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ABSTRACT

This paper presents NT-Java-1.1B, an open-source specialized code language
model built on StarCoderBase-1.1B1, designed for coding tasks in Java program-
ming. NT-Java-1.1B achieves state-of-the-art performance, surpassing its base
model and majority of other models of similar size on MultiPL-E (Cassano et al.,
2022) Java code benchmark. While there have been studies on extending large,
generic pre-trained models to improve proficiency in specific programming lan-
guages like Python, similar investigations on small code models for other pro-
gramming languages are lacking. Large code models require specialized hardware
like GPUs for inference, highlighting the need for research into building small
code models that can be deployed on developer desktops. This paper addresses
this research gap by focusing on the development of a small Java code model, NT-
Java-1.1B, and its quantized versions, which performs comparably to open models
around 1.1B on MultiPL-E Java code benchmarks, making them ideal for desktop
deployment. This paper establishes the foundation for specialized models across
languages and sizes for a family of NT Models.

1 INTRODUCTION

The state-of-the-art code models, capable of understanding and generating code in numerous pro-
gramming languages, are revolutionizing the way enterprises approach software development. With
the ability to understand and generate code across a vast array of programming languages, these
code models offer a significant boost in productivity. However, the one-size-fits-all approach of
these generic multi-lingual code models often falls short in meeting the nuanced requirements of
project-level coding tasks in an enterprise, which tend to be language-specific. This has led to the
development of Narrow Transformers (NTs), specialized models further trained on a particular pro-
gramming language, offering a more efficient solution for enterprises. These NTs are designed to
optimize performance for a specific programming language, balancing the trade-offs between model
size, inferencing cost, and operational throughput. As demand for tailored solutions grows, we can
expect a surge in NT development, providing the precision and efficiency required by enterprise
projects.

However, in practice, the substantial economic cost associated with training and fine-tuning large
code models renders language model experiments prohibitively expensive for most researchers and
organizations. Additionally, deploying these massive models in everyday scenarios, such as on per-
sonal computers, proves either inefficient or unfeasible. These challenges emphasize the importance
of shifting focus to explore Narrow Transformer approach on powerful yet smaller code language
models (code SLMs). Consequently, we developed a Narrow Transformer for Java within a smaller
parameter range (i.e., 1.1B), suitable for desktop deployment and democratizing code model exper-
iments.

2 RELATED WORK

Codex-12B (Chen et al., 2021) was built by extending pre-training of GPT (which contains strong
natural language representations), with 159 GB of unique Python files under 1MB, from public soft-
ware repositories hosted on GitHub. Codex exhibits its highest proficiency in Python; however, it

1https://huggingface.co/bigcode/starcoderbase-1b
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also demonstrates competence in over twelve additional programming languages. CodeGen-Mono-
350M/2.7B/6.1B/16.1B (Nijkamp et al., 2023b) were built by further pretraining CodeGen-Multi-
350M/2.7B/6.1B/16.1B (which were trained with multi-lingual datasets comprising code from C,
C++, Go, Java, JavaScript, and Python) with the mono-lingual dataset BIGPYTHON that contains
public, non-personal, permissively licensed Python code from GitHub. CodeGen-Mono outper-
formed CodeGen-Multi on Python as per the HumanEval benchmark. In addition, the next genera-
tion model in CodeGen family, such as, CodeGen25-7B-mono (Nijkamp et al., 2023a) outperformed
CodeGen25-7B-multi only in python language but underperformed in rest of the programming lan-
guages in MultiPL-E benchmark. StarCoder-15.5B (Li et al., 2023) was built by extending pre-
training of StarCoderBase-15.5B (which was trained with multi-lingual datasets comprising code
from 80+ programming languages) with a Python subset of 35B tokens from the StarCoderBase
training data. StarCoder outperformed StarCoderBase on Python as per the HumanEval benchmark.
In the evaluation of StarCoder and StarCoderBase on 19 programming languages with MultiPL-E
datasets, StarCoder outperformed StarCoderBase on Python, underperformed on 9 programming
languages, and despite being further trained only on Python, it still outperformed StarCoderBase
on 9 other programming languages. CodeLlama-PYTHON-7B/13B/34B/70B (Rozière et al., 2023)
were built by extending pre-training of CodeLlama-7B/13B/34B/70B (which were trained on 500B
tokens of code data, except CodeLlama-70B, which was trained on 1T tokens) on 100B tokens of
python heavy dataset with a composition of Python, multi-lingual code, natural language related
to code and natural language at the proportions of 75%, 10%, 10%, 5% respectively. CodeLlama-
PYTHON outclasses CodeLlama on Python on MultiPL-E benchmarks, but it is not consistent on
rest of the languages. While there are speculations explaining this inconsistency, it is generally un-
derstood that although extending pretraining of multi-lingual code foundation models with dataset
from a specific programming language does not guarantee performance improvement in other pro-
gramming languages, it still guarantees performance improvement in that programming language.
Hence, building a model like StarCoder using a specific programming language dataset can improve
proficiency in that programming language. Enterprise projects are adopting either these pre-trained
generic multi-lingual code models or python-trained multi-lingual code models to augment their
project coding tasks. AI-mature enterprises are adopting these models as foundation models to fur-
ther train with their project code base for better augmentation. However, if there is a pre-trained
code model further trained on enterprise project’s required programming language, then the enter-
prise project can use that language-specific model and can further train with their project code base
for better augmentation. Due to the widespread adoption of Java in enterprise-level projects, this
paper illustrates the development of such a pre-trained code model specialized on Java.

