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Abstract

Verifiers — functions assigning rewards to agent behavior — have been key for AI
progress in domains such as math and board games. However, extending these gains
to domains without clear-cut success criteria (e.g., computer use) remains a chal-
lenge: while humans can recognize suitable outcomes, translating this intuition into
scalable rules is nontrivial. Multimodal Large Language Models (MLLMs) emerge
as a promising solution, given their world knowledge, human-preference alignment,
and reasoning skills. We evaluate MLLMs as verifiers of agent trajectories across
web navigation, computer use, and robotic manipulation, and identify a critical lim-
itation: agreement bias, a strong tendency for MLLMs to favor information in their
context window, often generating chains of thought to rationalize flawed behavior.
This bias is pervasive across models, resilient to test-time scaling, and can impact ex-
isting methods relying on MLLMs as evaluators (e.g., data filtering). Notably, it oc-
curs despite MLLMs showing strong, human-aligned priors on desired behavior. To
address this, we propose Self-Grounded Verification (SGV), a lightweight method
that enables more effective use of MLLMs’ knowledge and reasoning by harnessing
their own sampling mechanisms via unconditional and conditional generation. SGV
operates in two steps: first, the MLLM is elicited to retrieve broad priors about
task completion, independent of the data under evaluation. Then, conditioned on
self-generated priors, it reasons over and evaluates a candidate trajectory. Enhanced
with SGV, MLLM verifiers show gains of up to 20 percentage points in accuracy
and failure detection rates, and can perform real-time supervision of heterogeneous
agents, boosting task completion of a GUI specialist in OSWorld, a diffusion policy
in robomimic, and a ReAct agent in VisualWebArena — setting a new state of the
art on the benchmark, surpassing the previous best by 48%. Finally, we release
an updated version of the (Visual)WebArena benchmark featuring more human-
aligned evaluators, improved environment parallelization with higher execution
fidelity, and runtime speedup of over 10x. Our code, data, and additional visualiza-
tions are available at https://self-grounded-verification.github.io.

1 Introduction

Several breakthroughs in artificial intelligence can be viewed from the lens of search guided by
verifiers—functions assigning rewards to agent behavior aligned with desired criteria. Notable
examples include seminal work in games such as Go [40] and Chess [5], where search and learning
are guided by 0/1 rewards tied to the game’s final outcome, and recent advancements in large
reasoning models (LRMs), leveraging formal verifiers in code and math [37, 58]. Reinforcing this
perspective, recent studies highlight the importance of verifiers in enhancing the efficiency and
robustness of training pipelines, particularly in reasoning [35, 8] and preference alignment [44].

However, while domains such as mathematics, programming, and board games benefit from relatively
well-defined criteria to evaluate agent behavior, such clarity diminishes in open-ended settings.
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type "iPhone X phone case"
in the search box [8] click "Add to Cart" [46] The task is done.

Task

Trajectory

MLLM
Verifier

REASONING: The agent successfully searched for
"iPhone X phone case", identified a relevant product,
and added it to the cart, fully accomplishing the task.
EVALUATION: SUCCESS
FEEDBACK: Good job in finding and adding the
least expensive opaque iPhone X case!

Self-Grounded Verification ✅

Task

Trajectory MLLM
Verifier

REASONING: The agent correctly initiates the search, but it needs
to ensure the case is the least expensive and verify product details
details to confirm its opacity.
EVALUATION: FAILURE
FEEDBACK: ... you should sort the search results by price to
find the least expensive item.

I made a mistake! I
should remove the
incorrect item and
sort by price to find

the correct one.

MLLM

First Step Generation
Accomplishing a task like this on a typical website usually involves:
1. Navigating to the relevant category: ...
2. Applying search filters: ...
3. Sorting by price: ...
...

1

2

click "shopping
cart" [25]

...

Incorrect! 
Not least expensive.

Task

Agent
Trajectory

Add the least expensive opaque iPhone X case to my cart.

Great! I
should keep
doing that.

Agreement Bias ❌

Figure 1: Top: example of a task in VisualWebArena and a corresponding agent trajectory. Middle: an MLLM
verifier validates and reinforce flawed agent behavior, generating reasoning to rationalize incorrect judgments.
Bottom: Self-Grounded Verification leads to more accurate verification and enables the agent to backtrack.

Evaluation in such scenarios often requires nuanced criteria and reasoning over possibly long
sequences of multimodal inputs. Consider, for example, evaluating correctness for the trajectory
produced by a digital agent tasked with adding “the least expensive opaque case” for a mobile phone
to a shopping cart, as illustrated in Figure 1 (top). Should the agent sort products by prices, or
perform an advanced search? Should it inspect product details to confirm specific attributes? What is
“opaque enough”? Although humans can intuitively recognize satisfactory outcomes in such scenarios,
formalizing this intuition into precise and scalable rules remains a challenge.

Multimodal Large Language Models (MLLMs) emerge as a promising solution to bridge this gap.
With vast world knowledge, human-preference alignment, and large context windows, MLLMs
hold the potential to serve as general-purpose verifiers, capable of handling inputs and producing
rewards in multiple modalities. In this work, we investigate this potential by evaluating MLLMs as
verifiers of agent behavior in a diverse range of open-ended tasks. We consider two digital agent
environments — VisualWebArena [16] and OSWorld [51] — and the long-horizon robot manipulation
suite robomimic [25]. Together, they span over 1,200 tasks across varied domains, where evaluating
agent behavior demands nuanced criteria and multimodal reasoning, offering a compelling testbed
for studying MLLM verifiers.

We identify a critical limitation that undermines the reliability of MLLMs in this role: a strong
tendency to favorably evaluate agent behavior, a phenomenon we call agreement bias As shown in
Figure 1 (middle), an MLLM verifier validates flawed agent behavior and even produces chains-
of-thought (CoT) to rationalize its incorrect judgments. We show that this bias is pervasive across
model families, and persists despite the use of established test-time scaling techniques, training for
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reasoning, and instructions with task-specific evaluation criteria. Quantitatively, it manifests as: high
ratio of false positives, positive bias and skewness, answers tilted toward positive judgments, and low
(<50%) probability of detecting failures. We argue that agreement bias can negatively impact several
pipelines where MLLMs play evaluative roles. Particularly, it can limit the effectiveness of MLLMs
to serve as curators of data for finetuning and inference-time refinement; as providers of feedback
and rewards to guide search; and as judges and monitors of agent behavior, where failure detection is
essential for balanced assessments and to prevent harmful outcomes.

We observe that such failures occur despite MLLMs possessing strong, human-aligned priors on
desired agent behavior, suggesting a retrieval bottleneck [1, 2] not resolved with major test-time
scaling techniques, nor training for reasoning. To address this issue, we introduce Self-Grounded
Verification (SGV), a simple yet effective method that significantly improves the reliability of MLLM-
based verification (Figure 1, bottom). At its core, SGV harnesses MLLMs’ own sampling mechanisms
by modulating unconditional and conditional generation to effectively leverage their world knowledge,
alignment, and reasoning capabilities. SGV operates in two steps: first, the model is elicited to
retrieve a broad set of priors associated with successful task completion, conditioned only on minimal
context to frame the task. In the second step, conditioned on its self-generated priors, the model
then evaluates a candidate trajectory. SGV leads to more balanced and accurate verification across
environments and policies, while introducing minimal token overhead and being easy to integrate
into pipelines relying on MLLM verifiers.

To demonstrate SGV’s effectiveness and versatility, we evaluate MLLM verifier performance in key
settings: automatic evaluation of agent trajectories with fine-grained performance analysis of the
verifications themselves, self-refinement pipelines, and online supervision to guide agents toward task
completion. On over 1,200 agent trajectories from VisualWebArena and OSWorld, SGV improves
verification performance of several MLLMs and LRMs, leading to gains of up to 17 percentage
points (pp) in accuracy and up to 20 pp in true-negative identification, outperforming baselines
leveraging established test-time scaling techniques and even instructions with access to privileged
information. We then show that SGV can be paired with ReAct agents [56] to guide their decision-
making, achieving a 6pp gain (≈ 13% relative) on VisualWebArena, establishing a new state of
the art by outperforming the previous best by 17 pp (≈ 50% relative), with mild increase in token
usage. Similarly, our verifiers guide the GUI-specialist UI-TARS-1.5 [32] to improve by 5 pp (≈
22% relative) in OSWorld, and a diffusion policy to outperform oracle supervision by 8 pp (≈ 33%
relative) on robomimic’s tool-hang task. Finally, as a byproduct of our work, we release an updated
version of the (Visual)WebArena benchmark featuring more human-aligned evaluators, improved
environment parallelization with higher execution fidelity, runtime speedup of over 10x, and strong
Agent baselines, thereby facilitating the development of digital agents.

2 Related Work

MLLMs as Evaluators. MLLMs have been employed as evaluators of model outputs in various
scenarios. This work focuses on their application in multimodal and environment interaction
settings. MLLMs have been used to score and filter agent trajectories for subsequent use in both
finetuning [45, 29, 24] and inference-time refinements such as prompts and reflections [48, 60, 39, 34].
They have also served as a source of online feedback, in the form of natural language “critiques” [30],
real-valued scores to rank action proposals in search [18, 54], and rewards for training [43]. These
applications appear under various names — MLLMs as judges, critics, reward models, and value
estimators. We propose a unified perspective based on the use of multimodal rewards derived
from MLLM verifiers and identify agreement bias as a key limitation that can undermine MLLMs’
effectiveness across these applications. Our SGV method improves the reliability of MLLM verifiers,
and can be easily integrated into applications relying on their evaluations.

Scaling Test-Time Compute. Test-time scaling (TTS) has emerged as a major paradigm to improve
model performance without increasing the number of parameters [41, 50]. Early work [49, 19]
demonstrates that prompting LLMs to generate intermediate “chains-of-thought” leads to substantial
improvements in reasoning-oriented tasks. Orthogonal approaches scale test-time compute through
sampling [4] and search [62, 55, 12], where multiple generations are selected through heuristics [4]
or reward models [36, 22]. Recent work leverages sampling, reinforcement learning, and formal
verifiers to train (M)LLMs that autonomously generate reasoning traces [9, 27, 10, 11], achieving
impressive results in challenging benchmarks [3].
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AI Agents. There is growing interest in building AI agents to act in various environments, including
the web [16], mobile phones [21], and computer systems [23]. In this field, the work most related
to ours is [29], where a GPT-4V-based evaluator is prompted with benchmark-specific rubrics and
used to identify successful agent trajectories in WebArena [63], which are subsequently utilized
for Reflexion [39] and behavior cloning. Following works employ a similar evaluator to build value
functions to guide tree search [59, 17], and filter trajectories to generate prompts and reflections
to improve agent performance on subsequent executions [48, 59].

