
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NARROW TRANSFORMER:
MONO-LINGUAL CODE SLM FOR DESKTOP

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper presents NT-Java-1.1B, an open-source specialized code language
model built on StarCoderBase-1.1B1, designed for coding tasks in Java program-
ming. NT-Java-1.1B achieves state-of-the-art performance, surpassing its base
model and majority of other models of similar size on MultiPL-E (Cassano et al.,
2022) Java code benchmark. While there have been studies on extending large,
generic pre-trained models to improve proficiency in specific programming lan-
guages like Python, similar investigations on small code models for other pro-
gramming languages are lacking. Large code models require specialized hardware
like GPUs for inference, highlighting the need for research into building small
code models that can be deployed on developer desktops. This paper addresses
this research gap by focusing on the development of a small Java code model, NT-
Java-1.1B, and its quantized versions, which performs comparably to open models
around 1.1B on MultiPL-E Java code benchmarks, making them ideal for desktop
deployment. This paper establishes the foundation for specialized models across
languages and sizes for a family of NT Models.

1 INTRODUCTION

The state-of-the-art code models, capable of understanding and generating code in numerous pro-
gramming languages, are revolutionizing the way enterprises approach software development. With
the ability to understand and generate code across a vast array of programming languages, these
code models offer a significant boost in productivity. However, the one-size-fits-all approach of
these generic multi-lingual code models often falls short in meeting the nuanced requirements of
project-level coding tasks in an enterprise, which tend to be language-specific. This has led to the
development of Narrow Transformers (NTs), specialized models further trained on a particular pro-
gramming language, offering a more efficient solution for enterprises. These NTs are designed to
optimize performance for a specific programming language, balancing the trade-offs between model
size, inferencing cost, and operational throughput. As demand for tailored solutions grows, we can
expect a surge in NT development, providing the precision and efficiency required by enterprise
projects.

However, in practice, the substantial economic cost associated with training and fine-tuning large
code models renders language model experiments prohibitively expensive for most researchers and
organizations. Additionally, deploying these massive models in everyday scenarios, such as on per-
sonal computers, proves either inefficient or unfeasible. These challenges emphasize the importance
of shifting focus to explore Narrow Transformer approach on powerful yet smaller code language
models (code SLMs). Consequently, we developed a Narrow Transformer for Java within a smaller
parameter range (i.e., 1.1B), suitable for desktop deployment and democratizing code model exper-
iments.

2 RELATED WORK

Codex-12B (Chen et al., 2021) was built by extending pre-training of GPT (which contains strong
natural language representations), with 159 GB of unique Python files under 1MB, from public soft-
ware repositories hosted on GitHub. Codex exhibits its highest proficiency in Python; however, it