Small Language Models (SLMs) will pivot the focus of AI community in enterprise and consumer
solutions. These models stand out for their ability to be deployed on end-user devices, such as per-
sonal computers and smartphones, even without a GPU. This enables large-scale deployment while
ensuring data privacy and security. Significant examples in the present scenario of code SLMs
include SantaCoder-1.1B (Allal et al., 2023), Phi-1 (Gunasekar et al., 2023), DeciCoder-1B2,
StarCoderBase-1.1B, WizardCoder-1B-V1.0 (Luo et al., 2023), DeepSeek-Coder-1b-base (Guo
et al., 2024) and Refact-1.6B3. All these state-of-the-art models around 1B size are multi-lingual
code models, indicating that no considerable work has been done towards extending training of
multi-lingual code SLMs in building language-specific code SLMs.

3 DATASETS

The foundation model identified for our experiment was StarCoderBase-1.1B. Enterprise projects
shortlist the candidate code models for adoption of coding tasks based on their licenses, their train-
ing data, etc. Utilizing additional dataset, such as pretraining dataset from any model other than
StarCoderBase, to extend the pretraining of StarCoderBase-1.1B would complicate the process of
shortlisting the further trained StarCoderBase-1.1B model (NT-Java-1.1B) for any enterprise adop-
tion, due to the concerns on licensing. Hence, a subset of StarCoderData4, which is a curated dataset
from The Stack v15 used for StarCoderBase training, was considered for building NT-Java-1.1B.

2https://huggingface.co/Deci/DeciCoder-1b
3https://huggingface.co/smallcloudai/Refact-1_6B-fim
4https://huggingface.co/datasets/bigcode/starcoderdata
5https://huggingface.co/datasets/bigcode/the-stack
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The rationale behind building Python-trained models such as Codex, CodeGen-Mono, StarCoder,
and CodeLlama-PYTHON might be the popularity of Python and the availability of the greater
volume of Python code in the pretraining dataset compared to other programming languages. While
the Python dataset in the StarCoderBase training dataset is 35B Python tokens, the Java dataset is
around 22B tokens, which is still a considerable size. This Java dataset from StarCoderData was
used for training NT-Java-1.1B.

4 MODEL TRAINING

4.1 DATA PREPROCESSING

For data preprocessing, we employed the Megatron-LM framework. The NT-Java-1.1B uses the
StarCoderBase tokenizer of type GPT2BPETokenizer (byte-level Byte-Pair-Encoding) and its vo-
cabulary of 49,152 tokens. No additional tokens were added to this vocabulary. The Java dataset
comprises 87 parquet files, which were converted into a single file and passed through the Megatron
pre-processing module to get the corresponding .bin and .idx files. These files were used for model
training. The pre-processing module also performs tokenization and adds an <EOD> token at the
end of each Java sample.

4.2 MODEL ARCHITECTURE

NT-Java-1.1B, similar to StarCoderBase-1.1B, is a decoder-only Transformer model with Multi-
Query Attention (Shazeer, 2019), which uses FlashAttention. This speeds up the attention compu-
tation and reduces the training time of the model. The hyper-parameters for the architecture can be
found in Table 1.

