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ABSTRACT

Interpretability of artificial intelligence models is vital in healthcare, as a poorly
informed decision can directly impact the health and well-being of patients. This
means that, owing to their black box nature, deep-learning solutions that may even
yield high accuracy often fail to be adopted in real-world healthcare settings. To
this end, we employ the generative pre-trained transformer (GPT) framework to
clinical heart time-series data, to create two pre-trained general purpose cardiac
models, termed PPG-PT and ECG-PT. We place a special emphasis on making
both such pre-trained models fully interpretable. This is achieved firstly through
aggregate attention maps which show that, in order to make predictions, the model
focuses on similar points in previous cardiac cycles and gradually broadens its at-
tention in deeper layers. Next, we show that tokens with the same value, which oc-
cur at different distinct points in the electrocardiography (ECG) and photoplethys-
mography (PPG) cycle, form separate clusters in a high dimensional space. Such
clusters are formed according to the phase of the cardiac cycle, as the tokens
propagate through the transformer blocks. Finally, we highlight that individual at-
tention heads correspond to specific physiologically relevant features, such as the
dicrotic notch in PPG and the P-wave in ECG. Importantly, it is also demonstrated
that these pre-trained models are straightforward to fine-tune for tasks such as the
classification of atrial fibrillation (AF), and beat detection in photoplethysmog-
raphy. The so introduced PPG-PT and ECG-PT models achieve accuracy com-
parable to the state-of-the-art for both tasks, whilst crucially retaining their inter-
pretability and explainability. This is demonstrated in the AF-screening fine-tuned
model, with attention clearly shifting to regions in the context that are strongly in-
dicative of atrial fibrillation.

1 INTRODUCTION

The generative pretrained transformer (GPT) (Radford & Narasimhan, 2018) (Brown et al., 2020)
is a large language model (LLM) which forms the basis of the chat-GPT models (OpenAI, 2024).
It consists of layers of decoder-only transformers (Vaswani et al., 2017) that are trained to predict
the next token (words, sub-words, or characters), using all previous tokens provided to the model as
context. The attention mechanism is masked, such that tokens inputted to the model can only com-
municate with past tokens and thus a context window of length N effectively provides N different
training examples, whereby the model tries to predict the same context window shifted by one token
into the future. The whole premise of the GPT model is that in order to accurately predict the next
token, across a large and diverse array of texts, a model must gain an efficient and general compre-
hension of these texts. Given that language is a tool that we use to summarise and communicate
the world around us, this efficient and general understanding allows the pre-trained model to be fine
tuned for a myriad of complex tasks (OpenAI, 2024).

The assertion of this work is that we can leverage the GPT mechanism, i.e. stacks of decoder-only
transformers trained to predict the next token, and develop it for physiological time series. Our
hypothesis is that if our models gain an efficient and general understanding of a physiological time
series, such as photoplethysmography (PPG) or electrocardiography (ECG), then these models will
be simple to fine-tune for downstream tasks such as the classification of heart conditions. The ECG
signal refers to the monitoring of the electrical activity of the heart through external non-invasive
electrodes that measure the potential difference across the heart (Arora & Mishra, 2021; Davies
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et al., 2024a). In this work, we use only single-lead ECG. The photoplethysmography (PPG) signal
refers to the non-invasive measurement of blood volume (Charlton et al., 2023). The PPG operates
by shining light through tissue with a light emitting diode, which is absorbed by the blood, and then
either measuring the transmitted light or reflected light with a corresponding photo-diode. The PPG
is thus able to measure changes in blood volume related to pulse and even breathing (Davies et al.,
2022). In PPG, for example, in order to accurately predict the next time point the model must gain
knowledge on several underlying phenomena, such as the subtle changes in heart rate and pulse
amplitude due to breathing and blood pressure. This leads us to postulate that a large model that
is good at predicting the next token of PPG will be straightforward to fine-tune for specific PPG
health-related tasks.

As GPT and other large language models are rapidly gaining in capability, and thus decision making
power, it is of crucial importance that LLMs do not remain black boxes. Indeed, the black box
nature of deep learning models is an immediate problem in healthcare, where decisions made by
artificial intelligence (AI) have the potential to directly impact our health and even our lives. It is
therefore paramount that models are developed which give clear insights and explanations into why
decisions are made. A natural way to interpret the operation of transformer-based LLMs is to take
a close examination of the attention weights of the individual transformer blocks. This attention
mechanism provides information on which tokens a model looks at in order to make a decision,
and thus it is common to use heat maps that visualise this attention as an avenue for interpretability
(Zhao et al., 2023). This has been applied to great effect in large vision language models (LVLMs)
(Stan et al., 2024) where it is possible to visualise the focus points on an image based on the context
of a language prompt. Language is complex, and there are often several pathways to achieve the
same result. In many instances this makes it difficult to decipher attention, which means that in the
context of LLMs attention cannot always be relied upon for explainability (Jain & Wallace, 2019).
However, like images, both the PPG and ECG signals are far less complicated than language, and
downstream tasks, such as screening for heart conditions, offer well understood constraints on the
possible pathways to achieve a correct diagnosis. This claim is evaluated in Appendix A.1, where it
is demonstrated that the possibilities for the next token of PPG become highly constrained as context
length increases. It is therefore a core focus of this paper not just to provide generalised transformer
models for PPG and ECG related tasks, but to provide models that are fully interpretable so that they
may be safely used in a healthcare setting.

To this end, we firstly develop two pre-trained decoder-only time series transformer models for use
with heart signals, namely PPG-PT and ECG-PT. Furthermore, we demonstrate that both the PPG-
PT and ECG-PT models behave exactly as expected for the task of predicting the next time series
point in PPG and ECG through:

• Aggregate attention of different transformer layers.
• Changes in cosine similarity between core PPG and ECG features in the embedding space

upon propagation through transformer layers.
• The analysis of the attention weights of individual attention heads in the final transformer

block.

Finally, we demonstrate how these models can be fine-tuned to detect atrial fibrillation (AF), a
common type of abnormal heart rhythm. The changes in attention from the task of next token
prediction to the task of classification of AF can be used to further explain the reason why a model
has made a decision. This makes it possible to provide clinicians with both accurate classification
and the reasoning behind it, thus allowing for a conjoint operation between a clinician and AI in
diagnostics and treatment through informed decisions.

2 RELATED WORK

There are several valuable prior works which leverage self supervised learning (SSL) to train large
models for application to ECG and PPG (Abbaspourazad et al., 2024; Cheng et al., 2020; Spathis
et al., 2021). Pre-trained transformer architectures have previously been shown to be effective for
PPG (Chen et al., 2024), but tokenise based on patches rather than individual time points, thus
limiting model interpretability. Another such pre-training method is contrastive learning (Kiyasseh
et al., 2021), shown to be effective for pre-training a generalisable representation of ECG signals.
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Whilst these models provide impressive accuracies on a wide range of downstream tasks, none of
these works were designed for end user interpretability. Where attempts at interpretability exist, it
is through class activation maps (CAM) to visualise regions in the input time-series that are of high
importance to classification (Lai et al., 2023; Torres-Soto & Ashley, 2020). However, the regions
of high intensity in the generated interpretability heat-maps are either too broad or have peaks at
regions that are not of interest (Lai et al., 2023). Moreover, the aforementioned works either do not
use publicly available datasets, or provide model files or model interpretability code. This highlights
a clear need for models pre-trained on bio-signals that are transparent and interpretable. With this
in mind, the models presented in this work are designed with interpretability and explainability as
the primary goal. For generality and reproducibility, we use publicly available datasets, provide all
code and trained model files and even graphical user interfaces explicitly created for interpretability.

