
GLO-STIX: Graph-Level Operations for Specifying Techniques 
and Interactive eXploration

Charles D. Stolper,
College of Computing, Georgia Institute of Technology

Minsuk Kahng,
College of Computing, Georgia Institute of Technology

Zhiyuan Lin,
College of Computing, Georgia Institute of Technology

Florian Foerster,
College of Computing, Georgia Institute of Technology

Aakash Goel,
College of Computing, Georgia Institute of Technology

John Stasko, and
College of Computing, Georgia Institute of Technology

Duen Horng Chau
College of Computing, Georgia Institute of Technology

Charles D. Stolper: chadstolper@gatech.edu; Minsuk Kahng: kahng@gatech.edu; Zhiyuan Lin: zlin48@gatech.edu; 
Florian Foerster: florian.foerster@gatech.edu; Aakash Goel: aakashgoel@gatech.edu; John Stasko: 
stasko@cc.gatech.edu; Duen Horng Chau: polo@gatech.edu

Abstract

The field of graph visualization has produced a wealth of visualization techniques for 

accomplishing a variety of analysis tasks. Therefore analysts often rely on a suite of different 

techniques, and visual graph analysis application builders strive to provide this breadth of 

techniques. To provide a holistic model for specifying network visualization techniques (as 

opposed to considering each technique in isolation) we present the Graph-Level Operations 

(GLO) model. We describe a method for identifying GLOs and apply it to identify five classes of 

GLOs, which can be flexibly combined to re-create six canonical graph visualization techniques. 

We discuss advantages of the GLO model, including potentially discovering new, effective 

network visualization techniques and easing the engineering challenges of building multi-

technique graph visualization applications. Finally, we implement the GLOs that we identified 

into the GLO-STIX prototype system that enables an analyst to interactively explore a graph by 

applying GLOs.

For information on obtaining reprints of this article, tvcg@computer.org. 

HHS Public Access
Author manuscript
IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

Published in final edited form as:
IEEE Trans Vis Comput Graph. 2014 December 31; 2014: 2320–2328. doi:10.1109/TVCG.
2014.2346444.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Index Terms

Graph-level operations; graph visualization; visualization technique specification; graph analysis; 
information visualization

1 Introduction

The field of graph visualization has provided analysts with a number of useful techniques 

for displaying the nodes and edges of a graph. Each of these techniques can be quite 

effective at showing aspects of the graph to the analyst. In other words, different techniques 

are effective at accomplishing different tasks. When analysts wish to perform multiple tasks, 

they often turn to multiple graph visualization techniques. Developers of graph visualization 

systems, in turn, must implement this variety of techniques in their applications.

We introduce the new idea of graph-level operations (GLOs), which provides an 

alternative to implementing each graph visualization technique in isolation. GLOs are 

encapsulated manipulations of a graph visualization. Let us consider an example GLO: 
positioning each node’s glyph relatively on an axis according to a continuous attribute of 

the node. This GLO might be used to stratify the nodes according to their node types, as in a 

semantic substrates visualization [22], which places nodes in non-overlapping regions, one 

region for each node type, to help reduce visual complexity (see Table 1, fourth 

visualization). The same GLO may also be used to position nodes into a 2D grid, each 

dimension corresponds to a node attribute, as in a PivotGraph [30], which is designed for 

summarizing multivariate graphs (see Table 1, fifth visualization). It could further be 

applied to align the nodes into a scatterplot.

In fact, we can consider graph visualization techniques as sequences of GLOs. For example, 

the aforementioned PivotGraph technique can be represented as:

• Substrate Nodes on x by attribute0

• Substrate Nodes on y by attribute1

• Aggregate Nodes by attribute0 and attribute1

• Display All Links

• Display Links as Curved

• Size Nodes by Count

• Show x Axis

• Show y Axis

• Set Target Generation 1

• Set Source Generation 1

This means that through flexible combinations of GLOs, we may create and specify familiar 

canonical visualization techniques and potentially create and specify new ones.

Stolper et al. Page 2

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our Contributions

Our work makes multiple major contributions:

• We present GLOs (Graph-Level Operations) — a new idea and model for 

specifying graph visualization techniques. We contribute a method to identify 

GLOs and demonstrate the flexibility of GLOs in re-creating canonical graph 

visualization techniques.

• We discuss the important properties of GLOs, and the benefits to graph 

visualization that GLOs provide, such as: (1) a new model of graph exploration; (2) 

the potential to discover new network visualization techniques; and (3) a reduced 

engineering challenge for graph visualization application developers.

• We demonstrate the feasibility and potential of the GLO approach through an 

implementation of each of the GLOs within GLO-STIX prototype system.

Notation

Throughout this paper we use the terms graph and network interchangeably to refer to data 

structures of nodes (or vertices) connected by edges (or links). We use the term technique or 

visualization technique to refer to methods of displaying data and graph visualization 

techniques or network visualization techniques to refer to methods of displaying graph data. 

Visualization elements (or glyphs) are the on-screen graphical representations of data such as 

circle elements representing nodes. Finally, we use the terms graph-level operations, 

operations, and GLOs interchangeably to refer to encapsulated manipulations of these 

visualization elements.

Paper Organization

This paper provides a significantly more detailed and rigorous description of graph-level 

operations than our preliminary work-in-progress extended abstract [24]. Section 2 presents 

repeatable methods for identifying GLOs provided a set of canonical graph visualization 

techniques and for specifying techniques using GLOs. Section 3 describes three advantages 

of graph-level operations over alternative network visualization technique specification 

models. Section 4 provides descriptions of GLOs that we identified by applying the method 

of Section 2 to the set of six graph canonical graph visualization techniques in Table 1. 

Section 5 presents general properties of GLOs. Section 6 presents the design rationale and 

implementation of GLO-STIX, an application for exploring a graph using GLOs and 

implementing the GLOs in Section 4. Section 7 discusses related work in graph visualization 

programming toolkits and graphical tools for graph analysis. We conclude in Sections 8 with 

a discussion of the limitations of the current GLO-STIX implementation and future research 

directions for the Graph-Level Operations model.

