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A B S T R A C T

Blockchain technology plays a pivotal role in addressing the single point of failure issues in federated
learning systems, due to the immutable nature and decentralized architecture. However, traditional blockchain-
based federated learning systems still face privacy and security challenges when transmitting training model
parameters to individual nodes. Malicious nodes within the system can exploit this process to steal parameters
and extract sensitive information, leading to data leakage. To address this problem, we propose a Training
Parameter Encryption scheme for Blockchain based Federated Learning system (TPE-BFL). In TPE-BFL, the
training parameters of the system model are encrypted using the paillier algorithm with the property of
addition homomorphism. This encryption mechanism is integrated into the workflows of three distinct roles
within the system: workers, validators, and miners. (1) Workers utilize the paillier encryption algorithm to
encrypt training parameters for local training models. (2) Validators decrypt received encrypted training
parameters using private keys to verify their validity. (3) Miners receive cryptographic training parameters
from validators, validate them, and generate blocks for subsequent global model updates. By implementing
the TPE-BFL mechanism, we not only preserve the immutability and decentralization advantages of blockchain
technology but also significantly enhance the privacy protection capabilities during data transmission in
federated learning systems. In order to verify the security of TPE-BFL, we leverage the semantic security
inherent in the Paillier encryption algorithm to theoretically substantiate the security of our system. In addition,
we conducted a large number of experiments on real-world data to prove the validity of our proposed TPE-BFL,
and when 15% of malicious devices are present, TPE-BFL achieve 92% model accuracy, a 5% improvement
over the blockchain-based decentralized FL framework (VBFL).
1. Introduction

In the contemporary era, the proliferation of cutting-edge technolo-
gies, including big data and blockchain, has significantly enhanced the
convenience of everyday life for individuals. However, it has also led
to issues concerning the privacy and security of user’s data. In response
to data privacy issues, governments around the world have developed
strategic frameworks aimed at protecting personal information. The
European Union’s General Data Protection Regulation (GDPR) is a
prime example, setting a precedent for comprehensive data protection.
At the same time, China has also introduced a cybersecurity Law,
further demonstrating the international commitment of countries to
strengthen digital privacy protection through legislative means. These
initiatives highlight the determination of countries to work together to
build a secure data environment, reflecting the importance of privacy
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in the digital age [1–3]. The introduction of these plans has imposed
many restrictions on privacy data, resulting in an increasing amount of
data from various fields being scattered across different organizations,
which has led to the phenomenon of data silos. In light of these
problems, Federated Learning (FL), as a distributed training method,
is undoubtedly an excellent solution. FL keeps data local by facilitating
collaborative model training that eliminates the need for centralized ag-
gregation of user data. In addition, FL with privacy protection features
can effectively mitigate the risk of personal sensitive data breaches to
a considerable extent [2–4].

Despite its advantages in safeguarding data privacy, FL faces chal-
lenges, notably the risk of a single point of failure due to its reliance
on a central server. Should this server fall prey to malicious attacks,
it could cause systemic collapse, endangering users’ sensitive data and
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compromising its integrity and confidentiality [5,6]. To counteract this
vulnerability, integrating blockchain technology has been proposed.
Blockchain technology, with its immutability, security, and smart con-
tract capabilities, provides a secure and shared data storage solution
through a distributed network and consensus mechanism. The inte-
gration with FL lessens the central server’s dominance, bolstering the
system’s security and reliability. Moreover, the system’s vulnerability
caused by the single point of failure is substantially reduced [5,7–9].

Currently, many scholars have conducted researches on blockchain-
based federated learning systems [10–12]. The application of block-
chain technology not only effectively avoids the single point of failure
issue in FL but also enhances the system’s security. Issa et al. [10]
conducted an in-depth analysis of the security protocols within a
blockchain-augmented federated learning framework, specifically tai-
lored for the Internet of Things (IoT). BC-FL improves the security
of data and systems by leveraging the decentralized and tamper-
resistant nature of blockchain technology. Additionally, the application
of blockchain technology endows IoT systems with verifiability, encour-
aging honest operation from each device. In [11], the authors utilized
blockchain technology to connect servers, clients, and aggregators
within the FL framework, recording the information flow involving
federated learning operations, participating clients, and updates to both
local and global models on a distributed ledger of transactions. This
approach prevents single point of failure attacks and strengthens the
system’s resilience against attacks. In [9], a blockchain-based decentral-
ized verification mechanism was proposed that, by defining roles, limits
the power and responsibilities of each, thereby reducing the adverse
impact of malicious nodes in blockchain federated learning systems.
This mechanism enhances system security while preventing single point
of failure attacks.

