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ABSTRACT

An effective black-box threat model should find a sweet spot that balances well
across success rate, perceptual quality, and query efficiency. In this paper, we pro-
pose PadvFlow, a black-box attack method that achieves the desirable property.
Instead of searching for examples in a conventional ℓp space, PadvFlow leverages
the use of normalizing flows (NFs) to model the density distribution of natural and
indistinguishable adversarial examples in a perceptual space. The expressive NFs
can reduce the perceptible noises. Meanwhile, searching for adversarial samples
via the perceptual space improves details of generation. Thus, PadvFlow can gen-
erate perceptually-natural adversarial examples. Our comprehensive experiments
show that PadvFlow not only successfully attacks 6 undefended and 4 defended
image classifiers on CIFAR-10 and SVHN, but also can be scaled up to attack Im-
ageNet of pixel size 299 × 299. The effectiveness of PadvFlow is also validated
for a different modality by attacking an automatic speech recognition system.

1 INTRODUCTION

Figure 1: Generated adversarial examples and their individual magnified differences (denoted
as ∆method) by PadvFlow (the proposed method), N attack (Li et al., 2019) and AdvFlow (Mo-
haghegh Dolatabadi et al., 2020). The classifier is InceptionV3 (Szegedy et al., 2016) trained on
ImageNet of pixel size 299× 299. N attack tends to generate noise-like patterns in images as shown
in ∆N attack. Moreover, they are independent from the structures of input examples. On the other
hand, PadvFlow and AdvFlow craft adversarial examples that correlate with the structure of data.
However, we found that AdvFlow sometimes over-amplify certain areas of the images, resulting in
artificial and translucent stains. In contrast, PadvFlow produces rather natural examples.

Deep learning (DL) has been proving its success in various fields including applications to daily
life, like objection detection/classification in self-driving cars (Huang & Chen, 2020) and automatic
speech recognition (ASR) systems (Li et al., 2022) in AI assistants. However, Szegedy et al. (2013);
Biggio et al. (2013) discovered that neural networks are vulnerable even to small perturbations of
data (known as adversarial examples), which raises a significant concern about their reliability. Such
a phenomenon is initially discovered in an image classification problem and has been intensively
investigated (Akhtar et al., 2021). In parallel, there have been a few work focusing on adversarial
attacks in the audio domain (Zhang et al., 2017; Carlini & Wagner, 2018; Biolková & Nguyen, 2022).
For example, adversaries can carefully construct perturbations that cause the original audio signals
to be transcribed into malicious phrases or target transcripts (Carlini & Wagner, 2018). Adversarial
examples in audio domain are often more perceptible to human ears, which has motivated growing

1



Under review as a conference paper at ICLR 2023

research interest to improve the imperceptibility mainly based on the psychoacoustic principle (Qin
et al., 2019; Schönherr et al., 2018).

Despite modalities, the general objective of adversarial attack is to search for an example close to
a given example so that it fools the target model. Typically, the closeness is measured by the ℓp-
distance, known as ℓp-attack. Most existing adversarial attack methods fall into two main categories,
including white-box and black-box attacks. Early methods focused on white-box attack (Xu et al.,
2020a), where a full access to the target model is given to the adversaries. Under this assumption, the
adversaries can leverage the model information such as gradients to solve a continuous optimization
problem (Madry et al., 2017). In contrast, Song et al. (2018) search non-ℓp-restricted adversarial
examples in the AC-GAN (Odena et al., 2017) latent spaces. Laidlaw & Feizi (2019); Xu et al.
(2020b) lift the perturbation to features using some transformation, and Laidlaw et al. (2020) design
the perceptually adversarial training to increase model robustness (see Appx. B.1.1 for details).

On the contrary, black-box attack is considered to be more practical since the adversaries have only
access to the output of the target model through queries. In a realistic scenario, the number of trials
of passing input through the target model is usually limited (known as query budgets). Because
no internal information about the target model is given to the adversaries (Bhambri et al., 2019),
black-box attack methods often require expensive query budgets. In the meanwhile, the generated
adversarial samples should remain natural (no noises or corruptions) and imperceptible by human
judgement. However, we observed that (as illustrated in Fig. 1) existing black-box methods based
on the ℓp-norm perturbations sometimes generate examples with strong artifacts (easily perceptible)
even they may reach high success rate or low query (see Sec. 3). Therefore, a method which can
achieve the sweet spot of success rate, perceptual quality, and query efficiency is necessary.

To mitigate the generation of unnatural adversarial examples and to minimize the trade-off across
success rate, perceptual quality and query efficiency, we introduce Perceptually Natural Adversarial
Generating Flow (PadvFlow), an effective black-box method for generating imperceptible adversar-
ial examples. PadvFlow aims to learn the distribution of imperceptible adversarial examples around
a given data by leveraging the use of pre-trained normalizing flows (NFs) (Rezende & Mohamed,
2015) to transform the adversarial distribution into a normal distribution. Due to the expressivity of
NFs, it can reduce noise of synthetic samples. To achieve imperceptibility and enhance the fidelity
of details, the distance for perturbations is defined in the feature space (given by a perceptual map,
which is a neural network-based feature extractor) instead of raw data spaces. By considering exam-
ples in the “imperceptible region” (Zhang et al., 2018; Laidlaw et al., 2020), we show that PadvFlow
can generate imperceptible adversarial examples close to human judgments. Our methodology is
testified to be effective across two modalities: image classifications and ASR systems. Indeed, de-
signing realistic adversarial examples plays a crucial role in understanding the limitations of current
DL models in many applications Gleave et al. (2019); Takahashi et al. (2021). Our study may raise
awareness of imperceptible adversarial examples in a black-box manner, and stimulate the improve-
ment of the robustness against such a serious threat to existing DL systems.

Related work. We review the current state of the art in black-box attacks as it is the main focus of
this work. Due to the absence of internal information on the target model, one can perform gradient
estimation by querying the target model. For instance, Chen et al. (2017); Tu et al. (2019) proposed
to approximate the gradients via difference quotient (Lax & Terrell, 2020). To further reduce the
number of queries, Ilyas et al. (2018) employed the bandit optimization (Hazan et al., 2016) to
extract the prior information from previous iteration steps or data. Alternatively, HSJA (Chen et al.,
2020) estimated the gradients via binary information on the decision boundary.

Another plausible approach to estimate the gradients is based on Natural Evolution Strategy
(NES) (Wierstra et al., 2014). Rather than optimizing an objective function directly, NES searches
for a parametrized distribution that maximizes the objective function in expectation (see Sec. 2.3
and Appx. A.2). Recently, this technique has been extended to solve the black-box optimization
problem in adversarial attacks. The idea is to learn a probability distribution of examples around
a given example such that a sample drawn from this distribution is likely an adversarial example.
However, the adversarial distribution can be very complex and intractable for both sampling and
density evaluation. To simplify this problem, Li et al. (2019) developed N attack that used the tanh
function to map the adversarial distribution into a normal distribution. Mohaghegh Dolatabadi et al.
(2020) further improvedN attack by replacing the tanh with a pre-trained normalizing flow. Despite
their high success rates, the last two methods still constrain adversarial examples being within the
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Figure 2: Overview of PadvFlow. We leverage pre-trained NFs to model the distribution of adver-
sarial examples. Instead of using a conventional ℓp-norm, we employ the search on a perceptual
space induced by a perceptual map Ψ to improve the imperceptibility.

ℓp-ball. Consequently, it may lead to perceptible perturbations. PadvFlow also belongs to the NES
family but generally has better query-efficiency and sample quality than alternative methods.

Contributions. We observe that the common ℓp-norm used in adversarial attacks leads to easily-
perceptible perturbations by humans (as shown in Fig. 1). A more practical attack method should
deceive human perceptibility. Generating such deceptive examples can help not only to better under-
stand deep neural networks, but also to improve their robustness. Our work was mainly motivated
by this observation. Our contributions can be summarized as follows. (i) We introduce PadvFlow, a
black-box attack method which generates adversarial examples within an approximated impercep-
tible region with high imperceptibility. The effectiveness of the approximated imperceptible region
can be explained by analyzing the properties of perceptual maps and NFs (see Sec. 5). (ii) We
comprehensively validate the effectiveness of PadvFlow against ten image classifiers and show its
ability to scale-up to images with pixel size of 299 × 299 (see Sec. 3.1). Finally, we extend Pad-
vFlow to a different modality and empirically show its high success rate in attacking an ASR system
(see Sec. 3.2). We found out that PadvFlow can generate high fidelity adversarial samples and can
generally balance well across success rate, perceptual quality and query efficiency.

Outline of this work. In Sec. 2, we formulate the problem and introduce PadvFlow in details. In
Sec. 3, we testify PadvFlow for attacking image classifiers and ASR systems. In Sec. 4, we provide
additional evidence to support the effectiveness of PadvFlow in terms of success rate and perceptual
quality. In Sec. 5, we explain the mechanism of PadvFlow. At last, we conclude this work in Sec. 6.