2 Identifying Graph-Level Operations

In this section, we describe the method that we used to identify the graph-level operations 

necessary to specify a set of canonical graph visualization techniques. We then describe how 

we can use these GLOs to specify these techniques, or others.

Stolper et al. Page 3

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.1 Identifying GLOs

Graph-level operations are encapsulated manipulations of a graph visualization. This 

encapsulation introduces uncertainty as to the appropriate level of abstraction for each 

operation. For example, is positioning a node relatively along the x and y axes one operation 

or two? In order to mitigate this uncertainty, in this section we describe a repeatable method 

for identifying a set of operations necessary for specifying a given a set of techniques.

We began by choosing a set of techniques that were commonly used within the graph 

visualization community and provided a cross-section of network visualization methods. We 

settled on the six techniques shown in Table 1. We then, as a team, described operations 

necessary to transition from each technique to each other technique. Two example 

transitions are demonstrated in Figure 2. During this process, we took a “worst-case” 

approach and assumed that any variable parameters would be different. For example, when 

determining the operations required to transition from a semantic substrates visualization to 

a PivotGraph visualization, we assumed that the substrated attribute was not also one of the 

pivot attributes.

Having identified all of the transitions between each of the techniques, we collected each of 

the different operations used into a set. We then augmented this set with obvious parallel 

operations. For example, “Align y Top” never appears in Table 1, but given “Align y 

Bottom” does, it is logical to include this operation in the set. The collection of all of these 

operations represented the final set of of GLOs. This process allowed us to reproducibly 

grow our set of GLOs by iteratively expanding the number of visualization techniques to 

support. This resulted in the set of 34 graph-level operations (see Section 4). Finally, we 

classified the operations using card sorting [21], a technique to categorize and group 

information. We printed all GLOs on small cards and had three visualization experts sort the 

GLOs into categories and give them names. Subsequently we analyzed the groupings and 

combined them into multiple categories of GLOs. We note that while these GLO categories 

provide good coverage, they are by no means exhaustive.

More formally: consider a set of techniques T. Let Sti→tj be a set of operations necessary to 

transition from technique ti ∈ T to technique tj ∈ T. Thus, the set of GLOs necessary to 

specify T (denoted OT) can be defined as

(1)

2.2 Specifying Techniques

We then set out to reverse this method, and use the GLOs that we identified to specify the 

techniques. We can do so by listing the GLOs necessary to transition to them. As we already 

have a list of operations for transitions between any two techniques, we can specify a 

technique by combining these sequences of GLOs for transitions to the given technique from 

all the other techniques. Ideally, the order in which GLOs are applied would not matter, and 

in some cases this is true. For instance, the results are the same regardless of the order 

“Position Relatively on x by attribute0” or “Size Nodes Relatively by attribute1” are applied 

Stolper et al. Page 4

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for a transition to a scatterplot. However, in certain instances the GLO ordering does matter, 

namely some GLOs must be applied after a certain GLO is applied. This case occurs 

because of a construct we term generations. Notice that in the adjacency matrix in Table 1 

there are two sets of node elements: those on the left and those on the bottom. Each set 

contains an element representating each node in the dataset. The set on the bottom was 

generated from the set on the left through the “Clone Active Generation” GLO. This GLO 

made a precise copy of the current active generation (in this case evenly-distributed on y, 

constantly-sized, left-aligned circles) and made the newly created elements (the new 

generation) into the active generation. The active generation is used to set the generation 

parameter of a GLO, described in Section 5, but in plain terms all GLOs are applied to only 

the active generation. Returning to the adjacency matrix, “Align Bottom” had to be applied 

after “Clone Active Generation” else it will be applied to the circles on the left, instead of a 

new set of circles.

For each technique we can specify a list of dependence (preceding) relationships between 

two GLOs denoted oa ≺ ob, signifying that oa must precede ob. We then represent the 

technique, Ot, as a sequence of GLOs where each GLO is from the union of all of the sets of 

GLOs used to transition to the technique, and the order of GLOs satisfy all dependence 

conditions. Resulting sequences from this process for the six chosen techniques can be 

found in the GLO Specification column of Table 1. Applying a technique’s sequence of 

operations results in a visualization of the technique on the active generation.

3 Benefits of Graph-Level Operations

Here we describe benefits the graph-level operations model provides as a holistic model of 

graph visualization. We look at two cases where the GLO model provides either additional 

capabilities or explicit advantages over existing approaches. We begin by discussing a new 

style of interactive graph exploration enabled by GLOs and how this could lead to the 

discovery of new, effective network visualization techniques. We then discuss the 

alternative coding paradigm that GLOs provide developers and the advantages of this 

paradigm.

3.1 Graph Exploration and Discovering New Techniques

One of the more interesting applications of graph-level operations is using them to 

interactively explore a graph without limiting an analyst to only supported techniques. As 

we mentioned in the introduction, different techniques support different graph analysis tasks. 

There is a chance, however, that the best view of the data is not one explicitly provided by 

the visualization application. By iteratively applying GLOs, an analyst can see different 

views onto his or her graph data beyond those predefined by an application’s developer. 

This balance allows the application developer to still specify common techniques, but 

empowers the analyst with the freedom to experiment with different displays.

Not only do GLOs provide a benefit to analysts by allowing them to explore their data in a 

more free-form manner, but they provide a benefit to the visualization community by 

potentially providing a novel method of identifying new techniques. Let us use a simple 

example to demonstrate this point. Suppose that we had built a system that supported the six 

Stolper et al. Page 5

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



techniques in Table 1 and allowed an analyst to apply GLOs freely to adjust the display. Let 

us say that the analyst were to distribute the nodes evenly on the x axis (an adjacency matrix 

GLO), then position the nodes in the middle of the screen (an augmented GLO from the 

adjacency matrix), and then choose to display the links as curved (a GLO used by semantic 

substrates). By applying these three GLOs, the analyst has successfully recreated the arc 

diagram technique [29] in Figure 3. In other words, the analyst was able to not only explore 

his or her graph but was able to ‘discover’ a new graph visualization technique in the 

process.