3 THE PRE-TRAINED TRANSFORMER MODELS

3.1 TOKENISATION AND EMBEDDING

Both the ECG and PPG signals are largely locally periodic, and in most applications we can ignore
any mean offset. This allows us to divide each PPG and ECG signal into a range of finite tokens,
forming a vocabulary from which each signal can be constructed. To tokenise the PPG signals, they
were resampled to 50Hz and each 10-second context window (500 samples) was scaled to between
100 and 0. The resulting signal was then rounded to integer values, yielding a total vocabulary size of
101 tokens. Importantly, in our models each sample corresponds to a token. The 10-second context
window was chosen so as to be long enough to preserve low frequency variations in the PPG (such
as respiratory variations), but not too long so as to run into memory issues when training. For the
ECG, the process was similar, apart from resampling to 100Hz and thus using a context window that
corresponded to 5-seconds instead of 10-seconds of data. A higher sampling frequency was required
in the ECG tokenisation in order to preserve the high frequency components of the QRS complex.
In GPT models, common sequences of token values can be combined during tokenisation, in order
to allow for a longer context length for the same number of tokens. This method of tokenisation was
not implemented in the PPG-PT and ECG-PT models, as further extending the length of the context
window was not necessary.

Upon tokenisation, each token was embedded with a token embedding table and a position embed-
ding table. The dimensions of the token embedding were the vocabulary size times the embedding
dimension (dmodel), giving a dmodel-dimensional vector for every possible token in the vocabulary.
The dimensions of the position embedding table were the maximum context length times dmodel,
giving a dmodel-dimensional vector for every possible position in the context window. In the original
transformer paper, the positional embeddings utilised sine and cosine functions of different frequen-
cies (Vaswani et al., 2017); whereas in our models, both of these embeddings are learnt as the model
trains. The token and positional embeddings were added together, which means that the attention
mechanism in the subsequent transformer blocks had information on both the specific token and the
position of the token in the context.

3.2 ARCHITECTURE AND TRAINING

Our models were developed in PyTorch (Paszke et al., 2019) and adapted from a tutorial by Andrej
Karpathy (Karpathy, 2023) titled “Let’s build GPT: from scratch, in code, spelled out”. For both
the photoplethysmography pre-trained transformer (PPG-PT) and electrocardiography pre-trained
transformer (ECG-PT) we used an embedding dimension (dmodel) of 64. The original GPT paper
used an embedding dimension of 768 (Radford & Narasimhan, 2018), but given that PPG and ECG
are far less complex than language, dmodel = 64 was found to be sufficient in our case. For our
decoder-only transformer we used 8 transformer blocks, each with 8 attention heads for the multi-
head attention as described in the original transformer paper (Vaswani et al., 2017) and in Appendix
A.2. In the areas where dropout was applied (the feedforward subsection of the transformer and the
attention weight matrix), the dropout was set to 0.2. Our models use a context length of N = 500
samples, corresponding to 5-seconds of ECG, resulting in 443,493 trainable parameters.

For pre-training, multiple publicly available datasets from different regions of the world were com-
bined for both the ECG and PPG models, resulting in 128 million tokens for PPG-PT training and 42
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million tokens for ECG-PT training and corresponding to a similar ratio between the number of pa-
rameters and data-size as state-of-the-art LLMs (Dubey et al., 2024). The full pre-training details are
given in Appendix A.3. Importantly, unlike conventional time-series transformer models (Das et al.,
2024), we opted to train our models purely with cross-entropy loss and next token prediction, rather
than mean squared error (MSE) and windowed prediction (see Appendix A.4). This, combined with
the locally periodic and deterministic nature of PPG and ECG, resulted in the interpretable attention
mechanism that we demonstrate in this work.

For fine-tuning, for both tasks of screening for atrial fibrillation and beat detection in PPG, only the
last layer of the pre-trained model was fine-tuned. In addition, the final linear layer which transforms
the model dimension into the vocabulary size was replaced my a linear layer which transforms
the model dimension into 1-dimension. The full fine-tuning methodology, including details of the
publicly available datasets used, are provided in Appendix A.5.

4 GENERATIVE PRE-TRAINED MODEL EVALUATION
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Figure 1: Example generations and the corresponding maximum absolute errors for both the PPG-
PT and ECG-PT base models for a duration of half the length of the context window. The examples
demonstrate that whilst the models were able to accurately capture features of the context, such as
pulse shape and the dicrotic notch in the case of PPG, and all sections of the P-QRS-T complex for
the ECG, large errors can arise from slight temporal misalignment. Two such examples of model
generations for both PPG-PT and ECG-PT are provided with context in black, ground truth in blue
and model prediction in red.

In training, for all points in the context window the model outputs logits which are transformed into
a next token probability distribution. For the generation of future tokens, the probability distribution
corresponding to the last point in the context is taken. The multinomial function in PyTorch
is then used to sample this distribution and generate a predicted next token. The single generated
token can then be appended to the previous context, which is then used to generate another token.
This process can be repeated, generating one token at a time, until a maximum number of generated
tokens has been reached. Another way to examine the predictive capabilities of each model would
be to predict the next token as the one with the highest probability, instead of sampling from a
distribution. The problem with this second approach is that sometimes in low frequency periods,
such as a trough in PPG or a period between P-QRS-T regions in the ECG, taking just the token
with maximum likelihood could allow the model to become stuck in predicting the same token
value over and over again. Because of this issue, the first approach of sampling from a probability
distribution was chosen to evaluate the models.

The full dataset and pre-processing details for the evaluation of our pre-trained generative models are
provided in Appendix A.3.1. For each predicted token, we calculated the absolute distance between
the predicted token and the true token. We were then able to calculate the median and inter-quartile
range of the absolute prediction error against the prediction horizon for both the PPG-PT and ECG-
PT models. In Figure 1, example generation waveforms and maximum absolute errors are shown
for both the PPG-PT and ECG-PT models. Observe that the errors stem not from a failure to predict
the morphology of the PPG or ECG, but from slight temporal misalignment between the prediction
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and the ground truth, as is common with periodic physiological signals (Davies et al., 2024b). The
median absolute distance between the prediction and ground truth in PPG-PT starts at 1 token and
grows to 21 tokens across the 5-second prediction horizon (250 samples). For ECG-PT, the median
error starts at 1 token and grows to 3 tokens across the 2.5-second prediction horizon (250 samples).
This aggregate analysis is provided in Appendix A.6. It should be noted that we expect the errors to
be significantly higher in the PPG-PT model when compared with the ECG-PT model, as due to the
comparatively broader peaks in the PPG waveform, errors in temporal misalignment increase the
prediction error across the whole waveform. This is in contrast to ECG where the vast majority of
the signal is at baseline, and thus slight temporal misalignment is mainly penalised around the QRS
complex and the T wave.