2 THE PROPOSED METHOD: PADVFLOW

In Sec. 2.1, we establish our problem setup by formulating an untargeted adversarial attack on an im-
perceptible region. In Sec. 2.2, we introduce PadvFlow with the modeling of imperceptible region.
We describe its optimization, based on NES in Sec. 2.3. Fig. 2 shows the outline of PadvFlow.

2.1 PROBLEM FORMULATION

Let X be a data space, Y be a label space and P be the space indicating the probability distribution
on Y . h : X → P is a black-box model that predicts the label corresponding to an input x ∈ X
with a probability z ∈P . Let Th : X ×Y → [0, 1] denote an operator that extracts the probability
of a certain label predicted by h for a given input-label pair (x,y) ∈ (X ,Y ), i.e., P (Y = y | X =
x;h) = Th(x,y). Then, we denote an imperceptible region of x asRx ⊂X , where the difference
between x and the samples in Rx are imperceptible. The untargeted adversarial attack associated
with Rx can be described as the procedure of searching an adversarial example xadv ∈ Rx such
that it deceives the model h, i.e., argmaxy′∈Y Th(xadv,y

′) ̸= y. This is usually depicted via the
Carlini and Wagner (C&W) loss (Carlini & Wagner, 2017) L : X × Y → R+, which is defined as

L(x′,y; Th) := max

(
0, log Th(x′,y)−max

y′ ̸=y
log Th(x′,y′)

)
.

If L(x′,y; Th) = 0, it implies that x′ deceived h. Finally, the untargeted attack is formulated as:

xadv = argmin
x′∈Rx

L(x′,y; Th). (1)
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Although this work focuses on untargeted attacks, it can be easily adapted for targeted attacks by
letting xadv = argmaxx′∈Rx

Th(x′,yt), where yt ̸= y denotes the target label. It is noticed
that defining the perceptual similarity required forRx is highly subjective and generally infeasible,
we therefore propose and explain an alternative approach of modeling Rx in Sec. 2.2 and Sec. 5.
Moreover, the design of operator Th is often task-dependent. We demonstrate two Th examples for
an image classifier and an ASR system in Appx. A.1.

2.2 APPROXIMATED IMPERCEPTIBLE REGION

As commonly done (Li et al., 2019; Mohaghegh Dolatabadi et al., 2020), adversarial examples
are considered within an ℓp-ball around the original data with a fixed radius ϵX > 0, i.e.,
BX ,p(x, ϵX ) := {x′ ∈ X : ∥x′ − x∥p ≤ ϵX }. However, Zhang et al. (2018) pointed out
that BX ,p is not always a good approximation to the imperceptible region Rx (see Fig. 1) since
ℓp and other conventional metrics do not agree with human similarity judgments. Consequently,
examples within a large ℓp-ball might still be imperceptible, while those lie within a small ℓp-ball
can be easily perceptible.

To mitigate the problem, we follow Zhang et al. (2018) and Laidlaw et al. (2020) to model Rx

as an approximated imperceptible region R̂Ψ(x, ϵF ) with a given threshold ϵF by introducing a
perceptual space F , which is induced by a feature map Ψ : X → F . More precisely, we define

R̂Ψ(x, ϵF ) := {x′ ∈X : dΨ(x
′,x) ≤ ϵF} ,

where dΨ(x
′,x) := ∥Ψ(x′)−Ψ(x)∥p with p ≥ 1. We write it as R̂Ψ(x) for simplicity. Since

some pre-trained DNNs extract features that reflect perceptual information greatly (Zhang et al.,
2018), adopting them for Ψ brings us effective perceptual distances. For different modalities, we
utilize different dΨ’s in PadvFlow (details are in Sec. 3 and Appx. B). Thanks to high alignment of
such perceptual metrics and human judgement, we may expect that R̂Ψ(x) serves as a satisfactory
approximation for the imperceptible regionRx (R̂Ψ(x) ≈ Rx).

We now explain the construction of the map projR̂Ψ(x). We may just consider the case when x′

is out of R̂Ψ(x). The idea is to look for a point x′
bdry that lies on the boundary of R̂Ψ(x). More

precisely, we consider a continuous curve γ(t) := dΨ(x + t(x′ − x),x) − ϵF and aim at solving
t∗ ∈ [0, 1] such that γ(t∗) = 0 to obtain x′

bdry = x + t∗(x′ − x). Notice that γ(0) < 0, γ(1) > 0,
the equation is always solvable on [0, 1] (see Appx. A.3 for a guarantee). To avoid the computation
of the gradient of Ψ, any “derivative-free” root-solver can be adopted for the equation solving. In
our implementation, we utilize the “bisection method” (Corliss, 1977) to solve for t∗ (see Appx. A).

2.3 PADVFLOW: LEARNING IMPERCEPTIBLE ADVERSARIAL DISTRIBUTIONS

In this section, we explain how to learn an approximated adversarial distribution for any given pair
(x,y) within an approximated imperceptible region R̂Ψ(x) by using NES. Instead of solving (1) di-
rectly, we smooth the problem by introducing a parametric family of distributions, {π(x′|θx) : θx},
as in Ilyas et al. (2018). We expect to find a π(x′|θx) that resides in R̂Ψ(x) via updating θx.

min
θx

J (θx) := Ex′∼π(x′|θx) [L(x
′,y; Th)] . (2)

Since {π(x′|θx)}θx
is generally intractable, Li et al. (2019); Mohaghegh Dolatabadi et al. (2020)

introduced a latent space Z with a bijective map f : Z →X which transforms variables between
the latent and data space via x′ = projR̂Ψ(x)

(
f(z)

)
with z ∼ N (z;µx,Σx), whereN (z;µx,Σx)

is a normal distribution with learnable parameters µx and Σx, and projR̂Ψ(x) is a continuous pro-

jection onto R̂Ψ(x) (details in Sec. 2.2). Empirically, we found that admitting a trainable Σx only
yields minor performance improvement at the cost of heavily increased computation. Thus, we fix
Σx ≡ σ2I for a constant σ > 0. Therefore, problem (2) becomes

min
µx

J (µx) := Ez∼N (z;µx,σ2I)

[
L
(
projR̂Ψ(x)(f(z)),y; Th

)]
.

NES solves the optimization problem in a gradient descent manner, where the “log-likelihood trick”
(see Appx. A) is applied to compute the gradient

∇µxJ (µx) = Ez∼N (z;µx,σ2I)

[
L
(
projR̂Ψ(x)(f(z)),y; Th

)
∇µx logN (z;µx, σ

2I)
]
.
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Thanks to the closed-form of ∇µx logN (z;µx, σ
2I) = σ−2(z − µx), parameters can be updated

via a simple formula with batches of samples {zj := µx + ϵjσ}Mj=1 where ϵj ∼ N (0, I)

µx ← µx −
η

σM

M∑
j=1

L
(
projR̂Ψ(x)(f(zj)),y; Th

)
ϵj ,

where η is a learning rate and M is the population size. We notice that it enables to bypass the gra-
dient information on L

(
projR̂Ψ(x)(f(z));y, Th

)
and hence, also the gradient of Th (black-box). In

PadvFlow, we take the invertible mapping f as pre-trained NFs with the based distributionN (0, I).
Moreover, it is worthwhile to mention that the adversarial distribution is learned individually for
each x. Hence, it depends on x. We summarize PadvFlow as Alg. 2 in Appx A.4.

3 EXPERIMENTAL RESULTS

In this section, we examine the effectiveness of PadvFlow regarding success rate1 and testify with
different modalities of Th, including image classifiers (Sec. 3.1) and ASR systems (Sec. 3.2).

3.1 IMAGE CLASSIFIERS

In this section, we focus on the case when Th is image classifiers. All benchmarks are ℓp-attacks;
we compare when p = ∞ with a fixed conventional threshold ϵX = 8/255 and maximum query
budget as 10, 000. Following the conventional setting of Li et al. (2019); Mohaghegh Dolatabadi
et al. (2020), we fix maximum iteration as 500, population size M = 20, learning rate η = 0.02
and std. of the base normal distribution as σ = 0.1. The perceptual map Ψ in PadvFlow is taken as
Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) and the threshold is set to be
ϵF = 0.5 to bound dΨ. We utilize RealNVP (Dinh et al., 2016) as f and follow the implementation
of (Mohaghegh Dolatabadi et al., 2020) (details in Sec.B.1.4). We test PadvFlow with with different
invertible maps f in Sec. 4 and explore its possible extension in Appx. E.

CIFAR-10 and SVHN We compare PadvFlow with five benchmark methods: AdvFlow, N attack,
HSJA, Bandits, and AutoAttack. We test with six undefended and four defended classifiers Th
trained on CIFAR-10 (Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011). We utilize the entire
clean test set (10, 000 instances for CIFAR-10 and 26, 032 for SVHN) to evaluate a threat method.
In PadvFlow, the perceptual mapping Ψ is constructed as (Zhang et al., 2018) with a pre-trained
AlexNet (Krizhevsky et al., 2009) on CIFAR-10 and SVHN, respectively. We refer to Appx. B for
more details about the setup of benchmarks, Th and Ψ. We further compare the query efficiency of
PadvFlow, AdvFlow, and N attack. Results are reported in Table 1.

