis example per update (in total, 161) to calculate
efficacy. We focus on the DS-Coder-v1, which achieves the best specificity and overall performance,
and DS-Coder-v1.5, which achieves the highest efficacy in finetuning experiments.

Impact of training data for FT (PS) In our main experiment, the training set consists of c = 2
copies of Nu examples from target update and Nr = 2 examples from r = 1 random updates.3
In this section, we investigated how the construct of training data affects knowledge injection, by
changing the values of c and r while fixing c+ r.

Having the target update is important: when we train the model on only program synthesis examples
from random updates, Tables 5 and 11 show little or negative gain from learning only the task format.
However, the random synthesis examples also matter: when we exclude them, the performance
decreases as well, although to a less extent (see Table 11).

In a more complete hyperparameter sweep, we found that repeating the examples from target update
twice (c = 2) is generally the optimal hyperparameter, beyond which we observe diminishing gains
in efficacy and drops in specificity. Second, although different models have different optimal values,
we found that larger number of random updates r will continue to decrease models’ performances for
efficacy and specificity. This is a different observation from prior work (Gangadhar & Stratos, 2024).
See more details in Appendix E.4.

Different models have different sensitivity to learning rates Efficacy and specificity often show
tradeoffs. We vary the learning rate and plot these in Figure 3 to better understand this relationship.
We observe that DS-Coder-v1 and DS-Coder-v1.5 have different sensitivities to the learning rate.

3We take a pair of unique program synthesis examples from each r random updates

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

10 6 10 5 10 4 10 3

Learning Rate

40

45

50

55

60

65
Pa

ss
@

1

Specificity

10 6 10 5 10 4 10 3

Learning Rate

5

10

15

20

25

30

35

Pa
ss

@
1

Efficacy

Model
DS-Coder-v1
DS-Coder-v1.5
Baseline
FT (PS)
Base
Prepend

Figure 3: Sensitivity test on learning rate. Sensitivity for specificity is model-specific and may have
trade-offs with efficacy. A large enough learning rate (e.g. 1e-3) is required to outperform the prepend
setting.

First, knowledge injection, even with a learning rate as small as 1e-6, greatly harms DS-Coder-v1.5’s
performance on HumanEval whereas DS-Coder-v1’s performance on HumanEval is kept unharmed.
Secondly, both models start to outperform the prepend setting with a learning rate greater than 1e-4.
Furthermore, as the learning rate increases, the specificity and efficacy of DS-Coder-v1.5 exhibit a
clear tradeoff — when the learning rate increases beyond 1e-4, DS-Coder-v1.5 undergoes a large
increase in efficacy and decrease in specificity. In contrast, DS-Coder-v1’s efficacy increases even
with an improvement in specificity. We verify the gap from the Base model by a paired bootstrap test
with p < 0.05. However, we do not observe this increase in both metrics in general (e.g., Figure 12).
We believe future work needs to investigate the cause of such differences and take them into account
when designing new algorithms.

7 CONCLUSION

In this paper, we presented CodeUpdateArena, a benchmark of API updates and corresponding
program synthesis examples. We demonstrated that our approach to synthesizing these leads to
high-quality examples. Across three LLMs, we conduct experiments for two simple baselines. One of
the baselines greatly outperforms prepending update information in context, which is different from
observation from knowledge editing in entity-driven scenarios. We further conducted a comprehensive
ablation study to inform future exploration. We hope our initial exploration could spur future work to
develop new knowledge updating methods for code LLMs to benchmark on this setting.

Limitations: One limitation of CodeUpdateArena is that certain APIs are difficult to test with our
dataset synthesis framework. For instance, it is difficult to generate unit tests for machine learning
APIs, and can be very involved to generate tests if a significant setup is needed (e.g., a mock
web server backend). Furthermore, our focus on synthetic API updates is necessary to avoid data
contamination, but at the same time decreases the realism of our dataset. It would be ideal to have real
software engineers annotate these kinds of updates at scale, but in preliminary experiments, we found
it very difficult to come up with creative and realistic updates. Finally, our examples are restricted to
Python and English-language descriptions; we believe a multilingual version of the benchmark (both
human languages and code languages) would be useful.

Reproducibility Statement: Our dataset and code are available at ©. The dataset construction
procedure is fully automated and documented, enabling future researchers to generate similar or
related datasets. For our experiments, we detailed our hyperparameters in Appendix E. Our ablation
study (Section 6.3 and Appendix E.4) depicts the model’s behavior across different design choices.

10

https://anonymous.4open.science/r/CodeUpdateArena-EE3C

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Afra Feyza Akyürek, Ekin Akyürek, Leshem Choshen, Derry Wijaya, and Jacob Andreas. Deductive
closure training of language models for coherence, accuracy, and updatability. arXiv preprint
arXiv:2401.08574, 2024.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
5x788rqbcj.

Anthropic. Claude 3.5 sonnet. 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia to answer
open-domain questions. In Association for Computational Linguistics (ACL), 2017.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan, Harrison
Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick
Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, David W. Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William H. Guss, Alex Nichol, Igor Babuschkin, Suchir
Balaji, Shantanu Jain, Andrew Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew M. Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. ArXiv, abs/2107.03374, 2021. URL https://api.
semanticscholar.org/CorpusID:235755472.

Zeming Chen, Gail Weiss, Eric Mitchell, Asli Celikyilmaz, and Antoine Bosselut. RECKONING:
Reasoning through dynamic knowledge encoding. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems, 2023. URL https://openreview.net/forum?id=dUAcAtCuKk.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple effects
of knowledge editing in language models. Transactions of the Association for Computational
Linguistics, 12:283–298, 2024.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 6491–6506,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.emnlp-main.522. URL https://aclanthology.org/2021.
emnlp-main.522.

DeepSeek-AI, :, Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng,
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge,
Kang Guan, Daya Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan
Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin, A. X.
Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo,
Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, Tongzheng Ren, Zehui Ren,
Chong Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song, Xuecheng Su, Jingxiang Sun, Yaofeng
Sun, Minghui Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang, Yongji Wang, Tong
Wu, Y. Wu, Xin Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu, Yanhong Xu,
Dejian Yang, Yuxiang You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei Zhang, Lecong Zhang,

11

https://openreview.net/forum?id=5x788rqbcj
https://openreview.net/forum?id=5x788rqbcj
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://openreview.net/forum?id=dUAcAtCuKk
https://aclanthology.org/2021.emnlp-main.522
https://aclanthology.org/2021.emnlp-main.522

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Liyue Zhang, Mingchuan Zhang, Minghua Zhang, Wentao Zhang, Yichao Zhang, Chenggang
Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. DeepSeek LLM:
Scaling Open-Source Language Models with Longtermism, 2024.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Mu-
rali Krishna Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, and Bing Xiang.
CrossCodeEval: A Diverse and Multilingual Benchmark for Cross-File Code Completion. ArXiv,
abs/2310.11248, 2023. URL https://api.semanticscholar.org/CorpusID:264172238.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. ClassEval: A manually-crafted benchmark for evaluating
llms on class-level code generation. arXiv preprint arXiv:2308.01861, 2023.

Govind Krishnan Gangadhar and Karl Stratos. Model editing by standard fine-tuning. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational
Linguistics ACL 2024, pp. 5907–5913, Bangkok, Thailand and virtual meeting, August 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.352. URL https:
//aclanthology.org/2024.findings-acl.352.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I.
Wang. CRUXEval: A Benchmark for Code Reasoning, Understanding and Execution, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. DeepSeek-Coder: When the
Large Language Model Meets Programming – The Rise of Code Intelligence, 2024a.

Jiawei Guo, Ziming Li, Xueling Liu, Kaijing Ma, Tianyu Zheng, Zhouliang Yu, Ding Pan, Yizhi
Li, Ruibo Liu, Yue Wang, et al. CodeEditorBench: Evaluating Code Editing Capability of Large
Language Models. arXiv preprint arXiv:2404.03543, 2024b.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 14953–14962, June 2023.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks. In
Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 8342–8360, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.740. URL
https://aclanthology.org/2020.acl-main.740.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International conference on machine learning, pp. 3929–3938.
PMLR, 2020.

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi.
Aging with grace: Lifelong model editing with discrete key-value adaptors. In Advances in Neural
Information Processing Systems, 2023.

Evan Hernandez, Belinda Z. Li, and Jacob Andreas. Inspecting and editing knowledge representations
in language models. In Arxiv, 2023. URL https://arxiv.org/abs/2304.00740.

Cheng-Yu Hsieh, Sibei Chen, Chun-Liang Li, Yasuhisa Fujii, Alexander J. Ratner, Chen-Yu Lee,
Ranjay Krishna, and Tomas Pfister. Tool documentation enables zero-shot tool-usage with large
language models. ArXiv, abs/2308.00675, 2023. URL https://api.semanticscholar.org/
CorpusID:260351459.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference
on Learning Representations, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Wenyue Hua, Jiang Guo, Mingwen Dong, He Zhu, Patrick Ng, and Zhiguo Wang. Propagation and
Pitfalls: Reasoning-based Assessment of Knowledge Editing through Counterfactual Tasks. ArXiv,
abs/2401.17585, 2024. URL https://api.semanticscholar.org/CorpusID:267334947.