Whilst the prediction errors in Figure 1 show us that the introduced models are good at extrapolating
PPG and ECG waveforms into the future, this can never be perfect given that there may be changes in
heart rate, respiration, and even arrhythmia events that are, by definition, impossible to predict from
the context. The important result here is the ability of the models to generalise to unseen distinct
morphologies of PPG and ECG as context. Observe from Figure 1 that the PPG-PT condenses
knowledge of peak width and the shape of the dicrotic notch (the sub-peak) in the PPG examples
and is thus able to generate PPG with the same properties. This is even more obvious in the case of
ECG, where both examples have very different P, Q, R, S and T wave morphologies, and ECG-PT
was able to replicate this well. This is the first indicator that the PPG-PT and ECG-PT models indeed
pay attention to the relevent features of both signals.

5 INTERPRETABILITY OF THE PRE-TRAINED MODELS

5.1 INTERPRETABILITY OF AGGREGATE MODEL ATTENTION

As is the case with GPT models (Radford & Narasimhan, 2018), our pre-trained transformer models
(PPG-PT and ECG-PT) are trained to predict the next token at each point, by using the attention
mechanism to collate knowledge from previous tokens. Given the task of predicting the next token
in a periodic signal, it is natural to think that a model or a human would look at tokens which are
at the same point in the previous cardiac cycles in order to make that prediction. For example, if
the current token to predict was a peak, it would be logical to look at all previous peaks, with an
emphasis on peaks of similar height and width, in order to make an accurate prediction. However,
the information we start with is just the position of a token in the context window and the value of a
token. Given that the fundamental frequency changes between contexts and that different points in
the local cycle can have the same value, we cannot rely on the initial position and value information
alone to find similar points in the same cycle. In order to understand the point at which a token lies
in a cardiac cycle, it is therefore necessary to first look at the context of surrounding tokens. Once
this relationship between a token and its local cycle is understood, attention can broaden to look at
all cardiac cycles.

This mechanism of broadening attention is indeed found in both of our PPG-PT and ECG-PT mod-
els. The last row in the attention weight matrix corresponds to the final token in the context. To
examine the attention span of the model, we calculated the central point of attention for this final
row of attention in each attention head in each transformer block, across all context windows in
the generative test set. Table 1 (Appendix A.7) shows that for PPG-PT, the mean central point of
attention is 0.43 seconds in the first transformer block, and thus the focus is within the immediate
cycle. By the last transformer block, this central point of attention has broadened to 2.31 seconds,
indicating that the PPG-PT model was updating the current token based on the tokens in previous
cycles of PPG. The same effect is seen in ECG-PT, with a broadening of attention from 0.33 seconds
in the first block to 1.88 seconds in the last block (the typical duration of a cardiac cycle is around
0.8-1 seconds).

The next step to interpreting the aggregate attention of the model is to examine the attention weights
of different transformer blocks for specific context examples. In Figure 2 (a) we examine the
summed attention weights in PPG-PT from the row associated with predicting the peak point high-
lighted with a blue circle. As expected, in order to predict the peak point the first transformer block
focuses on the immediate points before the peak point in order to learn how the point integrates into
the local PPG cycle. This also is true for the attention matrix rows in the first transformer block
that are associated with all previous tokens in the context. Importantly, observe that in the final
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Figure 2: Aggregate attention for both the PPG-PT and ECG-PT models across all attention heads
for the attention row corresponding to the prediction point, per transformer layer shown (the first
and last layers). The attention maps demonstrate that in order to predict the next token, the models
first look at all tokens in the local cycle to gain an understanding of where a token falls within that
cycle. When this understanding has been established, models then look at the similar points occur-
ring in other cycles in the context window. For both models, attention in the first transformer layer
is shown on top and the last transformer layer beneath, with context (black line) and the predic-
tion point (blue circle) corresponding to overlaid transformer attention (red transparent bars), with
transparency scaled based on the attention weights shown below (red solid line). (a) The PPG-PT ag-
gregate attention, for the prediction of a peak in the given previously unseen photoplethysmography
context. (b) The ECG-PT aggregate attention, for the prediction of a peak in the given previously
unseen electrocardiography context.

transformer block, in order to predict the peak point the network focuses its attention on all previous
peaks in the context. This is also true for the ECG-PT model, as demonstrated in Figure 2 (b).

5.2 VECTOR SIMILARITIES BETWEEN POINTS OF INTEREST

In the previous section, we have demonstrated that the pre-trained transformer models naturally
focus on similar points in previous cycles of PPG or ECG when predicting the next token. This
strongly indicates that the models are able to distinguish between different points in the cycle of
PPG and ECG waveforms. In this section, we aim to solidify this finding by examining how the
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Figure 3: Cosine similarity of points in rising slopes (blue circles, blue solid lines) and falling slopes
(red circles, red solid lines) with similar input values, upon propagation through the transformer lay-
ers of the model. In each case, a single point on a rising slope is chosen as a comparison point,
represented by a black cross on the context (black solid line), and a black dotted line with a cosine
similarity of 1 in the cosine similarity plot. The point of propagation through the model is high-
lighted with grey transparent blocks labeled with the corresponding transformer layer (from 1 to 8).
In both examples, rising slope points and falling slope points are shuffled in the embedding space
upon input to the first model layer, and gradually divide into two clusters as they propagate through
the model. (a-b) The cosine similarity of rising slopes and falling slopes in a photoplethysmography
signal, upon propagation through the PPG-PT model. (c-d) The cosine similarity of rising slopes
and falling slopes on the T-wave of an electrocardiography signal, upon propagation through the
ECG-PT model.

cosine similarity of embedded tokens with the same value, which occur at different distinct points in
the PPG and ECG cycle, change upon propagation through the model. To this end, we chose tokens
at similar points on rising slopes and falling slopes on the PPG signal, and on the T-wave of the
ECG signal. The similarity of these tokens was calculated with respect to the final rising slope in
each context window. If the models are effective at distinguishing different points in the cycle, we
would expect rising slopes to cluster together in high-dimensional space, and falling slopes to form
a separate cluster.

Remark 1. An analogous experiment in a large language model would be to look at the vector sim-
ilarity of homonyms (words that have the same spelling but can have multiple different meanings),
and examine how the vector similarity changes based on specific context in a sentence. For example,
we would expect the token “bat” to form separate clusters upon propagation through an LLM based
on if it contextually refers to a “club to hit a cricket ball” or it refers to the “flying mammal”.

It is highlighted in Figure 3 that, upon input to the pre-trained models, falling slopes and rising
slopes of the PPG and ECG are shuffled in high-dimensional space. This is because the inputs to
the models have the same token embedding that has not yet been updated based on the context of
previous tokens. Notably, as these tokens propagate through the models, rising slopes increase in
vector similarity and cluster below a cosine similarity of 1 (identical vectors) and falling slopes
form their own independent cluster. This further demonstrates that these large pre-trained models
can clearly identify the relationship between different points in cycle of both PPG and ECG.

