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Abstract

Diffusion models are recent state-of-the-art methods for image generation and
likelihood estimation. In this work, we generalize continuous-time diffusion mod-
els to arbitrary Riemannian manifolds and derive a variational framework for like-
lihood estimation. Computationally, we propose new methods for computing the
Riemannian divergence which is needed for likelihood estimation. Moreover, in
generalizing the Euclidean case, we prove that maximizing this variational lower-
bound is equivalent to Riemannian score matching. Empirically, we demonstrate
the expressive power of Riemannian diffusion models on a wide spectrum of
smooth manifolds, such as spheres, tori, hyperboloids, and orthogonal groups.
Our proposed method achieves new state-of-the-art likelihoods on all benchmarks.

1 Introduction

By learning to transmute noise, generative models seek to uncover the underlying generative
factors that give rise to observed data. These factors can often be cast as inherently geometric
quantities as the data itself need not lie on a flat Euclidean space. Indeed, in many scientific
domains such as high-energy physics (Brehmer & Cranmer, 2020), directional statistics (Mardia &
Jupp, 2009), geoscience (Mathieu & Nickel, 2020), computer graphics (Kazhdan et al., 2006), and
linear biopolymer modeling such as protein and RNA (Mardia et al., 2008; Boomsma et al., 2008;
Frellsen et al., 2009), data is best represented on a Riemannian manifold with a non-zero curvature.
Naturally, to effectively capture the generative factors of these data, we must take into account the
geometry of the space when designing a learning framework.

Recently, diffusion based generative models have emerged as an attractive model class that not
only achieve likelihoods comparable to state-of-the-art autogressive models (Kingma et al., 2021)
but match the sample quality of GANs without the pains of adversarial optimization (Dhariwal &
Nichol, 2021). Succinctly, a diffusion model consists of a fixed Markov chain that progressively
transforms data to a prior defined by the inference path, and a generative model which is another
Markov chain that is learned to invert the inference process (Ho et al., 2020; Song et al., 2021b).

While conceptually simple, the learning framework can have a variety of perspectives and goals.
For example, Huang et al. (2021) provide a variational framework for general continuous-time
diffusion processes on Euclidean manifolds as well as a functional Evidence Lower Bound (ELBO)
that can be equivalently shown to be minimizing an implicit score matching objective. At present,
however, much of the success of diffusion based generative models and its accompanying variational
framework is purpose built for Euclidean spaces, and more specifically, image data. It does not
easily translate to general Riemannian manifolds.

In this paper, we introduce Riemannian Diffusion Models (RDM)—generalizing conventional
diffusion models on Euclidean spaces to arbitrary Riemannian manifolds. Departing from diffusion
models on Euclidean spaces, our approach uses the Stratonovich SDE formulation for which the
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conventional chain rule of calculus holds, which, as we demonstrate in section §3, can be exploited
to define diffusion on a Riemannian manifold. Furthermore, we take an extrinsic view of geometry
by defining the Riemannian manifold of interest as an embedded sub-manifold within a higher
dimensional (Euclidean) ambient space. Such a choice enables us to define both our inference
and generative SDEs using the coordinate system of the ambient space, greatly simplifying the
implementation of the theory developed using the intrinsic view.

Main Contributions. We summarize our main contributions below:

• We introduce a variational framework built on the Riemannian Feynman-Kac representation and
Giransov’s theorem. In Theorem 2 we derive a Riemannian continuous-time ELBO, strictly gen-
eralizing the CT-ELBO in Huang et al. (2021) and prove in Theorem 4 that its maximization is
equivalent to Riemannian score matching for marginally equivalent SDEs (Theorem 3).

• To compute the Riemannian CT-ELBO it is necessary to compute the Riemannian divergence of
our parametrized vector field, for which we introduce a QR-decomposition-based method that is
computationally efficient for low dimensional manifolds as well a projected Hutchinson method
for scalable unbiased estimation. Notably, our approach does not depend on the closest point
projection which may not be freely available for many Riemannian manifolds of interest.

• We also provide a variance reduction technique to estimate the Riemannian CT-ELBO objective
that leverages importance sampling with respect to the time integral, which crucially avoids care-
fully designing the noise schedule of the inference process.

• Empirically, we validate our proposed models on spherical manifolds towards modelling natural
disasters as found in earth science datasets, products of spherical manifolds (tori) for protein
and RNA, synthetic densities on hyperbolic spaces and orthogonal groups. Our empirical results
demonstrate that RDM leads to new state-of-art likelihoods over prior manifold generative models.