3 Problem Setup

3.1 Preliminaries and Definitions

Agents and Multimodal Verifiers. We study functions that approximate human judgment of agent
behavior in interactive environments. Specifically, an agent is tasked to complete a task q ∈ Q
through a series of actions at. Given a history of environment states sr:t ≡ [sr, ..., st], the agent
generates and executes an action sampled from a policy π: at = π(sr:t, q), leading to a new state
st+1. The repetition of this process yields a trajectory τr:t ≡ (sr, ar, . . . , st, at) that, along with the
task q, serves as the basis for evaluating agent performance.

To evaluate trajectory-task pairs (q, τr:t), humans can process and produce information in multiple
modalities motivating our definition of a verifier and the scope of tasks considered. We define a
multimodal verifier as a function r : T × Q → R× (V ∪ {∅}) , r ∈ R, that maps trajectory-task
pairs to rewards consisting of a real-valued score and optional outputs in other modalities from V .
These multimodal aspects are reflected in our settings. A task q can be represented as images, text,
or both, states st as screenshots or DOM trees, actions at as text (e.g. <type opaque phone>) or
images from URLs, and verifier outputs as 0/1 scalars or natural language feedback flagging errors in
off-track trajectories.

Oracle Verifiers. In the benchmarks we study, instantiations of r are obtained via human-written
scripts using privileged information about the task and environment states, and produce 0/1 rewards
indicating task completion. We treat these as closely aligned to human judgments, and refer to them
as oracle verifiers. We note, however, that these functions are not perfect, and discuss limitations in
Section 3.2 and Section 4.

3.2 MLLM Verifiers, Agreement Bias, and Self-Grounded Verification

Scripted evaluation for open-ended tasks is imperfect and hard to scale, motivating the use of MLLMs
as an alternative. The conventional approach to build r with an MLLM is to prompt it with the task q,
trajectory τr:t, and additional context C that can include rubrics for evaluation and instructions for
reasoning steps:

rMLLM (q, τt, C) = h

(
n∏

i=1

P (yi | y<i, q, τt, C)

)
where y = y1, . . . , yn are MLLM outputs, and h is a function mapping them to rewards — e.g., a
regex that maps model completions to 0/1 scores.

We observe, however, that this approach is subject to a failure mode we call agreement bias.
Specifically, MLLMs display a tendency to overly validate agent behavior, judging flawed trajectories
as aligned with the task q despite the use of carefully crafted instructions C, established test-time
scaling techniques, and choice of decoding algorithms. This bias directly degrades the quality of
rMLLM with potential negative effects on several of the existing applications that make direct and
indirect uses of rMLLM .

Notably, agreement bias occurs despite models exhibiting strong, human-aligned priors on desired
characteristics for agent behavior (e.g., first-step generations in Figure 1 and Figure 5). This suggests
a bottleneck in knowledge extraction that is not resolved with major techniques to elicit reasoning,
nor in models explicitly trained to produce intermediate reasoning steps. This observation aligns with
findings in LLM literature [2], [38] which point to root causes in pretraining data composition and
inherent limitations stemming from RLHF. Addressing these issues through changes to pretraining
corpora or retraining large models remains unclear and prohibitively costly, highlighting the need for
alternative solutions.
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Motivated by these observations, we propose Self-Grounded Verification (SGV) (Figure 1 (middle)),
a simple yet effective method that substantially improves the evaluation performance of MLLMs. We
hypothesize that MLLMs can generally generate priors that are well-aligned with human preferences,
and can serve as impartial references to ground the verification. SGV operates in two steps: first, the
MLLM is elicited to retrieve a broad set of priors k̂q associated with the successful completion of the
task q, conditioned only on the data needed to frame the task:

k̂q = g

(
n∏

i=1

P (yi | y<i, s0:t, C, q)

)
,

where s0:t are states needed to define the task (e.g., an initial screenshot) and g is a function to select
a completion. In the second step, the MLLM evaluates the trajectory conditioned on the first-step
generation:

rSGV(τt, C, q) = h

(
n∏

i=1

P (yi | y<i, k̂q, τt, C, q)

)
.

Intuitively, by modulating (un)conditional generation, SGV harnesses MLLMs’ own sampling
mechanisms to enable more effective use of their knowledge and reasoning capabilities. Conditioning
only on essential information in the first step encourages the model to fully explore its probability
distribution, extracting impartial information pertinent to the task at hand and independent of the
data under evaluation. In the second step, the MLLM evaluates a candidate trajectory by sampling
from a conditional distribution induced by its own priors, for which we expect a higher likelihood of
accurate verification.

Practical Implementation. SGV introduces low compute overhead and generally improves per-
formance without complex prompt engineering, making it simple to integrate into pipelines where
MLLMs play evaluative roles. For instance, adding the first step with a single-line instruction to
produce domain knowledge generally helps, with little to no change to existing prompts. Nonetheless,
we observe the following patterns that may inform general use: 1) generating broader, more encom-
passing priors in the first step tends to be superior; 2) producing priors in a single, monolithic step
degrades performance, as models tend to anchor them to the data under evaluation; 3) some models
benefit when the second step includes an instruction to compare against their priors — something
SGV inherently enables — although a standard CoT instruction typically suffices. See Sections B
and B.6 for prompts and ablations, and our codebase for more examples.

3.3 Evaluating MLLM Verifiers

To properly assess verifiers and ensure our findings are robust and generalizable, we consider several
factors in our experimental setup.

Environment Diversity and Multimodality. We consider benchmarks that require nuanced ver-
ification criteria, involve multimodal reasoning, and collectively span a diverse range of settings.
VisualWebArena (VWA) [16] emulates a web browser and spans 910 tasks, many of which combine
text and image instructions (e.g., “Find a product like this” + <image>). OSWorld [51] emulates
a computer system, with 369 tasks involving widely-used web and desktop applications in both
single- and multi-app workflows. Finally, robomimic [25] provides long-horizon robot manipulation
tasks, and we focus on tool hang, the most challenging among them, which consists of two subtasks
(1) inserting an L-shaped pencil into a base and (2) hanging a wrench on it. Section H illustrates
representative tasks and trajectories.

Annotations and Scalability. Human annotation, while ideal, is prohibitively expensive at the scale
of our experiments. Similar to previous work [29], we therefore rely on oracle verifiers provided by
the benchmarks as a proxy for human judgment. However, we observed several issues in the oracles
included in the VisualWebArena benchmark—an observation also noted in concurrent work [26],
which compares multiple evaluators against human annotations. To establish a more robust and
trustworthy reference, we addressed non-ambiguous issues in the VisualWebArenA oracle verifiers,
including bugs in string parsing, mismatches between task intent and oracle requirements, and
incorrect annotations. To validate the effectiveness and impartiality of our changes, we evaluate the
updated oracles against external human annotations obtained from [26]. As shown in Table Table 7,
the revised oracles exhibit near-perfect agreement with human preferences, confirming the impartiality
and effectiveness of the proposed updates. Details are documented in our codebase and Section G.5.
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Agents and Trajectory Data Quality. Weak agents and buggy environments often produce trajecto-
ries that are trivial to verify. For instance, some trajectories in [26] exhibit “page not found” errors
or infinite action loops, which can artificially inflate verifier performance. Moreover, incorporating
trajectories generated by diverse models and methods is crucial for ensuring the generalizability of our
findings. Accordingly, we fixed several bugs in the (Visual)WebArena environments (Section G.5),
developed agents that yield a balanced mix of successes and failures, and considered agents built from
different methods. To generate trajectories in VisualWebArena, we build a prompt-based agent [56]
equipped with a text-based memory that prevents looping behavior and enables backtracking when
paired with a verifier. For OSWorld, we employ the GUI-Specialist Agent UI-TARS-1.5-7B [32]
which, at the time of this work, is the best-performing open-source model on the benchmark. For
robomimic, we train a diffusion policy with 200 expert rollouts from human demonstrations collected
by [61].

Applications of Verifiers and Choice of Experiments. To characterize the potential benefits and
risks of MLLM verifiers, we present a unified perspective of several applications based on how
they utilize r and are therefore affected by its quality. We categorize them as falling into offline
and online settings. The offline setting covers cases where r is applied to trajectories post hoc. A
canonical example is the evaluation of agent performance, where a set of trajectories is mapped to
real-valued scores reflecting task completion. Composite applications include pipelines that use r
to filter trajectories to improve subsequent performance. This includes finetuning (a.k.a behavior
cloning), as well as variants of Reflexion [39] that builds memory for subsequent executions—e.g.,
reflections on past mistakes [39], synthesizing tools [48], or abstractions [34]. The online setting
covers cases where r is used to influence action distribution during task execution. An example is
online supervision, where r maps trajectories to scalars or text rewards to steer agents toward task
completion. Composite applications include using rewards to update policy parameters, or to rank
samples of trajectory-action pairs to guide (tree) search.

MLLMs have been used to approximate r in several of these applications. While exploring this full
range is infeasible, we focus on three representative cases: offline evaluation of agent trajectories,
Reflexion, and online supervision. Our choice for these applications is motivated by the following
considerations: (1) they are of direct practical interest and are often components for other pipelines;
(2) they exhibit fewer confounding factors than alternatives such as behavior cloning or RL; and (3)
performance on them can yield cleaner and informative signals for broader applicability. For instance,
if rMLLM produces a high number of false positives in trajectory evaluation, subsequent finetuning or
self-refinement based on those trajectories is likely to be negatively affected.

Quantitative Metrics. Verifiers should negatively (positively) evaluate trajectories marked as
failures (success) by humans or proxies to them. Evaluations that are consistently biased toward
one side are likely undesirable. Accordingly, we consider several metrics that capture the degree of
alignment—or misalignment—in MLLM responses. Following [52], we consider (1) Signed bias:
Bias(θ̂) = 1

n

∑n
i=1

(
E[θ̂i]− θi

)
, and (2) distance skewness dSkewn(X) = 1−

∑
i,j ∥xi−xj∥∑

i,j ∥xi+xj−2γ∥ .
These two are summary statistics reflecting the distribution of MLLM responses, where positive value
means the Verifier consistently evaluate individual trajectories more positively than oracles.