5.3 ATTENTION MAPS OF INDIVIDUAL ATTENTION HEADS

Now that we have established that the pre-trained PPG-PT and ECG-PT models attend to similar
points in previous cycles in order to predict the next token, and that the models have knowledge of the
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Figure 4: Attention maps of the attention weights of individual attention heads of the last layer of
both the PPG-PT and ECG-PT models. Averaged attention maps are generated by averaging the
final layer of the attention weight matrix over the prediction of the next 500 tokens beyond the ini-
tial context window. The model context is plotted in black, with attention weights plotted in red,
pink, and blue for different attention heads. Peaks in attention are highlighted in the same colour
with circles, and overlaid on the context with bars. (a) Mapping of the averaged attention weights
in the final layer attention heads of the PPG-PT model for an example photoplethysmography con-
text. Observe that the 3rd attention head (red) looks primarily for peaks in PPG, the 4th attention
head (pink) looks primarily for troughs in PPG, and the 6th (blue) looks for the dicrotic notch. (b)
Mapping of the averaged attention weights in the final layer attention heads of the ECG-PT model
for an example electrocardiography context. The 1st attention head (red) looks for R peaks in the
ECG, the 5th attention head (pink) looks primarily for P waves, and the 7th attention head (blue)
looks primarily for the Q portion of the QRS complex of ECG.

context of different points within a PPG and ECG cycle, the final step is to examine if the individual
attention heads attend to specific high level features in the PPG and ECG signals. To investigate this,
we examined example contexts from the generative evaluation dataset which contained the common
features of each signal. For example, a PPG context which has well-defined peaks, troughs, and a
dicrotic notch, and an ECG context which has a well defined P-wave and QRS complex.

For each model, we averaged the final row of the attention weights by shifting our context in time,
to build up an aggregate map of which regions of the context an individual head responded to. This
method is summarised in Appendix A.14. Regions of interest were highlighted by implementing the
findpeaks function in MATLAB, on the averaged attention map, with a minimum peak distance
of 15 tokens and a minimum peak height of 0.5 of the maximum attention weight in the window, to
extract the local maximas in attention.
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Figure 4 demonstrates that individual attention heads do indeed pay attention to important features
in the signal of interest. In particular, PPG-PT has an attention head that looks for peaks, another
that looks for troughs and another which looks for the dicrotic notch. In addition, we found that
ECG-PT has a head which looks for the Q portion of the QRS, another which looks for R-peaks and
another that looks for P waves. Therefore, in addition to an ability to distinguish all separate points
in a PPG and ECG cycle, the pre-trained models presented in this paper also pay specific attention
to some of the most physiologically relevent features.

6 FINE-TUNING FOR AUTOMATIC SCREENING OF ATRIAL FIBRILLATION
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(a) Example Test Results of PPG-PT fine-tuned to detect Atrial Fibrillation 

(b) Example Test Results of ECG-PT fine-tuned to detect Atrial Fibrillation 
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Figure 5: Changes in final layer attention weights of the base PPG-PT and ECG-PT models when
fine-tuned to classifying atrial fibrillation. The model input context is shown in black, with attention
overlaid with red bars of varying transparency based on the change in attention weights. The full
difference in attention weights is shown below each plot in red. (a) Example fine-tuned PPG-PT
test results, with examples of pulses occurring later than expected and earlier than expected, and
the corresponding spikes in attention weights. (b) Example fine-tuned ECG-PT test results, again
showing beats occurring later or earlier than expected with the aforementioned spikes in attention.

Remark 2. Through pre-training we have obtained models which focus on the important features
of PPG and ECG, and generalise well to unseen morphologies. However, rather like in LLMs,
predicting the next token of PPG and ECG lacks utility. To make full use of these pre-trained models,
we fine-tune the models to classify atrial fibrillation (AF), as outlined in Appendix A.5.

Atrial fibrillation is the most common arrhythmia, characterised by an irregular heart rate which
manifests itself in rapid increases in heart rate and periods where it slows down dramatically (Wi-
jesurendra & Casadei, 2019). The fine-tuned AF-PPG-PT model achieved a leave-one-subject-out
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area under the curve (AUC) of 0.93 when cross-validated across all test subjects, and 0.96 when two
subjects with poor signal to noise ratio were excluded. The fine-tuned AF-ECG-PT model achieved
an AUC of 0.99 when cross-validated across all test subjects. A comparison between our results and
the state-of-the-art is provided in Appendix A.8. Further fine-tuning experiments, for beat detection
(Appendix A.9), for ventricular premature contractions along with corresponding interpretability
analysis (Appendix A.10) and for four class arrhythmia classification (summarised in Appendix
A.11). It is worth reiterating that these results were achieved with 11 minutes of fine-tuning com-
puter time, corresponding to roughly 0.2% of the total time it took to train the base models.

The key result of fine-tuning is not just the accuracy, but the interpretability of the results. To
ascertain why a model made a classification in the way it did, we simply aggregated the final row
of SoftMaxed attention weights across all heads in the final transformer layer for the base model
and compared with the fine-tuned model. Any increases in attention weights therefore indicate that
the model deems the corresponding tokens valuable for classification of AF. In Figure 5(a), two
representative attention maps are displayed for the classification of a PPG context as AF. Observe in
both cases that the model shifts attention to periods where beats occur later than expected and earlier
than expected, which is the obvious characteristic of AF. This is even clearer in the fine-tuned ECG
attention, given that peaks in ECG are more precisely localised in time. In Figure 5(b), an example is
highlighted where a beat is expected to occur based on the previous beat timing, but it does not and
thus the model attention spikes. A second example is also highlighted, where based on the previous
beat timing a beat occurs much earlier than expected, and model attention therefore spikes exactly
at this point. These interpretable maps of shifts in attention, which demonstrate the reason why the
model has made the classification, can easily be provided along with the probability of AF.

7 CONCLUSION

This work has demonstrated that GPT-like models, when trained to predict the next token locally
in periodic physiological time series such as PPG and ECG, can be fully interpretable in their
operation. This has been illustrated through aggregate attention maps, which are natural for the
task of predicting the next token, and through the clustering of different PPG and ECG features in
high-dimensional space. This has been further demonstrated through individual attention heads that
correspond strongly to specific features, such as the dicrotic notch in PPG or the P-wave in ECG.
Moreover, we have shown that the so introduced interpretability is carried forward when fine-tuning
for abnormal heart rhythms. Indeed, in the classification of atrial fibrillation, attention shifts to re-
gions in the input context that most indicate the presence of the arrhythmia. This work represents a
step forward in the interpretability and explainability of large transformer networks when applied to
healthcare settings.