However, FL architectures intergrate with Block-chain (BFL) are
also susceptible to adversarial and inference attacks, these attacks
can result in the disclosure of private data [10,12,13]. Due to the
transparent nature of blockchain, data stored on the blockchain is
openly accessible to all participants within the network. That is, trained
model parameters are stored and broadcast to all devices. When there
are curious or malicious participants, they can easily infer each other’s
information based on parameters and other raw data, leading to data
leakage [12,13]. Moreover, the approach of FL, which stores data inde-
pendently on local client devices for training, does not fully guarantee
data privacy and security. Training datasets may be obtained by servers
from shared gradients [14] public nature of model updates makes them
susceptible to poisoning attacks [15].

To tackle ongoing privacy and security issues in Blockchain-based
Federated Learning (BFL) systems, researchers have suggested using
cryptographic methods to prevent data exposure [11,16–18]. Shayan
et al. [16] introduced Biscotti, a BFL system that emphasizes privacy
and security. This system leveraged the peer-to-peer architecture of
blockchain to minimize dependence on centralized servers. It integrated
differential privacy by introducing random noise into model updates,
ensuring secure client data against unauthorized access. Bin et al. [17]
combined differential privacy with an advanced Paillier homomorphic
encryption algorithm in a model that merges federated learning with
blockchain’s distributed framework, offering robust protection for data
privacy and security that ensures robust security within the Industrial
IoT devices. Despite these advancements, which significantly enhance
system security, the exchange of training parameters between devices
within the system continues to present privacy risks.

To tackle the aforementioned issues, we propose a Training Pa-
rameter Encryption scheme for Blockchain based Federated Learning
system (TPE-BFL). TPE-BFL employs the Paillier algorithm to ensure the
encrypted transmission of training parameters throughout the duration
of the training phase. Given the homomorphic properties of the Paillier
algorithm, it allows for operations on encrypted training parameters
without the need for decryption, thereby reducing the risk of privacy
2

leakage during transmission. Theoretically, we have demonstrated the t
security of the proposed TPE-BFL. Extensive experiments conducted
on both the MNIST and Fashion-MNIST datasets demonstrate that
our approach outperforms several benchmark methods. Our method
(TPE-BFL) maintains an optimal model accuracy rate even when the
proportion of malicious nodes is at 15% and increases to 20%.

To the end, we summarize our main contributions as:

• We propose a privacy protection framework for Blockchain-based
Federated Learning that aims to secure the transmission of train-
ing parameters by encrypting them, ensuring their confidentiality
and protection against unauthorized disclosure.

• We propose the Training Parameter Encryption scheme for
Blockchain-based Federated Learning (TPE-BFL), utilizing the
paillier homomorphic encryption algorithm to secure the trans-
mission of training parameters among three defined roles within
the system. To the best of our knowledge, this is the first time
to encrypt training parameters in a role-segregated blockchain-
federated learning context, significantly reducing the risk of
parameter exposure. Furthermore, we provide a theoretical proof
of the robust security measures inherent in TPE-BFL.

• We conducted a number of rigorous experiments on two datasets,
MNIST and Fashion-MNIST, to verify the efficiency of TPE-BFL.
The experimental results indicate that TPE-BFL achieves higher
test accuracy in the event of a rise in malicious nodes.

The organization of the remaining part of this paper is as follows.
We review the related work in Section 2 and the methodology are
introduced in Section 3. We prove the safety of TPE-BFL by theoret-
ical analysis in Section 4. Section 5 describes the datasets and the
experimental analysis. Finally, we conclude this article in Section 6.

