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Abstract

With the rapid advancement of image generation, visual text
editing using natural language instructions has received in-
creasing attention. The main challenge of this task is to fully
understand the instruction and reference image, and thus gen-
erate visual text that is style-consistent with the image. Pre-
vious methods often involve complex steps of specifying the
text content and attributes, such as font size, color, and layout,
without considering the stylistic consistency with the refer-
ence image. To address this, we propose UM-Text, a unified
multimodal model for context understanding and visual text
editing by natural language instructions. Specifically, we in-
troduce a Visual Language Model (VLM) to process the in-
struction and reference image, so that the text content and
layout can be elaborately designed according to the con-
text information. To generate an accurate and harmonious
visual text image, we further propose the UM-Encoder to
combine the embeddings of various condition information,
where the combination is automatically configured by VLM
according to the input instruction. During training, we pro-
pose a regional consistency loss to offer more effective su-
pervision for glyph generation on both latent and RGB space,
and design a tailored three-stage training strategy to further
enhance model performance. In addition, we contribute the
UM-DATA-200K, a large-scale visual text image dataset on
diverse scenes for model training. Extensive qualitative and
quantitative results on multiple public benchmarks demon-
strate that our method achieves state-of-the-art performance.

1 Introduction

Visual text editing and generation play a crucial role in var-
ious applications, such as poster design, scene text editing,
and the novel task of cross-language image translation. The
main challenge of these tasks lies in manual design of text
layout, attributes (e.g., font type, size, color), language (e.g.,
English, Chinese), and visual context (e.g., poster, product
image), which are cumbersome and error-prone. In this pa-
per, we propose a method that enables users to perform vi-
sual text editing via natural language instructions. Given an
input image and editing command, our model automatically
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Figure 1: Illustration of traditional framework of visual text
generation and three additional generation patterns of our
method. Please note that the text content, layout and implicit
attributes can be adaptively generated by VLM according to
instruction.

generates compelling text content, appropriate layout, and
visually harmonious text images with implicit text attributes.

Recently, with the rapid advancement of text-to-image
(T2I), diffusion models have enabled the creation of highly
realistic images with only instructions. For example, Sta-
ble Diffusion 3(Esser et al. 2024), FLUX.1(Labs 2024a) and
FLUX.1 Kontext(Labs et al. 2025a) has gradually improved
its capabilities in general image generation and visual text
rendering. However, these commonly used T2I models are
still deficient in generating complex characters such as hand-
writing or art text. Many researchers inject enhanced text
generation capabilities into pre-trained diffusion models us-
ing various approaches (Tuo et al. 2023; Tuo, Geng, and Bo
2024; Chen et al. 2023b, 2024), but manual interactions are
still required for text content and layout.

In visual text generation, text layout plays an important
role in generating an appropriate result. Some text gener-
ation methods, such as TextDiffuser2(Chen et al. 2024),
UniGlyph(Wang et al. 2025a), and GlyphDraw2(Ma et al.
2025), use the task-specific large language model (LLM)
to predefine text positions. DesignDiffusion(Wang et al.
2025c¢) even achieves the layout and visual text image in
an end-to-end manner. However, there approaches are still
infeasible for visual text editing task, which requires the co-
ordinates of the target text in image. Moreover, the potential
of text editing task should be further explored to generate
more harmonious and aesthetic visual text images.

In this paper, we propose a holistic framework that inte-
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Figure 2: Some results produced by our UM-Text, presenting its powerful effects on tasks such as image editing, image trans-
lation, and poster design. Please note that the bounding boxes of text are adaptively generated by UM-Text model.

grates multimodal understanding into the process of visual
text generation and editing for implicit learning of text lay-
out and attributes. As illustrated in Fig.1, our framework
can support four different text generation and editing pat-
terns, where the reference image and instruction informa-
tion is extracted as context embeddings for visual text gen-
eration/editing. Furthermore, we introduce UM-Encoder, a
module for multiple condition aggregation that incorporates
T5 embeddings, character-level visual embeddings, and con-
text embeddings. To improve the accuracy of text glyphs, the
regional consistency loss in both latent and RGB space are
proposed for better glyph supervision. We also contribute
the UM-DATA-200K dataset containing 200k diverse image
pairs with/without visual text for the pre-training of VLM.
In summary, our contributions are as follows.