REPRODUCIBILITY STATEMENT

The code is provided for pre-training and fine-tuning, in addition to all of the pre-training and fine-
tuned PyTorch model files. All datasets used are publicly available. Furthermore, we have developed
five Python-based graphical user interfaces (GUIs) to allow researchers to more easily implement
and interpret the models: i) A GUI which allows users to load the pre-trained models and generate
next tokens based on inputted context of either PPG or ECG; ii) A GUI which allows users to
visualise the attention weights of the pre-trained models for a context of their choice; iii) A GUI
which allows users to visualise how the cosine similarity changes between different tokens as they
propagate through the pre-trained models; iv) A GUI for the fine-tuned atrial fibrillation models,
providing a probability of atrial fibrillation along with a visualisation of how final layer attention
weights change from next token prediction to screening for atrial fibrillation; v) A GUI for beat-
detection in PPG, allowing users to load in long sequences of finger-PPG for automatic estimation
of beats and signal quality. The code, model files and GUIs will be provided in the form of a publicly
available Github repository.
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A APPENDIX

A.1 ESTIMATING THE ENTROPY OF PHOTOPLETHYSMOGRAPHY

The assertion is made in this work that locally periodic signals such as photoplethysmography are
easier to extrapolate than language. In language there are often several valid options for the next
token, with an estimate for the lowest achievable cross-entropy loss of 1.69 (Hoffmann et al., 2022),
corresponding to roughly 1 in 5 predicted tokens being correct. In our pre-training, we achieved
a validation loss of 1.2 for PPG (1 in 3 tokens correct) and 1.8 for ECG (1 in 6 tokens correct),
with a comparatively small model (under half a million parameters). In a further attempt to validate
our assertion that such signals are easier to predict than language, we analysed the first 20 million
tokens of training data for PPG-PT. The data was firstly rounded into 10 possible token “bins” from
the original 101 possible tokens, in order to allow for an increased likelihood of identical sequences.
The frequency at which sequences occurred in the dataset were counted, and the 500 most frequently
occurring sequences were stored along with the next token bin in every example the sequence was
found. For every sequence that occurred more than 10 times in the training set, the probability
distribution for the next token bin was calculated and then ranked from highest to lowest probability.
This ranked distribution was then averaged over all sequences, and this analysis was repeated for

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

0.2 seconds of context

Average Ranked Probability Distribution of Next PPG Tokens With Varied Context Length

1 2 3 4 5 6 7 8 9 10

Ranked Next Token Bin

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

1 second of context

1 2 3 4 5 6 7 8 9 10

Ranked Next Token Bin

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

1.8 seconds of context

1 2 3 4 5 6 7 8 9 10

Ranked Next Token Bin

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

Figure 6: Estimation of the predictability of the photoplethysmography signal, rounded to 10 pos-
sible tokens, for different context lengths. Each plot shows averaged ranked probabilities of next
tokens, for all sequences which were repeated up to 10 or more times (up to a maximum of 500
unique sequences) in the first 20 million tokens of training data. Left) Average ranked next token
probabilities given 0.2 seconds of context. Middle) Average ranked next token probabilities given 1
second of context. Right) Average ranked next token probabilities given 1.8 seconds of context.

three different context lengths of 10 samples (0.2 seconds), 50 samples (1 second) and 90 samples
(1.8 seconds).

The results of this analysis are presented in Figure 6, which shows that with a context length of
0.2 seconds, if one were to always predict the next token bin with maximal likelihood for a given
sequence, they would be correct 77% of the time. This increases to 93% with 1 second of context and
95% with 1.8 seconds of context. Vast increases in predictability were found around the 1-second
of context, which captures at least one cycle of PPG in the majority of cases and thus provides the
knowledge of position in the cardiac cycle. It is plausible that a further jump in accuracy could occur
with knowledge of the position in the respiratory cycle at context lengths beyond 5-seconds, but in
our case the total volume of data was too small to find a sufficient number of repeated sequences for
this analysis at long context lengths. The analysis demonstrates the highly deterministic nature of
photoplethysmography, with a well-defined correct next token given a long enough context.

A.2 MULTI-HEAD MASKED SELF ATTENTION AND THE TRANSFORMER BLOCK

Once tokens have been embedded with a token embedding and positional embedding which are
added together, this allows the model to use information on both the position of the token in the
context window (length N ) and the value of the token; these are fed to transformer blocks in their
high-dimensional vector form. In multi-head attention, the embedding space (of size dmodel) is
divided into lower-dimensional spaces of equal size (dk), before the results of attention are con-
catenated after the attention mechanism to reconstruct the original embedding space size (dmodel)
(Vaswani et al., 2017).

The attention mechanism operates by allowing tokens to communicate with one another and thus
update each other’s information. Each attention head transforms tokens into keys (K), using a linear
layer which compresses the tokens from dmodel dimensions to dk dimensions. It also separately
transforms tokens into queries (Q), which again use another linear layer to compress the tokens from
dmodel dimensions to dk dimensions. Queries (Q) can be thought of as each token broadcasting what
it is looking for, and keys (K) as each token broadcasting what it contains. The dot product is then
taken between both the queries and the keys, such that if there is a match between the information
a token is looking for in Q and the information a token emits in K, there will be a spike in the
corresponding attention weights QKT . This dot product is next scaled by

√
dk, and the SoftMax

of each row is taken (resulting in attention rows that sum to 1). This scaled dot product results in
an N × N matrix of attention weights, which conveys how tokens communicate with each other,
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for all tokens in the context window. In masked self attention, the mechanism used to train GPT
models, the upper triangle of this weight matrix is set to zero. This means that tokens can only
communicate with themselves or with past tokens in the sequence, and allows for efficient training
by allowing for N separate training examples with an input block of N token length. During training
of the model, dropout (the random zeroing of weights) is also applied to the weight matrix. The
final step in the masked self-attention process is to multiply the weight matrix with a value matrix.
The value matrix, V , is formed from another linear layer that compresses the tokens from dmodel

dimensions to dk dimensions. A combination of all of these steps produces the following attention
function (Vaswani et al., 2017)

Attention(Q,K, V ) = SoftMax(
QKT

√
dk

)V (1)

As previously mentioned, the results of each head, which are of dimension dk = dmodel/(# Heads),
are next concatenated to give the original dimension dmodel. This output from multi-head attention
is then added to the input to the multi-head attention, forming a residual connection that allows the
model to bypass a transformer block if needed. Finally, this new combined output is normalised
and passed through a feed-forward network which firstly expands the embedding dimension to 4 ×
dmodel, applies a ReLU activation function, and then compresses the dimension back to dmodel.
During training, dropout is also applied to this feed-forward network. The feed-forward network
after multi-head attention can be thought of as allowing the model to process the results of self-
attention, before these results are fed into another multi-head attention block. The combination of
the multi-head attention and this feed-forward network constitute one transformer block. After the
final transformer block, the output is passed through a final linear layer, which converts the output
from a dimension of dmodel to the size of the vocabulary. When passed through a SoftMax activation
function, this provides the probabilities for all tokens in the vocabulary, at all N points.

A.3 PRE-TRAINING DATASETS AND METHODS

Three datasets were used for training the PPG-PT base model: 1) Capnobase “respiratory bench-
mark” dataset (Karlen et al., 2013), which consists of high quality ECG and PPG recorded over 42
subjects for 8 minutes each; 2) BIDMC1 dataset (Pimentel et al., 2016) which consists of PPG and
ECG from 53 subjects for 8 minutes each; 3) the “cuffless blood pressure dataset” (Kachuee et al.,
2015), a subset of MIMIC II (Goldberger et al., 2000), consisting of 12,000 recordings of PPG sig-
nals of varied quality, in a hospital setting. The combination of all of these datasets resulted in over
128 million total tokens for training.