2 Background

In this section, we provide the necessary background on diffusion models and key concepts
from Riemannian geometry that we utilize to build RDMs. For a short review of the latter, see
Appendix A or Ratcliffe (1994) for a more comprehensive treatment of the subject matter.

2.1 Euclidean diffusion models

A diffusion model can be defined as the solution to the (Itô) SDE (Øksendal, 2003),

dX = µ dt+ � dBt, (1)

with the initial condition X0 following some unstructured prior p0 such as the standard normal
distribution, where Bt is a standard Brownian motion, and µ and � are the drift and diffusion coef-
ficients of the diffusion process, which control the deterministic forces driving the evolution and the
amount of noise injected at each time step. This provides us a way to sample from the model, via
numerically solving the dynamics from t = 0 to t = T for some fixed termination time T . To train
the model via maximum likelihood, we require an expression for the log marginal density of XT ,
denoted by log p(x, T ), which is generally intractable.

The marginal likelihood can be represented using a stochastic instantaneous change-of-variable for-
mula, by applying the Feynman-Kac theorem to the Fokker-Planck PDE of the density. An applica-
tion of Girsanov’s theorem followed by an application of Jensen’s inequality leads to the following
variational lower bound (Huang et al., 2021; Song et al., 2021a):

log p(x, T ) � E

"
log p0(YT )�

Z T

0

✓
1

2
ka(Ys, s)k

2
2 +r · µ(Ys, T � s)

◆
ds

�����Y0 = x

#
(2)

where a is the variational degree of freedom, r· denotes the (Euclidean) divergence operator, and
Ys follows the inference SDE (the generative coefficients are evaluated in reversed time, i.e. T � s)

dY = (�µ+ �a) ds+ � dB̂s (3)

with B̂s being another Brownian motion. This is known as the continuous-time evidence lower
bound, or the CT-ELBO for short.

2



2.2 Riemannian manifolds

We work with a d-dimensional Riemannian manifold (M, g) embedded in a higher dimensional
ambient space R

m, for m > d. This assumption does not come with a loss of generality, since any
Riemannian manifold can be isometrically embedded into a Euclidean space by the Nash embedding
theorem (Gunther, 1991). In this case, the metric g coincides with the pullback of the Euclidean
metric by the inclusion map. Now, given a coordinate chart ' : M ! R

d and its inverse  = '
�1,

we can define Ẽj for j = 1, · · · , d to be the basis vectors of the tangent space TxM at point x 2 M.
The tangent space can be understood as the pushforward of the Euclidean derivation of the patch
space along  ; i.e., for any smooth function f 2 C

1(M), Ẽj(f) =
@

@x̃j
f �  .

We denote by Px the orthogonal projection onto the linear subspace spanned by the column vectors
of the Jacobian Jx = d /dx̃. Specifically, Px can be constructed via Px = Jx(JT

x Jx)�1
J
T
x . Note

that this subspace is isomorphic to the tangent space TxM, which itself is a subspace of TxRm. As
a result, we identify this subspace with TxM. Lastly, we refer to the action of Px as the projection
onto the tangential subspace, and Px itself as the tangential projection.

2.3 SDE on manifolds

Unlike Euclidean spaces, Riemannian manifolds generally do not possess a vector space structure.
This prevents the direct application of the usual (stochastic) calculus. We can resolve this by defining
the process via test functions. Specifically, let Vk be a family of smooth vector fields on M, and let
Z

k be a family of semimartingales (Protter, 2005). Symbolically, we write

dXt =
X

k

Vk(Xt) � dZ
k
t if df(Xt) =

X

k

Vk(f)(Xt) � dZ
k
t (4)

for any f 2 C
1(M) (Hsu, 2002). The � in the second differential equation is to be interpreted in

the Stratonovich sense (Protter, 2005). The use of the Stratonovich integral is the first step deviating
from the Euclidean diffusion model (1), as the Itô integral does not follow the usual chain rule.