2. Related work

In this section, we will introduce the related background knowledge
about blockchain based FL and paillier algorithm.

Blockchain based FL: The progressive highlighting of privacy con-
ervation has provoked to increased scrutiny of traditional training
ethods, which involve conveying the original data set to a server and

onsequently heighten the risk of privacy breaches. In 2016, McMahan
t al. [19] initinated the theory of ‘‘federated learning’’ in response
o this privacy risk, wherein participant data is maintained in local
torage and the shared model is developed through the aggregation
f individual computation updates. FL protects users’ privacy to some
xtent, Meng et al. [20] successfully applied FL architecture to the
ield of industrial artificial intelligence (AI) and proposed a privacy-
nhanced Federated Learning architecture (PEFL). This architecture
sed a non-interactive security aggregation method combined with dis-
ributed Gaussian mechanism to achieve differential privacy protection
t sample level. This innovation provided a solid guarantee for data
rivacy and security in the industrial field, while promoting the appli-
ation and development of AI technology in industrial environments.
onecn et al. [21] proposed a FL framework using structured updates
nd sketched updates to both cut down on transmission overhead
nd meet the requirements of data privacy protection. Although these
ethods overcame the challenge of data privacy security to a certain
oint, the traditional federated learning model they use is server-client
rchitecture, which depends on one server to carry out updates to the
lobal model. When the central server is subjected to a malicious target,
t will seriously affect the entire training process, and the original data
f the client will also face the risk of leakage.

In response to the single point of failure crisis in Federated Learn-
ng (FL), some scholars have proposed the application of blockchain
echnology to achieve decentralized federated learning. By integrating
lockchain technology with federated learning, Chuan et al. [7] have
ntroduced a novel distributed framework known as BLADE-FL, that
chieved complete decentralization by establishing a P2P network be-

ween task publishers and training clients. Korkmaz et al. [22] applied
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Ethereum to a FL model and proposed the Chain FL framework which
implements a distributed data storage platform through Ethereum,
allowing model data to be stored on multiple nodes without relying on
a single central server. In addition, POA consensus algorithm is used to
select reputable verifiers for block creation and transaction verification,
thereby improving the transaction processing speed and enhancing
the robustness of the model [22]. The author proposed the BC-FL
framework in the paper [23], which utilized blockchain technology to
store model and summarized the update of the model through smart
contracts, avoiding the single point of failure caused by the excessive
power of the central server of traditional federated learning. However,
the method proposed necessitates substantial data transmission among
devices during model updating and training, resulting in increased
communication and computational burdens.

Fan et al. [12] proposed a model LPBFL, which can realize
lightweight privacy and security computation, and improved the ef-
ficiency of verification by designing lightweight digital signature and
batch verification algorithm. In addition, the author’s proposed LPBFL
incorporates a hierarchical framework and employs a homomorphic
encryption algorithm. This approach guarantees both model accu-
racy and privacy while simultaneously minimizing computational and
communication burdens. However, blockchain based FL framework
proposed by the above research lacks the setting of incentive mecha-
nism, which affects the enthusiasm of participants in the model training
process to a certain extent. By setting an incentive mechanism to
provide rewards to each participant, the model’s training effectiveness
has been enhanced, and it has been made to enhance the system’s
security and resilience. In the paper [9], the researchers introduced
VBFL, a decentralized framework for Federated Learning (FL) based
on blockchain technology. This framework employs a single verifier to
authenticate model updates, ensuring their validity. Additionally, the
authors implemented an incentive mechanism using the POS consensus
algorithm to enhance the efficiency and security of model training
while rewarding trustworthy devices.

However, during the training of the model, there is still a possibility
of local model parameter leakage, which can lead to the model’s
inability to handle malicious actor attacks. This can result in decreased
overall model accuracy and compromised model robustness. In order to
solve the above problems, paillier homomorphic encryption algorithm
is undoubtedly an effective solution, and the security of the system
can be guaranteed through the encryption operation of the model
parameters.