ImageNet We extend PadvFlow to higher resolution image, ImageNet (Deng et al., 2009) of pixel
size 299 × 299, and compare with two benchmarks (AdvFlow and N attack). To evaluate, we ran-
domly select 10,000 samples in the test set of ImageNet for undefended classifiers while we ran-
domly select 1,000 samples from the test set of ImageNet-100 (a subset of ImageNet with fewer
classes) for the defended classifier due to its eay availability of the pre-trained model. Table 2
records results of success rate, query, and objective perceptual measurement.

We observe that PadvFlow generally outperforms benchmark methods with large margins among
all classifiers. In particular, AdvFlow usually has lower success rates on undefended classifiers
compared with its ancestor, N attack. However, we found that N attack produces noisy adver-
sarial examples. In contrast, PadvFlow can reach higher success rates across wide categories of
defended/undefended classifiers and generate natural adversarial images (see Fig. 6 or perceptual
measurements on ImageNet in the last panel of Table 1). On the other hand, we point out that the
defended classifier, RN50-PAT, is obtained by perceptual adversarial training (PAT) Laidlaw et al.
(2020), which is designed to inherently defense perceptually generated adversarial samples with the
access to the gradient of Th. Surprisingly, PadvFlow can also fool such classifiers with high suc-
cess rates. Moreover, PadvFlow only requests a moderate query amount across all classifiers, and
actually for some defended ones, PadvFlow is the most efficient method.

1Success rate is the ratio of the number of successfully attacked samples over correctly classified data.
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Table 1: First two tables compare success rate of PadvFlow and benchmark methods across six unde-
fended and four defended classifiers. Last table compares averaged query and median of PadvFlow,
AdvFlow and N attack across one undefended and four defended classifiers. Classifiers are trained
on CIFAR-10 and SVHN, respectively.

Type CIFAR-10 classifiers Clean acc. (%)
Success rate (%)

PadvFlow AdvFlow N attack HSJA Bandits AutoAttack

un
de

fe
nd

ed

VGG19 (Simonyan & Zisserman, 2014) 93.59 94.98 90.55 96.41 71.62 86.38 93.82
GoogLeNet (Szegedy et al., 2015) 95.51 97.49 97.27 97.01 83.08 97.55 90.38
MobileNetV2 (Sandler et al., 2018) 94.92 93.24 85.12 99.24 79.82 93.99 89.52
DLA (Yu et al., 2018) 94.86 93.44 81.66 98.83 78.08 72.29 89.37
DenseNet121 (Huang et al., 2017) 95.54 98.13 93.26 98.03 75.41 82.46 90.45
WRN34 (Zagoruyko & Komodakis, 2016) 95.42 97.49 98.82 99.90 75.77 93.36 100.00

D
ef

en
de

d WRN34-Free (Shafahi et al., 2019) 81.30 86.92 41.06 38.39 81.15 35.56 89.04
WRN34-Fast (Wong et al., 2020) 86.35 90.85 40.24 36.41 80.64 33.29 86.99
WRN34-RotNet (Hendrycks et al., 2019) 57.10 89.88 54.74 53.59 60.89 47.86 85.61
RN50-PAT (Laidlaw et al., 2020) 80.54 73.77 39.25 37.92 61.20 36.79 66.57

Type SVHN classifiers Clean acc. (%)
Success rate (%)

PadvFlow AdvFlow N attack HSJA Bandits AutoAttack

U
nd

ef
en

de
d

VGG19 (Simonyan & Zisserman, 2014) 96.23 96.64 86.01 98.04 87.32 85.33 88.47
GoogLeNet (Szegedy et al., 2015) 96.81 99.19 87.63 98.51 78.21 88.64 91.68
MobileNetV2 (Sandler et al., 2018) 96.71 99.89 88.69 99.51 72.35 94.05 89.32
DLA (Yu et al., 2018) 96.88 98.56 84.19 98.67 79.52 76.94 90.546
DenseNet121 (Huang et al., 2017) 96.97 98.18 84.59 98.49 71.47 78.58 90.46
WRN34 (Zagoruyko & Komodakis, 2016) 94.20 91.11 90.17 94.72 83.54 80.58 96.39

D
ef

en
de

d WRN34-Free (Shafahi et al., 2019) 63.48 87.52 56.23 62.23 38.42 60.34 68.05
WRN34-Fast (Wong et al., 2020) 87.99 90.79 49.81 48.45 50.59 43.77 73.31
WRN34-RotNet (Hendrycks et al., 2019) 82.81 89.82 42.06 41.39 59.81 36.56 68.54
RN50-PAT (Laidlaw et al., 2020) 67.31 59.69 41.257 39.69 49.64 37.12 64.63

Type Classifiers
Query of CIFAR-10 (average/median) Query of SVHN (average/median)

PadvFlow AdvFlow N attack PadvFlow AdvFlow N attack

Undefended WRN34 629.13/400 966.70/400 238.92/200 1031.01/600 1698.21/600 411.12/200

D
ef

en
de

d WRN34-Free 662.16/200 514.52/200 1165.87/600 680.20/200 701.93/400 1034.83/400
WRN34-Fast 408.88/200 447.39/200 917.76/400 432.75/200 548.78/400 1201.16/400
WRN34-RotNet 478.93 /200 414.78/200 897.90/400 539.26/200 476.63/200 791.11/400
RN50-PAT 726.22/400 584.69/200 1042.67/600 1031.31/400 617.03/200 1402.87/600

Table 2: Comparison of PadvFlow with AdvFlow andN attack via success rate, query efficiency and
samples quality across three undefended (InceptionV3 (Szegedy et al., 2016), VGG16 (Simonyan
& Zisserman, 2014), RN50 (He et al., 2016) ) and one defended (RN50-PAT (Laidlaw et al., 2020))
classifiers on ImageNet. In order, they have clean accuracy: 77.17%, 71.59%, 80.28% and 56.37%.

Classifiers
Success rate Query (average/median) Perception (SSIM ↑)

PadvFlow AdvFlow N attack PadvFlow AdvFlow N attack PadvFlow AdvFlow N attack

InceptionV3 94.42 % 90.83 % 94.27 % 921.84/600 1636.10/800 1022.58/600 0.9713 0.9670 0.9259
VGG16 95.47% 93.81% 98.80 % 870.87/600 1860.87/1000 357.80/200 0.9651 0.9728 0.9326
RN50 96.45% 92.79 % 99.15% 1049.09/600 2181.73/1400 419.87/200 0.9625 0.9719 0.9263

RN50-PAT 53.61 % 11.32% 15.56 % 912.23/600 873.01/400 568.62/200 0.9851 0.9797 0.9581(ImageNet-100)

3.2 AUTOMATIC SPEECH RECOGNITION SYSTEMS

In this section, the effectiveness of PadvFlow is validated on speech domain. We benchmark our
method on the LibriSpeech dataset (Panayotov et al., 2015), which consists of English speech de-
rived from audiobooks sampled at 16kHz. Our target model is an end-to-end ASR system from
SpeechBrain (Ravanelli et al., 2021). This ASR system is trained on LibriSpeech and achieves a
Word Error Rate (WER) of 3.09% on the clean test set. In our experiment, we randomly select 1000
audio examples from the clean test set to evaluate an attack method. All examples are correctly tran-
scribed by the target ASR system. An attack is considered as successful when the WER between
the original and the adversarial transcripts is greater than 10%. We use a budget of maximum 3000
queries. We slightly modified the invertible neural network WaveGlow (Prenger et al., 2019) for
both PadvFlow and AdvFlow. The network is trained on the LibriSpeech train-clean-360 dataset.
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Table 3: Comparison of N attack, AdvFlow, and PadvFlow for attacking ASR under different al-
lowed magnitudes of perturbations.

Method Distortion Success rate (%) Query (avg/median) CDPAM ↓ PESQ ↑
N attack ϵX = 0.01 57.20 1136.45/964 0.3490 3.2002

ϵX = 0.05 98.00 527.71/364 0.5641 2.2532

AdvFlow ϵX = 0.01 16.90 1290.63/1244 0.0316 4.3026
ϵX = 0.05 54.60 1071.84/924 0.0649 3.9770

PadvFlow ϵF = 0.05 98.80 509.02/404 0.0429 3.6108
ϵF = 0.10 99.90 435.51/364 0.0639 3.6066

Note that we do not use any information of transcripts to train WaveGlow. The perceptual map Ψ
in PadvFlow is considered as Contrastive learning-based multi-dimensional Deep Perceptual Audio
similarity Metric (CDPAM) (Manocha et al., 2021).