* We propose an innovative framework named UM-Text,
which combines a unified multimodal understanding and
image editing model. With a three-stage training strategy
and region-based losses, UM-Text allows flexible visual
text generation and editing by simple natural language
instructions.

¢ We introduce UM-Encoder, a novel module for multi-
ple condition aggregation that integrates text embedding,
character-level visual embeddings, and multimodal em-
beddings. With this module, the implicit attributes and
layout of text are adaptively generated for visual text gen-
eration and editing.

e We contribute a dataset called UM-DATA-200K with
manual annotation for visual text generation and editing.
Extensive experiments demonstrate the effectiveness of
our dataset and framework.

2 Related Work

Image Generation and Understanding Diffusion mod-
els have become the primary method for high-quality image

synthesis, offering powerful capabilities in terms of photo-
realism, fidelity, and diversity. From DDPM (Ho, Jain, and
Abbeel 2020) and DDIM (Song, Meng, and Ermon 2020) to
Latent Diffusion Models (LDM) (Podell et al. 2023; Rom-
bach et al. 2022; Tian et al. 2024), these models improve
generation efficiency and scalability by operating directly
within the latent embedding space, enabling image synthe-
sis with higher resolution at lower computational costs. With
the introduction of architectures such as DiT (Peebles and
Xie 2023; Esser et al. 2024) and FLUX (Labs 2024a), dif-
fusion models have made significant advances in general-
ization and image quality, laying a solid foundation for uni-
fied handling of multimodal conditions and becoming an im-
portant architecture in modern image generation (Labs et al.
2025b; Mou et al. 2024; Zhang, Rao, and Agrawala 2023).
Despite these advancements, diffusion models still face sig-
nificant challenges in understanding textual and visual infor-
mation, highlighting the need to introduce VLM.

VLM (Bai et al. 2025; Team et al. 2025; Zhu et al.
2025; Open Al 2024; Team et al. 2023) have made signifi-
cant progress in vision-language understanding tasks. Mod-
els like Gemini (Team et al. 2024), Janus-Pro (Chen et al.
2025b), Mogao (Liao et al. 2025), BAGEL (Zhang et al.
2025b) and Nexus-Gen (Zhang et al. 2025a) further unify
understanding and generation. Recent works such as Meta-
Queries (Pan et al. 2025), BLIP30 (Chen et al. 2025a),
UniWorld-V1 (Lin et al. 2025), OmniGen2 (Wu et al. 2025),
and Step1X-Edit (Liu et al. 2025) integrate VLMs into im-
age generation via multimodal conditioning, exploring con-
trol mechanisms and latent-level fusion with diffusion mod-
els. However, these methods still face limitations in text ren-
dering: most of them only support English and struggle with
editing fine-grained textual regions.

Visual Text Generation and Editing In recent years,
there have been substantial developments in the tasks of T2I
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Figure 3: The framework of UM-Text for multi-lingual visual text generation and editing. The UM-Encoder integrates multiple
modality embeddings as the condition of visual text generation. The mask in input and loss function is transformed from
the predicted layout of UM-Designer. Please note our single model supports diverse downstream applications based on the

instructions.

generation and image editing with visual text rendering. The
goal of visual text generation and editing models is to pro-
duce accurate text images where the visual elements and text
layout are harmoniously integrated. Text embeddings and
various loss functions are employed to help the model gen-
erate more precise text.