(3) True Positive Rate (TPR) and True Negative Rate (TNR):

T?R(c) =
∑n

i=1 1(ri,MLLM = c ∧ ri,oracle = c)∑n
i=1 1(ri,oracle = c)

≈ P̂ (ri,MLLM = c|roracle = c) c ∈ {0, 1}.

as well as Accuracy = (1−SuccessRate)×TNR+SuccessRate×TPR, which serves as an auxiliary
metric reflecting the TPR and TNR tradeoff to support interpretation and comparison.

While we consider multiple metrics for robustness, we highlight the practical importance of statistics
that directly relates to a verifier’s core role—identifying flawed behavior and provide feedback to
improve agent performance. TNR and TPR are empirical estimates of the conditional probabilities
that directly relates to this purpose and are therefore important indicators for a verifier’s effectiveness.
Verifiers are typically called multiple times during an application, and low values for such probabilities
can be highly detrimental—especially a low probability of flagging failures as failures (low TNR), as
we further discuss in Section 5.
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Ultimately, the value of a verifier should also be measured by its effectiveness in downstream
applications. If a verifier provides effective feedback, this should manifest as improved agent
performance. Therefore, for downstream applications we compare task completion rates of base
Agents with and without MLLM Verifiers.

Finally, we note that: (i) TNR satisfies TNR = 1−False Positive Rate, and we use a “high number of
false positives” interchangeably with a “low TNR.”; (ii) Section F reports the explicit distribution of
MLLM responses under various ablations, which explicitly illustrates tilts towards positive/negative
directions.

Baselines and Ablations. To probe limitations of MLLM verifiers and establish strong baselines, we
consider established methods, including chain-of-thought (CoT) [49], majority voting [47], set-of-
marks prompting [53], and reasoning models. For VWA, we also consider the approach proposed in
Pan et al. [29], where we additionally provide benchmark-specific rubrics on how to evaluate the tasks.
In all cases, MLLMs are given complete trajectories represented as sequences of screenshot-action
pairs and asked to label them on a ternary Likert scale: SUCCESS, PARTIAL SUCCESS, or FAILURE,
mapped to [1, 0, 0] to align with oracle scores. Sections B.6, F and G.2) ablates on all such
choices, including model size, family, SGV design choices, trajectory length, and prompt/scoring
templates. Additional experimental details and all prompts are provided in Sections A and B.

4 Offline Evaluation of Agent Trajectories

Table 1 and Table 2 show the performance of verifiers built with a range of models and test-time
scaling techniques. Trajectories are based Gemini-2.5-Flash on VisualWebArena and with UI-Tars-
1.5 in OSWorld. The average success rate is 43%. Other variations are provided in the appendix. The
following provides a discussion of the main findings.

Table 1: Performance of MLLM verifiers on evaluation of digital agent trajectories. (a) Agreement
bias: MLLMs display strong tendency to overly validate agent behavior. (b) SGV improves perfor-
mance across all models and metrics.

CoT-based Verifier Thinking Weaker Models

Gemini 2.5 GPT 4.1 GPT4o Llama4 Qwen2.5 GPT-o1 Gemini Thinking Gemini 2.0 GPT4o-mini

Acc (No SGV) 65 66 61 62 61 67 67 52 50
TNR (No SGV) 47 50 52 47 54 62 51 41 38
TPR (No SGV) 89 86 85 78 79 79 87 80 79
Skew (No SGV) 20 16 25 10 22 16 16 32 33
Bias (No SGV) 25 22 30 14 28 22 22 37 39

Acc (SGV) 74 75 74 68 66 75 72 64 64
TNR (SGV) 70 73 75 63 63 77 66 65 70
TPR (SGV) 81 78 74 73 74 72 80 63 56
Skew (SGV) 5 2 6 1 13 3 4 7 8
Bias (SGV) 9 6 11 5 20 8 10 15 17

Delta Acc 9 9 13 6 5 8 5 12 14
Delta Skew -15 -14 -19 -9 -9 -13 -12 -25 -25
Delta Bias -16 -16 -19 -9 -8 -14 -12 -22 -22

Pervasiveness and Resilience of Agreement Bias. MLLMs display a strong tendency to overly
validate agent behavior. This manifests as a high ratio of false positives (low 49–54% TNR), responses
tilted towards positive evaluations (strictly positive bias and skewness), a low probability of flagging
failures (in some cases, below 50%), and reduced aggregate metrics such as accuracy and precision.
As shown in Table 2 (row 3), adding a CoT step yields only modest improvements in such patterns.
This limitation persists even when majority voting is applied (row 4) and task-specific evaluation
criteria are provided (row 5). A key reason behind these results is illustrated in Figure 5 and Figure 6:
MLLMs often generate reasoning that rationalizes flawed trajectories and their wrong judgments.
Sampling fails to mitigate this issue and can even exacerbate it, as higher temperatures can increase
the likelihood of hallucinations and spurious correlations. Finally, agreement bias occurs when
evaluating trajectories of both strong and weak agents, as illustrated by the high number of false
positives across scenarios of high and low success rates.

Agreement and Self-Bias. Notably, agreement bias occurs despite inputs including multimodal,
external, information produced by the environment, and generations from models of distinct families
and sizes. This makes it a separate phenomenon from what is known in the LLM literature as self-bias,
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Table 2: Impact of test-time scaling on performance of MLLM-based verifiers in trajectory eval-
uation. Oracle success rates in VisualWebArena and OSWorld are 46% and 22%, respectively.

VisualWebArena OSWorld

# Method TPR (%) TNR (%) Acc. (%) TPR (%) TNR (%) Acc. (%)

1 No CoT, Binary 80 49 62 97 57 64
2 No CoT 84 52 65 97 57 66
3 CoT 89 54 69 97 59 65
4 CoT + Majority 90 52 69 94 61 69
5 Pan et al. [29] 78 59 67 – – –
6 Thinking 84 65 73 94 74 79
7 Thinking + Majority 88 61 73 97 71 79

8 SGV 72 71 73 96 70 76
9 SGV + CoT 75 77 76 89 80 82

10 SGV + Thinking 75 83 80 90 83 84

where LLMs tend to favor text generated by themselves or by stronger models [52, 42, 31], and for
which injection of external information is a typical remedy. In our settings, inputs are externally
produced by the environment, including screenshots augmented with Set-of-Mark prompting [53],
model generations parsed into actions by the environment, semantic information about objects that
agents interact with. Moreover, agreement bias occurs for trajectories produced by policies based on
models quite distinct from the ones used for verification, such as the GUI-specialist UI-TARS, ReAct
agents built from distinct model families and sizes, and a diffusion policy (Section 5).

Adverse Impacts of Agreement Bias. The effects of agreement bias can extend beyond imprecise
evaluation of agent performance. A quantitative demonstration is deferred to Section 5, with a quali-
tative example shown in Figure 5. For the task “Buy the cheapest <product> from <category> with
<attribute>,” a trajectory where the agent searches for “<product>,” clicks the first result, and adds it
to the cart, is deemed successful by MLLM verifiers, despite omitting essential steps for generaliza-
tion, such as filtering, sorting, and finishing the purchase. Selecting such trajectories for finetuning or
test-time refinements is likely to be suboptimal, and risks reinforcing brittle behavior [52].

Effectiveness of SGV. Applying SGV substantially improves verification performance across models
and benchmarks, increasing TNR by up to 20 percentage points, overall accuracy by 7–11 points, and
yielding responses more closely aligned with human evaluations (i.e., reduced bias and skewness).
Notably, the inclusion of a CoT step proves more effective when coupled with SGV. As illustrated in
Figures 5 and 6, SGV leads to more grounded and unbiased reasoning steps, improving its overall
effect. Moreover, SGV exhibits superior performance to handwritten instructions with task-specific
evaluation criteria (Table 2, row 5). This indicates that SGV enables models to generate completions
for conditioning themselves that are on par with, or even surpass, human-written rubrics, offering a
more scalable alternative.

Training for Reasoning and SGV. LRMs tend to display lower agreement bias (row 6 of Table 2),
aligning with findings in concurrent work suggesting long-CoT as a form of mitigating self-bias in
LLMs [7]. More remarkably, we observe that (i) SGV enables non-reasoning models to match the
performance of their reasoning counterparts, and (ii) SGV boosts performance of reasoning models
by up to 7 pp — a perhaps surprising result, given that these models are explicitly trained to produce
intermediate traces and such interventions can degrade performance [28]. These results align with our
intuitions of retrieval bottlenecks and the findings and conjectures in [1], raising interesting questions
on the potential benefits of including an SGV step and pretraining data rewriting [2] into training
pipelines aimed at reasoning.

Need for Fine-Grained Classification Metrics. These results highlight the importance of reporting
direct metrics of both false positives and false negatives in works proposing MLLMs in evaluative
roles and artifacts produced by them. Reporting only single metrics like accuracy and recall can
be misleading. For example, the 97% TPR observed in OSWorld masks the fact that the verifier
produces a high number of false positives, which can contaminate filtered datasets or undermine the
verifier’s effectivenes in online supervision.

Challenges in Open-Ended Verification and Stricter Verifiers. SGV-enhanced verifiers exhibit
lower TPR, which stems from two main causes: disagreements with overly permissive evaluation
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Figure 2: Results of using an MLLM as a verifier within a Reflexion pipeline in VisualWebArena.
A conventional MLLM verifier fails to deliver improvements due to its inability to reliably identify
flawed behavior, whereas SGV improves success rates.

scripts on simplistic tasks, and overly demanding judgments. Specifically, evaluation in these
digital benchmarks comes from hard-coded rules based on a subset of states. This means that
trajectories such as in Figure 6 for a task “Buy the cheapest <product>,” where an agent searches for
“<product>,” clicks on the first item, and completes the purchase, are deemed successful by oracle
scripts. Influenced by agreement bias, MLLMs tend to validate such trajectories, but when SGV
is applied, behaviors like these are rejected for lacking steps that confirm the item is the cheapest.
On the other hand, as shown in Figure 11, an SGV-enhanced verifier initially rejects an otherwise
correct execution for lacking actions to double-check item attributes. Nevertheless, as shown in this
example and discussed next, such interventions are typically non-disruptive and often promote more
generalizable behavior, ultimately yielding a positive effect on task completion.

5 Downstream Applications

In this section, we evaluate MLLM verifiers on their ability to guide agents toward task completion
both in Reflexion and online supervision. These are applications of direct interest that so far, have
shown limited benefits and occasional performance degradation [30, 39, 13, 15, 42, 46]. Additionally,
this setting allows us to assess the net impact of SGV, given the tradeoffs discussed in Section 4.