For the training of the ECG-PT base model, we used subsets of the “PhysioNet Computing in Car-
diology Challenge 2020” dataset (Alday et al., 2020; Goldberger et al., 2000), which consists of
tens of thousands of 12-lead ECG recordings, across tens of thousands of patients in a hospital set-
ting. From each of these recordings, we extracted 10-second examples of Lead I ECG. This dataset
comprises a diverse range of cardiac abnormalities as well as many healthy subjects, as the dataset
was originally constructed for the identification of different heart conditions. Once tokenised, this
dataset resulted in over 42 million tokens for training.

For each model, training data was split into 90% training and 10% validation datasets. The data
was not shuffled to ensure that validation data primarily consisted of unseen subjects. The PPG-
PT model was trained over 500,000 iterations with a batch size of 64, and the ECG-PT model was
trained over 560,000 iterations with the same batch size. After every 2,000 iterations, the models
were evaluated over a further 200 iterations to measure validation loss. In both cases, the learning
rate was set as 3×10−4 within the AdamW optimiser. The training of PPG-PT took just over 5 days
on an RTX A2000 12GB GPU, while the training of ECG-PT took almost 6 days. Optimisation loss
was measured using cross-entropy, by mapping the N × 101 model outputs (logits) where the 101
represents all possible tokens, to the target tokens which were the next token values for all points
in the input. The final validation loss of the PPG-PT model was 1.2, corresponding to roughly
a third of prediction being perfect. The final validation loss of the ECG-PT model was 1.8 (1 in 6
predictions are perfect). The higher validation loss for ECG-PT was likely due to the high proportion

1The BIDMC data set is made available under the ODC Attribution license, and is available at
https://physionet.org/content/bidmc/1.0.0/
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of abnormal heart rhythms in the training and validation datasets. The full training loss curves are
shown in Figure 7.

Figure 7: Training and validation loss curves for PPGPT and ECGPT training.

A.3.1 PRE-TRAINED GENERATIVE MODEL EVALUATION DATASET

For the evaluation of generative capabilities of each model, the pre-processed subset of the Bed-
based ballistocardiography dataset (Carlson et al., 2020) (Carlson et al., 2021) was used. This dataset
consists of simultaneously recorded PPG and ECG from 40 subjects, sampled at 1kHz. In the
preprocessed subset, the PPG was low-pass filtered with a cut off of 10Hz and the ECG was band-
pass filtered between 1 and 40Hz. As with the previous datasets, we resampled the PPG to 50Hz, and
the ECG to 100Hz, before converting the signals to tokens. The 750-sample windows were extracted
and split into 500 samples to form the context and 250 samples to test the prediction accuracy of the
model.

A.4 CROSS ENTROPY LOSS AND NEXT TOKEN PREDICTION VS MEAN SQUARED ERROR

Conventionally, time series transformer models produce a continuous output values for each token
prediction and are thus trained with a mean squared error (MSE) loss function (Das et al., 2024) or a
combination of likelihood and MSE (Liu et al., 2022). However, unlike many time series prediction
tasks, we were able to leverage the highly periodic nature of the PPG and ECG signals to create
models with a well-defined small vocabulary. This allowed us to train the model exclusively with a
cross-entropy loss function, in a similar fashion to a conventional large language model. It should
be noted that we did also experiment with continuous output values and mean squared error as a
loss function, but these results were less able to capture long range trends and importantly lacked
interpretability in the attention weights. A full investigation into this finding is beyond the scope of
this work.

Through training for next token prediction in combination with cross entropy loss, for each part of
the context window, we force tokens to update in a way which is still relevant to that specific token.
For example, tokens around peaks update to become more “peak-like” as they propagate through
the transformer blocks, and the same principle is the case for all other positions in each cardiac
cycle. In that sense, the final layer of attention operates on a ECG or PPG signal where each token is
rich in period-specific information, and attention can thus be fine-tuned in a way that is more easily
interpretable to a clinician.
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A.5 FINE-TUNING METHODS

For fine-tuning classification tasks, AUC, F1-score, sensitivity, specificity, false positive rate and
false negative rate are provided. Each cross-validation was performed 5 times in order to calculate a
mean and standard deviation for these metrics.

A.5.1 ATRIAL FIBRILLATION DETECTION IN ECG AND PPG

During the fine-tuning, the final linear layer, which converts the output from dmodel dimensions to
the dimensions of the vocabulary size, was replaced with a linear layer which instead converts the
output from dmodel dimensions to 1 dimension. This new output was then passed through a sigmoid
activation function to scale the values between 0 and 1; the final value was then used to classify the
signal as either healthy (0) or atrial fibrillation (1). A binary cross-entropy loss criterion was then
used to map the output value to the true class. This same conversion of the final linear layer of the
model could be used for any suitable classification or regression task, by simply scaling the number
of output dimensions to be in line with the specific task. During training, just the new linear layer
and the final transformer block were trained, whilst all other layers were frozen. In this example, the
learning rate was maintained at 3× 10−4 within the AdamW optimiser.

To train and evaluate the fine-tuning of the model for classification of atrial fibrillation (AF), the
“MIMIC PERform AF” dataset (Charlton et al., 2022) was used, which is a subset of MIMIC III
dataset (Johnson et al., 2016). This dataset contains 20 minutes of continuous PPG and ECG record-
ings from 35 subjects, of whom 19 had AF and 16 did not have AF. These signals, originally recorded
at a sample frequency of 125Hz, were band-pass filtered to between 1 and 15Hz and then downsam-
pled to 50Hz in the case of the PPG, and band-pass filtered to between 1 and 45Hz and downsampled
to 100Hz in the case of the ECG. A window length of 500 samples was maintained, corresponding
to 10 seconds of PPG (50Hz) and 5 seconds of ECG (100Hz), and sliding windows were extracted
from the data and tokenised with a shift of 50 samples each time, in order to artificially increase
the volume of data for the model training. In both the cases of ECG and PPG, the models were
fine-tuned in a leave-one-subject-out fashion by training on 34 subjects and testing on 1, over 1,000
iterations and with a batch size of 128. Each model took 11 minutes to fine tune on an RTX A2000
GPU, which is a fraction of the over 5 days that it took to train each of the base models.

A.5.2 BEAT DETECTION IN PPG

As was the case with fine-tuning to detect atrial fibrillation, the final linear layer was again replaced
with a linear layer which converted the output from dmodel dimensions to 1 dimension. However,
instead of using just the final value in the context as was the case with AF, all values from the context
were used. This 1-dimensional array was passed through a Sigmoid activation function, to map to
values of 0 (no peak) or 1 (peak) for all tokens in the context. Only the new linear layer and the
final transformer layer were trained. The learning rate was again maintained at 3× 10−4 within the
AdamW optimiser, with a binary cross entropy loss function. The model was fine-tuned over 5000
iterations, with a batch size of 128.