Working with this abstract definition is not always convenient, so instead we work with specific
coordinates of M. Let ' be a chart, and let ṽ = (ṽjk) be a matrix representing the coefficients
of Vk in the coordinate basis—i.e. Vk(f) =

Pd
j=1 ṽjk

@
@x̃j

f � '
�1

��
x̃='(x)

. This allows us to
write d'(Xt) = ṽ � dZ. Similarly, suppose M is a submanifold embedded in R

m, and denote by
v = (vik) the coefficients wrt the Euclidean basis. v and ṽ are related by v = d'�1

dx̃ ṽ. Then we can
express the dynamics of X as a regular SDE using the Euclidean space’s coefficients dX = v � dZ.
Notably, by the relation between v and ṽ, the column vectors of v are required to lie in the span of
the column vectors of the Jacobian d'�1

dx̃ which restricts the dynamics to move tangentially on M.

3 Riemannian diffusion models

We now develop a variational framework to estimate the likelihood of a diffusion model defined on
a Riemannian manifold (M, g). Let Xt 2 M be a process solving the following SDE:

Generative SDE: dX = V0 dt+ V � dBt, X0 ⇠ p0 (5)

where V0 and the columns of the diffusion matrix1
V := [V1, · · · , Vw] are smooth vector fields

on M, and Bt is a w-dimensional Brownian motion. The law of the random variable Xt can be
written as p(x, t)µ(dx), where p(x, t) is the probability density function and µ is the d-dimensional
Hausdorff measure on the manifold associated with the Riemannian volume density. Let V · r be
a differential operator defined by (V · rg)U :=

Pw
k=1(rg · Uk)Vk, where rg · Uk denotes the

Riemannian divergence of the vector field Uk:

rg · Uk = |G|
� 1

2

dX

j=1

@

@x̃j
(|G|

1
2 ũjk). (6)

Our first result is a stochastic instantaneous change-of-variable formula for the Riemannian SDE by
applying the Feynman-Kac theorem to the Fokker Planck PDE of the density p(x, t).

1The multiplication is interpreted similarly to matrix-vector multiplication, i.e. V �dBt =
Pw

k=1 Vk �dBk
t .
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Theorem 1 (Marginal Density). The density p(x, t) of the SDE (5) can be written as

p(x, t) = E

"
p0 (Yt) exp

✓
�

Z t

0
rg ·

✓
V0 �

1

2
(V ·rg)V

◆
ds

◆ �����Y0 = x

#
(7)

where the expectation is taken wrt the following process induced by a Brownian motion B
0
s

dY = (�V0 + (V ·rg)V ) ds+ V � dB0
s. (8)

For effective likelihood maximization, we require access to log p and its gradient. Towards this goal,
we prove the following Riemannian CT-ELBO which serves as our training objective and follows
from an application of change of measure (Girsanov’s theorem) and Jensen’s inequality.

Theorem 2 (Riemannian CT-ELBO). Let B̂s be a w-dimensional Brownian motion, and let
Ys be a process solving the following

Inference SDE: dY = (�V0 + (V ·rg)V + V a) ds+ V � dB̂s, (9)

where a : Rm
⇥ [0, T ] ! R

m is the variational degree of freedom. Then we have

log p(x, T ) � E

"
log p0(YT )�

Z T

0

1

2
ka(Ys, s)k

2
2 +rg ·

✓
V0 �

1

2
(V ·rg)V

◆
ds

�����Y0 = x

#
,

(10)

where all the generative degree of freedoms Vk are evaluated in the reversed time direction.

3.1 Computing Riemannian divergence

Similar to the Euclidean case, computing the Riemannian CT-ELBO requires computing the diver-
gence “rg·” of a vector field, which can be achieved by applying the following identity.

Proposition 1 (Riemannian divergence identity). Let (M, g) be a d-dimensional Rieman-
nian manifold. For any smooth vector field Vk 2 X(M), the following identity holds:

rg · Vk =
dX

j=1

D
rẼj

Vk, Ẽ
j
E

g
. (11)

Furthermore, if the manifold is a submanifold embedded in the ambient space R
m equipped

with the induced metric g = ◆
⇤
ḡ, then

(rg · Vk)(x) = tr

✓
Px

dvk
dx

Px

◆
, (12)

where vk = (v1k, · · · , vmk) are the ambient space coefficients Vk =
Pm

i=1 vik
@

@xi
and Px is

the orthogonal projection onto the tangent space.

Intrinsic coordinates. The patch-space formula (6) can be used to compute the Riemannian diver-
gence. This view was adopted by Mathieu & Nickel (2020), where they combined the Hutchinson
trace identity and the internal coordinate formula to estimate the divergence. The drawbacks of this
framework include: (1) obtaining local coordinates may be difficult for some manifolds, hindering
generality in practice; (2) we might need to change patches, which complicates implementations;
and (3) the inverse scaling of

p
|G| might result in numerical instability and high variance.