For a more complex example, consider the technique in Figure 4. This technique required 

creating four (for five total) generations of nodes, plotting each generation radially by 

generation, and then positioning each generation along the plot radius by different attributes. 

Edges can then be drawn between any two sets of axes using the source-generation and 

target-generation GLOs. The resulting chart is akin to Hive Plots [17] (where edges are 

drawn between nodes on different radial axes) or star diagrams [16] (where elements are 

positioned along multiple radial attribute axes). An analyst may not serendipitously 

encounter this precise technique, but he or she may encounter aspects of the technique such 

as positioning radially by generation or positioning different generations by different 

attributes along the same axis.

While these two examples do not prove that new, effective network visualization techniques 

will be discovered using GLOs (arc diagrams are not a new technique and we have not 

evaluated the technique in Figure 4 for effectiveness) these cases do demonstrate the 

potential and the feasibility of such a discovery occurring.

3.2 Easing the Engineering Challenge

As we mentioned in our introduction, graph-level operations provide flexibility for 

developers of graph visualization applications. In the past, these developers have needed to 

implement each technique individually. As new techniques are identified or become popular, 

these developers implement them on the fly. In the worst case, this means defining each 

technique with no reusable code base, though this case is highly unlikely. Having a language 

for describing both existing techniques and potentially future techniques, as GLOs are, 

provides developers with a new target for their development.

Rather than building each technique in isolation, the developer can instead develop the code 

for each GLO in a set, just as they might for any interface in an object-oriented software 

system. These GLOs provide seamless reusability and rapidly speed up the implementation 

of the techniques themselves. By specifying techniques in terms of GLOs, the developer 

need only write short code blocks to apply the necessary GLOs for each technique. This 

applies to both existing techniques as well as any new techniques that might be discovered. 

Furthermore, it is trivial for a developer to enable the analyst exploration capability that we 

described above when the techniques are already implemented as GLOs. In other words, 

graph-level operations provide developers with an easier means to implement techniques 

that inherently provides a powerful and useful additional capability to their customers.

Stolper et al. Page 6

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4 Graph-Level Operations

Following the method in Section 2 using the techniques in Table 1, we identified 34 graph-

level operations (GLOs) and categorized each into five classes: 1) positioning nodes, 2) 

modifying element properties, 3) cloning elements, 4) aggregating elements, and 5) 

modifying display properties.

In this section, we describe the five categories and their GLOs.

4.1 Positioning Nodes

The GLOs in this category each applies a different algorithm for determining the spacial 

properties (two-dimensional coordinate positions) of the node glyphs in the visualization.

• Align Nodes {Left, Center, Right, Top, Middle, Bottom}: adjusts the position of 

the nodes by changing the appropriate coordinate values of all nodes to a constant 

value.

• Evenly Distribute Nodes on x or y by {attribute}: disperses the nodes 

horizontally or vertically so that the nodes are evenly distributed on the appropriate 

axis, sorted by the attribute of the node.

• Evenly Distribute Nodes on x or y: disperses the nodes horizontally or vertically 

so that the nodes are evenly distributed on the appropriate axis, defaulting to the 

nodes’ ordering in the data store.

• Substrate Nodes on x or y by {categorical attribute}: positions the nodes based 

on a categorical attribute value. Attribute values are assigned to locations evenly 

across the appropriate axis and each node is then positioned at its value’s location.

• Evenly Distribute Nodes within Substrates: positions the nodes of the most 

recently applied substrate evenly along the opposite axis of the substrate axis.

• Position Nodes on x or y Relatively by {continuous attribute}: positions each 

node based on a continuous attribute. The leftmost or bottom-most position is 

assigned a zero value and the right-most or top-most position is assigned the 

maximum value amongst the nodes. Nodes are then positioned along the axis using 

a linear scale of their attribute values.

• Evenly Distribute Nodes Radially by {attribute}: position the nodes evenly 

around the center of the plot clockwise from the top, sorted by the attribute of the 

node.

• Evenly Distribute Nodes Radially: position the nodes evenly around the center of 

the plot clockwise from the top, defaulting to the nodes’ ordering in the data store.

• Position Nodes Radially by {continuous attribute}: positions each node radially 

based on a continuous attribute. The top-most position is assigned a zero value and 

the position just left of the top value is assigned the maximum value amongst the 

nodes. Nodes are then positioned clockwise-radially using a linear scale of their 

attribute values.

Stolper et al. Page 7

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Substrate Nodes Radially by {categorical attribute}: positions the nodes based 

on a categorical attribute value. Attribute values are assigned to locations evenly 

around the center of the plot and each node is then positioned at its value’s 

location.

• Evenly Distribute Nodes Along Plot Radius by {attribute}: disperses the nodes 

so that the nodes are evenly distributed in distance from the center of the plot to the 

edge of the plot, sorted from the center by the attribute of the node.

• Evenly Distribute Nodes Along Plot Radius: disperses the nodes so that the 

nodes are evenly distributed in distance from the center of the plot to the edge of 

the plot, sorted from the center by the attribute of the node, defaulting to the nodes’ 

ordering in the data store.

• Position Nodes Along Plot Radius by {continuous attribute}: positions each 

node based on a continuous attribute. The innermost position is assigned a zero 

value and outer-most position is assigned the maximum value amongst the nodes. 

Nodes are then positioned from the inner-most position to the outer-most using a 

linear scale of their attribute values.

• Substrate Nodes Along Plot Radius by {categorical attribute}: positions the 

nodes based on a categorical attribute value. Attribute values are assigned to 

locations evenly along the radius of the plot and each node is then positioned at its 

value’s location.

• Position Nodes Along Plot Radius by {constant}: Positions the nodes a fixed 

distance from the center of the plot.