DrawText(Liu et al. 2022) demonstrates that character-
aware models consistently outperform their character-blind
counterparts across various text rendering tasks. Glyph-
ByT5(Liu et al. 2024a,b) and FLUX-Text(Lan et al. 2025)
introduce a method utilizing box-level contrastive learning
to align text features extracted from the language model with
those derived from the visual encoder. In DiffUTE(Chen
et al. 2023a) and GlyphDraw(Ma et al. 2023), glyph images
are directly incorporated into the text embeddings. Any-
Text(Tuo et al. 2023), AnyText2(Tuo, Geng, and Bo 2024),
and GlyphDraw2(Ma et al. 2025) render a glyph line con-
taining multiple characters into an image, encode glyph in-
formation using a pretrained OCR recognition model, and
inject it into the text embedding.

Unfortunately, it’s challenging to represent multiple char-
acters with a single token, and there’s a lack of embed-
ding for image content. To address these issues, we propose
UM-Encoder for text embedding injection that integrates TS
embeddings, character-level visual embeddings, and VLM
embeddings. This approach enables the model to generate

more accurate text while achieving better stylistic consis-
tency with the reference image.

Several T2I methods employ large language models
(LLMs) for layout prediction. TextDiffuser has adopted a
Layout Transformer that autoregressively outputs bounding
boxes for keywords in an encoder-decoder manner. Glyph-
Draw? and TextDiffuser2 further leverage LLMs to generate
layouts. However, these methods simply learn layout infor-
mation from the text modality and cannot be directly applied
to visual text editing tasks. To overcome this limitation, we
propose UM-Designer, a VLM that can simultaneously gen-
erate layouts and text related to the reference image.

3 Methodology

In this section, we present the details of UM-Text. We be-
gin to introduce the construction process of UM-DATA-
200K in Sec.3.1, which is a large-scale synthetic dataset
designed to pretrain the UM-Designer with capabilities in
layout planning and text content generation. In Sec.3.2, we
present the framework of our UM-Text for visual text gen-
eration and editing tasks. Subsequently, Sec.3.3 introduces
the UM-Encoder, which integrates various conditions into
unified embeddings. In Sec.3.4, we propose a region-wise
consistency loss to ensure that the generated text is semanti-
cally accurate and stylistically consistent with the reference
image. Finally, Sec.3.5 outlines our training strategy.
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Figure 4: The illustration of three training stages for UM-Text optimization.

3.1 Dataset Construction

Recently, many layout planning and text content genera-
tion datasets are limited in the scale or quality of collected
data. To address this gap, this paper endeavors to assemble a
large-scale, high-quality dataset particularly tailored for lay-
out planning, visual text generation, and editing tasks. Gen-
erally, we crawled 40 million product posters from online e-
commerce platforms. To construct our dataset, we developed
an advanced data pipeline including image aesthetics filter-
ing, object segmentation, OCR, image erasure, and manual
annotation.

Specifically, we used the PPOCRv4(Cui et al. 2025) to ex-
tract text content and bounding boxes from images and em-
ployed Aesthetic Predictor V2.5 to rate the images. We uti-
lized OCR results and aesthetic scores to filter five million
images with detailed text layouts and contents. To achieve
higher-quality images, we further applied SAM2(Ravi et al.
2024) to segment the main product, filtered out inconsistent
text layouts, and used FLUX-Fill (Labs 2024b) to generate
clean images based on the text layout. Ultimately, we se-
lected 200k images, including various styles of main product
and poster images.

3.2 The Framework of UM-Text

As illustrated in Fig. 3, the main components of UM-Text
include the UM-Encoder, the Diffusion Transformer, and
training losses for optimization. Generally, UM-Designer is
implemented as a VLM to capture the semantic information
of instruction and reference image for the prediction of text
content, layout, and implicit attributes. In addition to the in-
struction embedding from T5 and visual embedding of ren-
dering text images, these predicted results are adaptively se-
lected as additional conditions for downstream tasks accord-
ing to the instruction, all of which constitute the conditions
of diffusion model, named UM-Embedding c..