Results - Reflexion. In this setting, after each episode: (i) the verifier evaluates the trajectory; (ii) the
agent reflects on its past execution conditioned on the verifier’s evaluation; and (iii) these reflections
are incorporated into subsequent attempts to enable self-correction over time. As shown in Figure 2,
this approach yields an improvement of up to 21pps in completion rates after three iterations under
the supervision of an oracle verifier, which sets an upper bound for performance. However, the
base agent’s performance quickly plateaus when supervised by an MLLM verifier, achieving only
2.6pps. The reason is straightforward: influenced by agreement bias, the MLLM verifier fails to
provide corrective feedback precisely when it is most needed—when the agent’s behavior is flawed
and requires improvement. Quantitatively, this is reflected in the verifier’s TNR of 52% (Table 2): on
average, corrective feedback is offered for only half of the flawed executions, substantially limiting
the agent’s ability to revise its strategy and improve. In contrast, by enhancing failure identification,
SGV enables consistent progress across runs, boosting task completion rates by up to 10.4pps.

Results - VisualWebArena and OSWorld Table 3 presents the performance of digital agents with
and without feedback from MLLM verifiers. Compared to a no-verifier baseline, SGV results in a 5
percentage point (pp) increase in success rate on VisualWebArena (≈ 13% relative improvement)
and a 5 pp gain in OSWorld (≈ 22% relative). Notably, our ReAct agent + SGV Verifier achieves a
new state of the art on VisualWebArena, surpassing the previous best by 16 pp (≈ 48% relative).
Unlike search methods, these gains come with a modest increase in token usage, and backtracking
occurs through native web actions, making them more applicable to real-world scenarios. In contrast,
and in line with previous work, we observe no improvements for a CoT-based MLLM verifier.
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Table 3: Task success rate (SR) and token usage across VisualWebArena domains and OSWorld.
Token usage (for VisualWebArena) is relative to the ReAct agent with no verifier.

All VWA Classifieds Reddit Shopping OSWorld

Method SR Tokens SR Tokens SR Tokens SR Tokens SR

Search Agent [17]* 29 4.9x 34 4.2x 22 5.4x 30 5.1x –
R-MCTS [59]* 34 9.3x 41 7.4x 29 9.7x 32 10.1x –

Base Agent 46 1x 49 1x 29 1x 52 1x 21.6
+ Verifier, no SGV 46 1.5x 48 1.5x 29 1x 53 1x –
+ Verifier, SGV 52 1.9x 54 1.9x 38 1.7x 57 1.9x 26.3

*Results from prior work [17, 59].

A few factors explain these results. First, as shown in Figure 9, the SGV-enhanced verifier identifies
suboptimal behavior and provides feedback that enables agents to backtrack and complete the task.
When SGV is omitted, agreement bias prevents MLLM verifiers from providing feedback precisely
when agent behavior is flawed, limiting their effectiveness (e.g., Section H.2). Second, while SGV
leads to stricter verifiers (Section 4), their interventions are often non-disruptive. For example, in
Figure 11 the verifier rejects a greedy strategy that technically satisfies the benchmark, prompting the
agent to search for and confirm user-requested attributes, ultimately leading to task completion via a
more generalizable strategy. Therefore, although performance declines in cases where agents fail to
backtrack (e.g., Figure 12), the net effect of SGV remains positive. Table 11 quantitatively illustrates
this pattern: of the 11% false negatives, only 0.9% transition to failures, while 14% of tasks improve
through successful failure identification–yielding a net gain of 13%. In stark contrast, when SGV is
not applied, 35% of tasks remain failures due to false positives, leading to no improvements. Further
discussion and a categorization of factors influencing success rates are provided in Section C.2.

Results - robomimic Table 4 demonstrates that the inclusion of an SGV-enhanced verifier improves
SR on the tool-hang task, surpassing the oracle-only counterpart by about 8 pp. In contrast, when
SGV is not applied, MLLM-based verification leads to a reduction in SR. These findings not only
align with, but also complement results observed in digital domains: this environment features
closer-to-perfect oracles, and is therefore less prone to the evaluation challenges discussed in ??. To
provide intuition for these results, we report the partial success rates (PSR) and number of replans.

Table 4: Results of a diffusion policy on robomimic’s
tool-hang task under different supervision methods.
Method FR (%) PSR (%) SR (%) # Replans

Oracle 32 68 24 88
Verifier, no SGV 22 78 16 89
Verifier, SGV 28 72 32 96

*FR, PSR and SR are the proportions of roll-outs with 0,
1 and 2 subtasks (out of 2) completed.

In the no-SGV case, the MLLM verifier
is successful in guiding the policy up until
states of partial completion. However, likely
influenced by agreement bias, it struggles to
further guide the policy to states of full task
completion, as reflected in the low number of
replans. In contrast, the SGV-enhanced ver-
ifier triggers replans more often, and while
some of these interventions lead to failures,
their overall impact is largely beneficial.

6 Conclusion

We identify agreement bias, a key limitation that hinders MLLMs from reliably serving as verifiers
of agent behavior, adverse effects for applications that rely on them in this role. We introduce
Self-Grounded Verification (SGV) — a simple yet effective method that significantly improves
verification across a range of domains, in both online and offline settings. SGV has low token usage
overhead, and can be easily integrated into pipelines leveraging MLLM verifiers.

Limitations and Future Work. While SGV mitigates agreement bias, it does not eliminate it
entirely. Our qualitative analysis (Section C.1) shows that remaining failure cases often stem from
limitations in the base models’ vision-language reasoning capabilities. Future work may refine SGV
through other strategies to enhance multimodal reasoning and perception, and extend applications that
could further expose its strengths and limitations. In parallel, compelling directions for open-ended
verification include modular approaches combining MLLMs with symbolic methods [14], and the
adaptation of recent reinforcement learning pipelines used to train generators for the verification
problem.
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Guidelines:

• The answer NA means that the paper does not include theoretical results.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experiments can be reproduced using the settings described in sections 3,
and appendix sections A and B, and the code included in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
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Justification: We release the code as part of the supplementary material and will public
release it after the review process.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe experiment settings in sections 3, A and B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to resource and time constraints, we are unable to perform multiple runs
of each experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The resources used are described in section A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research fully conforms with the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss potential impacts in the supplementary material.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The methods described in the paper do not pose a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the papers of code implementations that we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code and documentation are released as supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development does not involve LLMs as any important,
original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Experimental Details

A.1 Offline Verifier Experiments

For experiments in Table 1, we use 0 temperature for all models, except in the majority voting majority
voting baselines, where we select the most frequent response among 8 completions generated with a
temperature of 1.5, top-p of 0.95, and top-k set to 64.

For experiments in table Table 2, we employ gemini-2.5-flash with a temperature of 0. When
thinking is enabled, we set thinking budget to 8192 tokens, the model’s default value, and to
24576 in the “high” budget case.

We omit CoT instructions for LRMs, as these models inherently generate reasoning traces, and adding
them can hurt performance [28].

The model is given interleaved images and text, in the form of screenshots produced by the en-
vironment and actions generated by the agent. Figure 5 displays an example of a trajectory in
VisualWebArena, and Section B contains details on prompt templates.

A.2 Online Setting Experiments

Verifier Agent Implementation Details. For VisualWebArena, the MLLM verifies task completion
when the agent issues a stop action, and if the task is deemed incomplete, it generates natural language
feedback that is appended to the agent’s context window. For OSWorld, the verifier is additionally
called every 5 steps, regardless of task completion. In robomimic, the MLLM verifies task progression
at predetermined steps and triggers the diffusion policy to regenerate an action sequence (or “replan”)
if the trajectory is deemed off-track; in the baseline scenario, the policy receives oracle-only feedback
when subtasks are complete. The numbers reported are averages across three runs in the digital
benchmarks, and 50 rollouts with a horizon of 700 time steps in robomimic.

Web Navigation and Computer Use. For VisualWebArena experiments in Section 5, we use
gemini-2.5-flash-preview-04-17 for both the ReAct agent and the verifier. For the no-SGV
case, the model is given a CoT instruction as in Section B. In the SGV case, in the first step we adopt
the model’s default parameters: temperature=1, top_p=0.95, and top_k=64. In the verification
step, we use 0 temperature. The agent and environment settings follow those in Koh et al. [16], using
a temperature of 1.0, top-p of 0.95, top-k of 40, and the same 768 token limit. We adopt Set-of-Mark
prompting [53] for the screenshots, with a viewport size of 1280×2048 pixels. We use BLIP-2 [20] to
provide text captions for images included with the task objectives. We set the maximum number of
steps to 30, allowing the agent some room to backtrack while imposing a search budget comparable to
— though still more constrained — than that of prior work employing tree search methods [17, 59].

For the OSWorld experiments, we follow the same setup and implementation as in Qin et al. [32].
The verifier configuration remains the same, using gemini-2.5-flash-preview-04-17 with a
temperature of 0 and a token limit of 768. We allow up to 50 steps for the agent. We run the
UI-TARS-1.5-7B model on a single RTX 3090 GPU. We find that 28 out of the 369 tasks in OSWorld
consistently produce unresolvable errors that prevent evaluation on those tasks; we report our results
on the remaining 341 tasks.
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In both environments, the verifier functions as an outcome-based reward, evaluating the trajectory
when the agent signals task completion, and every 5 steps in the case of OSWorld. The prompt
templates and inputs given to the verifier are the same as the ones in the offline scenario.

If the verifier deems the trajectory unsuccessful, it provides natural language feedback, which is then
incorporated into the agent’s context window to inform subsequent generations. Section B.3 shows
how the feedback is incorporated, and figures in Section H provide examples of evaluations and
generated feedback.

Robotic Manipulation For robomimic, the verifier receives a natural language description of the
task, along with the last screenshot, and is prompted to assess task completion every 20 time steps.
Additional details about the prompts are provided in Section B.5.

B Prompts

For all prompts, content enclosed in curly braces ({...}) is dynamically replaced at runtime with
the corresponding information. Text enclosed in double angle brackets («...») provides explanatory
notes for the reader and is not included in the prompts at runtime. The labels USER: and ASSISTANT:
indicate role fields passed via the OpenAI API format and are not literal strings in the prompt. Text
separated by a pipe (|) inside curly braces ({...}) indicates phrases that change depending on the
environment.

B.1 Verifier Prompts

To maximize consistency and minimize sensitivity due to prompt variations, we construct all verifier
prompts from the following parts:

• The system prompt, which describes the role of the agent and environment details.
• The trajectory prompt, which is created in an interleaved user-assistant conversation format, and

contains information on the task to be accomplished, screenshots of the environment states, and
the actions taken by the agent being evaluated.