Table 1: Model architecture of NT-Java-1.1B.

Hyperparameter NT-Java

Hidden size 2048
Intermediate size 8192
Max. position embeddings 8192
Num. of attention heads 16
Num. of hidden layers 24
Attention Multi-query

Num. of parameters ≈ 1.1B

4.3 TRAINING DETAILS

NT-Java-1.1B was trained using the Megatron-LM Framework. The training began with
StarCoderBase-1.1B, serving as the initial checkpoint, to build its Java variant. In our experiments,
we utilized a context length of 8192 tokens for tasks involving the Next token prediction and the
Fill-in-the-Middle (FIM) (Bavarian et al., 2022) objective. The PyTorch Distributed framework
was employed, with data parallelism strategy. We chose bf16 precision and the Adam optimizer
(Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.95, and ϵ = 10−8, along with a weight decay of 0.1.

EXPERIMENTAL SETTINGS

In this study, we delve into the impact of extending pretraining of StarCoderBase-1.1B for Java
using two key objectives: Next token prediction and Fill-in-the-Middle.

Experiment 1 - Next token prediction objective: We conducted training over 100,000 steps (equiva-
lent to 5 epochs) with a batch size of 1 million tokens. The learning rate commenced at 4×10−4 and
underwent cosine decay, reaching a minimum of 4×10−6 with 1,000 iterations of linear warmup. A
global batch size of 180 facilitated the training process, which spanned 12 days. Model checkpoints
were saved every 1,000 steps for subsequent evaluation.

3
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Figure 1: MultiPL-E Scores of NT-Java-1.1B trained with and without FIM.

Experiment 2 - Fill-in-the-Middle: We repeated Experiment 1 along with FIM training objective.
The FIM rate was set to 50%. The FIM dataset was evenly split into two components, SPM (Suffix-
Prefix-Middle) and PSM (Prefix-Suffix-Middle).

Observation from Experiment 1 & 2: Without FIM training objective, the model’s infilling capa-
bility diminished significantly, with FIM scores approaching nearly zero (Table 2), despite the base
model’s inherent infilling capability. While training with FIM objective, we observed a minor de-
crease in MultiPL-E metrics (approximately 0.7%) compared to the model trained without FIM
objective, but the model retained its proficiency in infilling tasks. The comparative performance of
the models throughout the training are illustrated in Figure 4.3.

Table 2: Experimental results with and without FIM.

Model FIM HumanEval-FIM (Java) MultiPL-E (Java)

NT-Java-1.1B (Experiment 1) No 0.01 19.6
NT-Java-1.1B (Experiment 2) Yes 0.67 18.9

Experiment 2.1 - Fill-in-the-Middle: We extended training from Experiment 2 for 20,000 steps
(1 epoch) more as the evaluation scores were in an upward trend. The learning rate commenced at
4×10−6 and underwent cosine decay, reaching a minimum of 4×10−7 with 1,000 iterations of linear
warmup. We did not intend to continue further training as the model converged with no significant
decrease in loss.

4.4 POST TRAINING

The NT-Java-1.1B model has bf16 precision and occupies a total size of 2.27 GB. After the develop-
ment of the NT-Java-1.1B model, efforts were directed towards the development of quantized models
that are tailored to operate on developer desktops. These models were designed to be more com-
pact in size without substantially sacrificing their accuracy, and to be compatible with CPU-based
inference frameworks. To achieve this, we built quantized variants of the NT-Java-1.1B model in
GGUF6 format for frameworks like Ollama7, GPT4ALL8 and LM Studio9. The quantized versions

6https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
7https://github.com/ollama/ollama
8https://github.com/nomic-ai/gpt4all
9https://github.com/lmstudio-ai
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of the models (NT-Java-1.1B-GGUF) are available in a range from 2-bit to 8-bit, with their overall
sizes spanning from 511 MB to 1.32 GB correspondingly.

4.5 COMPUTE

NT-Java-1.1B was trained with 6 A100 80 GB GPUs on a single-node GPU cluster. The training
process remained stable overall, with only a few restarts.

5 EVALUATION

This section presents evaluation of our proposed coding SLM to assess its capabilities in code gen-
eration and infilling tasks.