In the flow-matching-based diffusion model, we use VAE
encoder to extract the latent representations of input image
I, binary mask image I,,, from UM-Designer or manually
designed layout, and condition image I. = I; ® I, result-
ing in zg, 2, and z., respectively. Subsequently, the diffu-
sion algorithm progressively adds random noise to 2, at each
time step ¢, resulting in a series of noisy latent variables z;.
Flow-based diffusion models employ a neural network Vj to

predict the velocity field at each time step, with the objective
of matching the model’s velocity field to the ideal velocity
field that transports the data distribution along the diffusion
process. This is achieved by minimizing the flow matching
loss:

Lrr = Eztyzmwzc,Ce,tNN(Oil) H |V* (2t t)

—‘/g(Zt,Zm7 ZC7C€7t)||§]'

(D

where L denotes the calibrated flow matching loss, and
V*(z4,t) is the target velocity field derived from the diffu-
sion process.

3.3 UM-Encoder

Currently, many ControlNet-like approaches(Ma et al. 2024;
Wang et al. 2025b; Zhao and Lian 2023; Chen et al. 2023a)
typically inject glyph image and text conditions into the
model. However, the glyph image condition is highly sus-
ceptible to the pre-defined text attributes, which often harm
its robustness. Some methods replace the text embedding
with line-level OCR embedding as text condition. However,
these approaches have some limitations: (1) The visual em-
bedding from OCR model only encodes the visual text infor-
mation, missing the detailed description of generated image.
(2) Line-level visual embedding is insufficient for the repre-
sentation of character stroke information. (3) The layout and
attributes of visual text are designed without considering the
context information of reference image.

To address these issues, we propose the UM-Encoder for
comprehensive condition representation on instruction, ref-
erence image, and character-level glyph image. Specifically,
we use a pretrained VLM, known as UM-Designer, to cap-
ture the semantic information of instruction and reference
image. The side information, including text content, layout,
and attribute embeddings, for visual text generation/editing
task is predicted by UM-Designer. To obtain fine-grained
glyph information of text, we render the text content into
glyph images in character-level, and use an OCR model to
extract the visual embeddings of glyph images. Meanwhile,
the output tokens of instruction and reference image are used
as implicit attribute embeddings. We claim that those token
embeddings are effective enough for implicit representation
of text attributes due to the well-designed pre-training task
of UM-Designer. More details can be found in Sec 3.5. Fi-
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Figure 5: Qualitative comparison of UM-Text and state-of-the-art models in visual text editing task.

nally, the character-level visual embeddings, attribute em-
beddings, and instruction embeddings from TS are aligned
and concatenated into UM-Embedding as the condition em-
beddings of diffusion model.

3.4 Regional Consistency Loss

Previous text generation methods often face challenges in
generating correct strokes for complex characters, due to the
lack of detailed supervision in nuanced glyph shapes. To
address this problem, we propose a Regional Consistency
Loss (RC Loss) to constraint the structural consistency of
visual text in various spaces. Specifically, RC Loss receives
the mask image I,,, from either the UM-Designer prediction
result or manual annotation to localize the target regions,
and calculate the L, distance between prediction result and
ground-truth within target regions.

In our implementation, we design two types of RC Loss to
constraint the structural consistency in both latent and RGB
spaces. In the latent space, we calculate the RC Loss in the
velocity field, which is analogous to the re-weighting strat-
egy of flow matching loss. After that, we use VAE decoder
to obtain the predicted image and use Canny edge detector
to extract the edge maps of predicted image and input image.
Therefore, the RC Loss can be simply calculated on the lo-
calized regions of both edge images. Formally, the RC Loss
on latent and RGB spaces, denoted L, and L respec-
tively, can be formulated as:

Lro = HC(f@ In) —C(I,® Im)Hz +A o
E [||V*(zt,t) © 2m — Vo(2t: Zms Zes Ces ) © zml\i}

where I is the predicted image, and C(-) denotes the Canny
edge operator. The overall training loss is defined as follows:
L=Lgrr+ BLRC. 3)

and A, 8 are the hyper-parameters for balancing different
losses. This dual-space regional consistency loss effectively

preserves stroke integrity in complex character generation
while maintaining stability in the editing process. Notably,
the RC Loss in latent space mitigates the “dilution effect”
commonly observed in mask-based editing, where the gra-
dients outside the mask dominate the optimization direction.