Closest-point projection. The coordinate-free expression (11) leads to the closest-point projection
method proposed by Rozen et al. (2021). Concretely, define the closest-point projection by ⇡(x) :=
argminy2M kx� yk, where k·k is the Euclidean norm. Let Vk(x) be the derivation corresponding
to the ambient space vector vk(x) = P⇡(x)u(⇡(x)) for some unconstrainted u : Rm

! R
m. Rozen

et al. (2021) showed that rg · Vk(x) = r · vk(x), since vk is infinitesimally constant in the normal
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direction to TxM. This allows us to compute the divergence directly in the ambient space. However,
the closest-point projection map ⇡ may not always be easily obtained.

QR decomposition. An alternative to the closest-point projection is to instead search for an or-
thogonal basis for TxM. Let Q = [e1, · · · , ed, n1, · · · , nm�d] be an orthogonal matrix whose
first d columns span the TxM, and the remaining m � d vectors span its orthogonal complement
TxM

?. To construct Q we can simply sample d vectors—e.g. from N (0, 1)–in the ambient space
and orthogonally project them to TxM using Px. These vectors, although not orthogonal yet, form
a basis for TxM. Next we concatenate them with m � d random vectors and apply a simple QR

decomposition to retrieve an orthogonal basis. Using Q we may rewrite equation (12) as follows:

(rg · Vk)(x) = tr

✓
QQ

>
Px

dvk
dx

Px

◆
= tr

✓
(PxQ)>

dvk
dx

PxQ

◆
=

dX

j=1

e
>
j
dvk
dx

ej (13)

where we used (1) the orthogonality of Q, (2) the cyclic property of trace, (3) and the fact that
Pxej = ej and Pxnj = 0. In practice, concatenation with the remaining m � d vectors is not
needed as they are effectively not used in computing the divergence, speeding up computation when
m � d. Moreover, the vector-Jacobian product can be computed in O(m) time using reverse-mode
autograd and importantly does not require the closest-point projection ⇡.

Projected Hutchinson. When QR is too expensive for higher dimensional problems, the Hutchin-
son trace estimator (Hutchinson, 1989) can be employed within the extrinsic view representa-
tion (12). For example, let z be a standard normal vector (or a Rademacher vector), we have
(rg ·Vk)(x) = Ez⇠N ,z0=Pxz[z

0> dvk
dx z

0]. Different from a direct application of the trace estimator to
the closest-point method, we directly project the random vector to the tangent subspace. Therefore,
the closest-point projection is again not needed.

3.2 Fixed-inference parameterization

Following prior work (Sohl-Dickstein et al., 2015; Ho et al., 2020; Huang et al., 2021), we let the
inference SDE (9) be defined as a simple noise process taking observed data to unstructured noise:

dY = U0 dt+ V � dB̂s, (14)

where U0 = 1
2rg log p0 and V is the tangential projection matrix; that is, Vk(f)(x) =Pm

j=1(Px)jk
@f
@xj

for any smooth function f . This is known as the Riemannian Langevin diffu-
sion (Girolami & Calderhead, 2011). As long as p0 satisfies a log-Sobolev inequality, the marginal
distribution of Ys (i.e. the aggregated posterior) converges to p0 at a linear rate in the KL divergence
(Wang et al., 2020). For compact manifolds, we set p0 to be the uniform density, which means
U0 = 0, and (14) is reduced to the extrinsic construction of Brownian motion on M (Hsu, 2002,
Section 1.2). The benefits of this fixed-inference parameterization are the following:

Stable and Efficient Training. With the fixed-inference parameterization we do not need to opti-
mize the vector fields that generate Ys, and the Riemannian CT-ELBO can be rewritten as:

E[log p0(YT )]�

Z T

0
EYs

"
1

2
ka(Ys, s)k

2
2 +rg ·

✓
V0 �

1

2
(V ·rg)V

◆ �����Y0 = x

#
ds, (15)

where the first term is a constant wrt the model parameters (or it can be optimized separately if we
want to refine the prior), and the time integral of the second term can be estimated via importance
sampling (see Section 3.3). A sample of Ys can be drawn cheaply by numerically integrating (14),
without requiring a stringent error tolerance (see Section 5.2 for an empirical analysis), which allows
us to estimate the time integral in (15) by evaluating a(Ys, s) at a single time step s only.