1https://huggingface.co/bigcode/starcoderbase-1b

1

https://huggingface.co/bigcode/starcoderbase-1b


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

also demonstrates competence in over twelve additional programming languages. CodeGen-Mono-
350M/2.7B/6.1B/16.1B (Nijkamp et al., 2023b) were built by further pretraining CodeGen-Multi-
350M/2.7B/6.1B/16.1B (which were trained with multi-lingual datasets comprising code from C,
C++, Go, Java, JavaScript, and Python) with the mono-lingual dataset BIGPYTHON that contains
public, non-personal, permissively licensed Python code from GitHub. CodeGen-Mono outper-
formed CodeGen-Multi on Python as per the HumanEval benchmark. In addition, the next genera-
tion model in CodeGen family, such as, CodeGen25-7B-mono (Nijkamp et al., 2023a) outperformed
CodeGen25-7B-multi only in python language but underperformed in rest of the programming lan-
guages in MultiPL-E benchmark. StarCoder-15.5B (Li et al., 2023) was built by extending pre-
training of StarCoderBase-15.5B (which was trained with multi-lingual datasets comprising code
from 80+ programming languages) with a Python subset of 35B tokens from the StarCoderBase
training data. StarCoder outperformed StarCoderBase on Python as per the HumanEval benchmark.
In the evaluation of StarCoder and StarCoderBase on 19 programming languages with MultiPL-E
datasets, StarCoder outperformed StarCoderBase on Python, underperformed on 9 programming
languages, and despite being further trained only on Python, it still outperformed StarCoderBase
on 9 other programming languages. CodeLlama-PYTHON-7B/13B/34B/70B (Rozière et al., 2023)
were built by extending pre-training of CodeLlama-7B/13B/34B/70B (which were trained on 500B
tokens of code data, except CodeLlama-70B, which was trained on 1T tokens) on 100B tokens of
python heavy dataset with a composition of Python, multi-lingual code, natural language related
to code and natural language at the proportions of 75%, 10%, 10%, 5% respectively. CodeLlama-
PYTHON outclasses CodeLlama on Python on MultiPL-E benchmarks, but it is not consistent on
rest of the languages. While there are speculations explaining this inconsistency, it is generally un-
derstood that although extending pretraining of multi-lingual code foundation models with dataset
from a specific programming language does not guarantee performance improvement in other pro-
gramming languages, it still guarantees performance improvement in that programming language.
Hence, building a model like StarCoder using a specific programming language dataset can improve
proficiency in that programming language. Enterprise projects are adopting either these pre-trained
generic multi-lingual code models or python-trained multi-lingual code models to augment their
project coding tasks. AI-mature enterprises are adopting these models as foundation models to fur-
ther train with their project code base for better augmentation. However, if there is a pre-trained
code model further trained on enterprise project’s required programming language, then the enter-
prise project can use that language-specific model and can further train with their project code base
for better augmentation. Due to the widespread adoption of Java in enterprise-level projects, this
paper illustrates the development of such a pre-trained code model specialized on Java.

Small Language Models (SLMs) will pivot the focus of AI community in enterprise and consumer
solutions. These models stand out for their ability to be deployed on end-user devices, such as per-
sonal computers and smartphones, even without a GPU. This enables large-scale deployment while
ensuring data privacy and security. Significant examples in the present scenario of code SLMs
include SantaCoder-1.1B (Allal et al., 2023), Phi-1 (Gunasekar et al., 2023), DeciCoder-1B2,
StarCoderBase-1.1B, WizardCoder-1B-V1.0 (Luo et al., 2023), DeepSeek-Coder-1b-base (Guo
et al., 2024) and Refact-1.6B3. All these state-of-the-art models around 1B size are multi-lingual
code models, indicating that no considerable work has been done towards extending training of
multi-lingual code SLMs in building language-specific code SLMs.

3 DATASETS

The foundation model identified for our experiment was StarCoderBase-1.1B. Enterprise projects
shortlist the candidate code models for adoption of coding tasks based on their licenses, their train-
ing data, etc. Utilizing additional dataset, such as pretraining dataset from any model other than
StarCoderBase, to extend the pretraining of StarCoderBase-1.1B would complicate the process of
shortlisting the further trained StarCoderBase-1.1B model (NT-Java-1.1B) for any enterprise adop-
tion, due to the concerns on licensing. Hence, a subset of StarCoderData4, which is a curated dataset
from The Stack v15 used for StarCoderBase training, was considered for building NT-Java-1.1B.

2https://huggingface.co/Deci/DeciCoder-1b
3https://huggingface.co/smallcloudai/Refact-1_6B-fim
4https://huggingface.co/datasets/bigcode/starcoderdata
5https://huggingface.co/datasets/bigcode/the-stack

2

https://huggingface.co/Deci/DeciCoder-1b
https://huggingface.co/smallcloudai/Refact-1_6B-fim
https://huggingface.co/datasets/bigcode/starcoderdata
https://huggingface.co/datasets/bigcode/the-stack


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The rationale behind building Python-trained models such as Codex, CodeGen-Mono, StarCoder,
and CodeLlama-PYTHON might be the popularity of Python and the availability of the greater
volume of Python code in the pretraining dataset compared to other programming languages. While
the Python dataset in the StarCoderBase training dataset is 35B Python tokens, the Java dataset is
around 22B tokens, which is still a considerable size. This Java dataset from StarCoderData was
used for training NT-Java-1.1B.