5.1 MULTIPL-E

In our initial assessment, we evaluated the performance of the model from Experiment 2.1 on Java
code generation tasks by utilizing the widely recognized benchmark, MultiPL-E. We calculated the
pass@1 metric for this benchmark utilizing the BigCode Eval Harness10, ensuring the hyperpa-
rameter values were aligned with the established norms of the Big Code Models Leaderboard11.
NT-Java-1.1B demonstrated a pass@1 score that surpassed its base model and its 3B variant, as
detailed in Table 3. Furthermore, our model’s performance surpassed majority of the base models
within a similar parameter range, such as Phi-1, SantaCoder-1.1B, DeciCoder-1B, OctoGeeX-7B,
StableCode-3B-alpha, WizardCoder-1B-V1.0 and CodeGen25-7B-mono, on the Big Code Models
Leaderboard.

Table 3: Pass@1 results on MultiPL-E.

Model Java

StarCoderBase-1.1B 14.2
StarCoderBase-3B 19.25
NT-Java-1.1B 20.2

5.2 FILL-IN-THE-MIDDLE BENCHMARK

Subsequently, we conducted an evaluation of the model’s capabilities on the single-line code in-
filling task, utilizing the benchmark established in the SantaCoder. This benchmark gauges the
model’s proficiency in completing a single line of Java code within HumanEval solutions, using the
‘line exact match’ accuracy as the evaluation metric. Our analysis indicates that our model delivers
results that are on par with the foundational model, StarCoderBase-1.1B, showcasing comparable
performance, as outlined in Table 4.

Table 4: HumanEval-FIM scores.

Model Java

StarCoderBase-1.1B 0.71
NT-Java-1.1B 0.67

5.3 COMPUTATIONAL CAPABILITIES

Furthermore, we evaluated the model’s performance in terms of its efficiency and resource utiliza-
tion. Our analysis (Table 5) indicates that our NT-Java quantized models achieve an optimal balance

10https://github.com/bigcode-project/bigcode-evaluation-harness
11https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
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between accuracy and resource utilization, making them a suitable candidate for deployment in
resource-constrained environments. For the computation of the MultiPL-E scores of the quantized
variants, we employed the ‘load in 4-bit’ and ‘load in 8-bit’ parameters within the BigCode Eval
Harness.

Table 5: Accuracy and resource utilization.

Model Pass@1 (Java) Size (GB)

StarCoderBase-1.1B 14.2 ≈ 2.27
NT-Java-1.1B Q4 15.1 0.76
NT-Java-1.1B Q8 17.7 1.23
StarCoderBase-3B 19.25 ≈ 6.1
NT-Java-1.1B 20.2 2.27

As a last step, we conducted qualitative evaluations through user studies. Professional developers
and coding enthusiasts were invited to interact with our model, providing insights into the model’s
usability, the relevance of its code suggestions, and its adaptability to user prompts. The feedback
collected underscores the model’s practical utility and its potential to streamline coding workflows.

6 CONCLUSION

In this technical report, we outlined the rationale and training approach used to develop NT-Java-
1.1B, a small language model trained specifically on Java code. We evaluated NT-Java-1.1B across
various coding tasks and compared its performance against models with similar parameters. Our
findings indicate that NT-Java-1.1B is competitive with or outperforms other Code SLMs in this
parameter range in Java programming tasks.

This study demonstrates the successful achievement of its objective of enhancing the efficiency
of a code SLM for a particular programming language by training it further with a subset of its
dataset for that language. While the research employed the StarCoderBase-1.1B model and its
Java language dataset, other SLMs and their associated programming language datasets can yield
comparable experimental outcomes.

The release of NT-Java-1.1B and its variants aims to democratize code foundation models, making
them accessible for deployment in memory-constrained environments such as developer desktops
and laptops. By adhering to the principles of the OpenRAIL-M12 and by open-sourcing the cor-
responding scripts on GitHub, we hope to enable both the research and developer communities to
experiment and adopt code SLMs.
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Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need. CoRR, abs/2306.11644, 2023. doi:
10.48550/ARXIV.2306.11644.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming - the rise of code intelligence. CoRR, abs/2401.14196,
2024. doi: 10.48550/ARXIV.2401.14196.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozh-
skii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier,
João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee,
Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy V, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan
Dey, Zhihan Zhang, Nour Moustafa-Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh,
Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank
Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish
Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferran-
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Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,

7

https://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Manish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez,
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