Paillier Algorithm: paillier homomorphic encryption algorithm
with asymmetric encryption characteristics is the most effective ad-
dition homomorphic encryption system at present, which provides
semantic security against selected plaintext attacks (IND-CPA) [24,25].
Due to the homomorphism of paillier algorithm, encrypted data can
be processed without exposing the original data [26]. It provides an
important guarantee for data privacy and security [27]. Because this
algorithm has good encryption ability, many scholars have applied
paillier homomorphic encryption algorithm to federated learning to
further improve privacy security. Through the utilization of encryption
techniques on both model parameters and gradients during the training
process, sensitive data can be safeguarded against unauthorized ac-
cess. Additionally, this approach enables collaborative machine learn-
ing without necessitating data sharing among participants, thereby
ensuring efficient model training. Moreover, the implementation of
this algorithm guarantees that privacy protection is enhanced while
maintaining high training accuracy.

In [28–30], the authors integrated the paillier homomorphic encryp-
tion algorithm with federated learning to secure the model gradient
during training by encrypting it using the paillier algorithm. This ap-
proach effectively mitigates privacy risks associated with model train-
ing. PFMLP, a privacy protection framework for multi-party federal
learning proposed by Fang et al. [28], utilizes paillier homomorphic
3

encryption to encrypt and handle the gradient data trained by the
client. Even in the event of a malicious attack on the central server,
only the encrypted gradient data will be exposed, effectively mitigating
the risk of inference attacks. In [29], the researchers incorporated the
paillier encryption algorithm into federated learning for processing
the shared gradient. Additionally, they introduced bilinear aggregate
signature technology to ensure the accuracy of the model and enhance
privacy security by verifying the correctness of the aggregate gradient.
However, the computational overhead and efficiency of model training
are compromised due to the utilization of the paillier algorithm. In lit-
erature [30], the researchers proposed an innovative batch encryption
technology. Before the encryption operation is implemented, the tech-
nique first quantifies the gradient values used for model training and
then performs batch encoding. This approach not only optimizes the
data processing process, but also enhances the security and efficiency
of the encryption process, providing an effective solution for protecting
sensitive data.

However, gradient encryption still has some security problems.
Gradient encryption does not protect all parameters of the model.
When there are malicious attackers, these malicious attackers may
circumvent gradient encryption protection and access the parameter
information of the model. In light of these challenges, certain academics
have suggested the incorporation of encryption techniques during the
training phase to safeguard model parameters [31,32]. Ma et al. [31]
proposed a Byzantine federated learning privacy protection mechanism
to protect model parameters transmitted by worker nodes from being
leaked through distributed paillier encryption algorithm. In [32], the
researchers developed a robust aggregation protocol by utilizing the
paillier homomorphic encryption algorithm. By applying encryption to
the model parameters shared with the central server, potential mali-
cious activities aimed at unauthorized acquisition of these parameters
are effectively prevented.

Aiming at aforementioned problems, some researchers have brought
breakthrough improvements to the federated learning architecture
through innovative fusion of blockchain technology and the Paillier
homomorphic encryption algorithm. This combination not only solves
the problem of single point of failure in traditional federated learning,
but also significantly improves the security and stability of the system.

In [11], the authors proposed the blockchain-based privacy-
perserving federated learning framework, an innovative scheme that
combines federation learning, blockchain technology, and paillier ho-
momorphic encryption algorithm. Using the immutability and decen-
tralization of blockchain, it provides a solid source and verification
mechanism for model update. At the same time, the gradient is en-
crypted by the paillier encryption algorithm, which effectively protects
the local model in the process of model exchange and prevents data
leakage. Nevertheless, within the BC-based PPFL framework, the server
takes on the pivotal role of validator, tasked with assessing the aggre-
gated gradients post-iteration. This design significantly amplifies the
server’s workload and exposes it to heightened information security
risks. The integrity and operation of the entire system could be jeop-
ardized in the event of a server attack or malfunction, concurrently
escalating the potential for privacy breaches. In addition, although the
BC-based PPFL framework theoretically shifts from the semi-honest
client hypothesis to the malicious client hypothesis to accommodate a
more complex security environment, the framework does not directly
simulate or introduce malicious clients in experiments to adequately
validate system performance. This means that the ability to resist
malicious behavior has not yet been tested in practice.