• Apply {algorithm} to the Nodes: positions the nodes using a physics-based 

algorithm, such as a force-directed algorithm.

4.2 Modifying Element Properties

The GLOs in this category each algorithmically modify the (non-spacial) visual properties 

of the node and edge glyphs.

• Size Nodes by {constant}: adjusts the radius of each node to a constant value.

• Size Nodes Relatively by {continuous attribute}: adjusts the radius of each node 

using a linear scale between zero and the maximum value amongst the nodes.

• Display All Links: makes all edges visible.

• Display Selected Links: makes all edges invisible. When the user mouses over a 

node, makes the in- and out-edges of that node visible.

• Hide Links: makes edges invisible.

• Display Links as Straight: adjusts each edge to be drawn as a straight line from 

the center of the source node to the center of the target node.

• Display Links as Curved: draws each edge as a quadratic curve clockwise from 

the source node to the target node.

Stolper et al. Page 8

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Display Links as Circles: adjusts each edge to be drawn as a circle with y 

coordinate of its source node and x coordinate of its target node.

4.3 Cloning Nodes

This category of GLOs allows for duplicating node glyphs and interacting with the various 

sets of duplicates. Each cloning operation (as well as each aggregation operation) creates a 

new generation of nodes, and each generation is assigned an identifying generation number 

so that the generation can be referenced by other operations. The initial set of nodes are 

assigned generation number 0. After that, the first clone (or aggregate) generation created is 

assigned generation number 1, the second 2, and so on. The active generation is the 

generation of nodes on which GLOs are applied. For example, if an evenly distribute nodes 

on x GLO is applied, only the nodes in the active generation are repositioned.

• Clone Active Generation: generates copies of all of the node glyphs of the current 

generation. The copies have the same visual properties of the cloned generation. 

The new generation is assigned a generation number for reference and becomes the 

active generation.

• Select Generation k: select a generation of nodes and makes it the active 

generation. Subsequent GLOs are applied to this generation.

• Set Source Generation k: adjust edges to be drawn from generation k.

• Set Target Generation k: adjust edges to be drawn to generation k.

• Remove Generation k: Removes the glyphs of generation k from the display. If 

edges were being drawn to or from this generation, they are instead drawn to or 

from generation 0 (the initial nodes). If generation k was the active generation, 

generation 0 becomes the active generation.

4.4 Aggregating Nodes and Edges

This category of GLOs enable the creation of glyphs that represent more than a single node 

or edge. As with cloning GLOs, aggregation creates new generations of nodes and assigns 

them generation numbers for reference.

• Aggregate by {categorical attribute}: aggregates nodes with the same attribute 

into supernodes and aggregates edges into superedges between the supernodes. The 

original nodes and edges are discarded. The radius of the supernodes and width of 

the superedges are determined relatively by the number of nodes or edges the 

supernode or superedge represents. These supernodes and superedges are assigned 

a generation number in order to reference them and are set as the active generation 

as described in [30].

• Aggregate by {categorical attribute} and {categorical attribute}: as above, but 

aggregates nodes where the values of both attributes are the same.

• Deaggregate Generation k: deaggregates the supernodes and superedges of the kth 

generation back into the original nodes and edges. The original nodes retain their 

Stolper et al. Page 9

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



original sizes, but are positioned at their respective supernodes’ most recent 

positions.

4.5 Modifying Display Properties

The operations in this category do not modify the elements of the graph (the node and edge 

glyphs) but instead modify the display itself.

• Show x or y Axis: displays labels on the appropriate axis based on the currently 

applied positioning GLO. These labels are updated as new positioning GLOs are 

applied.

• Hide x or y Axis: hides the labels on the appropriate axis.

5 Properties of Graph-Level Operations

Here we present five properties of graph-level operations that we identified while 

developing the model:

• Duplication of GLOs. With the exception of the “Clone Active Generation” GLO, 

applying the same GLO twice has no effect. For example, applying the “Display 

Links as Curved” GLO twice has the same effect as applying it once: the edges are 

transitioned to and displayed as curved.

• Parameterized GLOs. There are a number of GLOs that take parameters, such as 

an attribute or an axis. In the case where two instances of the GLO are applied with 

the same parameter, these are considered duplicate GLOs as described above, and 

therefore has no effect. However, in the cases where the parameter is different, 

these are not duplicate GLOs and are treated as distinct. For example, evenly 

distributing nodes along the x axis is distinct from evenly distributing nodes along 

the y axis.

• Complementary GLOs. We do not consider GLOs to be reversible manipulations. 

However, this is not to say that an analyst has no means to undo applying a GLO. 

Instead, GLOs have complementary GLOs. Complementary GLOs overwrite 

certain previously applied GLOs. For example, any GLO that positions nodes along 

a particular axis will overwrite any previous GLOs that positioned the nodes along 

that axis. Showing links as either straight, curved, or hidden overwrite each other. 

Setting the source or target of a generation overwrites previous source or target 

GLOs. When saving GLOs as techniques, the overwritten GLOs can safely be 

ignored. Thus, to undo a given GLO, the system or the analyst must merely reapply 

the most recently overwritten GLO complementary to the given GLO.

• The Generation Parameter. It is important to note that all GLOs (including 

cloning and aggregation) have an implied generation parameter. In other words, 

performing the same GLO successively on two different generations does have an 

effect. For example, distributing generation 2 evenly on x and then distributing 

generation 3 evenly on x is not equivalent to only distributing generation 2 evenly 

on x. Because aggregating nodes discards the original nodes, it is impossible to call 

an aggregation on the same generation twice without applying the complementary 

Stolper et al. Page 10

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deaggregation GLO. In contrast, duplications of the “Clone Active Generation” 

GLO must be treated separately because, if called twice with the same generation 

parameter, two new generations are created.

• Application of Techniques. As GLOs are applied to the active generation using 

the Generation Parameter, techniques are effectively applied to the active 

generation as well. For example, if the active generation has a node element for 

each node, then applying the circle plot technique will generate a circle plot of the 

nodes. However, if a “Aggregate Nodes by attribute” GLO has been applied to the 

set (resulting in an active generation of aggregate supernodes) then applying the 

technique would result in a circle plot of the supernodes, rather than of the nodes 

themselves.