12

https://api.semanticscholar.org/CorpusID:264172238
https://aclanthology.org/2024.findings-acl.352
https://aclanthology.org/2024.findings-acl.352
https://aclanthology.org/2020.acl-main.740
https://arxiv.org/abs/2304.00740
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:260351459
https://openreview.net/forum?id=nZeVKeeFYf9
https://api.semanticscholar.org/CorpusID:267334947

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong. Transformer-
patcher: One mistake worth one neuron. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=4oYUGeGBPm.

Zhengbao Jiang, Zhiqing Sun, Weijia Shi, Pedro Rodriguez, Chunting Zhou, Graham Neubig,
Xi Lin, Wen-tau Yih, and Srini Iyer. Instruction-tuned language models are better knowledge
learners. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
5421–5434, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.296. URL https://aclanthology.org/2024.acl-long.296.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=VTF8yNQM66.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. DS-1000: a natural and reliable benchmark for data science
code generation. In Proceedings of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

Yoonsang Lee, Xi Ye, and Eunsol Choi. Ambigdocs: Reasoning across documents on different
entities under the same name. arXiv preprint arXiv:2404.12447, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive NLP tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro,
Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar
Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason
Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,
Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas,
Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire
Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried,
Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun
Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source be with you!, 2023.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is Your Code Generated by
ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=1qvx610Cu7.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems, 2024. URL https://arxiv.org/abs/2306.03091.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and Editing Factual
Associations in GPT. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 17359–17372. Curran
Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=MkbcAHIYgyS.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast
model editing at scale. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=0DcZxeWfOPt.

13

https://openreview.net/forum?id=4oYUGeGBPm
https://aclanthology.org/2024.acl-long.296
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2306.03091
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=0DcZxeWfOPt

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hanseok Oh, Hyunji Lee, Seonghyeon Ye, Haebin Shin, Hansol Jang, Changwook Jun, and Minjoon
Seo. Instructir: A benchmark for instruction following of information retrieval models. arXiv
preprint arXiv:2402.14334, 2024.

Yasumasa Onoe, Michael Zhang, Shankar Padmanabhan, Greg Durrett, and Eunsol Choi. Can
LMs Learn New Entities from Descriptions? Challenges in Propagating Injected Knowledge. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5469–5485,
Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
acl-long.300. URL https://aclanthology.org/2023.acl-long.300.

Shankar Padmanabhan, Yasumasa Onoe, Michael JQ Zhang, Greg Durrett, and Eunsol Choi. Propa-
gating knowledge updates to LMs through distillation. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=DFaGf3O7jf.

Huy N. Phan, Hoang N. Phan, Tien N. Nguyen, and Nghi D. Q. Bui. RepoHyper: Better Context
Retrieval Is All You Need for Repository-Level Code Completion. ArXiv, abs/2403.06095, 2024.
URL https://api.semanticscholar.org/CorpusID:268359001.

Derek Powell, Walter Gerych, and Thomas Hartvigsen. TAXI: evaluating categorical knowledge
editing for language models. CoRR, abs/2404.15004, 2024. doi: 10.48550/ARXIV.2404.15004.
URL https://doi.org/10.48550/arXiv.2404.15004.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. Code llama: Open foundation models for code. CoRR, abs/2308.12950, 2023.
doi: 10.48550/ARXIV.2308.12950. URL https://doi.org/10.48550/arXiv.2308.12950.

Disha Shrivastava, H. Larochelle, and Daniel Tarlow. Repository-level prompt generation for
large language models of code. In International Conference on Machine Learning, 2022. URL
https://api.semanticscholar.org/CorpusID:250072448.

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. Musr: Testing the limits
of chain-of-thought with multistep soft reasoning. In Proceedings of ICLR (spotlight), 2024.

Hongjin Su, Shuyang Jiang, Yuhang Lai, Haoyuan Wu, Boao Shi, Che Liu, Qian Liu, and Tao Yu.
ARKS: active retrieval in knowledge soup for code generation. CoRR, abs/2402.12317, 2024. doi:
10.48550/ARXIV.2402.12317. URL https://doi.org/10.48550/arXiv.2402.12317.

Liyan Tang, Philippe Laban, and Greg Durrett. Minicheck: Efficient fact-checking of llms on
grounding documents. In arXiv, 2024.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge
Editing for Large Language Models: A Survey. ArXiv, abs/2310.16218, 2023. URL https:
//api.semanticscholar.org/CorpusID:264487359.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language mod-
els. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 24824–24837. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

Yiqing Xie, Alex Xie, Divyanshu Sheth, Pengfei Liu, Daniel Fried, and Carolyn Rose. Codebenchgen:
Creating scalable execution-based code generation benchmarks. arXiv preprint arXiv:2404.00566,
2024.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. SatLM: Satisfiability-aided language models
using declarative prompting. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=TqW5PL1Poi.

14

https://aclanthology.org/2023.acl-long.300
https://openreview.net/forum?id=DFaGf3O7jf
https://api.semanticscholar.org/CorpusID:268359001
https://doi.org/10.48550/arXiv.2404.15004
https://doi.org/10.48550/arXiv.2308.12950
https://api.semanticscholar.org/CorpusID:250072448
https://doi.org/10.48550/arXiv.2402.12317
https://api.semanticscholar.org/CorpusID:264487359
https://api.semanticscholar.org/CorpusID:264487359
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://openreview.net/forum?id=TqW5PL1Poi

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Asaf Yehudai, Boaz Carmeli, Yosi Mass, Ofir Arviv, Nathaniel Mills, Assaf Toledo, Eyal Shnarch,
and Leshem Choshen. Genie: Achieving human parity in content-grounded datasets generation.
ArXiv, abs/2401.14367, 2024.

Fengji Zhang, B. Chen, Yue Zhang, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and Weizhu
Chen. RepoCoder: Repository-Level Code Completion Through Iterative Retrieval and Generation.
In Conference on Empirical Methods in Natural Language Processing, 2023a. URL https:
//api.semanticscholar.org/CorpusID:257663528.

Kechi Zhang, Ge Li, Jia Li, Zhuo Li, and Zhi Jin. ToolCoder: Teach Code Generation Models to use
API search tools. ArXiv, abs/2305.04032, 2023b. URL https://api.semanticscholar.org/
CorpusID:258557336.

Michael Zhang and Eunsol Choi. SituatedQA: Incorporating extra-linguistic contexts into QA. In
Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 7371–7387,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.emnlp-main.586. URL https://aclanthology.org/2021.
emnlp-main.586.

Bowen Zhao, Zander Brumbaugh, Yizhong Wang, Hannaneh Hajishirzi, and Noah A Smith. Set
the clock: Temporal alignment of pretrained language models. arXiv preprint arXiv:2402.16797,
2024.

Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts, and Danqi Chen.
MQuAKE: Assessing Knowledge Editing in Language Models via Multi-Hop Questions. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10,
2023, pp. 15686–15702. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.
EMNLP-MAIN.971. URL https://doi.org/10.18653/v1/2023.emnlp-main.971.

Shuyan Zhou, Uri Alon, Frank F Xu, Zhiruo Wang, Zhengbao Jiang, and Graham Neubig. Docprompt-
ing: Generating code by retrieving the docs. arXiv preprint arXiv:2207.05987, 2022.

15

https://api.semanticscholar.org/CorpusID:257663528
https://api.semanticscholar.org/CorpusID:257663528
https://api.semanticscholar.org/CorpusID:258557336
https://api.semanticscholar.org/CorpusID:258557336
https://aclanthology.org/2021.emnlp-main.586
https://aclanthology.org/2021.emnlp-main.586
https://doi.org/10.18653/v1/2023.emnlp-main.971

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A DATASET

A.1 UPDATE TAXONOMY

To systematically capture different types of updates, we first create a taxonomy for update types,
rooted in updates to functions.

Recall that we define f ← u to be the update made to an existing function f when providing it with
new semantics u. We assume f always takes the form of Function([argument1, argument2, · · ·])→
Output. We view u as consisting of three independent components: (1) the Action that the update is
applying to the API function (e.g., deprecate); (2) the Locus that the action happens at (e.g. argument
or output); (3) and the Aspect that the action is applying at some place for (e.g., name and data type).
See Table 6 in the appendix for possible values of each component. We note that we do not focus on
Action=deprecate in this work, as techniques for knowledge unlearning are different than those for
knowledge editing.

An update type is a tuple with values for each component listed in Table 6. For example, the
add-argument-NULL update type means the update is adding a completely new argument to the
existing arguments of a function, and modify-argument-name update type means the update is
modifying the name of an existing argument (i.e. renaming). We note that not all combination
makes sense, e.g. modify-output-name; or some update types might overlap with another e.g.,
add-function-semantics overlaps with modify-function-semantics. We remove those and
obtain 17 update types.