Differences in TPE-BFL: Inspired by the above work, we propose a
Training Parameter Encryption scheme for Blockchain based Federated
Learning System. The paillier homomorphic encryption algorithm is
utilized by us to develop a secure aggregation protocol. By employ-
ing encryption on the model parameters that are uploaded to the
central server, potential malicious actions from servers attempting to
steal these parameters are effectively prevented. This is particularly

important as the federation learning in a server-client architecture is
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susceptible to a crisis caused by a single point of failure, and even
blockchain-based federation learning systems carry risks of privacy
disclosure during model training.

Considering these problems, based on the research conducted by
Chen et al. [9], we have implemented a technique to secure the
transmission of local model training parameters throughout the com-
munication process. To the best of our knowledge, we are pioneers in
proposing an encryption method for safeguarding transmitted training
parameters within a blockchain-based federated learning system that
utilizes role partitioning. By introducing additional malicious nodes
and gradually increasing their number, our TPE-BFL approach has
demonstrated its ability to maintain high accuracy in model train-
ing while resisting these destructive behaviors. This strategy not only
strengthens the system’s defense against malicious attacks, but also
ensures the accuracy and reliability of the learning process. In addition,
we also conduct an in-depth analysis of the safety of TPE-BFL from the
theoretical level. Through the combination of experiment and theory
analysis, the robustness and stability of our framework in the face of
complex security challenges are more comprehensively demonstrated.

3. Methodology

In this section, we will introduce some preliminaries and our novel
approach, TPE-BFL. This discussion will encompass a detailed explana-
tion of the algorithmic process and the architectural framework of the
model.

A. Preliminaries and Notations

• Paillier Algorithm
The fundamental technology employed in TPE-BFL is Paillier
homomorphic encryption. We utilize the paillier encryption al-
gorithm to secure local model parameters, enabling multiple en-
tities to engage in the process of encrypting and decrypting. The
specifics are outlined below:
(1) Key Generation: Choose two similar large prime numbers
p and q, and calculate 𝑁 = pq, where the number of bits of
𝑁 determines the length of the key, then calculate the Euler
function.

𝜑(𝑁) = (𝑝 − 1)(𝑞 − 1) (1)

gcd(𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) = gcd(𝑝𝑞, 𝜑(𝑁)) = 1 (2)

Select a generator g 𝑔 ∈ 𝑍∗
𝑁2 that is the primary root of module

N; Select a random number 𝜆 and calculate a modular inverse L
that satisfies

𝜆 = 𝑙𝑐𝑚(𝑝 − 1, 𝑞 − 1) (3)

𝐿 ∗ 𝜆 ≡ 1 mod 𝜑(𝑁) (4)

where the public key is 𝑃𝑢𝑏𝑘𝑒𝑦 = (𝑁, 𝑔), the private key is
Pr 𝑖𝑣𝑘𝑒𝑦 = 𝜆.
(2) Encryption: Let the plaintext be m, where 𝑚 ∈ 𝑍𝑁 , a random
number r is selected, and the ciphertext is calculated

𝐶 = 𝑔𝑚 ∗ 𝑟𝑠 mod 𝑁2 (5)

where s is another random number.
(3) Decryption: After the key is given, the private key is used to
decrypt and calculate the plaintext

𝑚 = 𝐿(𝑐𝜆 mod 𝑁2) ⋅ 𝜇 mod 𝑁 (6)

where 𝜇 is a modular inverse of N, used for decryption operations.

𝜇 = (𝐿(𝑔𝜆 mod 𝑁2))−1 (7)

We use paillier encryption algorithm in the proposed TPE-BFL.
TPE-BFL satisfies the characteristics of addition and multiplica-
tion homomorphic encryption, and can directly perform addition
and multiplication operations without decrypting data first.
4

A

• Notations
To clarify our approach, we describe the symbolic representations
used in Table 1.