3.5 Training Strategy

Based on the model architecture, we propose a progressive
three-stage training strategy to learn a text editing model
with context-aware designing capabilities. The training pro-
cess is illustrated in Fig.4, including the pre-training of UM-
Designer, pre-training of diffusion model, and semantic alig-
ment between UM-Designer and diffusion model. The de-
tails are specified as follows.

Stage 1: UM-Designer Pre-training. In this stage, we ini-
tialize our UM-Designer by the weights of Qwen2.5-VL and
continue the training process on UM-DATA-200K dataset.
Generally, this dataset contains various tasks, including lay-
out planning, text content generation, text detection and
recognition. These tasks simulate the process of visual text
generation and editing, and thus enhance the capability of
UM-Designer for image-text understanding.

Stage 2: Diffusion Pre-training. In this stage, we initial-
ize the text generation model with FLUX-Fill and train all
parameters on public benchmark. This process enhances
the foundational text generation capabilities for subsequent
learning stage.

Stage 3: Semantic Alignment. In this stage, we train the
connector of UM-Encoder and diffusion model to establish
the connection between condition representation and appli-
cation. By further introducing VLM embedding, our UM-
Embedding complements the vision-language understand-
ing in large-scale text generation task, thereby enhances the
glyph consistency and aesthetics of generated image.

Overall, with the structural vision-language guidance, de-
tailed visual condition, and a powerful training strategy on
unified framework, our UM-Text significantly improves the



Methods Task English Chinese

Sen ACCT [ NED T | FID | | LPIPS | | Sen.ACCT | NED f | FID | | LPIPS |
GlyphControl 0.5262 0.7529 | 43.10 - 0.0454 0.1017 | 49.51 -
AnyText T21I 0.7239 0.8760 | 33.54 - 0.6923 0.8396 | 31.58 -
AnyText-2 0.8096 09184 | 33.32 - 0.7130 0.8516 | 27.94 -
FLUX-Fill 0.3093 0.4698 | 33.87 | 0.1582 0.0292 0.0625 | 29.93 | 0.1207
AnyText 0.6843 0.8588 | 21.59 | 0.1106 0.6476 0.8210 | 20.01 | 0.0943
AnyText-2 Editing 0.7915 0.9100 | 29.76 | 0.1734 0.7022 0.8420 | 26.52 | 0.1444
FLUX-Text 0.8175 0.9193 | 12.35 | 0.0674 0.7213 0.8555 | 12.41 | 0.0487
UM-Text 0.8553 0.9395 | 10.15 | 0.0656 0.7988 0.8866 | 10.50 | 0.0481

Table 1: Comparison on AnyText-benchmark dataset.

capability of model to generate high-fidelity and harmonious
images in text editing task.

4 Experiments
4.1 Implementation Details

In stage 1 of training process, we initialize the weights of
UM-Designer with Qwen2.5-VL-3B and train it on the UM-
DATA-200K dataset for 10 epochs using 16 Tesla A100
GPUs. In stage 2-3, we initialize the weights of the diffusion
model with FLUX-Fill and train the model on AnyWord-
3M dataset for 25 epochs. After that, we introduce the UM-
Designer of stage 1 into our framework, and train the con-
nector and diffusion model on AnyWord-3M dataset for 5
epochs using 16 Tesla A100 GPUs. The resolution of image
is 512x512, and the resolution of rendering image for single
character is 80x80. The strength coefficients A and [ are set
to 5 and 2 by grid-search strategy, respectively.