Table 6: Update Taxonomy components

Component Values

Action {add, modify, deprecate}
Locus {function, argument, output}
Aspect {NULL, name, data_type,

default_value, supported_value}

A.2 EXAMPLE

We present a complete example from our dataset below. The unit tests for the update itself are omitted
as these are not used by any of our methods and are only used for quality control.

A.1 Example Data

Update Description:
A new boolean parameter ’inverse’ is added to math.pow() to calculate the inverse power.

Update DocString:
An additional parameter ’inverse’ has been introduced to the function signature, which when set to True, will
return the inverse power of the numbers, i.e., 1/(x^y). This results in a non-trivially different implementation
from the previous one, and the rest of the function behavior stays the same. The new parameter ’inverse’ is a
boolean parameter with a default value of False. When ’inverse’ is set to True, the output of the function is
changed to 1/(x^y), and when ’inverse’ is set to False or left unspecified, the output remains the same as in
the old version, which is x^y.

Rationale:
Sometimes users might need to calculate the inverse power (1 to the power of y divided by x) and this feature
saves them from having to manually calculate the inverse power of a number.

Program:
"problem": Alan needs to compute present values of these future cash flows for ’n’ periods and ’r’ different
rates. However, computing it manually or using traditional Python methods is cumbersome and prone to

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

errors. Help Alan by creating a program that can compute this efficiently for any ’n’ and ’r’.

Scenario:
Alan is a property investor who has recently invested in commercial projects, where the rental income fluctu-
ates. He came across an investment formula (1/(1 + r)^n) that can approximate the present value of future cash
flows. Here, ’r’ represents the discount rate or interest rate, and ’n’ represents the number of cash flow periods.

Solution Signature:
def compute_present_value(r: float, n: int) -> float:

Updated API:

Import the necessary library.
import math
def compute_present_value(r: float, n: int) -> float:

Check for invalid inputs.
if r < 0:

raise ValueError("Rate cannot be negative.")
if n < 0:

raise ValueError("Number of periods cannot be negative.")

Use the updated math.pow() API to calculate the present value.
return math.pow(1.0 + r, n, inverse=True)

Unit Tests:

Unit test 0
def test_compute_present_value_small_inputs():

r = 0.1
n = 3
small inputs for rate and number of periods
result = compute_present_value(r, n)
import math
expected_result = math.pow(1 + r, n, inverse=True)

Check equivalence between 'result' and 'expected_result'
assert result == expected_result

Unit test 1
def test_compute_present_value_large_inputs():

r = 0.9
n = 100
large inputs for rate and number of periods
result = compute_present_value(r, n)
import math

Since the inverse is required, we set 'inverse' to True in math.pow()
expected_result = math.pow(1 + r, n, inverse=True)

assert result == expected_result, f"Expected {expected_result} but got {result}"
Unit test 2
def test_compute_present_value_zero_rate():

r = 0.0
n = 10
testing with 0 rate should compute to the cash flow amount
result = compute_present_value(r, n)
expected_result = 1.0

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

assert result == expected_result, f"Expected {expected_result}, but got {result}"
Unit test 3
def test_compute_present_value_zero_periods():

r = 0.5
n = 0
testing with 0 periods should compute to the cash flow amount
result = compute_present_value(r, n)
expected_result = math.pow((1 + r), -n, inverse=True)

assert result == expected_result,
f"Error: Expected result {expected_result}, but got {result}."↪→

Unit test 4
def test_compute_present_value_negative_rate():

try:
r = -0.1
n = 5
negative rate should raise an exception
compute_present_value(r, n)

except Exception:
assert True

else:
assert False

Unit test 5
def test_compute_present_value_negative_periods():

try:
r = 0.1
n = -5
negative number of periods should raise an exception
compute_present_value(r, n)

except Exception:
assert True

else:
assert False

Unit test d
def test_compute_present_value_large_rate():

r = 1.5
n = 10
large rate should lead to small present value
result = compute_present_value(r, n)
from math import pow

expected_result = pow(1 + r, n, inverse=True)

assert abs(result - expected_result) <= 1e-9,
f"Expected {expected_result}, but got {result}"↪→

Unit test 7
def test_compute_present_value_one_period():

r = 0.2
n = 1
one cash flow period should return a simple discounted value
result = compute_present_value(r, n)
expected_result = math.pow(1 + r, n, inverse=True)

assert result == expected_result, f"Expected {expected_result}, but got {result}"
Unit test 8
def test_compute_present_value_many_periods():

r = 0.1
n = 30
more periods should accumulate more discount
result = compute_present_value(r, n)
import math

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

compute the expected_result using the provided formula 1/(1 +
r)\textasciicircum n↪→

expected_result = math.pow(1 + r, n, inverse=True)

At this point, we are checking the equivalence between `result` and
`expected_result`↪→

assert result == expected_result, f'Expected {expected_result}, but got {result}'
Unit test 9
def test_compute_present_value_edge_rate():

r = 1.0
n = 10
edge rate of 1.0 should also be handled
result = compute_present_value(r, n)
import math
expected_result = math.pow(1 + r, n, inverse=True)

assert result == expected_result, f"Expected {expected_result}, but got {result}"

B DATA GENERATION DETAILS

B.1 PREPROCESSING API PATH

As discussed in Section 4.1, most of the time, we are able to retrieve full information about a function
using the importlib and inspect packages. For our implementation, we decided to also separately
extract a function’s argument. However, these sometimes might not be possible using importlib and
inspect package. Therefore, we devise two fallback options: (1) use regular expression to extract
them from documentation; and if that fails, (2) we feed the docstring to GPT-4 and have it write
arguments for us. We include the prompt for doing so in Appendix B.5.

B.2 UNIT TEST GENERATION

For answer generation (@ANSWER@), we let GPT-4 choose between the following strategies:

1. directly write out the literal values of the answer (e.g. numpy.array([1, 0, 2]);

2. or write a step-by-step code snippet Wei et al. (2022) to accomplish the calculation in which it
could call the old API function through old_argsort(array[::-1],...) (e.g. random input
in Fig. 4).

Figure 4: Example of unit test skeleton

def test_reverse_true():
array = np.random.rand(5), ax = -1
result = np.argsort(array, axis=ax,

reverse=True)↪→
@ANSWER@
@ASSERT@

For assertion generation (@ANSWER@), we
note that objects in different packages re-
quire different ways to check equality, for
example, instead of “==”, one needs to
use numpy.equal for numpy.array; and
df.equals for pandas.DataFrame. To make
sure the assertions are appropriately generated,
we use package-specific prompts to guide GPT-4
generation. See our package instructions at Prompt B.9.

B.3 DEDUPLICATION

To deduplicate program synthesis examples, we first canonicalize each reference solution for function
and variable names. Then, we compare the edit distances among Program Synthesis examples’
reference solutions per update. We discard one of the examples in each pair with an edit distance of
less than 25. If after discarding, # PS is equal to 1, we will keep both program synthesis examples. The
mean edit distance for those “allowed duplicates” is 17.0 ± 7.1. In total, we remove 134 examples.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: Knowledge editing results on CodeUpdateArena without literalizing unit tests. ∗: comparing
against the base model, the gap is significant according to a paired bootstrap test with p < 0.05.

UPass (Efficacy) ↑ SPass (Specificity) ↑ Pass with updated API ↑
Base Model Approach @1 (∆) @5 (∆) @1 (∆) @5 (∆) @1 (∆) @5 (∆)

GPT-4 Base Model 22.7 33.3 – – 54.0 74.6
Prepend 42.7∗

+20.0 63.6∗
+30.3 – – 64.5∗

+10.4 84.0∗
+9.4

Claude-3.5 Base Model 21.8 26.7 – – 52.2 61.6
Prepend 61.5∗

+39.7 73.4∗
+46.7 – – 69.5∗

+17.3 78.4∗
+16.7

CODELLAMA

Base Model 12.2 17.5 39.8 50.0 28.5 39.9
Prepend 14.7∗

+2.5 21.0∗
+3.5 – – 32.2∗

+3.7 45.4∗
+5.5

FT (U) 11.3 −0.9 17.6 +0.1 28.8∗
−10.9 45.9∗

−4.1 26.5∗
−1.9 39.6 −0.3

FT (PS) 24.2∗
+12.0 39.4∗

+21.9 17.0∗
−22.8 37.1∗

−12.9 28.2 −0.3 45.1∗
+5.2

DS-CODER-V1

Base Model 12.2 20.4 49.3 79.3 31.0 48.2
Prepend 18.1∗

+5.9 29.4∗
+9.0 – – 35.3∗

+4.3 53.6∗
+5.4

FT (U) 12.7 +0.5 20.9 +0.5 40.0∗
−9.2 74.0∗

−5.2 32.7∗
+1.8 50.4 +2.2

FT (PS) 30.6∗
+18.4 47.6∗

+27.2 52.5∗
+3.3 78.4 −0.8 37.9∗

+6.9 58.1∗
+9.9

DS-CODER-V1.5

Base Model 20.0 29.4 67.1 79.3 46.8 64.8
Prepend 25.8∗

+5.8 38.4∗
+9.0 – – 51.3∗

+4.5 71.5∗
+6.7

FT (U) 20.1 +0.1 29.9 +0.5 56.4∗
−10.7 77.3∗

−2.0 47.0 +0.2 66.1 +1.3

FT (PS) 32.7∗
+12.7 52.1∗

+22.7 37.3∗
−29.8 61.2∗

−18.0 38.2∗
−8.6 60.3∗

−4.5

B.4 LITERALIZE ANSWER IN UNIT TEST

We define literalizing a unit test as taking the unit test, which may call an updated API, and turn-
ing it into a semantically equivalent version that does not call the updated API. To do this, we
obtain answers from unit tests (e.g., pickle.dump(...)), turn the Python object to literal string,
e.g. numpy.array2string(), and replace the original answer section with a simple assignment
expected_result = This can be challenging in a few cases:

1. when the input of the unit tests is randomly initialized (e.g., torch.randn);

2. when the input is initialized with a large dimension (e.g., image = numpy.full((1000,
1000))) and result in very large literal values;

3. when an object like pandas.Dataframe might contain metadata that is hard to generally
capture during literalization, or requires changes in the assertions section like re.Match
object.