B. The proposed TPE-BFL system
In this section, we present a novel approach called Training Pa-

ameter Encryption scheme for Blockchain-based Federated Learning
ystem (TPE-BFL). TPE-BFL utilizes the paillier encryption algorithm to
ecure the transmission of training parameters among the three roles
nvolved in the system. To our knowledge, this is the first proposed
ethod for encrypting training parameters within a role-segregated

lockchain-based federated learning system. In contrast to the conven-
ional federated learning framework that relies on a central server, the
PE-BFL system presented in this paper introduces a tripartite division
f roles, each imbued with distinct responsibilities. This division not
nly fortifies the system against the vulnerability of a single point of
ailure but also significantly bolsters its fault tolerance. The system’s
esilience is such that an issue with a single device is isolated and does
ot compromise the overall stability of operations.

In the system, the worker is responsible for the training process
f the model and uses the paillier homomorphic encryption algorithm
o encrypt the model parameters, ensuring the security of data during
ransmission and preventing potential malicious attackers from stealing
ata. The validator is responsible for verifying the encrypted model
arameters, effectively preventing malicious nodes from submitting
armful model updates. The miner is responsible for the maintenance
f the blockchain and the addition of blocks, a process that provides
he system with a stable and tamper-proof source of data.

By meticulously assigning roles, the system adeptly sidesteps the
erils of single points of failure, substantially fortifying its resilience.
his strategic approach guarantees that the integrity and continuity
f the system’s operation remain uncompromised, even in the face of
ndividual device malfunctions. Furthermore, this role delineation not
nly elevates the system’s operational efficiency and ease of manage-
ent but also imbues it with heightened security and transparency,
ropelling the federated learning process towards greater efficacy and
eliability.

Moving forward, we will provide a detailed introduction to the
pecific tasks and responsibilities of each role.

• worker: In the TPE-BFL system, the local model’s training is the
responsibility of the worker node. After the completion of train-
ing, the updated model parameters are securely encrypted using
the Paillier encryption algorithm. These encrypted parameters are
subsequently transmitted to the validator node, guaranteeing pro-
tection against potential theft by malicious attackers throughout
the transmission process.

• validator: Upon receiving the encrypted model parameters, the
validator utilizes the private key to verify the validity of these
parameters.

• miner: The primary responsibility of the miner is to construct
and validate blocks. Once the validator verifies the model, the
validation results and voting outcomes are transmitted to the
miner. The miner then validates them, packages the verification
results into blocks, and subsequently adds these blocks to the
blockchain.

In Fig. 1 we have detailed the flow of the entire TPE-BFL system,
ow we will cover steps ①-⑧ in Fig. 1 in detail. Before the whole
orkflow starts, we first carry out step ①, randomly divide all devices

into three roles: worker, validator and miner. The devices of each role
perform different tasks. Steps ②-③ show the work content of the worker
ode. In every communication round, the worker node modifies the
ocal model. Prior to transmitting the local model parameters to the
alidator node, it is necessary for the worker node to encrypt them
sing the public key of the paillier homomorphic encryption algorithm.

fter completing this task, the worker will get a certain reward. Our
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Fig. 1. TPE-BFL Framework.
Table 1
Mathematical notations in this work.

Symbol Description

d Device composition in TPE-BFL, 𝑑 ∈ 𝐷;
w Worker devices, 𝑤 ∈ 𝑊 ;
v Validator devices, 𝑣 ∈ 𝑉 ;
m Miner devices, 𝑚 ∈ 𝑀 ;
𝑅𝑖 The 𝑖th communication round;
𝐿w𝑖

The local model trained by worker;
𝜃𝑖 Model training parameter;
𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖 The local model training parameter encrypted by paillier;
𝜃𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖 The local model parameter decrypted by paillier;
𝐺𝑖 The construction of the global model;
𝑅𝑤𝑖

Rewards to worker in round 𝑅𝑖;
𝑇 𝑟𝑤𝑖

Worker-transaction containing 𝐿w𝑖
; 𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖 ; 𝑅𝑤𝑖

;
𝑅𝑣𝑒𝑟𝑖𝑓𝑦

𝑣𝑖 Verification-reward by verified the worker-transaction in 𝑅𝑖;
𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒

𝑣𝑖
Voting-reward to validator in round 𝑅𝑖;

𝑣𝑖(𝜃
𝑑𝑒𝑐𝑟𝑦𝑝𝑡
𝑖 ) Voting result;