4.2 Dataset and Evaluation Metrics

We use UMT-DATA-200K to train the UM-Designer model
for layout and text design, and train UM-Text for visual text
generation on AnyWord-3M (Tuo et al. 2023), which com-
bines Wukong (Gu et al. 2022), LAION (Schuhmann et al.
2021), and OCR-specific datasets (3M images). To ensure
a fair comparison, UMT-DATA-200K is not used for visual
text generation training in our experiments.

We evaluate on several public benchmarks following
prior work. AnyWord-Benchmark (Tuo et al. 2023) includes
1,000 English and 1,000 Chinese images. TextSeg (Xu et al.
2021) and LAION-OCR (Chen et al. 2023b) provide 1,024
and 9.1M real-world text images, respectively. ICDAR13
(Karatzas et al. 2013) contributes 233 test images for text de-
tection evaluation. Following DREAMTEXT, we randomly
select 100 images from the test sets of TextSeg, LAION-
OCR, and ICDAR13 for evaluation.

AnyWord-Benchmark includes three evaluation met-
rics: Sentence Accuracy (Sen.ACC), Normalized Edit Dis-
tance (NED), and Frechet Inception Distance (FID) for
distribution-level style similarity. We use Learned Percep-
tual Image Patch Similarity (LPIPS) to assess the consis-
tency and realism of generated images, ensuring style con-
sistency in edited regions while preserving non-target areas.
All settings are consistent with FLUX-Text.

Following DREAMTEXT, we use an off-the-shelf scene
text recognition (STR) model to identify the rendered text
and then evaluate word-level correctness using sequence
accuracy (SeqAcc) by comparing the STR result with the
ground truth.

4.3 Experiment Result

Quantitative Results We comprehensively evaluate UM-
Text and state-of-the-art methods using the AnyText-
benchmark, UDiffText benchmark, and our self-constructed
UMT-benchmark. As shown in Table 1, on the AnyText-
benchmark, our method consistently outperforms compet-
ing approaches for both Chinese and English text across all
metrics, including OCR accuracy (Sen.ACC, NED) and re-
alism (FID, LPIPS). As shown in Table 2, our method out-
performs previous approaches in SeqAcc and FID, although
our LPIPS score is lower than DreamText’s. This may be
because our method produces colors and textures that better
match the image style during text reconstruction.

Our UM-Designer model is capable of designing both
layout and text, which motivates us to propose the UMT-
benchmark to evaluate the performance of the entire
pipeline. The UM-Designer model can also be integrated
with other text editing models, such as AnyText and Any-
Text2, to generate product posters from clean product im-
ages. For fair comparison, our generative model, like previ-
ous state-of-the-art methods, is trained on the AnyWord-3M
dataset without using any product-specific data. As shown
in Table 3, we compare the Sen.ACC and NED metrics for
both Chinese and English, and our method significantly out-
performs previous approaches on both metrics.

Qualitative Results We conduct qualitative comparisons
with state-of-the-art methods, including AnyText, AnyText-
2, and FLUX-Text, on both English and Chinese multi-line
text scenarios, as illustrated in Fig.5. Our method demon-
strates superior performance in generating accurate, coher-
ent, and visually harmonious text that blends seamlessly
with the background, under complex conditions for both lan-
guages. In contrast, AnyText and AnyText-2 frequently pro-
duce results with blurred characters, duplicated text, or even
incorrect glyphs. FLUX-Text generates text that is visually
inconsistent with the background, suffers from color distor-
tion, and also exhibits glyph errors, particularly in complex