We use pickle serialization and deserialization to literalize tests, and when this process fails as in
the cases above, we invoke Claude-3.5-sonnet to edit the unit test to make the appropriate changes
while preserving the semantics. After processing, we turn the answers of 4114 unit tests into literal
values (out of 4221 unit tests).4 In Table 7, we include the evaluated results without literalization,
which shows models like Base model has substantially higher UPass@k.

B.5 GENERATION PROMPT: UPDATE

See Prompt B.1 for docstring summarization.

See Prompt B.2 for inferring the function arguments from the function path, e.g. numpy.argsort

See Prompt B.3 for generating update specifications

See Prompt B.4 for generating unit test skeletons

See Prompt B.5 for generating unit test answers; part of the prompt takes corresponding instruction
from Prompt B.9 to guide the model to generate for different packages.

See Prompt B.6 for generating unit test assertions; part of the the prompt takes corresponding
instruction from Prompt B.9 to guide the model to generate for different packages.

4We verify the correctness by executing reference solution on the units and receiving perfect performance.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

See Prompt B.7 for generating function update implementation

See Prompt B.8 for generating missing imports given any code.

See Prompt B.9 for different packages when generating assertions and answers.

B.1 Update: Docstring summarization

System prompt:
You are a helpful assistant.
You will be given documentation for an API in a popular Python library.

You need to do the following:
1: You MUST extract descriptions about the functionality, input parameters, and output from the original
documentation.
2: You could include some illustrative code in the summary if the summary is ambiguous.
3: You MUST keep the most important information, e.g. description, data type, etc.
4: The reader of your summary MUST be able to implement the function with summarized documentation.
5: You MUST maintain the original structure, format, and the style of the documentation.
6: Output the summarized documentation in text.

User Prompt:
{{docstring, e.g. numpy.argsort.__doc__}}

B.2 Update: Prompt to Infer Argument

{: System prompt}
Infer argument of a Python function signature from documentation (output of `[full_api_path].__doc__`).

Function signature takes the form of
```
[full_api_path]([arguments])
```
Output the right [arguments].

Note:
* Output raw text.
* DO NOT Wrap output in a Python code block.
* DO NOT include documentation in the output.

{: User Prompt}
Full API path:
{{{{full_api_path}}}}

Documentation:
{{{{documentation}}}}

B.3 Update: Update Specification

System prompt:
You are a helpful assistant. You think deeply and creatively.
Your task is to assist users to think of and instantiate interesting cases of API update.

A desirable update should satisfy the following criteria:
* The update should make the call site of the old function to be un-executable and one need to follow the new
function signature.
* The update should be as atomic as possible. It only includes one of the three possible editing actions and
only happens to one place of the functions. So that the new function signature and old signature only differs

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

at one place.
* The update should lead to a new function signature whose implementation is non-trivially different from
the old ones. An undesirable result is that the new implementation trivially calls the old function.
* The update should be a sensible change that fits the overall topic of the function and the Python library.
* The update should NOT contradict existing functionality of the old function.
* The update needs to be supported by a good reason for library designer to introduce it

Return the entire response in JSON format as a dictionary. Make sure nested brackets are closed correctly.
Be careful with unterminated string literal. The dictionary should contain the following:

1: "update_description": (as string) a short one-sentence description of the update.
2: "rationale": (as string) why any hypothetical designer of the API might want to introduce these changes.
3: "new_function_signature": (as string) the new function signature.
3.1: "new_function_signature" MUST start with the full reference to the function. For example,
"numpy.mean" instead of "def mean".
4: "update_docstring": (as string) the added documentation that explains the new functionality of the atomic
update. It MUST be self-contained, unambiguous, detailed but concise.
4.1: You MUST succinctly explain the updated behavior of the new API, and how it differs from the old
behavior.
4.2: The "update_docstring" MUST fully specify the behavior about the update. For example, how the
changes in input would change the output of new API w.r.t. the old version.
4.3: A third-person MUST be able to develop a new implementation by just reading the "update_docstring"
along with the old docstring.
4.4: "update_docstring" could take the form of natural language, numpy-style docstring, pseudo-code
examples, etc. Make the most sensible choice. If it’s a string with multiple lines, output "
n" as line break.
4.5: DO NOT include example(s) of using the updated API in "update_docstring".

You will be given a function signature, optionally along with its docstring, and the Python library it belongs
to. You will think what realistic update could happen to the function signature.

Give me 1 example of possible update(s) that a new function argument is added.

User Prompt:
Package: {{parent_path}}

[DOC]
def {{function_signature}}
{{summarized_doc_string}}
[/DOC]

Note:
* "new_function_signature" MUST ONLY contain the function name, instead of the full reference to the
function. For example, "mean" instead of "numpy.mean".
* Only output the JSON in raw text.

B.4 Update: Unit Test skeleton

System prompt:
You are a very experienced programer. You are good at algorithmic reasoning and writing super high quality
code.

The API of interest is:
[OLD_SIGN]
{{{{old_function_signature}}}}
[/OLD_SIGN]

This API recently undergoes an update:
[DESC]

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

{{{{update_description}}}}
[/DESC]

The API now has the following new function signature:
[NEW_SIGN]
{{{{new_function_signature}}}}
[/NEW_SIGN]

Your task is to write 10 *high-quality* and *comprehensive* unit tests skeletons for testing the validity of the
update. A unit test skeleton is a unit test function that only specifies the test inputs. Each unit test skeleton
MUST be in raw string, not in Python code block.

Return the set of unit tests skeletons in JSON code block as a list of string. For unit test skeletons generation,
following the instructions below:
1: You MUST READ the documentation (between "[DOC]" and "[/DOC]") WORD-BY-WORD and
understand it PERFECTLY WELL.
1.1: Also, IDENTIFY important arguments: the more important arguments are ranked to the front in the new
function signature.
2: For unit tests, think of a diverse set of API update and the important arguments to test ALL specified
behaviors in the documentation — edge-case input, edge-case output, exception raised, etc.
2.1: You need to have different edge-case values for the update and each important arguments (e.g.,
multi-dimensional input array with different `axis`values).
3: When you generate a new unit test, look CAREFULLY at already generated unit tests, and make sure the
inputs are different from previously generated unit tests as much as possible.
3.1: You MUST have proper setup code for API inputs: initialize variables for testing the updated — literally,
or randomly generated, etc. INCLUDE in-line comments.
3.2: PREFERABLY, the input to the updated API SHOULD foreseeably lead to a *unique* execution result.
4: The output of the API call MUST be assigned to a variable `result`.
4.1: You MUST call the updated API, instead of old API. If required, you are allowed to call the *old* API
by directly calling `old_quad`. ALL other ways to call the old function are FORBIDDEN.
5: If a unit test function is testing throwing exception, you should proceed with `try-except`and finish the
unit test function.
5.1: If the test input is meant to testing error catching, check if the API call will raise error. DON’T check
error message.
6: If a unit test function is NOT testing throwing exception:
6.1: You MUST output a placeholder `# @ANSWER@`for the right answer to be filled in. Writing the right
answer is forbidden.
6.2: Do not write any assertion. This is forbidden. Instead, put a placeholder `# @ASSERT@`at the end of
the test function.
6.3: Within the unit function, the placeholders need to start at the left-most indent (i.e. 4 empty spaces — "
").
7: Each test MUST be a function without any input arguments. DON’T attempt to test I/O in each unit tests.
8: The function name MUST be informative. Avoid it to include generic terms like "case1" or "test1".
9: Use "n" as line break. Use 4 empty spaces (" ") as Python code block indent.
10: When you have Python string literal, you MUST use escape for quote — `" `or `’ `; for triple quote —
`""" `or `”’ `

User Prompt:
This is the documentation that details the behavior about the update:
[DOC]
{{{{update_docstring}}}}
[/DOC]

Only output the set of unit tests skeletons (*a list of strings*) in JSON code block (```json...```).
Include `global {{{{package_name}}}}`as the first line of each unit test function.
If you want to call the old function, you MUST directly call `old_{{{{function_name}}}}`. All other ways
to call the old function are FORBIDDEN.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B.5 Update: Answer generation

System prompt:
You are a very experienced programmer. You are good at algorithmic reasoning and writing super high
quality code.