Simplified Riemannian CT-ELBO. The CT-ELBO can be simplified as the differential operator
V ·rg applied to V yields a zero vector when V is the tangential projection.

Proposition 2. If V is the tangential projection matrix, then (V ·rg)V = 0.

This means that we can express the generative SDE V0 using the variational parameter a via

dX = (V a(X,T � t)� U0(X,T � t)) dt+ V � dB̂t, (16)
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with the corresponding Riemannian CT-ELBO:

E[log p0(YT )]�

Z T

0
EYs

"
1

2
kak

2
2 +rg · (V a� U0)

�����Y0 = x

#
ds. (17)

3.3 Variance reduction

The inference process can be more generally defined to account for a time reparameterization. In
fact, this leads to an equivalent model if one can find an invariant representation of the temporal
variable. Learning this time rescaling can help to reduce variance (Kingma et al., 2021).

In principle, we can adopt the same methodology, but this would further complicate the parameteri-
zation of the model. Alternatively, we opt for a simpler view for variance reduction via importance
sampling. We estimate the time integral “

R
. . . ds” in (17) using the following estimator:

I :=
1

q(s)

✓
1

2
kak

2
2 +rg · (V a� U0)

◆
where s ⇠ q(s) and Ys ⇠ q(Ys | Y0), (18)

where q(s) is a proposal density supported on [0, T ]. We parameterize q(s) using a 1D monotone
flow (Huang et al., 2018). As the expected value of this estimator is the same as the time integral
in (17), it is unbiased. However, this means we cannot train the proposal distribution q(s) by max-
imizing this objective, since the gradient wrt the parameters of q(s) is zero in expectation. Instead,
we minimize the variance of the estimator by following the stochastic gradient wrt q(s)

rq(s)Var(I) = rq(s)E[I
2]�⇠⇠⇠⇠⇠

rq(s)E[I]
2 = rq(s)E[I

2]. (19)

The latter can be optimized using the reparameterization trick (Kingma & Welling, 2014) and is a
well-known variance reduction method in a multitude of settings (Luo et al., 2020; Tucker et al.,
2017). It can be seen as minimizing the �2-divergence from a density proportional to the magnitude
of EYs [I] (Dieng et al., 2017; Müller et al., 2019).

3.4 Connection to score matching

In the Euclidean case, it can be shown that maximizing the variational lower bound of the fixed-
inference diffusion model (16) is equivalent to score matching (Ho et al., 2020; Huang et al., 2021;
Song et al., 2021a). In this section, we extend this connection to its Riemannian counterpart.

Let q(ys, s) be the density of Ys following (14), marginalizing out the data distribution q(y0, 0).
The score function is the Riemannian gradient of the log-density rg log q. The following theorem
tells us that we can create a family of inference and generative SDEs that induce the same marginal
distributions over Ys and XT�s as (16) if we have access to its score.

Theorem 3 (Marginally equivalent SDEs). For �  1, the marginal distributions of XT�s

and Ys of the processes defined as below

dY =

✓
U0 �

�

2
rg log q

◆
ds+

p
1� �V � dB̂s Y0 ⇠ q(·, 0) (20)

dX =

✓✓
1�

�

2

◆
rg log q � U0

◆
dt+

p
1� � � V dB̂t X0 ⇠ q(·, T ) (21)

both have the density q(·, s). In particular, � = 1 gives rise to an equivalent ODE.

This suggests if we can approximate the score function, and plug it into the reverse process (21), we
obtain a time-reversed process that induces approximately the same marginals.

Theorem 4 (Score matching equivalency). For � < 1, let E1
� denote the Riemannian CT-

ELBO of the generative process (21), with rg log q replaced by an approximate score S✓, and
with (20) being the inference SDE. Assume S✓ is a compactly supported smooth vector. Then

EY0 [E
1
� ] = �C1

Z T

0
EYs

h
kS✓ �rg log qk

2
g

i
ds+ C2 (22)
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Figure 1: Density of models trained on earth datasets. Red dots are samples from the test set.

where C1 > 0 and C2 are constants wrt ✓.