4 MODEL TRAINING

4.1 DATA PREPROCESSING

For data preprocessing, we employed the Megatron-LM framework. The NT-Java-1.1B uses the
StarCoderBase tokenizer of type GPT2BPETokenizer (byte-level Byte-Pair-Encoding) and its vo-
cabulary of 49,152 tokens. No additional tokens were added to this vocabulary. The Java dataset
comprises 87 parquet files, which were converted into a single file and passed through the Megatron
pre-processing module to get the corresponding .bin and .idx files. These files were used for model
training. The pre-processing module also performs tokenization and adds an <EOD> token at the
end of each Java sample.

4.2 MODEL ARCHITECTURE

NT-Java-1.1B, similar to StarCoderBase-1.1B, is a decoder-only Transformer model with Multi-
Query Attention (Shazeer, 2019), which uses FlashAttention. This speeds up the attention compu-
tation and reduces the training time of the model. The hyper-parameters for the architecture can be
found in Table 1.

Table 1: Model architecture of NT-Java-1.1B.

Hyperparameter NT-Java

Hidden size 2048
Intermediate size 8192
Max. position embeddings 8192
Num. of attention heads 16
Num. of hidden layers 24
Attention Multi-query

Num. of parameters ≈ 1.1B

4.3 TRAINING DETAILS

NT-Java-1.1B was trained using the Megatron-LM Framework. The training began with
StarCoderBase-1.1B, serving as the initial checkpoint, to build its Java variant. In our experiments,
we utilized a context length of 8192 tokens for tasks involving the Next token prediction and the
Fill-in-the-Middle (FIM) (Bavarian et al., 2022) objective. The PyTorch Distributed framework
was employed, with data parallelism strategy. We chose bf16 precision and the Adam optimizer
(Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.95, and ϵ = 10−8, along with a weight decay of 0.1.

EXPERIMENTAL SETTINGS

In this study, we delve into the impact of extending pretraining of StarCoderBase-1.1B for Java
using two key objectives: Next token prediction and Fill-in-the-Middle.

Experiment 1 - Next token prediction objective: We conducted training over 100,000 steps (equiva-
lent to 5 epochs) with a batch size of 1 million tokens. The learning rate commenced at 4×10−4 and
underwent cosine decay, reaching a minimum of 4×10−6 with 1,000 iterations of linear warmup. A
global batch size of 180 facilitated the training process, which spanned 12 days. Model checkpoints
were saved every 1,000 steps for subsequent evaluation.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: MultiPL-E Scores of NT-Java-1.1B trained with and without FIM.

Experiment 2 - Fill-in-the-Middle: We repeated Experiment 1 along with FIM training objective.
The FIM rate was set to 50%. The FIM dataset was evenly split into two components, SPM (Suffix-
Prefix-Middle) and PSM (Prefix-Suffix-Middle).

Observation from Experiment 1 & 2: Without FIM training objective, the model’s infilling capa-
bility diminished significantly, with FIM scores approaching nearly zero (Table 2), despite the base
model’s inherent infilling capability. While training with FIM objective, we observed a minor de-
crease in MultiPL-E metrics (approximately 0.7%) compared to the model trained without FIM
objective, but the model retained its proficiency in infilling tasks. The comparative performance of
the models throughout the training are illustrated in Figure 4.3.

Table 2: Experimental results with and without FIM.

Model FIM HumanEval-FIM (Java) MultiPL-E (Java)

NT-Java-1.1B (Experiment 1) No 0.01 19.6
NT-Java-1.1B (Experiment 2) Yes 0.67 18.9

Experiment 2.1 - Fill-in-the-Middle: We extended training from Experiment 2 for 20,000 steps
(1 epoch) more as the evaluation scores were in an upward trend. The learning rate commenced at
4×10−6 and underwent cosine decay, reaching a minimum of 4×10−7 with 1,000 iterations of linear
warmup. We did not intend to continue further training as the model converged with no significant
decrease in loss.