• The evaluation prompt, which includes the criteria for the evaluation, as well as instructions for
step-by-step reasoning.

We aim to keep the prompts as consistent as possible across experiments, applying slight adjustments
to accommodate environment-specific details and prompting variations. For instance, the NoCoT
variant in section 4 is nearly identical to the CoT variant, differing only in the removal of the
step-by-step reasoning instructions.

Verifier System Prompt - VisualWebArena

You are an intelligent agent tasked with supervising an assistant navigating a web browser to
accomplish a web-based task. Your job is to evaluate the assistant's work, and provide feedback so
it can progress towards the objective.

## Here's the information you'll have:
### The objective: This is the task the assistant is trying to complete.
### Webpage screenshots: These are screenshots of the webpage, with each interactable element
assigned a unique numerical id. Each bounding box and its respective id shares the same color.
### The execution trace: This is a sequence of webpage screenshots paired with the assistant's
actions, detailing the web navigation so far.
### General web knowledge: This is a general description of how tasks like this are typically
accomplished on the web. <<Only included for SGV variants>>

## Assistant's capabilities: To effectively analyze the assistant's work, consider the actions it
can perform. These actions fall into the following categories:
### Page Operation Actions:
```click [id]```: Click on an element with a specific id on the webpage.
```type [id] [content] [enter_after]```: Type the content into the field with id. If `enter_after`
is 0, the "Enter" key is not pressed after typing; otherwise, the "Enter" key is automatically
pressed.
```hover [id]```: Hover over an element with id.
```press [key_comb]```: Press a keyboard key or key combination (e.g., delete, ctrl+a).
```scroll [down]``` or ```scroll [up]```: Scroll the webpage up or down.
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### Tab Management Actions:
```new_tab```: Open a new, empty browser tab.
```tab_focus [tab_index]```: Switch the browser's focus to a specific tab using its index.
```close_tab```: Close the currently active tab.

### URL Navigation Actions:
```goto [url]```: Navigate to a specific URL.
```go_back```: Navigate to the previously viewed page.
```go_forward```: Navigate to the next page (if a previous 'go_back' action was performed).

### Completion Action:
```stop [answer]```: This action is issued when the task is believed to be complete. If the task
requires a text-based answer, the answer is provided within the brackets. If the task is deemed
impossible, this action is issued optionally with a reason why.

## To be successful, it is very important to follow the following rules:
1. You must not not assume the assistant's work is correct or incorrect beforehand. You should
come up with your own opinion based on the information provided.
2. You must connect the dots between the objective and the information provided.
3. Your evaluation should be based on task completion; don't worry about efficiency for now.
4. Give utmost importance to the visual information provided, especially the screenshots in the
execution trace.
5. Use the web knowledge as a rule, but also consider the context of the task given to you. <<Only
included for SGV variants>>

Verifier System Prompt - OSWorld

You are an intelligent agent tasked with supervising an assistant utilizing a computer to
accomplish computer-based tasks. Your job is to evaluate the assistant's work, and provide
feedback so it can progress towards the objective.

## Here's the information you'll have:
### The objective: This is the task the assistant is trying to complete.
### Screenshots: These are visual captures of the computer screen taken at specific states of the
navigation process.The red markers, if present, indicates the destination of mouse actions taken
at the corresponding state.
### The execution trace: This is a sequence of screenshots of the computer screen paired with the
assistant's responses, detailing the computer navigation so far.
### General Computer Knowledge: This is a general description of how tasks like this are typically
accomplished on a computer. <<Only included for SGV variants>>

## Assistant's capabilities: To effectively analyze the assistant's work, consider the actions it
can perform. These actions fall into the following categories:
### Mouse Actions:
- click(start_box='<|box_start|>(x1,y1)<|box_end|>'): Left clicks at the (x1,y1) coordinates.
- left_double(start_box='<|box_start|>(x1,y1)<|box_end|>'): Left double click at the (x1,y1)
coordinates.
- right_single(start_box='<|box_start|>(x1,y1)<|box_end|>'): Right click at the (x1,y1)
coordinates.
- drag(start_box='<|box_start|>(x1,y1)<|box_end|>', end_box='<|box_start|>(x3,y3)<|box_end|>'):
Drags the element at the (x1,y1) coordinates to the (x3,y3) coordinates.
- scroll(start_box='<|box_start|>(x1,y1)<|box_end|>', direction='down or up or right or left'):
Scrolls the mouse wheel in the specified direction.

### Keyboard Actions:
- hotkey(key=''): Press a specific key.
- type(content=''): Types the string following `content`. If followed by "\n", it means the input
is submitted.
- wait(): Pauses for 5s and takes a new screenshot to check for any changes.

### Completion Action:
- finished(content='<|content|>'): This action is issued when the task is believed to be complete.
`<content>` is optional, and is used to provide a reason why the task is complete.

## To be successful, it is **very important** to follow the following rules:
1. You must not not assume the assistant's work is correct or incorrect beforehand. You should
come up with your own opinion based on the information provided.
2. You must connect the dots between the objective and the information provided.
3. Give utmost importance to the visual information provided, especially the screenshots in the
execution trace.
4. Your evaluation should be based on task completion; don't worry about efficiency for now.
5. Use the General Computer Knowledge as a guide, but also consider the context of the specific
task given to you. <<Only included for SGV variants>>
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Verifier Trajectory Prompt - VisualWebArena and OSWorld

USER: ## OBJECTIVE: {task objective text} {task objective images}

USER: ### STATE `t-j` SCREENSHOT: {screenshot}
ASSISTANT: {generated action}
...
USER: ### STATE `t-1` SCREENSHOT: {screenshot}
ASSISTANT: {generated action}

Full Verifier Prompt

{system prompt}
{trajectory prompt}

USER:
## General web knowledge: {output from first step} <<Only included for SGV variants>>

Now please provide your response.

## Here is the evaluation criteria:
SUCCESS: The assistant executed **all of** what's necessary to complete the objective. The task is
fully accomplished.
PARTIAL SUCCESS: The assistant executed **most of** what's necessary to complete the objective.
The task is partially accomplished.
FAILURE: The assistant executed **mostly incorrect** steps. The task is not accomplished, and
major revisions are needed.

## Provide your response as follows:
REASONING: <Comprehensive step-by-step reasoning to come up with your evaluation and feedback> <<
Only included for CoT variants>>
EVALUATION: <Your evaluation following the evaluation criteria>
FEEDBACK: <Feedback so the assistant can progress towards the objective>

Pan et al. [29] Verifier System Prompt

You are an expert in evaluating the performance of a web navigation agent. The agent is designed
to help a human user navigate a website to complete a task. Given the user's intent, the agent's
action history, the final state of the webpage, and the agent's response to the user, your goal is
to decide whether the agent's execution is successful or not.

There are three types of tasks:
1. Information seeking: The user wants to obtain certain information from the webpage, such as the
information of a product, reviews, map info, comparison of map routes, etc. The bot's response
must contain the information the user wants, or explicitly state that the information is not
available. Otherwise, e.g. the bot encounters an exception and respond with the error content, the
task is considered a failure. Besides, be careful about the sufficiency of the agent's actions.
For example, when asked to list the top-searched items in a shop, the agent should order the items
by the number of searches, and then return the top items. If the ordering action is missing, the
task is likely to fail.
2. Site navigation: The user wants to navigate to a specific page. Carefully examine the bot's
action history and the final state of the webpage to determine whether the bot successfully
completes the task. No need to consider the bot's response.
3. Content modification: The user wants to modify the content of a webpage or configuration.
Carefully examine the bot's action history and the final state of the webpage to determine whether
the bot successfully completes the task. No need to consider the bot's response.

*IMPORTANT*
Format your response into two lines as shown below:

Thoughts: <your thoughts and reasoning process>
Status: "success", "partial success", or "failure"
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Full Pan et al. [29] Verifier Prompt

{system prompt}

USER:
## User Intent: {task objective text}

## Action History:
1: {generated action}
...
n: {generated action}

## Last snapshot of the webpage: {screenshot}

B.2 SGV Verifier - First Step Prompts

For the main experiments, we use separate prompts for the retrieval step and the evaluation step.
Below, we present the prompts for the first step. As shown in Section B.6, similar performance can
be achieved by reusing the prompts from Section B.1, as long as the verification process is explicitly
divided into retrieval and evaluation phases.

SGV - First Step System Prompt

You are a helpful assistant with deep knowledge in {web navigation | computer-based workflows}.
Your job is to provide a description of how tasks like the ones provided to you are typically
accomplished on {the web | computers}.

## Here's the information you'll have:
### Objective: This is an english description of the task, possibly accompanied by images that
provide more context on what must be accomplished.
### Screenshots: These are screenshots of the {webpage | computer screen}, giving you context to
further understand what must be accomplished.

SGV - Full First Step Prompt

{system prompt first-step}
## OBJECTIVE: {task objective text}

## IMAGES:
Image 0: {task objective image 1}
...
Image n: {task objective image n}
Image n+1: initial {webpage | computer} screenshot: {screenshot}

Now please provide your response:
<Description of how tasks such as this are typically accomplished on {the web | computers}>.

B.3 VisualWebArena Agent Prompt

The prompt for VisualWebArena is built upon the authors’ original implementation [16], with the
following changes:

• We provide the history of thoughts and actions generated by the agent in previous interactions,
which serve as a text-based memory to prevent loops and allow backtracking.

• We refine parts of the prompt to use Markdown formatting and to make the instructions more
precise.

• For one of the examples, we include previous thoughts and actions to match the new inputs.
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VisualWebArena Agent Prompt

{system prompt}
{examples}

## RATIONALE AND ACTION HISTORY:
### STATE `t-j`:
- **RATIONALE**: {agent generations}
- **ACTION**: {action parsed by the environment}
...
### STATE `t-1`:
- **RATIONALE**: {agent generations}
- **ACTION**: {action parsed by the environment}

Here is the current state `t` for you to determine what to do next:
## TEXT OBSERVATION `t`: {text observation}

## URL: {webpage URL}

## OBJECTIVE: {task objective text}

## FEEDBACK: Here is your previous response at the current state `t` and **feedback** about it.
Use this to revise your response if you deem appropriate.
### Previous response: {last generated action}
### Feedback: {verifier feedback} <<Only included in rounds where feedback is provided by the
verifier>>

IMAGES:
Image 0: {task objective image 0}
...
Image n: {task objective image n}
Image n+1: current webpage screenshot at state `t`: {screenshot}

B.4 OSWorld Agent Prompt

OSWorld Agent Prompt

You are a GUI agent. You are given a task and your action history, with screenshots. You need to
perform the next action to complete the task.