The first implication of the theorem is that maximizing the Riemannian CT-ELBO of the plug-in
reverse process is equivalent to minimizing the Riemannian score-matching loss. Second, if we set
� = 0, from (135) (in the appendix), we have V a = S✓, which is exactly the fixed-inference training
in §3.2. That is, the vector V a trained using equation (17) is actually an approximate score, allowing
us to extract an equivalent ODE by substituting V a for rg log q in (20,21) by setting � = 1.

4 Related work
Diffusion models. Diffusion models can be viewed from two different but ultimately complimentary
perspectives. The first approach leverages score based generative models (Song & Ermon, 2019;
Song et al., 2021b), while the second approach treats generative modeling as inverting a fixed noise-
injecting process (Sohl-Dickstein et al., 2015; Ho et al., 2020). Finally, continuous-time diffusion
models can also be embedded within a maximum likelihood framework (Huang et al., 2021; Song
et al., 2021a), which represents the special case of prescribing a flat geometry—i.e. Euclidean—to
the generative model and is completely generalized by the theory developed in this work.

Riemannian Generative Models. Generative models beyond Euclidean manifolds have recently
risen to prominence with early efforts focusing on constant curvature manifolds (Bose et al., 2020;
Rezende et al., 2020). Another line of work extends continuous-time flows (Chen et al., 2018a) to
more general Riemannian manifolds (Lou et al., 2020; Mathieu & Nickel, 2020; Falorsi & Forré,
2020). To avoid explicitly solving an ODE during training, Rozen et al. (2021) propose Moser
Flow whose objective involves computing the Riemannian divergence of a parametrized vector field.
Concurrent to our work, De Bortoli et al. (2022) develop Riemannian score-based generative models
for compact manifolds like the Sphere. While similar in endeavor, RDMs are couched within the
the maximum likelihood framework. As a result our approach is directly amenable to variance
reduction techniques via importance sampling and likelihood estimation. Moreover, our approach
is also applicable to non-compact manifolds such as hyperbolic spaces, and we demonstrate this in
our experiments on a larger variety of manifolds including the orthogonal group and toroids.

5 Experiments

We investigate the empirical caliber of RDMs on a range of manifolds. We instantiate RDMs by
parametrizing a in (16) using an MLP and maximize the CT-ELBO (17). We report our detailed
training procedure—including selected hyperparameters—for all models in §D.

5.1 Sphere

For spherical manifolds, we model the datasets compiled by Mathieu & Nickel (2020), which consist
of earth and climate science events on the surface of the earth such as volcanoes (NGDC/WDS,
2022b), earthquakes (NGDC/WDS, 2022a), floods (Brakenridge, 2017), and fires (EOSDIS, 2020).
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Volcano Earthquake Flood Fire

Mixture of Kent �0.80±0.47 0.33±0.05 0.73±0.07 �1.18±0.06

Riemannian CNF (Mathieu & Nickel, 2020) �0.97±0.15 0.19±0.04 0.90±0.03 �0.66±0.05

Moser Flow (Rozen et al., 2021) �2.02±0.42 �0.09±0.02 0.62±0.04 �1.03±0.03

Stereographic Score-Based �4.18±0.30 �0.04±0.11 1.31±0.16 0.28±0.20

Riemannian Score-Based (De Bortoli et al., 2022) �5.56±0.26 �0.21±0.03 0.52±0.02 �1.24±0.07

RDM �6.61±0.97 �0.40±0.05 0.43±0.07 �1.38±0.05

Dataset size 827 6120 4875 12809

Table 1: NLL scores for each method on earth datasets. Bold shows best results (up to statistical significance).
Means and standard deviations are calculated over 5 runs. Baselines taken from De Bortoli et al. (2022).

Figure 2: Variance reduction with
importance sampling.

Figure 3: Direct sampling vs numerical integration of Brownian mo-
tion. Numbers in legends indicate the number of time steps.

Figure 4: Ramachandran contour plot of the model density for protein datasets. Red dots are set test samples.

In Table 1 for each dataset we report average and standard deviation of test negative log likelihood
on 5 different runs with different splits of the dataset. In Figure 1 we plot the model density in blue
while the test data is depicted with red dots.

Variance reduction. We demonstrate the effect of applying variance reduction on optimizing the
Riemannian CT-ELBO (17) using the earthquake dataset. As shown in Figure 2, learning an impor-
tance sampling proposal effectively lowers the variance and speeds up training.