To train and evaluate the fine-tuning of the model for beat detection, the “MIMIC PERform” training
and test datasets were used (Charlton et al., 2022). Both datasets consist of real-world clinical PPG
and ECG recordings from 200 subjects at a sample frequency of 125Hz, for 10 minutes per subject.
The training dataset was used to train and validate, and the unseen test dataset was then used to
evaluate performance of the trained model. The PPG signals were band-pass filtered between 1
and 30 Hz to remove low frequency variations, and ECG between 4 and 60Hz to isolate the higher
frequency QRS complex and remove P and T waves. Labels for peaks were determined by using the
inbuilt MATLAB findpeaks function on the filtered reference ECG data. Peaks, and the points
immediately neighbouring the peaks, were labelled as 1. All other points were labeled as 0. This
signal was then aligned with the filtered PPG signal to the point of maximal cross correlation, to
ensure peak labels that mapped to the PPG peaks. Both the reference signal and the PPG signal
were resampled to 50Hz, and the PPG signal was then tokenised as per previous examples. In the
reference signal, the difference in the time between each peak should be minimal. When the standard
deviation of this difference was greater than 0.3 seconds, a sign that the reference signal was of poor
quality, the subject was excluded from the training data.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

When testing, the criterion outlined by Charlton et al. (Charlton et al., 2022) was followed to
allow for comparability of results. Poor quality labels were excluded from the test set by removing
reference segments which had no beats for 2 seconds or more. Input segments with constant values
for more than 0.2 seconds, an indication of clipping and thus data loss, were also excluded from
analysis. Output peaks were determined by applying findpeaks to the output of the model,
with a minimum height of 0.015, a maximum peak width of 0.4 seconds, and a minimum distance
between peaks of 0.28 seconds (corresponding to a heart rate of 214 beats per minute). If a predicted
beat was within 0.15 seconds of a reference beat, it was deemed to be correct. Results were then
analysed in terms of the median F1 score (%) across test subjects.

It should be noted that the fine-tuned model produced continuous values between 0 and 1, for each
position in the context, which are a measure of its confidence that a beat is present. In our analysis,
we also investigated the utility of using these beat confidence values as a measure of signal quality.

A.5.3 DETECTION OF PREMATURE VENTRICULAR CONTRACTIONS IN ECG

For this task, we extracted a subset of over 200 subjects with premature ventricular contractions
from the Chapman 12-lead electrocardiogram database (Zheng et al., 2020). Given that the length of
these segments are 10 seconds, we manually cropped segments to 5 second windows PVCs occured.
These were matched with over 5000 subjects with no PVCs. The ECG was extracted only from lead-
I, and downsampled from 500Hz to 100Hz in accordance with the inputs to our pretrained model.
Segments were again rescaled to between 0 and 100, and rounded to integers to form a vocabulary of
101 tokens. Multiple staggered windows separated by 1 token were extracted for each PVC subject,
in order to match the proportion of none-PVC data. The linear layer was changed in exactly the
same fashion as for the classification of atrial fibrillation, by reducing the model dimension to 1
output value, and the model was fine-tuned for 1500 iterations. Training and testing was performed
with 4-fold cross validation.

A.5.4 FOUR CLASS ARRHYTHMIA DETECTION FROM SINGLE-LEAD ECG

In this example, all 10,000 subjects of the Chapman 12-lead electrocardiogram database (Zheng
et al., 2020) were used. The data was merged into 4-classes following the same protocol as (Zheng
et al., 2020) and (Kiyasseh et al., 2021). Only first half of all recordings were selected, to comply
with the maximum 5 second context length of our model. The resampling and tokenisation was the
same as for the detection of PVCs (appendix A.5.3). Training and testing was performed with 5-fold
cross validation, and repeated 5 times with different random seeds. Each model was trained for 1500
iterations.

A.6 GENERATIVE PRE-TRAINED MODEL ERROR OVERVIEW
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Figure 8: The median prediction errors (red solid lines) and interquartile ranges (red shaded areas)
for PPG-PT and ECG-PT across all windows extracted from 40 unseen subjects in the bed-based
balistocardiography dataset.

A.7 ATTENTION DISTANCE TABLE

Mean Layer Attention Distance for Different Models (in seconds)
Transformer Layer PPG-PT ECG-PT

1 0.43± 0.07 0.33± 0.11
2 0.55± 0.33 0.99± 0.26
3 1.04± 0.29 1.17± 0.29
4 0.92± 0.37 1.11± 0.10
5 0.65± 0.37 0.58± 0.11
6 0.92± 0.55 0.51± 0.22
7 2.62± 0.47 1.79± 0.26
8 2.31± 0.42 1.88± 0.23

Table 1: The average look-back distance for the attention, in seconds, for all the layers (1 to 8) in
the PPG-PT and ECG-PT models.

A.8 COMPARISON WITH PRIOR WORKS ON DETECTION OF ATRIAL FIBRILLATION

For automatic detection atrial fibrillation, our result of an AUC of 0.99 over 5-second windows is
comparable to the state of the art using 2-minute segments (Bashar et al., 2019). In contrast to our
fine-tuned ECGPT model, this study did not provide meaningful interpretability of classifications.

For automatic detection of atrial fibrillation from PPG, it is difficult to find comparable studies on
finger PPG. The majority of studies use a fully shuffled train-test pool, allowing models to learn
distinct PPG morphology and noise profile of each subject and thus achieving higher accuracies
for the detection of atrial fibrillation. A comparable study which did test on unseen subjects used
wrist PPG in combination with the wavelet transform and a convolutional neural network. When
excluding noise and taking the median of features across all 30-second windows, this study achieved
an area under the curve of 0.95 (Shashikumar et al., 2017). This result is comparable to our AUC of
0.93 on 10-second windows without the exclusion of noisy subjects and 0.96 with the exclusion of
noisy subjects. Crucially, this study did not present a model that was interpretable to the end user.
Additionally, previous work by Torres-Soto & Ashley (2020) has demonstrated that classification
performance can increase dramatically when signal quality is classified simultaneously with AF,
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achieving an AUC of 0.98. A full evaluation of our results in the presence of noise is provided in
Appendix A.12.

A.9 RESULTS OF FINE-TUNING FOR BEAT DETECTION AND SIGNAL QUALITY ESTIMATION
IN PPG
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Figure 9: Illustration of fine-tuning PPG-PT for beat detection. The input context PPG signal is
plotted in black, predicted beats are highlighted with red crosses and ECG derived beats (ground
truth) are designated with blue circles. The beat confidence is overlaid as vertical lines, with green
indicating high confidence, orange indicating medium, and red indicating low. Both an example of
high signal quality (top) and an example of low signal quality (bottom) are shown.

Evaluation of the fine-tuned PPG-PT model for beat detection on the “MIMIC perform testing
dataset” yielded a median F1 score of 97.7% across subjects, which is comparable to the F1 scores
of qppg (Vest et al., 2018) (96.9%) and MSPTD (Bishop & Ercole, 2018) (97.5%) as found by
Charlton et al. (Charlton et al., 2022). It was found during training that whilst the model was able
to accurately distinguish beats in examples with high signal quality after just 50 to 100 iterations,
training it for longer was necessary to detect beats in examples with visibly poor signal quality. In
addition to predicting the location of beats, our fine-tuned PPG-PT model also provides a continuous
value between 0 and 1 at each location. This can be thought of as a “quasi-confidence estimate” in
the prediction that a beat is indeed present at that location. Given that test dataset is clinical data, and
thus the majority of the data is high quality, values in the bottom 10% of confidence were labeled
as low confidence, values between 10% and 25% were labeled as medium confidence, and values in
the top 75% were labeled as high confidence.