## Output Format
```
Thought: ...
Action: ...
```

## Action Space

click(start_box='<|box_start|>(x1,y1)<|box_end|>')
left_double(start_box='<|box_start|>(x1,y1)<|box_end|>')
right_single(start_box='<|box_start|>(x1,y1)<|box_end|>')
drag(start_box='<|box_start|>(x1,y1)<|box_end|>', end_box='<|box_start|>(x3,y3)<|box_end|>')
hotkey(key='')
type(content='') #If you want to submit your input, use "\n" at the end of `content`.
scroll(start_box='<|box_start|>(x1,y1)<|box_end|>', direction='down or up or right or left')
wait() #Sleep for 5s and take a screenshot to check for any changes.
finished(content='xxx') # Use escape characters \', \", and \n in content part to ensure we can
parse the content in normal python string format.

## Note
- Use English in `Thought` part.
- Write a small plan and finally summarize your next action (with its target element) in one
sentence in `Thought` part.

## User Instruction
{task objective text}
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B.5 robomimic Prompts

robomimic SGV Prompt - First Step

You are highly skilled in robotic tasks.
Based on the task description and the image of the initial state, predict how the task must look
like at the current time stamp.

Task Description:
Pick up L-shaped pencil and insert L-shaped pencil into the hole
Pick up tool and hang tool on L-shaped pencil

Current time stamp: {n/N}
{image}

robomimic SGV Prompt - Second Step

Compare the prediction with the actual state of the system in the current time step depicted in
the image.

If the current state shows a situation that depicts failure, label it as failure.

If both tasks being completed or nearing completion was predicted and both tasks have been
completed, label it as success.

If the prediction is that the task will be in progress and the task is in progress, label it as in
progress.

{first step generation}
Current time stamp: {n/N}
{image}

robomimic - Verifier Prompt, no SGV

You are highly skilled in robotic task verification.

Based on the task description, the current time step and the the actual state of the system in the
current time step (depicted in the image), label it as 'success', 'failure' or 'in progress'.

Given the time step, if the current state is not as per expectation (with dropped tools), label it
as failure.

If the time step is towards completion, and the task has been completed, label it as success.

Given the time step, if the task is expected to be in progress and the task is in progress, label
it as in progress.

Current time stamp: {n/N}
{image}

B.6 Ablation Prompts

As we show in Section B.6, similar performance for SGV can be achieved by re-utilizing the verifier
prompts from Section B.1, as long as retrieval and verification are divided into two phases. Below is
the prompt used in the first step. The second step prompts are identical to those in Section B.1.

SGV Unified - Full First Step Prompt

{verifier system prompt} <<same as in Appendix B.6>>

## OBJECTIVE: {task objective text}

## IMAGES:
Image 0: {task objective image 0}
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...
Image n: {task objective image n}
Image n+1: initial {webpage | computer} screenshot: {screenshot}

Please first provide the following
<Description of how tasks such as this are typically accomplished on {the web | computers}>.

The following prompts are used when retrieval and verification are performed together in a single,
monolithic step. The system prompts are the same as in Section B.1, except for the rules, which are
replaced by the following.

Monolithic Retrieve and Verify - System Prompt Rules

## To be successful, it is very important to follow the following rules:
1. You must not not assume the assistant's work is correct or incorrect beforehand. You should
come up with your own opinion based on the information provided.
2. You must connect the dots between the objective and the information provided.
3. Your evaluation should be based on task completion; don't worry about efficiency for now.
4. Give utmost importance to the visual information provided, especially the screenshots in the
execution trace.
5. You should come up with a detailed description of how tasks like this are typically
accomplished on {the web | computers}.
6. Use this General {Web Knowledge | Computer Knowledge} as a guide, but also consider the context
of the specific task given to you.

Monolithic Retrieve and Verify - Full Prompt

{system prompt}
{trajectory prompt}

Now please provide your response.

## Here is the evaluation criteria:
SUCCESS: The assistant executed **all of** what's necessary to complete the objective. The task is
fully accomplished.
PARTIAL SUCCESS: The assistant executed **most of** what's necessary to complete the objective.
The task is partially accomplished.
FAILURE: The assistant executed **mostly incorrect** steps. The task is not accomplished, and
major revisions are needed.

## Provide your response as follows:
GENERAL {WEB | COMPUTER} KNOWLEDGE: <Description of how tasks such as this are typically
accomplished on {the web | computer}>
REASONING: <Comprehensive step-by-step reasoning to come up with your evaluation and feedback> <<
Only included for CoT variants>>
EVALUATION: <Your evaluation following the evaluation criteria>
FEEDBACK: <Feedback so the assistant can progress towards the objective>

C Qualitative Analysis

C.1 Agreement Bias

Figure 5 illustrates the trajectory for a failed task in VisualWebArena, along with evaluations produced
by three verifier variants. Two key flaws are evident in the trajectory: (i) the agent does not perform
any price comparisons, and (ii) it stops after adding an item to the cart, without proceeding to
checkout. The CoT verifiers validate the execution, providing reasoning traces that justify it as correct
despite the evident shortcomings. In contrast, the SGV verifier flags the absence of price comparison,
and accurately declares the execution as unsuccessful.

C.2 Online Verification and Feedback

As discussed in section 5, our method enables an MLLM verifier to monitor agent behavior and
provide natural language feedback in real time, guiding the agent toward successful task completion.
We show there that this mechanism has a positive overall impact on performance, resulting in
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a 5 percentage point increase in success rate on VisualWebArena (approximately 10% relative
improvement) and a 2 percentage point gain in OSWorld (approximately 9% relative), compared to a
no-verifier baseline.

The success of such a mechanism relies on three factors: (i) the accuracy of the verifier’s judgment,
(ii) the quality of its feedback, and (iii) the ability of the agent to interpret and act upon that feedback,
including the capacity to revise or backtrack when necessary.

In this section, we explore these factors through representative cases that offer insight into both the
strengths and failure modes of our method — and of MLLM verifiers more broadly. The cases are as
follows:

• Accurate verification with helpful feedback: The verifier correctly identifies flaws and provides
actionable feedback that improves task execution.

• Accurate verification with helpful feedback, limited by agent ability: The verifier offers
correct judgments and useful feedback, but the agent fails to act on it effectively.

• Overly strict verification, harmless: False negatives from the verifier that do not affect the
agent’s final outcome and often elicit more robust behavior.

• Overly strict verification, harmful: False negatives that lead to degraded task performance or
failed executions.

• Overly lenient verification: False positives where the verifier fails to detect clear mistakes, and
contributes no useful signal. This stems from agreement bias and is the most prominent failure
case for conventional MLLM verifiers.

Accurate Verification with Helpful Feedback Figure 9 shows an example where the verifier
successfully steers the ReAct agent to a correct execution on a challenging VisualWebArena task.
The agent performs a sequence of reasonable steps and finds a product closely aligned with the user’s
request, but not the cheapest one. The verifier detects this oversight and provides feedback that
prompts the agent to backtrack, sort the results correctly, and select the appropriate item.

This is a particularly challenging case that is highly susceptible to agreement bias, as the initial
trajectory comprises reasonable steps and ends with a product that closely aligns with the user’s
query.

Accurate Verification with Helpful Feedback, Limited by Agent Ability Figure 10 presents a
failure case where, despite the verifier correctly identifying the issue and providing appropriate
feedback, the agent is unable to recover. The verifier advises the agent to calculate shipping costs
before leaving a review. However, the agent instead performs a sequence of poor actions, from which
it never recovers. This example demonstrates a central limitation of our agent: the performance is
ultimately constrained by the capabilities of the generator, regardless of the quality of the verifier.

Overly Strict Verification, Harmless Figure 11 illustrates this dynamic in a borderline case. The
agent clicks on the first visible option without searching. Although this behavior is marked as correct
by automated scripts, the verifier rejects it, requiring the agent to explicitly search for the product.
After performing the search, the agent provides the same (correct) response, but is again rejected
for not clicking on the item to inspect its details. In this task, that step is arguably unnecessary, as
the required information is already visible. Still, the agent proceeds to click and confirm the details,
ultimately converging on the same answer a third time.

This example reveals two insights: (i) Even though the verifier is demanding, its feedback aligns well
with the user’s original intent, and does not prevent task success. (ii) In fact, the strict verifier elicits
robust behavior from the agent. The benchmark task is relatively simple and susceptible to shortcuts,
but the verifier enforces a robust and generalizable strategy.

Overly Strict Verification, Harmful Figure 12 presents an example where a correct initial execution
is degraded into a failure. The user’s query accepts either “Ohio” or “Pennsylvania” as valid answers,
but the verifier demands the cheapest option across both. The agent, however, is unable to navigate
back to Ohio to perform a valid comparison and runs out of steps. This example also illustrates the
difficulty of interpreting real-world user intents, which are often vague and under-specified.

Overly Lenient Verification Our verifier remains susceptible to false positives, primarily due to
limitations in the underlying MLLM’s vision-language perception and reasoning capabilities.
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Figure 7 shows a failure on a relatively simple task in VisualWebArena that exposes this issue: both
the agent and the verifier fail to count the number of elements in an image correctly, resulting in a
false positive. This is a known weakness of current MLLMs [33] that becomes even more problematic
in our setting, where perception errors can compound across multi-step trajectories.

A more complex failure is illustrated in Figure 8, which juxtaposes the verifier’s strengths and
weaknesses. The verifier successfully detects that the agent has terminated the task prematurely,
failing to submit a required comment. However, it misses two critical issues: (i) that the agent has
incorrectly counted the number of red keys in the image, and (ii) that it has posted the comment in
the wrong location. Accurately verifying these mistakes would require the detection of fine-grained
visual cues, knowing which small button the agent clicked on, for example.

We expect perceptual and reasoning abilities to improve in future MLLMs, and consequently, the
effectiveness of our SGV approach to increase as well, as the improvements it provides are largely
orthogonal to these capabilities. Alternatively, an interesting direction for future work would be to
augment the MLLM with specialist models focused on fine-grained perception tasks, such as object
counting or UI element recognition, thereby enhancing the verifier’s accuracy in visually demanding
scenarios.

D Ablations

D.1 Agreement Bias in Retrieval and Ablations to SGV

Table 5 presents ablations for results in ??. Specifically, we (1) start with a conventional MLLM
verifier, (2) add a retrieval step to it, (3) decouple the retrieval and verification steps without modifying
any of the prompts, and (4) add a specific prompt for the retrieval step. In all cases, we include a CoT
instruction. Prompt templates are provided in Section B.6.