4.4 POST TRAINING

The NT-Java-1.1B model has bf16 precision and occupies a total size of 2.27 GB. After the develop-
ment of the NT-Java-1.1B model, efforts were directed towards the development of quantized models
that are tailored to operate on developer desktops. These models were designed to be more com-
pact in size without substantially sacrificing their accuracy, and to be compatible with CPU-based
inference frameworks. To achieve this, we built quantized variants of the NT-Java-1.1B model in
GGUF6 format for frameworks like Ollama7, GPT4ALL8 and LM Studio9. The quantized versions

6https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
7https://github.com/ollama/ollama
8https://github.com/nomic-ai/gpt4all
9https://github.com/lmstudio-ai

4

https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
https://github.com/ollama/ollama
https://github.com/nomic-ai/gpt4all
https://github.com/lmstudio-ai


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

of the models (NT-Java-1.1B-GGUF) are available in a range from 2-bit to 8-bit, with their overall
sizes spanning from 511 MB to 1.32 GB correspondingly.

4.5 COMPUTE

NT-Java-1.1B was trained with 6 A100 80 GB GPUs on a single-node GPU cluster. The training
process remained stable overall, with only a few restarts.

5 EVALUATION

This section presents evaluation of our proposed coding SLM to assess its capabilities in code gen-
eration and infilling tasks.

5.1 MULTIPL-E

In our initial assessment, we evaluated the performance of the model from Experiment 2.1 on Java
code generation tasks by utilizing the widely recognized benchmark, MultiPL-E. We calculated the
pass@1 metric for this benchmark utilizing the BigCode Eval Harness10, ensuring the hyperpa-
rameter values were aligned with the established norms of the Big Code Models Leaderboard11.
NT-Java-1.1B demonstrated a pass@1 score that surpassed its base model and its 3B variant, as
detailed in Table 3. Furthermore, our model’s performance surpassed majority of the base models
within a similar parameter range, such as Phi-1, SantaCoder-1.1B, DeciCoder-1B, OctoGeeX-7B,
StableCode-3B-alpha, WizardCoder-1B-V1.0 and CodeGen25-7B-mono, on the Big Code Models
Leaderboard.

Table 3: Pass@1 results on MultiPL-E.

Model Java

StarCoderBase-1.1B 14.2
StarCoderBase-3B 19.25
NT-Java-1.1B 20.2

5.2 FILL-IN-THE-MIDDLE BENCHMARK

Subsequently, we conducted an evaluation of the model’s capabilities on the single-line code in-
filling task, utilizing the benchmark established in the SantaCoder. This benchmark gauges the
model’s proficiency in completing a single line of Java code within HumanEval solutions, using the
‘line exact match’ accuracy as the evaluation metric. Our analysis indicates that our model delivers
results that are on par with the foundational model, StarCoderBase-1.1B, showcasing comparable
performance, as outlined in Table 4.

Table 4: HumanEval-FIM scores.

Model Java

StarCoderBase-1.1B 0.71
NT-Java-1.1B 0.67

5.3 COMPUTATIONAL CAPABILITIES

Furthermore, we evaluated the model’s performance in terms of its efficiency and resource utiliza-
tion. Our analysis (Table 5) indicates that our NT-Java quantized models achieve an optimal balance

10https://github.com/bigcode-project/bigcode-evaluation-harness
11https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard

5

https://github.com/bigcode-project/bigcode-evaluation-harness
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

between accuracy and resource utilization, making them a suitable candidate for deployment in
resource-constrained environments. For the computation of the MultiPL-E scores of the quantized
variants, we employed the ‘load in 4-bit’ and ‘load in 8-bit’ parameters within the BigCode Eval
Harness.

Table 5: Accuracy and resource utilization.

Model Pass@1 (Java) Size (GB)

StarCoderBase-1.1B 14.2 ≈ 2.27
NT-Java-1.1B Q4 15.1 0.76
NT-Java-1.1B Q8 17.7 1.23
StarCoderBase-3B 19.25 ≈ 6.1
NT-Java-1.1B 20.2 2.27

As a last step, we conducted qualitative evaluations through user studies. Professional developers
and coding enthusiasts were invited to interact with our model, providing insights into the model’s
usability, the relevance of its code suggestions, and its adaptability to user prompts. The feedback
collected underscores the model’s practical utility and its potential to streamline coding workflows.