6 GLO-STIX

In this section we describe the design and implementation of GLO-STIX (Graph-Level 

Operations for Specifying Techniques and Interactive eXploration), a prototype application 

for exploring graphs using GLOs.

6.1 Design Goals and Rationale

GLO-STIX, a prototype implementation the GLO model, serves as a proof-of-concept of the 

benefits of GLOs described in Section 3. Our goals in designing the prototype were focused 

on enabling a graph analyst to experiment with and interactively explore a newly 

encountered graph dataset. We envisioned an analyst, upon first receiving a dataset, wishing 

to better understand the graph’s features. We see the analyst using GLO-STIX to apply 

GLO-specified techniques. These techniques may have been specified by the analyst or pre-

built into the system. We also foresee the analyst exploring the network further by applying 

individual GLOs, with the possibility of identifying new network visualization techniques 

and saving them for future use. In addition, developing the GLO-STIX prototype provided a 

testbed for evaluating the viability of GLOs and the GLO model.

We adopted the design guidelines of Shneiderman and Aris for semantic substrates [22] and 

their principle of iteratively applying and evaluating the creation of a visualization. The 

analyst begins with an idea, applies it to the visualization and evaluates if it creates the 

desired outcome. In the case of semantic substrates, if the idea was ineffective, the analyst 

can apply other attributes to the visualization until reaching an ideal understanding of the 

graph. Applying this principle to GLOs implied that the user interface should enable the 

analyst to explore a graph by experimenting with applying various GLOs until a deeper 

understanding of the graph was reached. This approach allows the analyst to observe 

changes to the display by means of animated transitions as GLOs are applied, enabling a 

deeper understanding of the benefits and limitations of various techniques.

Based on this principle we generated a number of requirements for a GLO-driven graph 

visualization prototype:

• Since these are the operations necessary to specify our set of canonical techniques, 

the prototype should implement the full set of GLOs identified in Section 4.

Stolper et al. Page 11

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• As our intent is to enable an analyst to explore their network data more effectively 

using GLOs, the prototype should enable an analyst to apply individual GLOs to a 

graph.

• The analyst should be able to experiment with applying various GLOs and 

therefore the prototype should enable an analyst to move backwards and forwards 

through the GLO history.

• If an analyst has identified an effective display of the network, he or she may wish 

to know the only GLOs necessary to recreate the display, as opposed to the full 

path he or she took to reach the display. As we described in Section 5, applying 

complementary GLOs can override previously-applied GLOs. Therefore the 

prototype should communicate to the analyst which GLOs in the history are no 

longer relevant to the current visualization due to complementary GLOs having 

been applied.

• If an analyst has identified an effective technique, he or she will likely wish to 

apply it to the same or a different graph in the future. Therefore the prototype 

should enable an analyst to save a GLO history as a technique to apply to other 

graphs.

• An analyst should be able to easily recall techniques that he or she found 

interesting as well as be able to easily compare them side-by-side and switch 

between them seamlessly. Therefore the prototype should allow an analyst to save 

an image (snapshot) of the current visualization along with its GLO history to 

compare techniques.

A number of these requirements concern the analyst seeing both how he or she reached the 

current display and saving interesting displays for future analysis. These were influenced by 

the work on visualization provenance such as VisTrails [7] and Graphical Histories [10].

6.2 Interface Development and Implementation

We began the development of the user interface by translating the requirements listed above 

into necessary software functions and user interface (UI) elements. We settled on four UI 

elements: a list of all available GLOs, a history view of applied GLOs, the visualization 

display, and a region for displaying the snapshotted techniques. The functions we identified 

included the GLOs themselves, support for un-applying and re-applying a GLO to a graph, 

saving the current configuration of GLOs for later use as a technique.

Using these elements and functions we sketched a number of designs for the user interface. 

We discussed these drawings amongst the team, identifying potential advantages and 

disadvantages of each. We eventually settled on the interface in Figure 1. This interface 

features all of the basic elements (available GLOs, view of the history, visualization area, 

view of visualization states captured) and the functions envisioned.

We then implemented the functions and UI as a a browser-based application that we have 

dubbed GLO-STIX. GLO-STIX is written in JavaScript using D3.js [6], jQuery1, 

Bootstrap2, and jQueryUI3. Figure 1 is a screenshot of the prototype during an analysis of 

Stolper et al. Page 12

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the Les Misérables character co-occurrence graph included with D3.js based on Donald 

Knuth’s jean.dat file4. Nodes are characters, and an edge connects two characters if they co-

occur in a chapter. Furthermore, all of the graph images in this paper were generated using 

the prototype.

7 Related Work

7.1 Graph Visualization Programming Toolkits

There have been many software systems and toolkits developed for graph visualization. 

Some visualization toolkits, such as Protovis [9] and D3 [6], provide a declarative language 

for developing new visualizations, including network visualizations, enabling developers to 

create data visualizations more easily. There are also some software libraries for graph 

visualization, such as JUNG [19]. However, these tools require users to have programming 

skills, which makes it difficult for many analysts to use them. The Ploceus [18] and Orion 

[11] projects enable analysts to transform and analyze relational data as graphs.

GUESS [1] introduced a system for navigating graphs, which allows analysts to rapidly 

prototype visualization by using its Python-based interpreted language. It introduced 

functions and operators for manipulating graph data. This type of interpreted language is 

better than toolkits in terms of accessibility to non-programmers or practitioners, but we 

believe its command-line input still makes it more difficult for them to use. With GLO-

STIX, users can specify a number of graph visualization techniques by choosing a set of 

operations (GLOs) with our graphical user interface.

7.2 Graphical Tools for Graph Analysis

There exist several graphical tools, such as UCINet [5], Pajek [4], and Gephi [3], for 

network analysis, and they make it possible for analysts to make visualizations of graphs 

without programming. NodeXL [23] enables analysts to do so in a commercial spreadsheet. 