The API of interest is
[OLD_SIGN]
{{{{old_function_signature}}}}
[/OLD_SIGN]

This API recently undergoes an update:
[DESC]
{{{{update_description}}}}
[/DESC]

The API now has the following new function signature:
[NEW_SIGN]
{{{{new_function_signature}}}}
[/NEW_SIGN]

You will be given the detailed documentation about the update, and a unit test skeleton with a `#
@ANSWER@`. Your task is to generate a Python code block (```python...```) to replace `# @AN-
SWER@`. The purpose of the code block is to calculate a value for a variable called `expected_result`or
`expected_results`.

For generating the code block, following the instructions below:
1: You MUST READ the documentation (between "[DOC]" and "[/DOC]") WORD-BY-WORD, take a pause
and, understand it PERFECTLY WELL.
1.1: Now look at the values of input to the API call, and contemplate on the expected behavior of the *new*
API given those inputs.
2: IDENTIFY whether you need to assign value to `expected_result`or `expected_results`— `ex-
pected_result`if there’s only 1 correct answer; `expected_results`if there’s only multiple correct answers.
There is only one right choice.
3: Focus on the behavior of the *new* API. When deriving the expected value of `result`, work on this
problem STEP-BY-STEP. Then, wisely choose one of the strategies from below:
a. an assignment of a Python literal value to the variable;
b. if the literal is too long or it’s best to use arithmetics to get the value, DON’T write literal value. INSTEAD,
use step-by-step program code to express how to arrive at the answer.
4: In the code block, DO NOT call the *new* API function. For calculating the answer, you CAN call the
old API function. However, you MUST directly call `old_quad`. ALL other ways to call the old function
are FORBIDDEN.
5: Within the code block, you MUST generate WITH NO leading indent. Use 4 empty spaces (" ") as indent
when writing if-else, for-loop, etc.

User Prompt:
This is the documentation that details the behavior about the update:
[DOC]
{{{{update_docstring}}}}
[/DOC]

[TEST]
{{{{unit_test_skeleton}}}}
[/TEST]

If you want to call the old function, you MUST directly call `old_{{{{function_name}}}}`. All other ways
to call the old function are FORBIDDEN.
{{% if package_instruct %}}
Some special notes for `{{{{package_name}}}}`package:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

{{{{package_instruct}}}}
{{% endif %}}

B.6 Update: Assertion generation

System prompt:
You are a very experienced programer. You are good at algorithmic reasoning and writing super high quality
code.

You will be given a unit test function that misses assertion statements to either:
1. check equivalence between `result`and `expected_result`
2. or check equivalence between `result`and any values in `expected_results`(i.e. multiple correct answer).

Your task is to generate a Python code block (```python...```) to replace `# @ASSERT@`.

User Prompt:
[TEST]
{{{{unit_test_skeleton}}}}
[/TEST]

{{% if package_instruct %}}
Remember some special features of `{{{{package_name}}}}`package:
{{{{package_instruct}}}}
{{% endif %}}

B.7 Update: Updated Function Implementation

System prompt:
You are a very experienced programer. You are good at algorithmic reasoning and writing super high quality
code.

The API of interest is
[OLD_SIGN]
{{{{old_function_signature}}}}
[/OLD_SIGN]

This API recently undergoes an update:
[DESC]
{{{{update_description}}}}
[/DESC]

The API now has the following new function signature:
[NEW_SIGN]
{{{{new_function_signature}}}}
[/NEW_SIGN]

And the old API is renamed to:
[OLD_SIGN]
{{{{renamed_old_function_signature}}}}
[/OLD_SIGN]

You will be given the detailed documentation about the update. Your task is to write high quality
implementation for the *new* API function in Python code block (```python...```).

To generate the code block, following the instructions below: 1: First of all, you MUST CAREFULLY
READ the documentation about the update (between "[DOC]" and "[/DOC]") WORD-BY-WORD and

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

understand it PERFECTLY WELL.
2: Before arriving at the new implementation, take a deep breath and work on this problem STEP-BY-STEP.
2.1: INCLUDE in-line comments and improve readability. 2.2: If you are provided with unit tests, use them
to understand expected behavior of the update.
3: Notice any error handling specified in the documentation. INCLUDE error handling when writing new
implementation.
4: The new function’s name should be the same as the name in new function signature, with API path
removed.
4.1: You MUST NOT write documentation for the new implementation.
4.2: You MUST NOT output the old implementation.
5: To implement the new function, you MUST use the *old* API function AS MUCH AS POSSIBLE.
5.1: Since the bulk part of the functionality is accomplished by the *old* API function, the new
implementation MUST be as SUCCINCT as possible.
5.2: You MUST call the *old* API function by directly calling `old_quad`. ALL other ways to call the old
function are FORBIDDEN.
6: DO NOT write imports.
7: Use 4 empty spaces (" ") as Python code block indent.

User Prompt:
This is the documentation that details the behavior about the update:
[DOC]
{{{{update_docstring}}}}
[/DOC]
{{% if unit_tests %}}
Unit tests for new update:
[PYTHON]
{{%- for test in unit_tests %}}
Unit Test {{{{loop.index}}}}
{{{{test}}}}
{{% endfor -%}}
[/PYTHON]
{{% endif %}}

If you want to call the old function, you MUST directly call `old_{{{{function_name}}}}`. All other ways
to call the old function are FORBIDDEN.
You MUST NOT output the old implementation.
You MUST NOT implement `old_{{{{function_name}}}}`.
Only output the new implementation in Python code block (```python...```).

B.8 Generate missing import

System prompt:
You are a very experienced programer. You are good at algorithmic reasoning and writing super high quality
code.

Your task is to write import statements to include any package dependency before running the code. Return
import statements in Python code block (```python...```).

To generate the code block, following the instructions below:
1: First of all, read the code WORD-BY-WORD and understand it PERFECTLY WELL.
2: DO NOT miss type hints in function signature, function body, etc.
3: If no import statements is required, output an empty Python code block.

User Prompt:
[PYTHON]
{{code}}
[/PYTHON]

Only output the Python code block (```python...```).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

B.9 Package Instruction

re: Assertion generation:
1: To compare `re.Match`object, `==`doesn’t work. One should use `group()`method to obtain the string
and then compare, e.g. `m1.group() == m2.group()`.
2: When no match is found, the output will be None. Make sure this situation is dealt with.

torch: Assertion generation:
1: Using `==`to check equality of Tensor objects (e.g. numpy.array) is ambiguous. For example, you should
use `torch.equal`or `torch.allclose`to check if two Tensor objects equal.
1.1: allclose(): argument ’input’ (position 1) must be Tensor, not list.

itertools: Assertion generation:
1: The output of `itertools`functions (e.g. `itertools._grouper`object) is not directly checkable by `==`.
To compare the output of itertools, the most direct way is to unwrap the output into something directly
checkable (e.g. list, tuple, dict).

itertools: Answer generation. For itertools.groupby only:
If you make call to `old_groupby`, don’t attempt to unwrap the function output (e.g. by list()).

numpy: Assertion generation:
1: Using `==`to check equality of numpy objects (e.g. numpy.array) is ambiguous. For example, you should
use `numpy.equal`or `numpy.allclose`to check if two numpy array equal.

B.6 GENERATION PROMPT: PROGRAM SYNTHESIS

See Prompt B.10 for generating program synthesis specifications

See Prompt B.11 for generating unit test skeletons

See Prompt B.12 for generating unit test answers; part of the prompt takes corresponding instruction
from Prompt B.9 to guide the model to generate for different packages.

See Prompt B.13 for generating unit test assertions; part of the prompt takes corresponding instruction
from Prompt B.9 to guide the model to generate for different packages.

See Prompt B.14 for generating reference solutions that use the updated function.

B.10 ProgSyn: Problem specification

System prompt:
You are a helpful assistant. You think deeply and creatively. Your task is to think of and write interesting
tutorial(s) for an API update. mainly <problem, solution>.

You will be given the full information about an update to an existing Python package. You should think of
usage (i.e. program synthesis example) of the updated API signature that satisfy the following criteria:
* the problem scenario posed by the program synthesis example MUST follow the general functionality of
the (old and new) API.
* the problem scenario MUST be affected and preferably benefited by the API update. By benefit, it means
the code complexity of the solution will be reduced.
* the problem MUST be at least medium hard, so that the solution MUST make *non-trivial* use of the
API’s functionality.
* Be given the number of parameters that the solution accepts.

Return the entire response in JSON format as a dictionary. Make sure nested brackets are closed correctly.
Be careful with unterminated string literal. The dictionary should contain the following:
1: "scenario": (as string) a real-world scenario that the problem is situated in. Keep it medium short.
1.1: Avoid including information – e.g. exact term – about API changes, or package needs to be used in
"problem".