6 CONCLUSION

In this technical report, we outlined the rationale and training approach used to develop NT-Java-
1.1B, a small language model trained specifically on Java code. We evaluated NT-Java-1.1B across
various coding tasks and compared its performance against models with similar parameters. Our
findings indicate that NT-Java-1.1B is competitive with or outperforms other Code SLMs in this
parameter range in Java programming tasks.

This study demonstrates the successful achievement of its objective of enhancing the efficiency
of a code SLM for a particular programming language by training it further with a subset of its
dataset for that language. While the research employed the StarCoderBase-1.1B model and its
Java language dataset, other SLMs and their associated programming language datasets can yield
comparable experimental outcomes.

The release of NT-Java-1.1B and its variants aims to democratize code foundation models, making
them accessible for deployment in memory-constrained environments such as developer desktops
and laptops. By adhering to the principles of the OpenRAIL-M12 and by open-sourcing the cor-
responding scripts on GitHub, we hope to enable both the research and developer communities to
experiment and adopt code SLMs.

REFERENCES

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Muñoz
Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi,
Carolyn Jane Anderson, Yangtian Zi, Joel Lamy-Poirier, Hailey Schoelkopf, Sergey Troshin,
Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo Garcı́a
del Rı́o, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas,
Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia
Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries,
and Leandro von Werra. Santacoder: don’t reach for the stars! CoRR, abs/2301.03988, 2023.
doi: 10.48550/ARXIV.2301.03988.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle. July 2022.
doi: 10.48550/ARXIV.2207.14255.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, Arjun Guha,
12https://bigscience.huggingface.co/blog/bigscience-openrail-m

6

https://bigscience.huggingface.co/blog/bigscience-openrail-m


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Michael Greenberg, and Abhinav Jangda. Multipl-e: A scalable and extensible approach to bench-
marking neural code generation. August 2022. doi: 10.48550/ARXIV.2208.08227.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-
ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021.
doi: 10.48550/arxiv.2107.03374. URL https://arxiv.org/abs/2107.03374.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need. CoRR, abs/2306.11644, 2023. doi:
10.48550/ARXIV.2306.11644.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming - the rise of code intelligence. CoRR, abs/2401.14196,
2024. doi: 10.48550/ARXIV.2401.14196.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozh-
skii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier,
João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee,
Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy V, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan
Dey, Zhihan Zhang, Nour Moustafa-Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh,
Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank
Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish
Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferran-
dis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder:
may the source be with you! CoRR, abs/2305.06161, 2023. doi: 10.48550/ARXIV.2305.06161.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. CoRR, abs/2306.08568, 2023. doi: 10.48550/ARXIV.2306.08568.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Codegen2:
Lessons for training llms on programming and natural languages. CoRR, abs/2305.02309, 2023a.
doi: 10.48550/ARXIV.2305.02309.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. Codegen: An open large language model for code with multi-turn program syn-
thesis. In The Eleventh International Conference on Learning Representations, ICLR 2023, Ki-
gali, Rwanda, May 1-5, 2023. OpenReview.net, 2023b. URL https://openreview.net/
pdf?id=iaYcJKpY2B_.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,

7

https://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Manish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. Code llama: Open foundation models for code. CoRR, abs/2308.12950, 2023.
doi: 10.48550/ARXIV.2308.12950.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. CoRR, abs/1911.02150,
2019. doi: 10.48550/arxiv.1911.02150. URL http://arxiv.org/abs/1911.02150.

8

http://arxiv.org/abs/1911.02150

	Introduction
	Related Work
	Datasets
	Model Training
	Data Preprocessing
	Model Architecture
	Training Details
	Post Training
	Compute

	Evaluation
	MultiPL-E
	Fill-in-the-Middle Benchmark
	Computational Capabilities

	Conclusion