The conventional MLLM-based verification yields suboptimal performance, with slight improvement
when a retrieval step is added (rows 1–2). One reason for this behavior is that when steps are combined,
models tend to retrieve priors that align to information in their context window — a manifestation of
agreement bias — reducing their effectiveness in grounding the verification. Decoupling the steps
improves performance (rows 3–4), with SGV achieving similar results with or without retrieval-
specific prompts. This suggests that SGV’s effectiveness does not stem from prompt specialization
and that it can be integrated easily with minimal to no modifications to existing codebases.

Table 5: Evaluation of trajectories in VisualWebArena - ablations. TPR
= true positive rate, TNR = true negative rate.

# Method TPR (%) TNR (%) Accuracy (%)

1 Base MLLM Verifier 89 54 69
2 + Retrieval Step 80 63 70
3 SGV, Unified 73 74 74
4 SGV 75 77 76

D.2 Online Supervision and SGV with Weaker Models

Table 6 shows the performance of online verification with and without SGV on the full Visual-
WebArena benchmark utilizing an earlier and stable version of Gemini, gemini-2.0-flash-001,
compared to the one used in Section 5. Consistent with findings in Section 5, the no-SGV verifier
fails to improve performance and even results in degradation in certain domains. In contrast, the SGV
verifier consistently improves results across all domains, achieving a 3 percentage point gain overall
(approximately 9% relative improvement). Moreover, and in line with Section 4, these results also
reveal that SGV can benefit both weak and strong models.

E AgentRewarBench Results

Table 7 shows the performance of the updated oracle evaluators in AgentRewardBench. The original
oracles in VisualWebArena exhibit relatively low alignment with human annotations, particularly
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Table 6: Task success rates (%) on VisualWebArena with and without SGV.

Method All VWA Shopping Reddit Classifieds

ReAct 35 38 23 41
+ Verifier, no SGV 35 39 23 40
+ Verifier, SGV 38 41 25 46

in terms of TPR. After applying our fixes, both TPR and overall accuracy improve substantially,
with the corrected oracles reaching near-perfect agreement. Furthermore, Table 8 shows that our
SGV-Verifier achieves state-of-the-art performance on the benchmark for the VisualWebArena
environments, despite relying on a weaker non-thinking model. Note that in AgentRewardBench the
main performance metric for the leaderboard is precision.

Table 7: Performance of oracle evaluators in AgentRewardBench (Oracle = Rule-based).
Original Fixed Oracle

P 85.2 100
TPR 58.2 92
TNR 95.9 100
Acc 85.1 98

Table 8: Comparison of our verifier to best performing judges in AgentRewardBench for the Visual-
WebArena environment.

Method Precision

Rule-based 85
WebJudge (o4) (SOTA) 75
SGV (Gemini 2.5, no Thinking) 80
No-SGV 68

F Agent Trajectory Evaluation: Additional Agreement Bias Metrics

In Figure 3, we show the distribution of MLLM Verifier responses across over 20 scoring templates
covering both Likert (e.g., SUCCESS, PARTIAL SUCCESS, UNCERTAIN, FAILURE) and score-
based templates (e.g., scalar scores reflecting the MLLM confidence on correctness of a given
trajectory). We also include randomized option ordering, criteria shuffling and reversal following [6]
and [57]. We highlight three observations. First, MLLMs tend to concentrate their evaluations at the
high end of the scale, largely independent of how the evaluation is prompted. For example, some
templates explicitly tie the highest scores to strong confidence that the assistant executed all required
steps to complete the task. Second, when applying SGV, the distribution of scores becomes more
balanced, avoiding the sharp skew toward overly positive judgments. Finally, models rarely indicate
uncertainty in their responses, even for tasks that are inherently vague. Due to space limitations,
please refer to our codebase for all templates.

G Additional Details and Results for VisualWebArena

G.1 Representative Subset

Running the full VisualWebArena benchmark is time-consuming, and this hinders rapid prototyping,
experimentation, and ablation studies. To address this issue, we release a representative subset of
tasks that preserves the performance trends observed on the full benchmark, along with the algorithm
used to construct such subsets.

The full code is available in our codebase. At a high level, the subset is constructed based on the
task-level performance of a base agent on the full benchmark. Tasks are iteratively added or removed
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Figure 3: Average distribution of MLLM Verifier responses across scoring templates

to match the distribution of task templates and other characteristics, while ensuring that the aggregate
success rate within each domain remains closely aligned with that of the full set.

Our VisualWebArena subset is one third the size of the full benchmark. To avoid introducing bias
toward our implementations, we construct the subset based on the performance of Search Agent [17],
for which task-level scores are publicly available. We compare task success rates across various
agents and model families on both the full benchmark and the subset in Table 9.

The differences in success rate between the full benchmark and the subset range from 0 to 1 percentage
point, while execution time and token usage are reduced by approximately 67%, substantially
accelerating the development cycle and lowering inference costs. Note that performance gaps are
small even when relative improvements between similar agent variants are considered. For instance,
the performance gain of the ReAct + Verifier agent over the ReAct agent is approximately 4.5
percentage points on both the full benchmark and the representative subset, indicating that the subset
preserves meaningful signals for measuring improvement.

Table 9: Task success rates (%) in VisualWebArena for the full benchmark and our representative
subset.

Method Model Full Benchmark Representative Subset
∆

All Shop. Reddit Class. All Shop. Reddit Class.

Search Agent [17] GPT-4o 27 29 21 30 28 29 22 30 –0.3
ReAct Gemini 2.0 35 38 23 41 35 35 26 43 0.4
ReAct Gemini 2.5 46 52 28 49 45 51 29 46 0.9
ReAct + Verifier Gemini 2.0 38 41 25 46 38 38 29 47 0.2
ReAct + Verifier Gemini 2.5 50 57 33 52 49 55 33 52 0.8

Number of Tasks 910 466 210 234 305 156 70 79 –

Token Usage (millions)* 104 54 29 21 34 18 10 6 –
∗Token usage measured for Gemini 2.0 (ReAct + Verifier), which at the time of writing is the latest
non-experimental version of Gemini.

G.2 Results for GPT-4o

The VisualWebArena success rates reported in section 5 are based on gemini-2.5-flash-preview-
04-17, which makes comparison to prior work difficult. To enable a direct comparison, Table 10
reports results for gpt-4o-2024-05-13, the same model used in previous studies, evaluated on the
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representative task subset described in Section G.1 without the environment modifications explained
in Section G.4 and Section G.5.

Table 10: Task success rates (SR, %) and relative token usage on the VisualWebArena
representative subset (Section G.1) using gpt-4o-2024-05-13 as the base model.

All VWA Classifieds Reddit Shopping

Method SR Tokens SR Tokens SR Tokens SR Tokens

Search Agent [17]* 29 4.9x 34 4.2x 22 5.4x 30 5.1x
R-MCTS [59]* 34 9.3x 41 7.4x 29 9.7x 32 10.1x

ReAct 31 1x 29 1x 24 1x 36 1x
ReAct + SGV Verifier 36 1.35x 33 1.6x 27 1.2x 42 1.3x

*Results from prior work.

G.3 Online Verification - Breakdown of Performance per confusion metrics

Table 11: VisualWebArena - % Tasks converted to failures, success and preserved, per confusion
case.

SGV No-SGV
0→0 0→1 1→0 1→1 0→0 0→1 1→0 1→1

FN - - 0.9 11 - - 1.1 4
TN 28 14 - - 18 1 - -
FP 17 - - - 35 - - -
TP - - - 33 - - - 41

G.4 Task Objective Modifications

Some tasks in VisualWebArena require navigating to a specific web page for successful completion,
but this is not stated in the original task objectives. Following [60], we append the following
instruction to the objectives of such tasks: “To finish the task, please make sure to navigate to the
page of the corresponding item.” Examples for each domain are shown below.

Task Objective Modification Examples

Classifieds
Original Objective: Find me the cheapest red Toyota. It should be between $3000 to $6000.
Modified Objective: Find me the cheapest red Toyota. It should be between $3000 to $6000. To finish
the task, please make sure to navigate to the page of the corresponding item.
————————————————————————————————————–
Shopping
Original Objective: Search for usb wifi and show me the first item in the second row.
Modified Objective: Search for usb wifi and show me the first item in the second row. To finish the
task, please make sure to navigate to the page of the corresponding item.
————————————————————————————————————–
Reddit
Original Objective: Find me a post in /f/dataisbeautiful that illustrates the Nvidia revenue in
FY22, and tell me the revenue of the whole company in FY22 (in billions).
Modified Objective: Find me a post in /f/dataisbeautiful that illustrates the Nvidia revenue in
FY22, and tell me the revenue of the whole company in FY22 (in billions). To finish the task, please
make sure to navigate to the page of the corresponding item.
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G.5 Environment Refinements

Bug Fix. Several tasks in VisualWebArena’s shopping domain require sorting products by certain
attributes. However, a bug in the environment prevents performing such actions, so we modify the
environments to allow them. We provide an ablation to this change in Table 12.

Table 12: Task success rates (%) on the VisualWebArena representative subset
(Section G.1) using gemini-2.5-flash-preview-04-17 as the base model, before and

after our bug fix.

Method All VWA Classifieds Reddit Shopping

ReAct - Before Bug Fix 44 47 30 49
ReAct - After Bug Fix 45 46 29 51

ReAct + SGV Verifier - Before Bug Fix 47 51 33 51
ReAct + SGV Verifier - After Bug Fix 49 52 33 55

We also introduce several other technical improvements to facilitate prototyping in VisualWebArena.
They include: a faster method for detecting page load completion, parallelization of docker containers,
the incorporation of additional models for fuzzy match evaluation, model hosting for the captioner,
and minor refinements to the inputs provided to the agent, such as as Set-of-Mark prompting, tab
information, and scroll bars.

In Table Section G.5, we report the speedup gains obtained with the environments we release and
our Gemini 2.5-based agents. When considering our representative subsets, these gains can reach
up to 20×, substantially reducing evaluation cost, facilitating rapid prototyping and more accurate
evaluation due to proper environment resets.

We invite readers to explore our codebase and make use of the available components.

We invite readers to explore our codebase and make use of the available components.