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

2: "problem": (as string) problem specification that needs solving by a Python function. Keep it short.
2.1: Avoid giving imperative instruction on how to solve the problem. MUST Remain at high-level. Avoid
including information – e.g. exact term – about API changes, or package needs to be used in "problem".
2.2: Make sure the description of the input is well connected and blend into the description of the scenario.
2.3: Design the problem such that each input to the solution is meaningfully used in the code.
3: "solution_signature": (as string) the function signature of the solution function.
3.1: the function name should be derived from "scenario".

Give me 1 diverse program synthesis example(s).

User Prompt:
In Python package `{{package_name}}`, there’s an API function `{{api_path}}`as follows: [OLD_SIGN]
{{old_func}} [/OLD_SIGN]

Maintainer of the package thinks it’s best to introduce the following update
[DESC]
{{update_description}}
[/DESC]

This is because
[RATIONALE]
{{update_rationale}}
[/RATIONALE]

The function docstring now differs with previous version in the following way:
[DOC]
{{docstring_diff}}
[/DOC]

And the function has the following new signature:
[NEW_SIGN]
{{new_function_signature}}
[/NEW_SIGN]

The problem *MUST* non-trivially benefit from the update (i.e. new API); so that solving the problem with
the old API is not possible, or requires more efforts (e.g. need to write longer code). The solution of the
problem must accept {{num_param}} parameter(s).

Note:
Only output the JSON in raw text.

B.11 ProgSyn: Unit Test Skeleton

System prompt:
You are a very experienced programer. You are good at algorithmic reasoning and writing super high quality
code.

Your task is to write 10 *high-quality* and *comprehensive* unit tests skeletons for testing validity of any
solution function to a problem specification. A unit test skeleton is a unit test function except the right answer
being clearly specified. Each unit test skeleton MUST be in raw string, not in Python code block.

Return the set of unit tests skeletons in JSON code block as a list of string. For unit test skeletons generation,
following the instructions below:
1: You MUST READ the problem specification (between "[PROBLEM]" and "[/PROBLEM]") WORD-BY-
WORD and understand it PERFECTLY WELL.
1.1: Also, IDENTIFY important arguments: the more important arguments are ranked to the front in the new
function signature.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

2: For unit tests, READ the scenario description (between [SCENARIO]...[/SCENARIO]) WORD-BY-
WORD and understand it PERFECTLY WELL.
2.1: Contemplate, and think of a diverse set of representative inputs to solution function; this set of input
should capture possible and interesting cases which solution function might encounter after deployment.
2.2: BE SURE to test ALL specified behaviors in the problem specification — edge-case input, edge-case
output, exception raised, etc.
2.3: You need to have different edge-case values for the update and each important arguments (e.g.,
multi-dimensional input array with different `axis`values).
3: When you generate a new unit test, look CAREFULLY at already generated unit tests, and make sure the
inputs are different from previously generated unit tests as much as possible.
3.1: You MUST have proper setup code for solution function inputs: initialize variables for testing the
updated — literally, or randomly generated, etc. INCLUDE in-line comments.
3.2: PREFERABLY, the input to the solution function call SHOULD foreseeably lead to a *unique*
execution result.
4: The output of the solution function MUST be assigned to a variable `result`.
4.1: You MUST call the solution function.
5: If a unit test function is testing throwing exception, you should proceed with `try-except`and finish the
unit test function.
5.1: If the test input is meant to testing error catching, check if the API call will raise error. DON’T check
error message.
6: If a unit test function is NOT testing throwing exception:
6.1: You MUST output a placeholder `# @ANSWER@`for the right answer to be filled in. Writing the right
answer is forbidden.
6.2: Do not write any assertion. This is forbidden. Instead, put a placeholder `# @ASSERT@`at the end of
the test function.
6.3: Within the unit function, the placeholders need to start at the left-most indent (i.e. 4 empty spaces — "
").
7: Each test MUST be a function without any input arguments. DON’T attempt to test I/O in each unit tests.
8: The function name MUST be informative. Avoid it to include generic terms like "case1" or "test1".
9: Use "
n" as line break. Use 4 empty spaces (" ") as Python code block indent.

User Prompt:
In a real-world scenario, there exists some trouble to be solved:
[SCENARIO]
{{{{scenario}}}}
[/SCENARIO]

Luckily, someone could solve this trouble by writing a function, as long as the solution function satisfy the
following problem specification:
[PROBLEM]
{{{{problem}}}}
[/PROBLEM]

Additionally, the solution function should have the following function signature:
[SOLUTION_SIGN]
{{{{solution_signature}}}}
[/SOLUTION_SIGN]

{{% if package_instruct %}}
Some special notes for `{{{{package_name}}}}`package:
{{{{package_instruct}}}}
{{% endif %}}

Only output the set of unit tests skeletons (*a list of strings*) in JSON code block (```json...```).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

B.12 ProgSyn: Answer generation

System prompt:
You are a very experienced programer. You are good at algorithmic reasoning and writing super high quality
code.

In a real-world scenario, there exists some trouble to be solved:
[SCENARIO]
{{{{scenario}}}}
[/SCENARIO]

Luckily, someone could solve this trouble by writing a function, as long as the solution function
satisfy the following problem specification:
[PROBLEM]
{{{{problem}}}}
[/PROBLEM]

An ideal solution function takes the following function signature:
[SOLUTION_SIGN]
{{{{solution_signature}}}}
[/SOLUTION_SIGN]

You will be a unit test skeleton with a `# @ANSWER@`. Your task is to generate a Python code
block (```python...```) to replace "`# @ANSWER@". The purpose of the code block is to calculate a
value for a variable called `expected_result`or `expected_results`.

For generating the code block, following the instructions below:
1: You MUST READ the problem specification (between "[PROBLEM]" and "[/PROBLEM]") WORD-BY-
WORD, take a pause and, understand it PERFECTLY WELL.
1.1: Now look at the values of input to the solution function, and contemplate on the expected behavior of the
solution function given those inputs.
2: IDENTIFY whether you need to assign value to `expected_result`or `expected_results`. There is only
one right choice.
3: Before arriving at an answer, ALWAYS take a deep breath and work on this problem STEP-BY-STEP.
Then, wisely choose one of the strategies from below:
a. an assignment of a Python literal value to the variable;
b. if the literal is too long or it’s best to use arithmetics to get the value, DON’T write literal value. INSTEAD,
use step-by-step program code to express how to arrive at the answer.
4: Within the code block, you MUST generate WITH NO leading indent. Use 4 empty spaces (" ") as indent
when writing if-else, for-loop, etc.

User Prompt:
To write code to calculate `expected_result`or `expected_results`(strategy b), maybe the following two
functions are useful:

The first function comes from package `numpy`.
[FUNCTION1]
{{{{old_function_signature}}}}
[/FUNCTION1]

The second function is an updated version of the FUNCTION1
[FUNCTION2]
{{{{new_function_signature}}}}
[/FUNCTION2]

FUNCTION2 differs from FUNCTION1 in the following way:
[DOC]
{{{{update_docstring}}}}
[/DOC]

[TEST]
{{{{unit_test_skeleton}}}}
[/TEST]
{{% if package_instruct %}}

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Some special notes for `{{{{package_name}}}}`package:
{{{{package_instruct}}}}
{{% endif %}}

B.13 ProgSyn: Assertion generation

System prompt:
You are a very experienced programer. You are good at algorithmic reasoning and writing super high quality
code.

You will be given a unit test function that misses assertion statements to either:
1. check equivalence between `result`and `expected_result`
2. or check equivalence between `result`and any values in `expected_results`(i.e. multiple correct answer).

Your task is to generate a Python code block (```python...```) to replace `# @ASSERT@`.

User Prompt:
[TEST]
{{{{unit_test_skeleton}}}}
[/TEST]

{{% if package_instruct %}}
Remember some special features of `{{{{package_name}}}}`package:
{{{{package_instruct}}}}
{{% endif %}}

B.14 ProgSyn: Solution

System prompt:
You are a very experienced programer. You are good at algorithmic reasoning and writing super high quality
code.

The API of interest is
[OLD_SIGN]
{{{{old_function_signature}}}}
[/OLD_SIGN]

This API recently undergoes an update and it now has the following new function signature:
[NEW_SIGN]
{{{{new_function_signature}}}}
[/NEW_SIGN]

This is the documentation that details the behavior about the update:
[DOC]
{{{{update_docstring}}}}
[/DOC]

You will be given the detailed problem specification. Your task is to USE the new API (between
"[NEW_SIGN]" and "[/NEW_SIGN]") to write high quality solution function that solve the problem
specification in Python code block (```python...```).

To generate the code block, following the instructions below:
1: First of all, you MUST CAREFULLY READ the problem specification (between "[PROBLEM]" and
"[/PROBLEM]") WORD-BY-WORD and understand it PERFECTLY WELL.
2: Before arriving at the solution function, take a deep breath and work on this problem STEP-BY-STEP.
2.1: INCLUDE in-line comments and improve readability.
2.2: If you are provided with unit tests, use them to understand expected behavior of the solution function.
3: Notice any error handling specified in the problem specification. INCLUDE error handling when writing
solution.
4: The solution signature MUST follows the one specified between "[SOLUTION_SIGN]" and
"[/SOLUTION_SIGN]".