5.2 Tori

For tori, we use the list of 500 high-resolution proteins compiled in Lovell et al. (2003) and select
113 RNA sequences listed in Murray et al. (2003). Each macromolecule is divided into multiple
monomers, and the joint structure is discarded—we model the lower dimensional density of the
backbone conformation of the monomer. For the protein data, this corresponds to 3 torsion angles
of the amino acid. As one of the angles is normally 180°, we also discard it, and model the density
over the 2D torus. For the RNA data, the monomer is a nucleotide described by 7 torsion angles in
the backbone, represented by a 7D torus. For protein, we divide the dataset by the type of side chain
attached to the amino acid, resulting in 4 datasets, and we discard the nucleobases of the RNA.

In Table 2 we report the NLL of our model. Our baseline is a mixture of 4, 096 power spherical
distributions (De Cao & Aziz, 2020, MoPS). We observe that RDM outperforms the baseline across
the board, and the difference is most noticeable for the RNA data, which has a higher dimensionality.

Numerical integration ablation. We estimate the loss (17) by integrating the inference SDE on M.
To study the effect of integration error, we experiment with various numbers of time steps evenly
spaced between [0, s] on Glycine. Also, as we can directly sample the Brownian motion on tori
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General Glycine Proline Pre-Pro RNA
MoPS 1.15±0.002 2.08±0.009 0.27±0.008 1.34±0.019 4.08±0.368

RDM 1.04±0.012 1.97±0.012 0.12±0.011 1.24±0.004 �3.70±0.592

Dataset size 138208 13283 7634 6910 9478
Table 2: Negative test log-likelihood for each method on Tori datasets. Bold shows best results (up to statistical
significance). Means and standard deviations are calculated over 5 runs.

without numerical integration, we use it as a reference (termed direct loss) for comparison. Figure
3 shows while fewer time steps tend to underestimate the loss, the model trained with 100 time
steps is already indistinguishable from the one trained with direct sampling. We also find numerical
integration is not a significant overhead as each experiment takes approximately the same wall-clock
time with identical setups. This is because the inference path does not involve the neural module a.

5.3 Hyperbolic Manifolds

Figure 5: Hyperbolic Manifold. Top: data.
Bottom: learned Density

Hyperbolic manifolds provide an example whose closest-
point projection is not cheap to obtain, and a claimed
closest-point projection in recent literature is in fact not
the closest Euclidean projection (Skopek et al., 2019)
(see §C for more details). To demonstrate the general-
ity of our framework, we model the synthetic datasets in
Figure 5, first introduced by Bose et al. (2020); Lou et al.
(2020). Since hyperbolic manifolds are not compact, we
need a non-zero drift to ensure the inference processs is
not dissipative. We define the prior as the standard normal
distribution on the yz-plane and let U0 be 1

2rg log p0, so that Ys will revert back to the origin.

5.4 Special Orthogonal Group

Figure 6: SO(3). Left: synthetic multi-
modal density. Right: learned density.

Another example whose closest-point projection is ex-
pensive to compute is the orthogonal group, as it requires
performing the singular value decomposition. To evalu-
ate our framework on this matrix group, we generate data
using the synthetic multimodal density defined on SO(3)
from Brofos et al. (2021). We view it as a submanifold
embedded in R

3⇥3, therefore d = 3 and m = 9. We
use the projected Hutchinson to estimate the Riemannian
divergence. Since the data are 3D rotational matrices, we can visualize them using the Euler an-
gles. We plotted the data density and the learned model density in Figure 6, where each coordinate
represents the rotation around that particular axis.

6 Conclusion

In this paper, we introduce RDMs that extend continuous-time diffusion models to arbitrary
Riemannian manifolds—including challenging non-compact manifolds like hyperbolic spaces. We
provide a variational framework to train RDMs by optimizing a novel objective, the Riemannian
Continuous-Time ELBO. To enable efficient and stable training we provide several key tools such as
a fixed-inference paramterization of the SDE in the ambient space, new methodological techniques
to compute the Riemannian divergence, as well as an importance sampling procedure with respect
to the time integral to reduce the variance of the loss. On a theoretical front, we also show deep
connections between our proposed variational framework and Riemannian score matching through
the construction of marginally equivalent SDEs. Finally, we complement our theory by constructing
RDMs that achieve state-of-the-art performance on density estimation on geoscience datasets,
protein/RNA data on toroidal, and synthetic data on hyperbolic and orthogonal-group manifolds.
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