For evaluation, we report the Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001) and
CDPAM as perceptual metrics to measure the speech quality of adversarial examples. We encourage
the readers to listen to the adversarial examples (can be found in the supplementary materials2) to
hear how they sound. Table 3 shows the results under different perturbations. It can be seen that
PadvFlow achieves a high success rate compared to AdvFlow and N attack. The average CDPAM
distances of both PadvFlow and AdvFlow are much smaller than those of N attack. We observe
the same behaviors for PESQ scores. Compared to N attack, adversarial examples generated by
PadvFlow are much better in terms of perceptual metrics when both methods have similar success
rate. Importantly, PadvFlow is query-efficient, which only requires on average of 500 queries to
obtain a high success rate. In contrast, AdvFlow needs a lots more queries to explore the adversarial
examples. We visualize the samples via spectrograms and plot in Appx. C.2.

4 ABLATION STUDY AND ADDITIONAL EXPERIMENTS

We comprehensively validate PadvFlow with additional experiments. In Sec. 4.1, we conduct an
ablation study to show each component of PadvFlow is essential. In Sec. 4.2, we show the fairness of
R̂Ψ(x) in PadvFlow by comparing quality of adversarial samples, conditioned on a assigned success
rate. Unless otherwise stated, we focus on PadvFlow and AdvFlow, and consider defended image
classifiers Th = WRN34-Free and RN50-PAT trained on CIFAR-10 for a demonstration purpose.

4.1 ABLATION STUDY

In this section, we demonstrate that both expressive invertible function f (= NFs) and perceptual
map Ψ (= LPIPS) in PadvFlow are crucial to reach a high success rate and simultaneously maintain
high quality of synthesized adversarial examples. We consider three variants of PadvFlow, where
PadvFlow-(tanh,Ψ) and PadvFlow-(id,Ψ) replaces NFs with f = tanh and identity map, respec-
tively. In addition, PadvFlow-(NFs,Ψrand) replaces its LPIPS with Ψ = randomly initialized map
(not trained) from X to F . We utilize the entire test set of CIFAR-10 and locate the samples where
all methods are successful for evaluation. We record the success rate and the average of pair-wise
(clean data and its adversarial copy) perceptual measurements over those common samples. For a
complete comparison, the results of N -attack and AdvFlow are also included. We report results in
Table 4. We further visualize some examples generated by those compared methods in Fig. 3.

Surprisingly, all the variants of PadvFlow outperformN -attack and AdvFlow in success rate. How-
ever, their generated images may be unnatural (noisy or blurry), which is also reflected by perceptual
measurements. In PadvFlow, NFs can help reducing noise. Meanwhile, perceptual map can improve
quality of details. Both components of PadvFlow are crucial to the balance between success rate and
sample quality. In Appx. E, we discuss a plausible usage of a probability flow ODE (Song et al.,
2020) as f attempting to increase perceptual quality of samples.

2The source code and some generated samples for ASR attacks are attached in https://drive.
google.com/drive/folders/1VmH4siq4ii40jCkmHeOnRu9nny66jixX?usp=sharing.
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Figure 3: Left panel illustrates PadvFlow and its variants. Right panel demonstrates AdvFlow with
adjusted ϵX ≈ 17.85/255 so that its has success rate closed to PadvFlow (≈ 87%), and compare
with PadvFlow and PadvFlow-(NFs,Ψrand).

Table 4: Objective perceptual measures of PadvFlow, its ablated variants, N attack, and AdvFlow.

Methods N attack AdvFlow PadvFlow PadvFlow-(tanh,Ψ) PadvFlow-(id,Ψ) PadvFlow-(NFs,Ψrand)

f tanh NFs NFs tanh identity map NFs
Rx ℓ∞ ℓ∞ R̂LPIPSCIFAR(x) R̂LPIPSCIFAR(x) R̂LPIPSCIFAR(x) R̂Ψrand(x)

Success rate 38.39% 41.06% 86.92% 82.64% 72.27% 95.71 %
WRN34-Free LPIPSImageNet ↓ 0.4096 0.2396 0.2378 0.3361 0.4101 0.4009

SSIM ↑ 0.9495 0.9856 0.9867 0.9546 0.9464 0.9432

Success rate 37.92% 39.25% 73.77% 62.59% 51.10% 95.22 %
RN50-PAT LPIPSImageNet ↓ 0.4270 0.2462 0.2422 0.3508 0.4219 0.4063

SSIM ↑ 0.9438 0.9762 0.9709 0.9418 0.9366 0.9373

4.2 SUCCESS RATE VS. QUALITY OF GENERATION

(a) WRN34-Free; LPIPS (b) WRN34-Free; SSIM (c) RN50-PAT; LPIPS (d) RN50-PAT; SSIM

Figure 4: “Perceptual measurements versus success rates” comparisons of PadvFlow and AdvFlow.
We examine for two defended classifiers (WRN34-Free and RN50-PAT) and quantify by perceptual
measurements: LPIPSImageNet (simplified as LPIPS in figures), SSIM.

Although we validated the effectiveness of PadvFlow with success rate in Sec. 3, unlike many ℓp-
attacks, R̂Ψ(x) is not a typical ℓp region in a raw data space. A natural question may arise: are
the comparisons fair? We answer the question from a different aspect – – the perceptual quality of
adversarial samples, another significant standard to judge a threat model. By adjusting the threshold
(ϵF for PadvFlow and ϵX for AdvFlow), each threat model can achieve any given success rate.
We then numerically compare the quality of their synthetic adversarial examples with 2 objective
metrics: LPIPSImageNet (trained on ImageNet) and SSIM. We randomly sample 1000 instances from
the test set of CIFAR-10, find the samples where both the attack methods succeed, and plot the
correlation between objective metrics and success rate in Fig. 4. Table 6 in Appx. B summarizes
the specific choices of approximated ϵF and ϵX to reach an assigned success rate. We observe that
conditioning on the same success rate, PadvFlow can always synthesize higher fidelity adversarial
instances than AdvFlow. This implies PadvFlow is not just recklessly extending the searching region

8
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with R̂Ψ(x); instead, PadvFlow utilizes a more appropriate domain to search for imperceptible ad-
versarial candidates. At last, we point that an algorithm (e.g., PadvFlow-(NFs,Ψrand)) might easily
reach a high success rate and be treated as an effective method. However, their samples have infe-
rior perceptual quality, which indicates the need of simultaneously taking all three aforementioned
aspects into account to evaluate a threat model. Given the empirical results, we can conclude that
PadvFlow succeeds in easily attacking target models with high fidelity adversarial copies.

5 MECHANISM AND INTUITION OF PADVFLOW

We provide a heuristic explanation of the effectiveness of PadvFlow in this section. We start with a
summary of geometric properties of R̂Ψ(x) and investigate its advantage.

Observations 1. In general, R̂Ψ(x) is not necessarily convex;

2. Denote ∥A∥op the operator norm of the matrix A. The first-order estimate to R̂Ψ(x) is{
x′ ∈X :

∥∥∇xΨ(x)
(
x′ − x

)∥∥
p
≤ ϵF

}
⊇

{
x′ ∈X : ∥x′ − x∥p ≤

ϵF

∥∇xΨ(x)∥op

}
.

First, R̂Ψ(x) = Ψ−1
(
BF ,p(Ψ(x), ϵF )

)
, the pre-image of BF ,p(Ψ(x), ϵF ) under Ψ. Due to the

non-linearity of Ψ, R̂Ψ(x) is not necessarily convex, indicating a complicated geometric structure
than ℓp-ball and may approximate the ground truth imperceptible region better. Hence, we may
discover imperceptible adversarial data that the ℓp-ball does not contain. Actually, the first-order
estimate of R̂Ψ(x) can be viewed as weighted ℓp-norm by the Jacobian matrix ∇xΨ(x) that is
data-dependent and generally non-isotropic (see Fig. 5 in Appx. C.1 for an illustration). It indicates
R̂Ψ(x) is adaptive to data, a feature that those attackers (e.g., N attack and AdvFlow) who model
Rx as a fixed and simple geometric shape do not enjoy.

Next, we present Prop. 1 which explains the compounding effect of invertible map f and perceptual
map Ψ and indicates the importance of both components. The proof is presented in Appx. D.

Proposition 1 Let f : Z → X be a continuous differentiable invertible map whose Jabocian
∇xf(x) is invertible for all x, and Ψ: X → F be a differentiable perceptual map. For any
δz and x, write x′ := f

(
f−1(x)+ δz

)
, we have an estimated perturbation in the perceptual space

Ψ(x′)−Ψ(x) = ∇xΨ(x) ◦
(
∇xf

−1(x)
)−1

δz +O(∥δz∥22).