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

math

26%

numpy

23%

re
14%

sympy

2%

itertools

8%

torch

14%
pandas

12%

Figure 5: Package breakdown of updated functions in CodeUpdateArena

4.1: You MUST NOT write documentation for the solution.
5: To implement the solution, you MUST use the *new* API function AS MUCH AS POSSIBLE.
6: Use 4 empty spaces (" ") as Python code block indent.

User Prompt:
[PROBLEM]
{{{{problem}}}}
[/PROBLEM]

Solution should take the following singautre
[SOLUTION_SIGN]
{{{{solution_signature}}}}
[/SOLUTION_SIGN]
{{% if unit_tests %}}
Unit tests for new update:
[PYTHON]
{{%- for test in unit_tests %}}
Unit Test {{{{loop.index}}}}
{{{{test}}}}
{{% endfor -%}}
[/PYTHON]
{{% endif %}}
USE the new API (between "[NEW_SIGN]" and "[/NEW_SIGN]") to write high quality solution function
that solve the problem specification in Python code block (```python...```). Only output the new
implementation in Python code block (```python...```).

C ADDITIONAL DATASET STATISTICS

C.1 RAW STATISTICS

Figure 5 shows the fraction of examples in our dataset per package.

Figure 6 shows the number of examples per update type in our dataset.

Figure 7 shows the number of program synthesis examples per API update. All updates have at least
3 examples, with some having substantially more if diverse enough samples could be drawn.

Table 8 shows that our benchmark covers a range of different types of API functionalities.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

modify-output-semantics

14%

add-output-data_type

6%

modify-function-name

10%

add-argument-semantics

9%add-output-semantics

8%
add-argument-supported_value(s) 4%

add-argument-data_type
12%

add-argument

10%

add-argument-default_value(s)

7%

modify-output-data_type

4%

add-function

1%

modify-argument-data_type

2%

modify-argument-name

5% modify-argument-semantics
4% modify-argument-supported_value(s)
2% modify-argument-default_value(s)2%

Figure 6: Distribution of Program Synthesis examples covered by different update types.

C.2 HUMAN INSPECTION OF FAILED GPT-4 ATTEMPTS

Taking the predicted solution in Table 3, we manually inspect 330 predicted solutions from 66 PS
examples where GPT-4 failed to generate a correct solution.5 We categorize errors into 4 categories.
(1) Incomplete Solution: includes issues like failure to include the edge cases of the problem statement,
missing or incorrect library imports, and incorrectly thrown exceptions as per the problem statement.
(2) Wrong Solution: real mistakes due to misinterpretation of the problem statement, using incorrect
semantics for mathematical computation, etc. (3) Wrong Test Case: test cases are incorrect or cover
cases not expected from the problem statement. (4) Specification Error: the specification was not
complete enough for the model to choose the right output. Table 9 shows the breakdown across these
categories. We note that an example may have error in multiple places (e.g. unit tests, predicted
solution, etc.), and therefore the error categories are not mutually exclusive.

Table 8: Diversity of packages in CodeUpdateArena. Our benchmark covers a range of different
types of API functionalities. Our python version is 3.11.5.

Package Type Standard / External lib.

re String operations Standard
math Arithmetic operations Standard
itertools Python data structure operations Standard
torch==2.0.1,
numpy==1.25.2 Vector operations External

sympy==1.12 Symbolic operations External
pandas==2.1.0 Table operations External

5The inspection was conducted on a preliminary version of the benchmark not including pandas.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

3 4 5 6 7 8 9 10 11
#PS

0

10

20

30

40

50

60

70

Co
un

t

69

50

15 14

0

6 4
1 1 1

#PS / update

Figure 7: Number of program synthesis instances per API update in CodeUpdateArena.

50 100 150 200 250 300 350
Edit Distance

0

20

40

60

80

100

120

140

Co
un

t

Edit Distance of Canonicalized Solutions

Figure 8: Edit distances between canonicalized reference solutions of PS instances; pairing happens
among PS of a single update.

C.3 TEST COVERAGE

We conducted a line coverage analysis with package coverage by running all the unit tests on the
reference solution. We heuristically exclude lines and find that our test coverage is high: if we exclude
function definition (i.e. “def”) and imports (i.e. “import”), our line coverage is 83.6%. Since we do
not test for specific errors being thrown, excluding lines containing “except” and “raise” results in
a coverage rate of 97.0%.

Table 9: Manual categorization of 66 failures cases of GPT-4 on program synthesis examples.
Categories are not exclusive.

Error Category Count

Incomplete Solution 29
Wrong Solution 33
Wrong Test Case 13
Specification Error 2

D IMPLEMENTATION DETAILS OF COMPUTING UPass@k

As described in Section 3, to evaluate each predicted solution c̃i, our evaluation procedure executes
the set of test cases twice, once with the updated API and once with the old API.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Dist 15

Prog A:
CANONICALIZED
import math
from typing import Tuple

def var0(var1, var2):
return math.nextafter(var1, var2)

Prog B:
CANONICALIZED
import math
from typing import Tuple

def var0(var1, var2):
var3, var4 = math.nextafter(var1, var2)
return (var3, var4)

Dist 23
Prog A:
CANONICALIZED
from typing import List, Union
import math

def var0(var1, var2):
var3 = []
for var4 in var1:

var5 = math.sqrt(var4, fallback=var2)
var3.append(var5)

return var3
Prog B:
CANONICALIZED
from typing import List
import math

def var0(var1, var2):
var3 = [math.sqrt(var4, fallback=var2) for var4 in var1]
return var3

Figure 9: Example of reference solution with low edit distance

[imports]
import numpy
...
[implementation of updated API]
def argsort(..., reverse=False):

...
[Optional: update API at runtime]
setattr(numpy, "argsort", argsort)
[Predicted solution]
...
[Unit test function]
def test_reverse_false():

...
test_reverse_false()

Figure 10: Example of test execution

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 10: Hyperparameter search over number of gradient updates when FT(U) continues pretraining
on the update docstring. We found that our choice of 10 in Table 4 is optimal. In this experiment,
other hyperparameters are kept the same, including the constant learning rate schedule and learning
rate of 1e-3.

DS-Coder-v1.5 UPass (Efficacy) ↑ SPass (Specificity) ↑
Method #gradient update @1 (∆) @5 (∆) @1 (∆) @5 (∆)

FT (U)
2 3.4 7.0 49.5 71.3
5 3.4 7.0 49.4 68.7

10 3.6 7.0 56.4 77.3

To evaluate code conforming to a new, non-standard API, we use a setup as shown in Figure 10. We
put the implementation of the new API (e.g. argsort) at the top of the program (after imports).
Then, we follow by a simple statement of setattr(numpy, "argsort", argsort) to dynamically
rebind the reference of numpy.argsort (old API) to the new API.

Given the total number of trials n, the target value k, and the number of successes ci on example i
(pass tests and use the update), we compute UPass@k over D program synthesis examples using the
same form as in Chen et al. (2021):

UPass@k = 1
D

∑D
i=1

[
1− (n−c

k)
(nk)

]
.

Finally, note that when performing our editing updates, each example is updated independently; a
update u′ starts again from the base modelM.

E EXPERIMENTATION SETUP

E.1 HYPERPARAMETERS

In Table 10, for FT(U), we conducted a hyper-parameter search over the number of gradient update
when training on the documentation about the API update. More training does not necessarily lead to
degradation in specificity.

training hyper
if hypers are unspecified, the values are set to be the default in `transformers`
optimizer: adamw_torch # as defined in TrainingArgument in `transformers`
lr: 1e-3
lr_scheduler_type: constant # in preliminary study, we found using `linear` leads to

worse performances↪→
batch_size: min(train_set_size, 8)
num_epoch: # 10 for FT(U) , and 5 for FT(PS)
decay: 1e-8
warmup_ratio: 0.05
gradient_accumulation_steps: 1

Generation:
do_sample: True
top_p: 0.7
temperature: 0.8
Control the length of generation
max_new_tokens: 512

E.2 LORA CONFIGURATION

lora
r: 8 # the low rank dim (hidden->r->hidden)
alpha: 1
dropout: 0.1

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Table 11: Experiments on DS-Coder-v1 with different training set construct controlled by (c, r).
Despite to a lesser degree, the observations in Table 5 hold for DS-Coder-v1 as well — training
on unrelated examples is worse, but including random updates along with the true updates help.
∗: comparing against base model, the gap is significant according to a paired bootstrap test with
p < 0.05.

UPass (Efficacy) ↑ SPass (Specificity) ↑
Method c r @1 (∆) @5 (∆) @1 (∆) @5 (∆)

DS-Coder-v1 — — 2.6 4.3 49.3 79.3

+ Prepend — — 10.7∗
+8.1 18.6∗

+14.3 — —

+ FT (PS)

2 1 30.8∗
+28.2 49.7∗

+45.3 52.5∗
+3.3 78.4 −0.8

1 2 25.7∗
+23.1 45.3∗

+41.0 53.3∗
+4.0 79.8 +0.5

3 0 30.4∗
+27.8 41.6∗

+37.3 51.6∗
+2.3 77.0∗

−2.2

0 3 8.3∗
+5.7 18.0∗

+13.7 51.5∗
+2.2 79.1 −0.1

where the lora are inserted:
target_modules = ["q_proj", "v_proj"]

E.3 EVALUATION PROCEDURE FOR FINETUNING EXPERIMENTS

Recall that our benchmark CodeUpdateArena is structured by pairing each executable API update
with n program synthesis examples. We treat the n program synthesis examples as an ordered list.
The training sets of FT (U) and FT (PS) slightly differ and we will describe them separately.