Observe in Figure 9 that in both the cases of high signal quality and low signal quality, our fine-
tuned beat detector was able to correctly identify all PPG beats, within 150ms of the ECG derived
ground truth beats. Importantly, the confidence estimates also aligned with signal quality, with lower
confidence in areas of poor signal quality. The confidence estimates also carry over to the previous
AF dataset. Beat detection was applied independently to “MIMIC Perform AF” and it was found
that two subjects with the lowest classification accuracy, and visibly poor PPG signal quality, also
had the lowest mean beat confidence. Conversely, the subject with the highest mean classification
accuracy had the highest signal quality, as indicated by the beat confidence.

It should be emphasised that the PPG-PT model was pretrained on finger-based clinical data, and has
been fine-tuned on clinical data. Wearable sensor data, such as those from the wrist (Rajala et al.,
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2018) or the ear (Davies et al., 2020) have different morphology to that of the finger. It is likely that
further training would be necessary for these models to be transferable to wearable PPG data.

Context
Attention

Premature ventricular 
contractions

Premature ventricular 
contraction

Figure 10: Changes in final layer attention weights of the base ECG-PT models when fine-tuned
to classify premature ventricular contractions. The model input context is shown in black, with
attention overlaid with red bars of varying transparency based on the change in attention weights.
The full difference in attention weights is shown below each plot in red. The attention weights of
the fine-tuned ECG-PT model clearly shift to the premature ventricular contractions.

A.10 FINE-TUNING TO DETECT PREMATURE VENTRICULAR CONTRACTIONS IN ECG

In order to further demonstrate the capabilities of our model for interpretable classification, we fine-
tuned our model our model to detect premature ventricular contractions (PVCs) in ECG. Unlike AF,
the premature ventricular contraction is also characterised by a clear morphological change in the
ECG (Yamada, 2019). Given this, classification of PVCs were selected for further interpretability
analysis in addition to AF, given that the presence of a PVC is clear for clinicians and non-clinicians
alike. A subset of over 200 subjects with PVCs was created from the Chapman dataset (Zheng et al.,
2020), and matched with over 5000 subjects without PVCs. Shifted windows were extracted from
subjects with PVCs in order to balance the proportion of PVC to non-PVC dataset. To evaluate our
model, we performed 4-fold cross validation, ensuring no subject leakage between train and test, and
repeated with 5 random seeds. The resulting AUC of 0.99 is reported in Table 2 along with further
performance metrics. The interpretability analysis, which looks at the shift in final layer attention
weights from the pretrained model to the fine-tuned model, is shown in two examples in Figure 10.
It can be seen that attention shifts to regions of PVCs, in order to inform the classification of a PVC.

A.11 SUMMARY OF FINE-TUNING RESULTS

The 4-class arrhythmia detection used only lead-I ECG to classify four different arrythmias in the
Chapman dataset (Zheng et al., 2020), and achieves a multi-class AUC of 0.97, which compares
to an AUC of 0.90 by CLOCS (Kiyasseh et al., 2021) on the same data. Other accuracies and
comparisons to the literature are included in their relevant sections in the main body and appendix.
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Performance Metrics for Different Tasks (Mean ± Standard Deviation)*
Task AUC F1 Score Sensitivity Specificity FPR FNR

AFib (ECG) 0.991± 0.002 0.964± 0.005 0.978± 0.006 0.940± 0.017 0.060± 0.017 0.022± 0.006
AFib (PPG) 0.929± 0.003 0.873± 0.002 0.947± 0.005 0.736± 0.007 0.264± 0.007 0.053± 0.005

AFib (PPG - clean) 0.976± 0.001 0.932± 0.001 0.952± 0.004 0.880± 0.004 0.120± 0.004 0.048± 0.004
Beat (PPG) - 0.977± 0.001 0.989± 0.000 - 0.028± 0.001 0.017± 0.002
PVC (ECG) 0.987± 0.002 0.951± 0.003 0.940± 0.005 0.960± 0.003 0.040± 0.003 0.060± 0.005

4-class arrhythmia (ECG) 0.974± 0.001 0.889± 0.001 0.884± 0.002 0.967± 0.000 0.033± 0.000 0.116± 0.002

Table 2: Performance metrics for various fine-tuning tasks on ECG and PPG data. *for beat detection
these metrics were calculated on top of the median across subjects for a given repeat, as is the
convention in the PPG beat detection literature.

A.12 THE EFFECTS OF NOISE ON CLASSIFICATION

The presence of noise is a principal issue in the analysis of physiological time-series data (Charlton
et al., 2023). Previous work on classification of in PPG AF has demonstrated that classification
performance can increase dramatically when signal quality is classified simultaneously with AF
(Torres-Soto & Ashley, 2020). To this end, we investigated the effects of noise on our classification
of AF, by employing our fine-tuned beat detector (Appendix A.9) for signal quality estimation in our
AF dataset. It is noted in Figure 11(a) that the majority of falsely classified test segments have low
signal quality. By removing the bottom 15% of signal qualities from the test set, as determined by
average beat confidence from our beat detector, the false positive rate is reduced from 26% to 12%,
and the AUC is increased from 0.93 to 0.98. In Figure 11(b), an example workflow is shown, in
which only signals that have high signal quality and are predicted as AF are flagged for a clinician.
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Figure 11: The effects of signal quality on the classification of atrial fibrillation in PPG. Signal
quality is determined by calculating the average beat confidence, as outputted from our fine-tuned
PPG beat detector. (a) Violin plots showing the distribution of signal quality for test segments that
were falsely classified, and test segments that were correctly classified. (b) An example workflow
which demonstrates how signal quality can be incorporated to reduce the proportion of false positives
that are flagged to a clinician.

A.13 FUTURE WORK

Many tasks require inputs of longer context lengths, such as sleep staging in which 30 seconds is
the normal interval but for measurements of the autonomic nervous system contexts of 5 minutes
may be required (Li et al., 2021). Future work should aim to scale up the model to larger context
lengths, whilst trying to maintain efficiency, by employing methods such as Sparse Attention (Roy
et al., 2021). Moreover, the models should be scaled up to account for applications that require novel
sensor locations, such as in-ear PPG (Davies et al., 2022) and ear-ECG (von Rosenberg et al., 2017).
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A.14 ATTENTION METHODS

Furthermore, due to the inherent periodicity of heart time-series data, we can isolate the responses
of different attention heads by averaging attention maps over time. This method is explained in more
detail in Figure 12.

Staggered Model Inputs Corresponding Staggered Attention Weights 

Averaging

Time-locked Average of Shifted Inputs Time-locked Average of Shifted Attention Maps 

Input(1) Input(N) 

Input(2) Input(N+1) 

Input(X) Input(N+X) 

Attention(1) Attention(N) 

Attention(2) Attention(N+1) 

Averaging

Apply Peak Detection to 
Highlight Attention Spikes

Attention(X) Attention(N+X) 

Figure 12: An explanation of the time-shifted attention algorithm that was used to detect which
features different self attention heads spiked on, for PPG and ECG.
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