It is noticed that δz and whence x′ are implicitly depend on ∇xf
−1(x)

)−1
and ∇xΨ(x). We first

explain intuitively the importance of the selection of f . Suppose that we have a less expressive
f , for instance tanh used in (Li et al., 2019), which Mohaghegh Dolatabadi et al. (2020) show
tanh produces data perturbation only with uncorrelated components. Then the perceptual adversar-
ial example is found with the adjustment of ∇xΨ(x) based on less informative data perturbation(
∇xf

−1(x)
)−1

δz (notice the order of composition in Prop. 1). Hence, the resulted adversarial data
may loss information of the original data even Ψ may help with perceptual adjustment (see Fig. 3
and Table 4 for empirical supports). In contrast, PadvFlow enjoys an expressive f given by NFs;
meanwhile, the search of adversarial examples are leveraged into perceptual space with the adjust-
ment of ∇xΨ(x), based on informative candidates provided by f . Therefore, PadvFlow can find
wider range of imperceptible adversarial examples.

6 CONCLUSION

In this paper, we have proposed PadvFlow, a black-box attack method that balances well across
success rate, perceptual quality, and query efficiency. Our method leverages the use of pre-trained
flow-based models to learn a distribution of adversarial examples. For imperceptibility, PadvFlow
relies on perceptual maps to model the search region. Compared to its counterparts (N attack and
AdvFlow), PadvFlow can synthesize more perceptually-natural adversarial examples while main-
taining a high success rate. The effectiveness of PadvFlow has been demonstrated in attacking
several image classifiers. We also extend PadvFlow to a different modality by showing its high
success rate and good perceptual quality in attacking an ASR system.
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ETHICS STATEMENT

The proposed PadvFlow is an adversarial attack algorithm, which can be used to mislead classi-
fiers, and ASR systems. PadvFlow might be potentially used in a malicious manner to attack deep
learning models. However we claim that PadvFlow has some limitations which may prevent it from
being exploited for potential harms. First of all, the effectiveness of attacking commercial products,
like AI assistants or automatic driving cars has not been testified. Second, to get a stronger per-
formance of PadvFlow, it relies on some prior information of data (e.g., similar data distribution)
to train expressive NFs and perceptual map. As we examine in Sec. 4, missing one of the compo-
nents of PadvFlow (expressive invertible generative modeling or perceptual map) may degrade its
performance. Training NFs and perceptual map are generally expensive and NFs is hard to scale up
to higher dimensional space. These requirements are too restrictive and difficult to be fulfilled in
real-world scenario.

REPRODUCIBILITY STATEMENT

Code of the proposed method We attach our code as an anonymous supplemental material3 Alg. 2
in Sec. 2.2 and Appx. A carefully describes the algorithm of PadvFlow. Moreover, Appx. B intro-
duces the construction of invertible generative models and perceptual maps of PadvFlow in details.
We also refer to the sources/pre-trained models of each component in PadvFlow.

Details of implementation We carefully explain the implementation details at the first paragraphs
of Sec. 3.1 and 3.2. They are supported with explanations of target models and benchmark methods
in Appx. B.

Dataset Exploited datasets are all open sources. We introduce them and refer to their sources in
Appx. B.1.3.

3https://drive.google.com/drive/folders/1VmH4siq4ii40jCkmHeOnRu9nny66jixX?
usp=sharing
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A SUPPLEMENTAL EXPLANATIONS TO ALGORITHM

In Appx. A.1 we introduce the design of Th depending on different modalities. In Appx. A.2 and
Appx. A.3, we explain in details about NES for optimization and bisection algorithm for constructing
projection to approximated perceptual region, respectively. We introduce two variants algorithms of
PadvFlow which extends to higher resolution images in Appx. A.5.

A.1 DETAILS OF CONSTRUCTION OF Th FOR TWO DIFFERENT MODALITIES

The design of operator Th is task-dependent. We introduce its construction for an image classifier
and an ASR system in Appx. A.1.

Image classification In this case, h outputs a vector h(x) ∈ Rk, which indicates the probabilities
of a given image x belonging to each of the k categorical classes. Let y ∈ {0, 1}k be the one-hot
vector that representing a specific label, Th can be defined as: Th(x,y) = h(x)⊤y .

Automatic speech recognition Given a speech feature sequence x of length T , the black-box
ASR system h outputs a matrix h(x) ∈ RL×T of probabilities over an alphabet Γ of L tokens.
The i-th column vector h(x)(i) denotes the probability distribution of the i-th input over Γ. Th is
characterized by computing the probability of assigning an input audio x to its correct transcript
y using the Connectionist Temporal Classification (CTC) (Graves et al., 2006; Carlini & Wagner,
2018). More precisely, it is defined as: Th(x,y) =

∑
∀a∈A(x,y)

∏
i h(x)

(i)
ai , where a ∈ ΓT is an

alignment of x with respect to y from a set of valid alignments A(x,y) as in (Graves et al., 2006).
Th(x,y) can be computed efficiently using the forward-backward algorithm (Graves et al., 2006).

A.2 DETAILS OF NES

Here we denote a general objective function as L and let {π(x′|θ)}θ be a variational family with
parameters θ. NES looks for θ to make the objective small in expectation.

min
θx

J (θ) := Ex′∼π(x′|θ) [L(x′)]

By adjusting θ, the distribution can learn to capture the local information of L. The search of θ is
fulfilled by gradient descent. We can apply the so-called “log-trick” to compute the gradient in θ:

∇θJ (θ) = ∇θ

∫
L(x′)π(x′|θ)dx′

=

∫
L(x′)∇θπ(x

′|θ)dx′

=

∫
L(x′)∇θπ(x

′|θ) · π(x
′|θ)

π(x′|θ)
dx′

=

∫ [
L(x′)∇θ log π(x

′|θ)
]
· π(x′|θ)dx′

= Ex′∼π(x′|θ) [L(x′)∇θ log π(x
′|θ)] .

When {π(x′|θ) : θ} is a family of normal distribution, that is,

π(x′|µ,Σ) =
1√

(2π)D det(Σ)
exp

(
− 1

2
(x′ − µ)⊤Σ−1(x′ − µ)

)
the gradients∇µ log π(x′|µ,Σ) and ∇Σ log π(x′|µ,Σ) can be compute analytically as

∇µ log π(x′|µ) = Σ−1(x′ − µ)

∇Σ log π(x′|µ,Σ) =
1

2
Σ−1(x′ − µ)(x′ − µ)⊤Σ−1 − 1

2
Σ−1.

A.3 DETAILS OF BISECTION METHOD FOR CONSTRUCTING PROJECTION ONTO R̂Ψ(x)
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Algorithm 1 Bisection Method

Input: Real-valued function γ(t); endpoints a < b; tolerance threshold τ ; max. iteration T
Ensure: γ(a)γ(b) < 0
Output: A point c close to a root of γ(t) = 0 within the tolerance threshold τ

1: k ← 0
2: while k < T do
3: c← a+b

2

4: if γ(c) = 0 or b−a
2 < τ then

5: Output c
6: end procedure
7: end if
8: k ← k + 1
9: if sign(γ(c)) = sign(γ(a)) then

10: a← c
11: else
12: b← c
13: end if
14: end while

The projection of a point x′ /∈ R̂Ψ(x) onto R̂Ψ(x) is constructed by searching another point x′
bdry

that lies on the boundary of R̂Ψ(x) by solving a root t∗ ∈ [0, 1] for the equation γ(t) = 0, where
γ(t) := dΨ

(
x+ t(x′ −x),x

)
− ϵF . To be mentioned, since the gradient of Ψ is often unavailable,

a “derivative-free” root solver is preferred. In Alg. 1, we review bisection method, a commonly
used “derivative-free” root solver. We remark that other root solver can also be applied, for instance,
regula falsi (false position) method (Nguyen, 2021).

The solvability is ensured by Intermediate Value Theorem (Rudin et al., 1976), which we formulate
the following lemma. We remark that there might be multiple solutions but we just need to find one.

Lemma 1 Let x′ /∈ R̂Ψ(x), then there is a t∗ ∈ [0, 1] so that x′
bdry := x + t∗(x′ − x) satisfies∥∥∥Ψ(x′

bdry)−Ψ(x)
∥∥∥
p
= ϵF .

Additionally, we provide a more general proposition (Prop. 2) which insures the existence of an
intersect x′

bdry for any continuous curve (not necessary γ) connecting points which are respectively
residing outside and inside a general region R. The proof is presented in Appx. D. Intuitively, the
proposition says no matter what the region R is, any continuous path connecting two points which
are respectively lie inside and outside ofR should intersect at some point on the boundary ofR.

Proposition 2 LetR ⊂ RD be a nonempty set. Denote the interior, exterior, and boundary ofR as
int(R), ext(R), and ∂R, respectively. If x0 ∈ int(R) and x1 ∈ ext(R), then any continuous curve
connecting x0 and x1 must intersect with a point on ∂R.

This proposition can guarantee the existence of projected point on the boundary for a general con-
struction of continuous projection.

A.4 ALGORITHM OF PADVFLOW

Alg. 2 presents the algorithm of PadvFlow. We remark that in Line 10, we follow (Li et al., 2019) to
standardize the objective functions to stabilize the training.