FT (U) The training set only consists of a single copy of the API update information following the
template in Prompt E.4.

FT (PS) As mentioned in Section 6.1, the single-edit training set contains c copies of Nu = 2
unique program synthesis examples and Nr examples from r updates from the rest of the benchmark.
Since the number of program synthesis examples per update could be as few as 3, we adopt a
cross-validation scheme to evaluate a model for each update. To give a concrete example: when
testing the model on program synthesis example i ∈ [0, n), we take the “previous” Nu examples —
example (i − 1) mod n and example (i − 2) mod n; we then repeat them c times to obtain the
final set of examples for target update. Then, we take two unique program synthesis examples from
each of the r random updates; and combine them with examples from the previous step to obtain the
final training set. Each training instance is formatted with Prompt E.5.

E.4 ADDITIONAL ABLATION STUDY

See Figure 11 for a specific study for c.
See Figure 12 for a specific study for r.

E.5 COMPUTE RESOURCES

For GPT-4, we call through the openai Python interface. It takes about 2 hours to generate (5) solu-
tions to program synthesis examples. For open-source models, all our experiments are accomplished
on NVIDIA A40 with 48GB memory. In our work, each experiment (prepend and fine-tuning) takes
a max of 9.5 hours to finish generating (5) solutions to program synthesis examples. After generating
predicted solutions to program synthesis examples, we need to execute the generated program against
corresponding test cases. This process is CPU-only and finishes within 2 hours.

E.6 PROMPT

Our prompt mostly migrates the style of the ones used in CodeLlama Rozière et al. (2023).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Specificity Efficacy
Measure

0

10

20

30

40

50

Pa
ss

@
1

DS-Coder-v1

Specificity Efficacy
Measure

DS-Coder-v1.5

c
1
2
3

Figure 11: Ablation study of c — the number of times to repeat Nu unique program synthesis
examples from target update. r is fixed to be 1. We observed that c = 2 is the optimal hyper, beyond
which we observe diminishing gains in efficacy and drops in specificity.

0 2 4 6 8 10 12 14
r

30

35

40

45

50

55

60

65

Pa
ss

@
1

Specificity

0 2 4 6 8 10 12 14
r

5

10

15

20

25

30

35

Pa
ss

@
1

Efficacy

Model
DS-Coder-v1
DS-Coder-v1.5
Baseline
FT (PS)
Base
Prepend

Figure 12: Ablation study of r — the number of random updates where a pair of unique program
synthesis examples are drawn from each update. c is fixed to be 2. Although different models have
different optimal values, we found that larger r will continue to decrease models’ performances for
efficacy and specificity.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

See Prompt E.1 for HumanEval

See Prompt E.2 for template for base model experiment

See Prompt E.3 for template for prepending experiment

See Prompt E.4 for template to generate instance for FT(U)

See Prompt E.5 for FT(PS)

E.1 HumanEval in jinja2

[INST]
Please continue to complete the function. You are not allowed to modify the given code and do the completion
only. Please return all completed function in [PYTHON] and [/PYTHON] tags. Here is the given code to do
completion:
[PYTHON]
{{completion_context}}
[/PYTHON]
[/INST]

E.2 Base Model

[INST]
Your task is to write a Python solution to a problem in a real-world scenario.
The Python code must be between [PYTHON] and [/PYTHON] tags.

Scenario: {{example_scenario}}
Problem: {{example_problem}}
Solution signature: {{example_solution_signature}}
[TEST]
{{example_unit_tests}}
[/TEST]
[/INST]

[PYTHON]
{{example_solution}}
[/PYTHON]

[INST]
Scenario: {{scenario}}
Problem: {{problem}}
Solution signature: {{solution_signature}}
[TEST]
{{unit_tests}}
[/TEST]
[/INST]

E.3 Prepend in jinja2

[INST]
Update note:
There’s an recent update to a function `{{old_function_signature}}`— {{update_description}}. The
function now has a new function signature — `{{new_function_signature}}`.
Here’s a detailed documentation about the update:
[DOC]
{{update_docstring}}
[/DOC]

Your task is to write a Python solution to a problem in a real-world scenario.
The Python code must be between [PYTHON] and [/PYTHON] tags.

Scenario: {{example_scenario}}
Problem: {{example_problem}}

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Solution signature: {{example_solution_signature}}
[TEST]
{{example_unit_tests}}
[/TEST]
[/INST]

[PYTHON]
{{example_solution}}
[/PYTHON]

[INST]
Scenario: {{scenario}}
Problem: {{problem}}
Solution signature: {{solution_signature}}
[TEST]
{{unit_tests}}
[/TEST]
[/INST]

E.4 FT(U) in jinja2

Train:
[INST]
Update note:
There’s an recent update to a function `{{old_function_signature}}`— {{update_description}}. The
function now has a new function signature — `{{new_function_signature}}`.

Here’s a detailed documentation about the update:
[DOC]
{{update_docstring}}
[/DOC]
[/INST]

Evaluation:
[INST]

{% if include_update -%}
Update note:
There’s an recent update to a function `{{old_function_signature}}`— {{update_description}}. The
function now has a new function signature — `{{new_function_signature}}`.
Here’s a detailed documentation about the update:
[DOC]
{{update_docstring}}
[/DOC]
{% endif %}

Your task is to write a Python solution to a problem in a real-world scenario.
The Python code must be between [PYTHON] and [/PYTHON] tags.

Scenario: {{example_scenario}}
Problem: {{example_problem}}
Solution signature: {{example_solution_signature}}
[TEST]
{{example_unit_tests}}
[/TEST]
[/INST]
[PYTHON]
{{example_solution}}
[/PYTHON]

[INST]

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Scenario: {{scenario}}
Problem: {{problem}}
Solution signature: {{solution_signature}}
[TEST]
{{unit_tests}}
[/TEST]
[/INST]

E.5 FT(PS) in jinja2

{: Train and Evaluation} [INST]
{% if include_update -%}
Update note:
There’s an recent update to a function `{{old_function_signature}}`— {{update_description}}. The
function now has a new function signature — `{{new_function_signature}}`.
Here’s a detailed documentation about the update:
[DOC]
{{update_docstring}}
[/DOC]
{% endif %}

Your task is to write a Python solution to a problem in a real-world scenario.
The Python code must be between [PYTHON] and [/PYTHON] tags.

Scenario: {{example_scenario}}
Problem: {{example_problem}}
Solution signature: {{example_solution_signature}}
[TEST]
{{example_unit_tests}}
[/TEST]
[/INST]

[PYTHON]
{{example_solution}}
[/PYTHON]

[INST] Scenario: {{scenario}}
Problem: {{problem}}
Solution signature: {{solution_signature}}
[TEST]
{{unit_tests}}
[/TEST]
[/INST]

F LICENSING

We use the following open-source LLMs with open licenses.

CODELLAMA Rozière et al. (2023) uses the LLAMA 2 COMMUNITY LICENSE (see https:
//github.com/meta-llama/codellama/)).

DEEPSEEKCODER DeepSeek-AI et al. (2024) uses DEEPSEEK LICENSE (see https://github.
com/deepseek-ai/DeepSeek-Coder/)).

DEEPSEEKCODER-V1.5 Guo et al. (2024a) uses the DEEPSEEK LICENSE (see https://
github.com/deepseek-ai/DeepSeek-Coder/)).

41

https://github.com/meta-llama/codellama/
https://github.com/meta-llama/codellama/
https://github.com/deepseek-ai/DeepSeek-Coder/
https://github.com/deepseek-ai/DeepSeek-Coder/
https://github.com/deepseek-ai/DeepSeek-Coder/
https://github.com/deepseek-ai/DeepSeek-Coder/

	Introduction
	Background and Related Work
	Task: CodeUpdateArena
	Update and Arena Generation
	Update (new API function) Generation
	Arena (Program Synthesis Examples) Generation

	Characterizing the Dataset
	Experiments
	Experimental Setting
	Results and discussions
	Ablation Study

	Conclusion
	Dataset
	Update Taxonomy
	Example

	Data generation details
	Preprocessing API path
	Unit test generation
	Deduplication
	Literalize answer in unit test
	Generation Prompt: Update
	Generation Prompt: Program Synthesis

	Additional Dataset Statistics
	Raw statistics
	Human Inspection of failed GPT-4 attempts
	Test Coverage

	Implementation details of computing UPass@k
	Experimentation setup
	Hyperparameters
	LoRA configuration
	Evaluation procedure for finetuning experiments
	Additional ablation study
	Compute Resources
	Prompt

	Licensing