Users can easily import, transform, analyze, and visualize network data with it. However, 

these systems tend to provide only a small number of visualization techniques, usually 

focusing on node-link diagrams, while we provide a variety of operations to manipulate 

visual elements to create a more diverse range of visualization techniques.

8 Limitations and Future Work

We feel that the Graph-Level Operation (GLO) model provides a novel avenue for the 

visualization research community. Section 3 demonstrates the benefits that GLOs can 

provide for network analysts, visualization researchers, and graph visualization system 

developers. However, GLOs are a new paradigm. We present in this section limitations that 

GLOs have in our current GLO-STIX implementation. We note that many of these 

limitations, such as not supporting sub-graph selection or edge bundling, are merely of the 

current implementation and input techniques. Other limitations, such as the dependence on 

1http://jquery.com
2http://getbootstrap.com
3http://jqueryui.com
4http://www-cs-staff.stanford.edu/uno/sgb.html

Stolper et al. Page 13

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://jquery.com
http://getbootstrap.com
http://jqueryui.com
http://www-cs-staff.stanford.edu/uno/sgb.html


the source technique set, are of the GLO model itself. However, we expect that future work 

on the part of the authors and other researchers will find solutions for the majority these 

issues.

While the identification process described in Section 2 lowers the uncertainty of the level 

atomicity, it does not remove it entirely. For example, are “Evenly Distributing Nodes by 

{attribute}” and “Evenly Distribute Nodes” one operation or two? While we settled on 

considering these as two distinct operations, one might interpret the latter operation the same 

as the former with a null attribute parameter. As long as there is consistency in the process, 

however, the precise level of atomicity is largely irrelevant.

A more relevant limitation of the process is the dependence on an input set of visualization 

techniques. While using this method has the advantage of better identifying the atomic units 

of a techniques, it also has the effect of restricting the GLO set to features of the input set. If 

a GLO is not present in the input set, it cannot manifest in any output visualizations. For 

example, the technique described in Figure 4 would not have been possible had the input set 

not included some form of radial-based layout. This can extend to otherwise simple 

operations, such as the ability to show curved edges or size nodes by attributes. “Bundle 

Edges” [13, 8, 14] (equivalent to “Show Edges as Curved”) or “Highlight Nodes Matching 

{predicate}” would be worthwhile and implementable GLOs, yet our input set of techniques 

did not include a technique that used either.

The set of GLOs we have presented in Section 4 act on sets of elements representing nodes 

and edges. Since the techniques we describe in Table 1 and Section 3.1 only require that the 

operations be applied to every node or edge in the set, we are able to use the current 

generation as the subset of elements that applied GLOs act upon. However, techniques such 

as hive plots [17], NodeTrix [12], or SoccerStories [20] require that GLOs be applied to 

arbitrary user- or data-defined subsets of elements. We expect that by considering subsets as 

generations (as they share many of the properties of generations such as a single node in the 

data may be represented by multiple generations), implementations should be able to take 

advantage of the Generation Parameter described in Section 5 to represent the subset.

A limitation merely of our current implementation is that we only draw a single glyph for 

each edge and require that edges be drawn from a source node to a target node. Thus we 

currently only support directed graphs (GLO-STIX converts undirected graphs into directed 

graphs by arbitrarily designating one vertex the source and the other the target). Proper 

support for undirected graphs, as well as more advanced directed- and undirected-graph data 

structures such as trees and nested graphs, remain to be implemented. A related point of 

future work is that we have focused exclusively on static graph visualization techniques. 

GLO support for dynamic graph data and dynamic graph visualization techniques such as 

Matrix Cubes [2] or small multiples [26] would be worthwhile to explore. As techniques 

such as parallel coordinates [15] and parallel scatterplot matrices [28] require drawing links 

not between source and target nodes, but rather from the same node in different generations, 

these cannot yet be expressed using GLO-STIX. (Each also requires more than one link for 

each node.) GLO-STIX also currently has no support for alternative node representations 

such as data-driven icons.

Stolper et al. Page 14

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We defined GLOs in Section 2 as “encapsulated manipulations of a graph visualization.” In 

this paper we have kept to GLOs for manipulating graph visualization elements. An 

interesting extension of this paradigm would be to discuss operations for manipulating graph 

data. The most important of these “data GLOs” are filtering GLOs such as “Filter attribute 

by predicate” that restrict the dataset. Other potential data GLOs include “compute distance 

from target”, required for creating even a simple Sugiyama hierarchical layout [25] or 

“compute most-interesting neighbors” according to an algorithm such as van Ham and 

Perer’s graph degree-of-interest algorithm [27].

Finally, we must mention the potential usability limitations introduced by the generation 

construct. For instance, understanding the dependency relationships within a technique and 

keeping track of generation numbers could all potentially confuse a user of a GLO 

implementation. Furthermore, there is the simple fact that cloned generations look exactly 

like the source generation. We also do not know without a user study how much confusion 

long sequences of GLOs can introduce. While we enable an analyst to remove “out-dated” 

GLOs based on complementary GLOs, the lengths of even active GLOs can still become 

quite long. However, many of these issues can be mitigated. For example, order-dependence 

can be mitigated by assuming that each GLO in an analyst-designated technique has a 

dependence relationship with the GLO preceding it. UI approaches such as highlighting the 

active generation (demonstrated in Figure 4) can mitigate the confusion as well. We feel that 

the greatly expanded expressability of the GLO model provided by the generation construct 

are more than worth these small limitations.

9 Conclusion

We presented GLOs (graph-level operations), a new model for specifying graph 

visualization techniques. We contributed a method to identify GLOs and demonstrated 

GLOs’ flexibility in re-creating canonical graph visualization techniques. We discussed the 

important properties of GLOs and the benefits to graph visualization that GLOs provide. We 

presented GLO-STIX — an implementation of our GLO set and an interface for exploring a 

graph using GLOs. Finally, we discussed the limitations of the GLO and GLO-STIX 

implementations at time of publication and potential future research directions concerning 

the Graph-Level Operation model in general.