A.5 DETAILS OF EXTENDING PADVFLOW TO IMAGENET

Since the training of NFs is difficult to scale up to dataset in higher dimensional space, we utilize
the upsampling and downsampling technique as in (Mohaghegh Dolatabadi et al., 2020) to extend
PadvFlow for higher resolution images. The idea is rather having a pre-trained normalizing flow
on the original data space X ⊂ RD, we downsample the input x by a transform Mdown into a
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Algorithm 2 PadvFlow: learn imperceptible adversarial distributions

Input: (x,y) clean data and ground truth label; pre-trained NF f ( or invertible map); target model
Th; loss function L(·,y; Th); pre-trained perceptual map Ψ; perceptual radius ϵF ; population
size M ; max. iteration; learning rate η; standard deviation (std.) of the base distribution σ

Output: Mean µx and an imperceptible adversarial distribution sampled as x′ =
projR̂Ψ(x)

(
f(f−1(x) + z)

)
, z ∼ N (µx, σ

2I)

1: Initialize µx

2: Set zclean = f−1(x).
3: for steps in the max. iteration range do
4: for k = 1, · · · ,M do
5: Sample δk ← µx + σϵk, ϵk ∼ N (0, I)

6: x′
k ← projR̂Ψ(x)

(
f(zclean + δk)

)
7: Lk ← L(x′

k,y; Th)
8: end for
9: m, s← mean(L1, · · · LM ), std(L1, · · · ,LM )

10: Update µx ← µx − η
σM

∑M
k=1

Lk−m
s ϵk

11: end for

lower dimensional space xdown ∈ Xdown ⊂ Rd with d < D and search the parameters for the latent
distribution in the lower dimensional latent space Zdown ⊂ Rd. The pre-trained NFs f is then to
relate Zdown and Xdown, residing in Rd. We can utilize upsampling mapMup to bring from Xdown
back to X .

This general idea can be exploited in two ways, depending on the accessibility of perceptual map
on (H1) the downsampled space Ψdown : Xdown → Fdown, or (H2) the original Ψ: X → F . Let
zclean = f−1(xdown) ∈ Rd. PadvFlow-(H1) is an extension of Algorithm 3 in AdvFlow, where we
search imperceptible adversarial candidate x′

down in the lower dimensional space

x′
down := projR̂Ψdown (x)

(
f(zclean + δdown)

)
,

where δdown ∼ N (µ, σ2Id×d) and µ is a learnable parameter. Then we upsample the difference
of x′

down and xdown and treat it as an adversarial perturbation in the original space X . Thus, the
perceptible candidate x′ in X is considered as

x′ = projX
(
x+Mup

(
x′

down − xdown
))

,

where projX indicates the projection to valid image space; namely, [0, 1]D.

On the other hand, we propose PadvFlow-(H2), a variant of PadvFlow-(H1), where adversarial can-
didates f(zclean+δdown) are first promoted in the lower dimensional space Xdown. Then we upsample
them back to the original input space X and adjust them with the projection to approximated im-
perceptible region projR̂Ψ(x). That is,

x′ = projR̂Ψ(x)

(
Mup

(
f(zclean + δdown)

))
.

In our implementation of ImageNet (e.g., Table 2), we utilize PadvFlow-(H2) due to the easy ac-
cessibility to the pre-trained perceptual map4. We summarize the algorithms of respective cases in
Alg. 3 and Alg. 4. The differences in contrast to Alg. 2 are marked in colors of magenta and cyan,
respectively.

B DETAILS OF IMPLEMENTATION

In Appx. B.1, we explain the details of implementation when it is a image classification problem. It
includes the throughout review of defended image classifiers (in Appx. B.1.1), benchmark methods
(in Appx. B.1.2, image (in datasets B.1.3), and additional implementation details of PadvFlow (in

4https://pytorch.org/hub/pytorch_vision_alexnet/
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Algorithm 3 PadvFlow-(H1): PadvFlow for high resolution images. It upsamples perturbation
(between candidates and xdown) found in Xdown

Input: (x,y) clean data and its ground truth label; pre-trained NF f : Zdown → Xdown; target
model Th; loss function L(·,y; Th); pre-trained perceptual map Ψdown : Xdown → Fdown de-
fined on Xdown and it corresponds to a lower dimensional approximated imperceptible region
R̂Ψdown ⊂ Rd; perceptual radius ϵF ; population size M ; max. iteration; learning rate η; standard
deviation (std.) of the base distribution σ

Output: Learned µdown and an imperceptible adversarial distribution sampled as follows. First,
sample z ∼ N (µdown, σ

2Id×d) and define δdown := projR̂Ψdown (x)

(
f
(
f−1(xdown) + z

))
−

xdown. A sample following imperceptible adversarial distribution is given by x′ = projX
(
x +

Mup(δdown)
)

1: Initialize µdown ∈ Rd

2: xdown ←Mdown(x)
3: Set zclean = f−1(xdown) ∈ Rd

4: for steps in the max. iteration range do
5: for k = 1, · · · ,M do
6: Sample δdown,k ← µdown + σϵk, ϵk ∼ N (0, Id×d)

7: x′
down,k ← projR̂Ψdown (x)

(
f(zclean + δdown,k)

)
8: x′

k ← projX
(
x+Mup

(
x′

down,k − xdown
))

9: Lk ← L(x′
k, y; Th)

10: end for
11: m, s← mean(L1, · · · LM ), std(L1, · · · ,LM )

12: Update µdown ← µdown − η
σM

∑M
k=1

Lk−m
s ϵk

13: end for

Algorithm 4 PadvFlow-(H2): PadvFlow for high resolution images. It upsamples candidates in
Xdown

Input: (x,y) clean data and its ground truth label; pre-trained NF f : Zdown → Xdown; target
model Th; target model Th; loss function L(·,y; Th); pre-trained perceptual map Ψ: X → F

which corresponds to the approximated imperceptible region R̂Ψ ⊂ RD; perceptual radius
ϵF ; population size M ; max. iteration; learning rate η; standard deviation (std.) of the base
distribution σ

Output: Learned µdown and an imperceptible adversarial distribution sampled as x′ =

projR̂Ψ(x)

(
Mup

(
f(f−1(xdown) + z)

))
, where z ∼ N (µdown, σ

2Id×d).

1: Initialize µdown ∈ Rd

2: xdown ←Mdown(x)
3: Set zclean = f−1(xdown) ∈ Rd

4: for steps in the max. iteration range do
5: for k = 1, · · · ,M do
6: Sample δdown,k ← µdown + σϵk, ϵk ∼ N (0, Id×d)

7: x′
k ← projR̂Ψ(x)

(
Mup

(
f(zclean + δdown,k)

))
8: Lk ← L(x′

k, y; Th)
9: end for

10: m, s← mean(L1, · · · LM ), std(L1, · · · ,LM )

11: Update µdown ← µdown − η
σM

∑M
k=1

Lk−m
s ϵk

12: end for

Appx. B.1.4). On the other hand, in Appx. B.2, we explain the implementation when the modality
is a ASR problem. Last in Appx. B.3, we summarize the selection of thresholds which we use in
Sec. 4.2.
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B.1 IMPLEMENTATION OF IMAGE CLASSIFICATION

We first review the exploited defended classifiers and we explain the implementation details when
Th = image classifier.

B.1.1 REVIEW OF DEFENDED CLASSIFIERS

Let hθ be a target classifier with trainable parameters θ and ℓ be a loss function for a classification
problem, for instance, Cross-entropy loss. A defended classifier is obtained by the adversarial train-
ing (Madry et al., 2017; Bai et al., 2021) which learns (outer minimization problem) to be robust to
adversarial perturbation (inner maximization problem)

min
θ

E(x,y)∼D max
x′∈Rx

ℓ
(
hθ(x

′), y
)
, (3)

where D is data-label distribution. Typically, adversarial training algorithms model Rx as {x′ ∈
X : ∥x′ − x∥p ≤ ε} for a small threshold ε, in which our three exploited defended classifiers
Free (Shafahi et al., 2019), Fast (Shafahi et al., 2019), and RotNet (Hendrycks et al., 2019) fall into
this category. On the other hand, a current method PAT (Laidlaw et al., 2020) modelsRx as

R̂ξϕ(x) :=
{
x′ ∈X : ∥ξϕ(x′)− ξϕ(x)∥2 ≤ ε′

}
, (4)

where ξϕ is a pre-trained or trainable perceptual map (with parameters ϕ) induced by a classifier
(see Appx. B.1.4 for its construction) and ε′ is a threshold (may be different from ε). Below, we are
going to review the four defended methods.

Free (Shafahi et al., 2019) The inner maximization is typically solved via multiple update steps
of Projected Gradient Descent (PGD) (Madry et al., 2017) to find potential adversarial candidates,
then the outer minimization updates the model parameters on those adversarial samples. Both the
inner and outer loop require forward-backward passes of the network, which is expensive. Instead,
Shafahi et al. (2019) proposes free adversarial training to update both the model parameters and
data perturbations using one simultaneous backward pass which can reduce runtimes while remain
comparable performance as (Madry et al., 2017).