Speedup Total Time Avg / Task
Original
Full 910 tasks – 2d:20h:09m 04:31m
Full 910 tasks + Reset – 3d:18h:31m 05:58m

With Parallel Envs (5)
Full 910 tasks 7× 12h:13m 00:50m
Eval Set 21× 04h:04m 00:50m

Table 13: Evaluation runtime statistics. *Reset by default. Experiments run with 5 parallel environ-
ments.
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H Additional Figures

H.1 Examples of Tasks in Digital Benchmarks

Figure 4: Examples of tasks in VisualWebArena and OSWorld. Top row: a query composed of natural
language and an image, followed by the initial state screenshot. Second and third rows: natural
language queries with corresponding initial state screenshots.
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H.2 Agreement Bias

Buy the cheapest deodorant from the “Deodorants & Antiperspirants” category with the phrase
‘killer’ on the packaging.

type [7] [deodorant killer] [1] click [52] stop [The deodorant has been added
to your cart successfully.]

Verifier Responses

MLLM Verifier
REASONING: The assistant has successfully added the cheapest deodorant with “killer” on the packaging to the cart. The product meets
the criteria of being in the “Deodorants & Antiperspirants” category and having the phrase “killer” on the packaging. The assistant has
completed all necessary steps to achieve the objective.
EVALUATION: SUCCESS

MLLM Verifier + Task-Specific Evaluation InstructionsPan et al. [29])
Thoughts: The agent successfully added the Men Deodorant 48-hour Odor Protection Clean Comfort Deodorant for Men Original
Antiperspirant Deodorant Odor Protection Sport Mens Deodorant Stick to the cart, which matches the user’s intent to buy the cheapest
deodorant with ‘killer’ on the packaging. The task is completed successfully.
Status: success

Two-Step Verifier
REASONING: The assistant successfully searched for “deodorant killer” and added the first item to the cart. However, the objective was to
find a deodorant with the word “killer” on the packaging and to buy the cheapest one. The assistant did not verify if the product contained
the word “killer” on the packaging, nor did it sort the results by price to find the cheapest option.

EVALUATION: PARTIAL SUCCESS

SGV - First Step Generation

To accomplish the task of buying the cheapest deodorant with the phrase ‘killer’ on the packaging from the “Deodorants & Antiperspirants”
category, the following steps are typically taken on the web:
1. **Navigate to the Relevant Category**: Locate and click on the category that includes deodorants and antiperspirants. This is usually
found in the “Beauty & Personal Care” section or a similar category.
2. **Search for the Specific Product**: Use the search bar to enter keywords such as “deodorant killer” to filter the results to only show
deodorants with ‘killer’ on the packaging.
3. **Filter and Sort Results**: Apply filters to narrow down the search results to only include deodorants. Then, sort the results by price,
selecting the option to display the cheapest items first.
4. **Review Product Listings**: Look through the filtered and sorted list to find the cheapest deodorant that meets the criteria. Check the
product images and descriptions to ensure the word ‘killer’ is present on the packaging.
5. **Examine product details (if necessary):** If a product’s listing doesn’t clearly show the packaging or include the keyword in the
title/description, you might need to click on the product to view its detailed page. This page often provides more images, a full description,
and sometimes customer reviews that might mention details about the packaging.
6. **Add to Cart**: Once the correct product is identified, click the “Add to Cart” button to add it to the shopping cart.

7. **Proceed to Checkout**: Navigate to the cart and proceed to checkout to complete the purchase.

Figure 5: Agreement Bias. Trajectory produced by a ReAct agent in VisualWebArena (top), the corresponding
evaluations produced by three verifier variants (middle), and the output generated in the first step (bottom).
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Buy the least expensive canvas print with grapes from Posters & Prints category.

type [7] [canvas print with
grapes]

click [30] click [34]

...

stop []

Verifier Responses

MLLM Verifier
REASONING: 1. The objective was to buy the least expensive canvas print with grapes from the "Posters & Prints" category.
2. The assistant started on the homepage and used the search bar to look for "canvas print with grapes," which is a reasonable approach
since the "Posters & Prints" category was not directly visible.
3. The search results included several canvas prints featuring grapes. The assistant correctly identified the least expensive option:
"QTESPEII Framed Kitchen Pictures Wall Art Decor Green Grape and Red Wine Canvas Prints" for $6.99.
4. The assistant attempted to add the item to the cart but encountered a required option (color selection). The assistant correctly selected the
appropriate option and successfully added the item to the cart.
5. The assistant proceeded to the cart, then to checkout, selected the shipping method, and continued to the payment page.
6. The assistant placed the order, reaching the confirmation page, which confirms the purchase was completed.
7. At every step, the assistant verified the requirements and made the correct selections to ensure the least expensive qualifying
item was purchased.
EVALUATION: SUCCESS

MLLM Verifier + SGV
REASONING: 1. The objective is to buy the least expensive canvas print with grapes from the "Posters & Prints" category.
2. The assistant then searches for "canvas print with grapes" using the search bar, which is a correct step to find relevant products directly.
3. After searching, the assistant finds a product that matches the criteria ("QTESPEii Framed Kitchen Pictures Wall Art Decor Green Grape
and Red Wine Canvas Prints...") and adds it to the cart.
4. The assistant proceeds to checkout and completes the purchase.
5. Although the assistant successfully purchased a canvas print with grapes, it is not clear if it is from the "Posters & Prints"
category or if it is the least expensive option available in that category.
EVALUATION: FAILURE

Figure 6: Permissive oracle evaluation, agreement bias, and SGV disagreement. Top: a ReAct agent searches
for a product, clicks on the first result, and completes the purchase. The trajectory is marked as successful by the
oracle script, despite lacking steps confirming that the product is the least expensive. Bottom: due to agreement
bias, the MLLM verifier agrees with the oracle, producing ungrounded reasoning steps to justify its judgment
(red). The SGV-enhanced verifier notices the lack of steps confirming that product is the least expensive and
disagrees with the oracle (bold).
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Leave a comment in this post with the text as the number of buns in the image.

type [14] [12] [0] click [16] stop

EVALUATION: SUCCESS
FEEDBACK: Great job! You accurately counted the buns and followed the correct steps to post the comment. Keep
up the good work!

Figure 7: Online feedback in VisualWebArena. False positive on a simple task due to vision-language
reasoning and perception limitations.
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How many red keys are in the picture? Leave a comment replying to user “liverblow” with
the following format: “It has <number of red key> $%@” (not including the double inverted
commas), replacing with the actual number of red key. Remember to use digits.

click [60] type [62] [It has 4 $%@]; click [16] stop → click [14]

type [62] [It has 4 $%@] click [16] stop

EVALUATION: PARTIAL SUCCESS
FEEDBACK: Ensure all required fields are filled before posting a comment. Double-check the comment for
accuracy and completeness to avoid errors.
Post-feedback: stop → click [14]

EVALUATION: SUCCESS
FEEDBACK: Great job! You accurately identified the number of red keys and posted the comment correctly. In
future tasks, consider explicitly verifying your comment before posting to ensure accuracy.

Figure 8: Online feedback in VisualWebArena. False positive on a complex task due to vision-
language reasoning and perception limitations.
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H.3 Online Verification - Digital Agents

Find me the cheapest controller from the classifieds site that is meant for the console in the
image on the Reddit tab.

tab_focus [1] type [5] [Nintendo 64 controller];
click [6]; click [30]; click [7]

...

click [32]

stop → go_back click [18]

...

stop

EVALUATION: PARTIAL SUCCESS
FEEDBACK: You correctly identified the console and searched for the controller. However, you did not sort the
search results by price to find the cheapest controller. Please go back to the search results page, sort the results by
price (lowest first), and then click on the listing for the cheapest Nintendo 64 controller. Remember, the objective is
to find the cheapest *controller*, not the cheapest console.
Post-feedback: stop → go_back

EVALUATION: SUCCESS
FEEDBACK: The assistant successfully completed the task by identifying the console, searching for the controller,
sorting by price, and navigating to the page of the cheapest item.

Figure 9: Online feedback in VisualWebArena. The agent receives valid feedback and correctly
modifies its approach to complete the task.
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Order the second thing in the top row. If the shipping is more than 7% of the total price,
leave a 3 star review mentioning it, otherwise 5.

click [36] click [8] click [5]

click [4] stop → click [24]

...

stop (max

steps

reached)

EVALUATION: PARTIAL SUCCESS
FEEDBACK: To fully accomplish the task, ensure to leave a review after the purchase. Calculate if the shipping
cost exceeds 7% of the total price and leave a 3-star review if it does, otherwise a 5-star review.
Post-feedback: stop → click [24]

Figure 10: Online feedback in VisualWebArena. The agent receives valid feedback during an incorrect
execution, but is unable to finish the task. (Partial trajectory shown due to space constraints.)
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How many hours are on the engine of the most recently listed red boat?

click [38] scroll [down] stop [80] → go_back

EVALUATION: FAILURE
FEEDBACK: The assistant did not attempt to search for “red boat” as required by the objective. It navigated to the “Boats” category and
then scrolled down the page. The assistant should have used the search bar to find red boats. The assistant should go back to the home page
and use the search bar to search for “red boat”. After searching, the assistant should look for the most recently listed red boat and click on the
listing to find the engine hours.
Post-feedback: stop [80]→ go_back

type [5] [red boat] [1] stop [80] → click [38] stop [80]

EVALUATION: PARTIAL SUCCESS
FEEDBACK: The assistant successfully searched for “red boat”. However, it stopped before clicking on any of the listings to find the engine
hours. The assistant needs to click on the most recently listed red boat and then find the engine hours on that page. The most recently listed
red boat is the one at the top of the list.
Post-feedback: stop [80]→ click [38]

EVALUATION: SUCCESS
FEEDBACK: The assistant successfully navigated to the listing for the red boat and found the engine hours.

Figure 11: Online feedback in VisualWebArena. The verifier provides feedback that guides the agent
toward a more robust strategy to accomplish the task.
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Navigate to the cheapest controller in the “Video gaming” category from Ohio or Pennsylva-
nia that is predominantly white

click [56] click [36] click [17]

click [19] click [25] stop → go_back

...

stop (max steps

reached)

EVALUATION: PARTIAL SUCCESS
FEEDBACK: You have successfully filtered by category, searched for "white controller", and sorted by price in
Pennsylvania. However, you also need to check for the cheapest white controller in Ohio. Go back to the search
results page and filter by Ohio as well. Then, compare the cheapest results from both states to find the overall
cheapest one.
Post-feedback: stop → go_back

Figure 12: Online feedback in VisualWebArena. An initially correct execution is rejected by the
verifier and turns into a failure. (Partial trajectory shown due to space constraints.)
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H.4 Online Verification - Robot Manipulation

Figure 13: Verifier output for replanning and validation in the robomimic tool-hang task.
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