SeqAcc
Methods | - Task - repART3(8ch) [ ICDART3 | TextSeg | LAION-OCR | [P | LPIPS
AnyText 0.89 0.87 0.81 0.86 2273 | 0.0651
UDiffText | o 0.94 0.91 0.93 0.90 15.79 | 0.0564
DreamText 0.95 0.94 0.96 0.93 12.13 | 0.0328
UM-Text 0.99 0.98 0.97 0.96 6.57 | 0.0479
AnyText 0.81 0.79 0.80 0.72 - -
UDiffText | g 0.84 0.83 0.84 0.78 - -
DreamText £ 0.87 0.89 091 0.88 - -
UM-Text 0.93 0.93 0.95 0.93 - -

Table 2: Comparison on the UDiffText benchmark dataset: The Recon task involves reconstructing text from the original image,
while the Editing task focuses on modifying the text within the image.

English Chinese
Methods Sen.ACC | NED | Sen.ACC | NED
Flux-Kontext 0.325 0.502 - -
Step1X-Edit 0.358 0.524 - -
OmniGen2 0.371 0.541 - -
AnyText 0.518 0.643 0.557 0.706
AnyText-2 0.693 0.723 0.720 0.806
UM-Text 0.790 0.866 0.956 0.981

shown in Table 4. We used FLUX-Fill as the baseline, which
demonstrates a lack of Chinese text generation capability. In
addition, we compared the effect of adding a character-level
visual encoder, which significantly improved the text gener-
ation ability of the baseline. We verified that the VLM em-
bedding further enhanced the accuracy of text generation.
Finally, we evaluated the impact of Lz, and Loy, which
obtained an improvement of 4.8% and 4.2% respectively.

Table 3: Comparison on UMT-benchmark. Please note that
all methods use the layout and text by UM-Designer.

Initiale~Design EditcTranslate Initial; Design. Edit, Translate

™ .
<+
=
A
T}
=
=
=
o

UM-Text

Figure 6: Compare UM-Text and ChatGPT4o0 in multi-turn
image editing using natural language instructions, specifi-
cally in poster design, image editing, and image translation.

Chinese text scenarios. Notably, our method maintains pre-
cise glyph integrity and strong background consistency, even
in challenging multi-line text settings. Meanwhile, we also
conducte a multi-turn task comparison with ChatGPT-4o,
as shown in Fig 6. Our method maintains precise glyph in-
tegrity and consistency with the background, even in com-
plex multi-line scenarios, whereas ChatGPT-40 often intro-
duces unnecessary text modifications.

4.4 Ablation Study

We randomly sampled 100k images from the AnyWord-3M
dataset, including 50k Chinese and 50k English images. To
evaluate the contribution of each module in our method,
we conducte ablation studies on the AnyText-benchmark
by training for 10 epochs on this small-scale dataset, as

English Chinese
Methods =55 ACC [ NED | Sen.ACC | NED
Baseline 0.309 0.469 0.029 0.062
+Visual 0.759 0.887 0.676 0.839
+VLM 0.782 0.901 0.698 0.848
+RCL Loss 0.799 0.915 0.725 0.856
+RCI Loss 0.824 0.925 0.746 0.863

Table 4: Ablation experiments of UM-Text conducted on a
subset of the AnyWord-3M dataset.

5 Conclusion

In this paper, we introduce UM-Text, a novel unified mul-
timodal method designed to accomplish complex visual
text editing tasks via simple natural language instructions.
We explore a three-stage joint training strategy that inte-
grates VLM and diffusion models, and propose the UM-
Designer module for layout and text planning. Furthermore,
we present the UM-Encoder, which fuses VLM embed-
dings, character-level visual embeddings, and T5 embed-
dings to enhance the model’s understanding of both scene
images and text glyphs, thereby enabling accurate and style-
consistent editing and generation of textual and visual con-
tent. To supervise fine-grained visual text glyph information,
we propose regional consistency loss. In addition, we con-
tribute UM-DATA-200K, a large-scale and diverse dataset of
layouts and texts, as well as the UMT-benchmark for eval-
uating instruction-based visual text editing. Extensive quali-
tative and quantitative results demonstrate the superiority of
our approach.
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