Fast (Wong et al., 2020) Fast gradient sign method (FGSM) (Goodfellow et al., 2014), which can be
viewed as a simplified version PGD with a single update step, is a faster algorithm to solve the inner
maximization problem while had been considering to be less effective. (Wong et al., 2020) improve
FGSM with a random initialization and accelerate its with standard tricks for efficient training of DL
models (e.g., cyclic learning rates (Smith & Topin, 2018), mixed-precision arithmetic (Micikevicius
et al., 2017)).

RotNet (Hendrycks et al., 2019) They introduce an auxiliary rotation-based self-supervision (Gi-
daris et al., 2018) which can learn representations of data to increase the robustness of models. They
train classifiers together with a separate auxiliary head to predict the degree of rotation applied to a
given input image.

PAT (Laidlaw et al., 2020) They utilize a neural network-based approximation to imperceptible
adversarial region as Eq. 4. The classifier induced the perceptual map ξϕ can be identical to the target
model hθ. The corresponding inner maximization problem can be approximately solved via their
proposed Projected Perceptual Gradient Descent (PPGD) and Lagrangian Perceptual Attack (LPA).
PPGD regularizes with the first-order Taylor estimation of ℓ̂θ(x) := ℓ

(
hθ(x), y

)
to encourage the

projection onto R̂ξϕ(x). Thus, the inner maximization problem becomes

max
δ:∥∇xξϕ(x)·δ∥

2
≤η

[
ℓ̂θ(x) +∇x(ℓ̂θ)

⊤(x)δ
]
,

for a small η > 0. In contrast, LPA utilizes the trick of Lagrange multipliers to relax the expensive
computation of Jacobian in PPGD. The inner maximization problem turns into

max
x′

[
ℓ̂θ(x

′)− λmax
(
0, ∥ξϕ(x′)− ξϕ(x)∥2 − ε′

) ]
,

where λ is a hyper-parameter. We remark that they both require the gradient information of ℓ̂θ(x)
and hθ(x).
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B.1.2 BENCHMARK METHODS

We implement AdvFlow by following the official repository5 and we modify the invertible genera-
tive function f from NFs to tanh for N attack. For Bandits, we utilize their repository6 but follow
the setup of hyper-parameters described in AdvFlow. We follow the same setup of hyper-parameters
of the official repository of AutoAttack7 with version = ’standard’. For HSJA, we consult
with their official repository8 and modify it to PyTorch with a reference9.

B.1.3 REVIEW OF IMAGE DATASETS

We review and refer to sources of image datasets we test on in this section.

CIFAR-10 10 contains ten categories of natural images of pixel size 32 × 32 in RGB scale. We
utilize its test set (in total 10, 000 instances) or random subset for evaluation. The source is from
PyTorch library.

SVHN 11 contains ten classes of colour digits from house numbers, which is of pixel size 32 × 32.
We utilize its test set (in total 26, 032 instances) or random subset for evaluation. The source is also
from PyTorch library.

ImageNet 12 is a large scale dataset contains 1000 classes of natural images in RGB scale. We utilize
10, 000 random samples from its test set for tasks with undefended classifiers. On the other hand,
we utilize ImageNet-100, a subset of ImageNet which contains 100 classes for defended classifiers,
RN50-PAT (Laidlaw et al., 2020) due to its easy accessibility of pre-trained defended classifier.

B.1.4 IMPLEMENTATION

Invertible mapping For a fair comparison, we utilize the invertible generative model as Real-
NVP (Dinh et al., 2016) as AdvFlow. The pre-trained models on CIFAR-10 and SVHN can be
obtained from the source of AdvFlow repository13.

Perceptual metric We exploit LPIPS (Zhang et al., 2018) as the perceptual distance Ψ in PadvFlow.
Consider a pre-trained classifier g : X → P (refer to notations in Sec. 2.1) which has L feature
layers. Let x′ and x be a pair of images and gl be the l-th feature layer of g (1 ≤ l ≤ L). (Zhang
et al., 2018; Laidlaw et al., 2020) construct a perceptual feature map as follows. They first extracts
features of l-th layer and normalize with ℓ2 norm with respect to the channel dimension, denoted it
as ĝl(x′) and ĝl(x). Then they further normalize each with width wl and height hl in l-th layer and
stack all layers into a vector to get the perceptual feature map

Ψ: x 7→
( ĝ1(x)√

w1h1

, · · · , ĝL(x)√
wLhL

)
.

The LPIPS of x′ and x is then defined as

dΨ(x
′,x) := ∥Ψ(x′)−Ψ(x)∥2 .

In PadvFlow for image classification, we take AlexNet (Krizhevsky et al., 2009) as the pre-trained
classifier for the feature extraction.

Target classifiers We introduce the target classifiers we test on and summarize their sources in
Table 5.

5https://github.com/hmdolatabadi/AdvFlow
6https://github.com/MadryLab/blackbox-bandits
7https://github.com/fra31/auto-attack
8https://github.com/Jianbo-Lab/HSJA
9https://github.com/I-am-Bot/Black-Box-Attacks

10https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
11https://pytorch.org/vision/stable/generated/torchvision.datasets.SVHN.

html
12https://www.image-net.org/
13https://drive.google.com/file/d/18J8eh-KLaPq9vUe_TwhuQMBW4WKBVX0L/view
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• CIFAR-10/SVHN: We consider six undefended (VGG19, GoogLeNet, MobileNetV2,
DLA, DenseNet121 and WRN34) and four defended models (WRN34-Free, WRN34-Fast,
WRN34-RotNet and RN50-PAT). We train the the first five undefended classifiers by fol-
lowing the implementation of the repository14. On the other hand, we utilize the pre-trained
classifiers or follow the setup to train classifiers provided by AdvFlow15.

• ImageNet: We consider three undefended models (InceptionV3, VGG16, RN50) that the
pre-trained models are publicly available on PyTorch Hub. For the defended model (RN50-
PAT), we utilize the model as (Laidlaw et al., 2020).

Table 5: Sources of image classifiers on CIFAR-10, SVHN and ImageNet

Type CIFAR-10/SVHN classifiers Source

U
nd

ef
en

de
d

VGG19 (Simonyan & Zisserman, 2014) https://github.com/kuangliu/pytorch-cifar
GoogLeNet (Szegedy et al., 2015) ′′

MobileNetV2 (Sandler et al., 2018) ′′

DLA (Yu et al., 2018) ′′

DenseNet121 (Huang et al., 2017) ′′

WRN34 (Zagoruyko & Komodakis, 2016) https://github.com/hmdolatabadi/AdvFlow

D
ef

en
de

d WRN34-Free (Shafahi et al., 2019) https://github.com/mahyarnajibi/FreeAdversarialTraining
WRN34-Fast (Wong et al., 2020) https://github.com/locuslab/fast_adversarial
WRN34-RotNet (Hendrycks et al., 2019) https://github.com/hendrycks/ss-ood
RN50-PAT (Laidlaw et al., 2020) https://github.com/cassidylaidlaw/perceptual-advex

Type ImageNet classifiers Source

InceptionV3 (Szegedy et al., 2016) https://pytorch.org/hub/pytorch_vision_inception_v3/
Undefended VGG16 (Simonyan & Zisserman, 2014) https://pytorch.org/hub/pytorch_vision_vgg/

RN50 (He et al., 2016) https://pytorch.org/hub/pytorch_vision_resnet/

Defended RN50-PAT (Laidlaw et al., 2020) https://github.com/cassidylaidlaw/perceptual-advex

B.2 IMPLEMENTATION OF AUTOMATIC SPEECH RECOGNITION

Invertible mapping Our invertible generative model is WaveGlow (Prenger et al., 2019), a neural
vocoder based on a flow neural network16. Originally, it was developed for synthesizing speech
conditioned on mel-spectrograms. We remove the conditioning blocks to perform unconditioned
generation. In particular, the network consists of 12 coupling layers and 12 invertible 1×1 convolu-
tions. Each coupling layer has 8 layers of dilated convolutions with 256 channels. Considering the
time complexity, we only train this model for 500 epochs on the LibriSpeech train-clean-360 dataset
using the Adam optimizer with a learning rate of 0.0001. All audio recordings were sampled at a
rate of 16kHz.

Target ASR model We target an end-to-end ASR system17 from SpeechBrain (Ravanelli et al.,
2021) trained on the full LibriSpeech (960 hours) with the CTC loss (Graves et al., 2006). Internally,
the system employs an encode, decoder, and an attention mechanism. The network consists of
several convolutional, recurrent, and fully-connected layers. At every frame, the network outputs a
probability distribution over all tokens. Byte Pairwise Encoding (Gage, 1994) was used to extract
the basic recognition tokens.