Acknowledgments

The authors offer their tremendous thanks to the anonymous Info-Vis reviewers for the breadth and depth of their 
feedback. The final manuscript published here is far stronger than the initial submission thanks to their voluntary 
time and effort.

This material is based upon work supported by the National Science Foundation under Grant No. IIS-1320537 and 
the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1148903.

This work has been partially supported by the U.S. Army Research Office (ARO) and Defense Advanced Research 
Projects Agency (DARPA) under Contract Number W911NF-11-C-0088 and the XDATA program sponsored by 
the Air Force Research Laboratory (AFRL) and DARPA. The content of the information in this document does not 
necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred.

Stolper et al. Page 15

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Adar, E. GUESS: a language and interface for graph exploration. Proc. of the ACM SIGCHI 
Conference on Human Factors in Computing Systems, (CHI 2006); ACM; 2006. p. 791-800.

2. Bach, B.; Pietriga, E.; Fekete, J-D. Visualizing dynamic networks with matrix cubes. Proc. of the 
SIGCHI Conference on Human Factors in Computing Systems, (CHI 2014); ACM; 2014. p. 
877-886.

3. Bastian, M.; Heymann, S.; Jacomy, M. ICWSM ’09. AAAI; 2009. Gephi: An open source software 
for exploring and manipulating networks; p. 361-362.

4. Batagelj, V.; Mrvar, A. Graph Drawing Software, Mathematics and Visualization. Springer; Berlin 
Heidelberg: 2004. Pajek– analysis and visualization of large networks; p. 77-103.

5. Borgatti, SP.; Everett, MG.; Freeman, LC. UCINet for windows: Software for social network 
analysis. 2002. 

6. Bostock M, Ogievetsky V, Heer J. D3: Data-driven documents. IEEE Transactions on Visualization 
and Computer Graphics. Dec; 2011 17(12):2301–2309. [PubMed: 22034350] 

7. Callahan, SP.; Freire, J.; Santos, E.; Scheidegger, CE.; Silva, CT.; Vo, HT. VisTrails: visualization 
meets data management. Proc. of the 2006 ACM SIGMOD International Conference on 
Management of Data, SIGMOD ’06; ACM; 2006. p. 745-747.

8. Cui W, Zhou H, Qu H, Wong PC, Li X. Geometry-based edge clustering for graph visualization. 
IEEE Transactions on Visualization and Computer Graphics. Nov; 2008 14(6):1277–1284. 
[PubMed: 18988974] 

9. Heer J, Bostock M. Declarative language design for interactive visualization. IEEE Transactions on 
Visualization and Computer Graphics. 2010; 16(6):1149–1156. [PubMed: 20975153] 

10. Heer J, Mackinlay J, Stolte C, Agrawala M. Graphical histories for visualization: Supporting 
analysis, communication, and evaluation. IEEE Transactions on Visualization and Computer 
Graphics. Nov; 2008 14(6):1189–1196. [PubMed: 18988963] 

11. Heer, J.; Perer, A. Orion: A system for modeling, transformation and visualization of 
multidimensional heterogeneous networks. Proc. of IEEE VAST; 2011; 2011. p. 51-60.

12. Henry N, Fekete JD, McGuffin M. NodeTrix: a hybrid visualization of social networks. IEEE 
Transactions on Visualization and Computer Graphics. 2007; 13(6):1302–1309. [PubMed: 
17968078] 

13. Holten D. Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. 
IEEE Transactions on Visualization and Computer Graphics. Sep; 2006 12(5):741–748. [PubMed: 
17080795] 

14. Holten D, Van Wijk JJ. Force-directed edge bundling for graph visualization. Computer Graphics 
Forum. Jun; 2009 28(3):983–990.

15. Inselberg, A. Multidimensional detective. Proc. of IEEE Infovis; 1997; Oct. 1997 p. 100-107.

16. Kandogan, E. Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. 
Proc. of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining, KDD ’01; ACM; 2001. p. 107-116.

17. Krzywinski M, Birol I, Jones SJ, Marra MA. Hive plotsrational approach to visualizing networks. 
Brief Bioinform. Sep; 2012 13(5):627–644. [PubMed: 22155641] 

18. Liu, Z.; Navathe, S.; Stasko, J. Network-based visual analysis of tabular data. Proc. of IEEE VAST 
2011; Oct. 2011 p. 41-50.

19. O’Madadhain J, Fisher D, Smyth P, White S, Boey YB. Analysis and visualization of network data 
using JUNG. Journal of Statistical Software. 2005; 10(2):1–35.

20. Perin C, Vuillemot R, Fekete JD. SoccerStories: a kick-off for visual soccer analysis. IEEE 
Transactions on Visualization and Computer Graphics. Dec; 2013 19(12):2506–2515. [PubMed: 
24051817] 

21. Rugg G, McGeorge P. The sorting techniques: a tutorial paper on card sorts, picture sorts and item 
sorts. Expert Systems. Jul; 2005 22(3):94–107.

22. Shneiderman B, Aris A. Network visualization by semantic substrates. IEEE Transactions on 
Visualization and Computer Graphics. 2006; 12(5):733–740. [PubMed: 17080794] 

Stolper et al. Page 16

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



23. Smith, MA.; Shneiderman, B.; Milic-Frayling, N.; Rodrigues, E Mendes; Barash, V.; Dunne, C.; 
Capone, T.; Perer, A.; Gleave, E. Analyzing (social media) networks with NodeXL. Proc. of the 
Fourth International Conference on Communities and Technologies, (C&T ’09); ACM; 2009. p. 
255-264.

24. Stolper, C.; Foerster, F.; Kahng, M.; Lin, Z.; Goel, A.; Stasko, J.; Chau, D. GLOs: graph-level 
operations for exploratory network visualization. ACM SIGCHI 2014 Work-In-Progress Extended 
Abstracts; 2014. 