Perceptual metric To judge how similar two audio recording are, CDPAM (Manocha et al., 2021)
was employed18. The model uses a neural network to approximate the human perception of audio
quality using contrastive learning combined with multi-dimensional representation learning. Since
CDPAM was trained based on human judgments, it correlates quite well with human perception.

14https://github.com/kuangliu/pytorch-cifar
15https://github.com/hmdolatabadi/AdvFlow
16An implementation available at https://github.com/NVIDIA/waveglow
17The pre-trained model available at https://huggingface.co/speechbrain/

asr-crdnn-rnnlm-librispeech.
18An implementation available at https://github.com/pranaymanocha/PerceptualAudio/

tree/master/cdpam
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B.3 SELECTION OF THRESHOLDS IN SEC. 4

In Table 6, we summarize the approximated thresholds ϵF of PadvFlow and ϵX AdvFlow to achieve
target success rates in Sec. 4.2. The estimated thresholds are obtained via binary search.

Table 6: The corresponding approximated thresholds ϵF of PadvFlow and ϵX AdvFlow to achieve
an assigned success rates. We consider two defended classifiers, WRN34-Free and WRN50-PAT,
trained on CIFAR-10.

Dataset Assigned success rate 87% 80% 70% 60% 50% 40%

WRN34-Free Approximated ϵF 0.5 0.42 0.36 0.31 0.275 0.23
Approximated ϵX

17.85
255

16.653
255

13.769
255

11.6
255

9.5
255

8
255

Dataset Assigned success rate 73% 70% 60% 50% 40%

WRN50-PAT Approximated ϵF 0.5 0.476 0.41 0.36 0.295
Approximated ϵX

15.2
255

14.469
255

12.5
255

10.46
255

8
255

C ADDITIONAL DEMONSTRATION

In Appx. C.1, we illustrate the histograms of singular values of DΨ(x) for two different clean
image x’s when Th is a classifier. In Appx. C.2, we illustrate spectrograms of generated samples
and magnified perturbation by PadvFlow and comparison methods, N attack and AdvFlow.

C.1 ILLUSTRATION OF SINGULAR VALUES OF DΨ(x)

Figure 5: Demonstration of histograms of singular values of DΨ(x) for two different x’s of the
scale 32× 32× 3. DΨ(x) is non-isotropic and data-dependent.

C.2 ILLUSTRATION OF SPECTROGRAM
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Original

THIS SHOULD GO FAR IN
SHUTTING THE MOUTHS OF THE

FALSE APOSTLES

THIS SHOULD GO FAR IN
SHUTTING THE MOUTHS OF THE

FOSSIL POSITIVES

THIS SHOULD GO FAR IN
SHUTTING THE MOUSE TO THE

FOSSIL PUZZLES

THIS SHOULD GO FAR IN
SHUTTING THE MOUSE TO THE

FALSE APOSTLES

Attack AdvFlow PadvFlow

Original

YOU RESEMBLE ME RACHEL YOU
ARE FEARLESS AND INFLEXIBLE AND

GENEROUS

YOU RESEMBLE ME EACH OTHER
YOU ARE FEARLESS AND INFLEXIBLE

AND GENEROUS

YOU RESEMBLE NEIGHBORLY CHARM YOU
ARE FEARLESS AND INFLEXIBLE AND

GENEROUS

YOU DON'T RESEMBLE ME REJOIN
YOU ARE FEARLESS AND INFLEXIBLE

AND GENEROUS

Attack AdvFlow PadvFlow

Original

ALSO THERE WAS A STRIPLING
PAGE WHO TURNED INTO A

MAID

ALSO THERE WAS A STRIPLING
PAGE WHO TURNED IT TO

A MAID

ALSO THERE WAS A STRIPLING
PAGE WHO TURNED IT TO

A MAID

ALSO THERE WAS A STRIPLING
PAGE WHO TURNED IT TO

A MAID

Attack AdvFlow PadvFlow

Figure 6: Demonstration of the adversarial examples and their differences synthesized by
N attack (Li et al., 2019) and AdvFlow (Mohaghegh Dolatabadi et al., 2020), and the proposed
PadvFlow. Transcripts are shown on the top and the residuals between the adversarial examples and
the originals are illustrated in the bottom of each figure.
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D PROOFS OF PROPOSITIONS

In this section, we provide the proofs of Prop. 1, Lemma 1, and Prop. 2.

D.1 PROOF OF PROPOSITION 1

Proof. The proof is similar to Lemma 3.1 in (Mohaghegh Dolatabadi et al., 2020). Let us denote
z := f−1(x). Then by first-order Taylor expansion, we have

Ψ(x′)−Ψ(x) = (Ψ ◦ f)(z + δz)− (Ψ ◦ f)(z)
= ∇z(Ψ ◦ f)(z)δz +O(∥δz∥22)
= ∇xΨ(x) ◦ ∇zf(z)δz +O(∥δz∥22),

where the last equality comes from the chain rule. Now we apply the inverse function theorem to f

and get ∇zf(z) =
(
∇xf

−1(x)
)−1

. Therefore, the proposition is proved.

■

D.2 PROOF OF LEMMA 1

Proof. We recall the definition of the continuous curve connecting x′ and x defined on [0, 1]

γ(t) := dΨ(x+ t(x′ − x),x)− ϵF .

We notice that γ(0) = dΨ(x,x)−ϵF = −ϵF and that γ(1) = dΨ(x
′,x)−ϵF > 0. By Intermediate

Value Theorem, there is a t∗ ∈ (0, 1) so that γ(t∗) = 0. That is, the point x′
bdry := x+ t∗(x′ − x)

satisfies
∥∥∥Ψ(x′

bdry)−Ψ(x)
∥∥∥
p
= ϵF , which proves the claim.

■

D.3 PROOF OF PROPOSITION 2

Proof. Let Γ: [0, 1] → RD be an arbitrary continuous curve so that Γ(0) = x0 and Γ(1) = x1.
We recall that the interior, the boundary and the exterior of a set can partition the entire space. That
is

RD = int(R) ⊔ ∂R⊔ ext(R), (5)
where ⊔ denotes the disjoint union. Also notice that both int(R) and ext(R) are open sets in RD.
Suppose on the contrary that Γ([0, 1]) ∩ ∂R = ∅. If we apply intersection of Γ([0, 1]) with Eq. 5,
we obtain

Γ([0, 1]) =
(

int(R) ∩ Γ([0, 1])
)
⊔
(
∂R∩ Γ([0, 1])

)
⊔
(

ext(R) ∩ Γ([0, 1])
)

=
(

int(R) ∩ Γ([0, 1])
)
⊔
(

ext(R) ∩ Γ([0, 1])
)
.

That is, Γ([0, 1]) can be expressed as a disjoint union of nonempty open sets (in a relatively topology
of Γ[0, 1]) int(R) ∩ Γ([0, 1]) and ext(R) ∩ Γ([0, 1]). This implies Γ([0, 1]) is disconnected (Rudin
et al., 1976). However, it contradicts to the assumption on the connectivity of Γ([0, 1]) as it is the
image of a connected set [0, 1] under a continuous function Γ. Therefore, there must exist t0 ∈ [0, 1]
such that Γ(t0) ∈ ∂R. ■

E FURTHER DISCUSSION ON INVERTIBLE GENERATIVE MODELING f

In PadvFlow, the invertible generative model f is modeled by pre-trained NFs. However, we
explore other plausible candidates for a replacement. Song et al. (2020) introduces probability
flow ODE, a deterministic process with trajectories sharing the same marginal density as the dif-
fusion process (Song & Ermon, 2019; Ho et al., 2020) modeled via stochastic differential equa-
tions. Probability flow ODE relates the latent and data space in an invertible way by solving for-
ward/backward ordinary differential equation (ODE) via ODE solvers. We testify PadvFlow with
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f = probability flow ODE on WRN34-Free by randomly sampling 100 images from CIFAR-10. We
found out its success rate degrades significantly to 13.7% while it slightly improves on perceptual
measurements. We claim that the degradation of success rate is due to numerical errors of solving
ODE which leads to inaccurate invertibility. To be precise, let x be a sample in the image space. We
found out that x′, which is obtained by first transforming via the inverse of probability flow ODE to
a latent variable and then transforming the latent back to the image space via probability flow ODE,
usually has unignorable error ∥x′ − x∥∞ compared to the standard ℓ∞ threshold 8/255. Such a
shift of x′ may accumulate and affect the search of adversarial candidates via perceptual map. On
the other hand, the improvement on perceptual quality from the probability flow ODE may due to
that diffusion models are more expressive. However, the computation cost of probability flow ODE
is extremely expensive even for a single forward-backward transform from the data space to latent
space as it requires a ODE solving for each pass.

Nevertheless, Probability flow ODE still seems to be a potential workaround of NFs as NFs are
generally difficult to train on a large scale dataset. We leave the improvement of increasing accuracy
and reducing computation costs for f = probability flow ODE as a future work.
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