25. Sugiyama K, Tagawa S, Toda M. Methods for visual understanding of hierarchical system 
structures. IEEE Transactions on Systems, Man and Cybernetics. Feb; 1981 11(2):109–125.

26. Tufte, ER. Envisioning Information. Graphics Press; Cheshire, Conn: 1995. 

27. van Ham F, Perer A. Search, show context, expand on demand: Supporting large graph exploration 
with degree-of-interest. IEEE Transactions on Visualization and Computer Graphics. Nov; 2009 
15(6):953–960. [PubMed: 19834159] 

28. Viau C, McGuffin M, Chiricota Y, Jurisica I. The FlowVizMenu and parallel scatterplot matrix: 
Hybrid multidimensional visualizations for network exploration. IEEE Transactions on 
Visualization and Computer Graphics. 2010; 16(6):1100–1108. [PubMed: 20975148] 

29. Wattenberg, M. Arc diagrams: Visualizing structure in strings. Proc. of IEEE Infovis; 2002; 2002. 
p. 110-116.

30. Wattenberg, M. Visual exploration of multivariate graphs. Proc. of the ACM SIGCHI Conference 
on Human Factors in Computing Systems, (CHI 2006); ACM; 2006. p. 811-819.

Stolper et al. Page 17

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
A screenshot of the GLO-STIX user interface showing a user exploring the Les Misérables 

character co-occurrence graph using graph-level operations (GLOs). Nodes are characters, 

and an edge connects two characters if they co-occur in a chapter. The original node-link 

view of the graph is saved by the user as a snapshot in the bottom pane. From the list of 

operations available (shown in left-most column), applying those selected in the middle 

column transforms the original graph into the PivotGraph visualization [30] displayed in the 

main view. All graph figures in this paper were generated using GLO-STIX.

Stolper et al. Page 18

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Results of the GLOs making up the transition from (a) arc diagram [29] to (d) semantic 

substrates [22], then to (i) PivotGraph [30]. The GLOs applied to achieve each display are: 

(b) Substrate on y by category; (c) Distribute on x Within Substrates; (d) Display Selected 

Links; (e) Display All Links; (f) Substrate on x by gender; (g) Show x Axis; (h) Show y 

Axis; (i) Aggregate by gender and category.

Stolper et al. Page 19

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Arc diagram [29] created using the following sequence of GLOs: Size Nodes by Constant, 

Align Nodes Middle, Evenly Distribute Nodes on x by category, Display All Links, Display 

Links as Curved, Hide x Axis, Hide y Axis, Set Target Generation 0, Set Source Generation 

0.

Stolper et al. Page 20

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Multi-dimensional technique akin to a hive plot [17] or star diagram [16]. Clockwise from 

the top, the chart visualizes the id, betweenness-centrality, page-rank, category, and degree 

attributes of the nodes. Edges are drawn from a single axis to a single other axis. The plot is 

specified by the following sequence of GLOs: Size Nodes by Constant, Clone Active 

Generation, Clone Active Generation, Clone Active Generation, Clone Active Generation, 

Position Nodes Radially by generation, Position Nodes Along Plot Radius by degree, Select 

Generation 3, Position Nodes Radially by generation, Substrate Nodes Along Plot Radius by 

category, Select Generation 2, Position Nodes Radially by generation, Position Nodes Along 

Plot Radius by page-rank, Select Generation 1, Position Nodes Radially by generation, 

Position Nodes Along Plot Radius by betweenness-centrality, Select Generation 0, Position 

Nodes Radially by generation, Evenly Distribute Nodes Along Plot Radius, Display All 

Links, Display Links as Curved, Set Source Generation 4, Set Target Generation 0, Hide x 

Axis, Hide y Axis.

Stolper et al. Page 21

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Stolper et al. Page 22

Table 1

The six canonical graph visualization techniques from which we derived the set of graph-level operations. For 

each technique, we include its name (left column), a screenshot of its implementaion using our GLO-STIX 

prototype system (center column), and the sequence of GLOs used (right column). We show in bold those 

GLOs requiring before or after dependencies. Those GLOs shown in italics must come before or after (though 

need not come immediately before or after) the bolded GLO.

Technique Name GLO-STIX Implementation GLO Specification

Force-Directed Diagram

Apply Force-Directed Algorithm
Display Links as Straight
Size Nodes Relatively by attribute
Display All Links
Hide x Axis
Hide y Axis
Set Target Generation 0
Set Source Generation 0

Circle Plot

Size Nodes by Constant
Position Nodes Along Plot Radius by {constant}
Evenly Distribute Nodes Radially by attribute
Display All Links
Display Links as Curved
Hide x Axis
Hide y Axis
Set Target Generation 0
Set Source Generation 0

Scatterplot

Posn. Nodes Relatively on x by attribute0
Posn. Nodes Relatively on y by attribute1
Show x Axis
Show y Axis
Hide Links
Size Nodes Relatively by attribute
Set Target Generation 0
Set Source Generation 0

Semantic Substrates [22]

Substrate Nodes on y by attribute1
Evenly Distribute Nodes on x Within Substrates
Display Selected Links
Size Nodes by Constant
Display Links as Curved
Display All Links
Hide x Axis
Hide y Axis
Set Target Generation 0
Set Source Generation 0

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Stolper et al. Page 23

Technique Name GLO-STIX Implementation GLO Specification

PivotGraph [30]

Substrate Nodes on x by attribute0
Substrate Nodes on y by attribute1
Aggregate Nodes by attribute0 and attribute1
Size Nodes by Count
Show x Axis
Show y Axis
Display Links as Curved
Display All Links
Set Target Generation 1
Set Source Generation 1

Adjacency Matrix

Size Nodes by Constant
Evenly Distribute Nodes on y
Align Nodes Left
Clone Active Generation
Evenly Distribute Nodes on x
Align Nodes Bottom
Set Target Generation 1
Display Links as Circles
Display All Links

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 22.