𝑇 𝑟𝑣𝑖 Validator-transaction containing 𝑅𝑣𝑒𝑟𝑖𝑓𝑦
𝑣𝑖 ; 𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒

𝑣𝑖
;𝑇 𝑟𝑤𝑖

; 𝑣𝑖(𝜃
𝑑𝑒𝑐𝑟𝑦𝑝𝑡
𝑖 );

𝑅𝑚𝑖
Miner-rewards

𝑏𝑙𝑜𝑐𝑘𝑚𝑖 The miner m initiate the candidate block in round 𝑅𝑖;

proposed TPE-BFL uses a POS consensus mechanism to reward devices
for completing tasks. After the reward is received, the worker encapsu-
lates the encrypted local model and the obtained reward value into a
transaction signed by the worker’s public key.

In step ④, the worker sends the result of the transaction to its
neighboring validator. Step ⑤ is the work content of the validator.
After receiving the transaction result uploaded from the worker node,
the validator broadcasts it to other validators. The validator employs
the paillier private key for casting votes on the encrypted local model
parameters after decrypting them. If the vote record of the Validator
summary recorded in the legal block of Round 𝑅𝑖 is positive, the worker
is rewarded. After verifying the signature of the worker transaction,
the validator will also get a verification reward, and extract 𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖
after verification for voting. The voting results are divided into positive
and negative. A reward is given after the validator votes to verify the
results. The merge is then encapsulated in the validator transaction.

In step ⑥, the encapsulated validator validation is transmitted to the
miner. In step ⑦, after the miner obtains the validator transaction and
the corresponding voting result from the validator, it uses the private
key of the Paillier algorithm to decrypt the encapsulated validator
transaction result. Ensure that only validated and published models are
used for global model updates. In step ⑧, The miner creates a fresh
block that includes all the legitimate updates to the encryption model,
5

voting outcomes, and records of rewards. These newly generated blocks
are candidate blocks. New blocks are mined using the POS consensus
mechanism and added to the blockchain. In addition to the blockchain,
the global model will be updated.

In our research, we have embraced the sophisticated design phi-
losophy of blockchain as proposed by the VBFL framework [9]. The
VBFL framework is an open and decentralized blockchain-based fed-
erated learning system that leverages miner nodes to generate new
blocks. Building upon this foundation, we have integrated the pail-
lier encryption algorithm to fortify the security of model parameters
during transmission within the federated learning process. Specifically,
following step ⑥ of the training process, miner nodes are tasked with
creating a new block that encapsulates the encrypted model parame-
ters. This cryptographic measure further ensures the security of training
parameters throughout their transmission journey.

C. The TPE-BFL algorithm
In this section, we will provide a comprehensive explanation of the

algorithmic description for our proposed approach. The central aspect
of our method involves utilizing the paillier algorithm to encrypt the
training parameters of the model, thereby guaranteeing their security
during transmission.

Within the context of Algorithm 1, titled TPE-BFL, we integrate the
Paillier cryptographic scheme into our federated learning architecture
that operates on a blockchain foundation. The procedural steps 3
through 9 delineate the operational workflow for the worker nodes
within the system. Upon the completion of local model training, these
worker nodes proceed to encrypt the resultant training parameters
utilizing the public key provided by the Paillier encryption method-
ology. Subsequently, the workers engage in the computation of the
encrypted parameters 𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖 as prescribed by Formula (5). Following
the successful execution of this process, the workers are conferred a
reward 𝑅𝑤𝑖

as an incentive for their participation and contribution to
the federated learning process.

𝑅𝑤𝑖
= 𝑁𝑒𝑤𝑖

∗ |𝑡𝑟𝑎𝑖𝑛𝑤| ∗ 𝑟, 𝑖𝑓𝑁𝑣+ (𝜃
𝑑𝑒𝑐𝑟𝑦𝑝𝑡
𝑖 ) ≥ 𝑁𝑣− (𝜃

𝑑𝑒𝑐𝑟𝑦𝑝𝑡
𝑖 )

𝑅𝑤𝑖
= 0, 𝑖𝑓𝑁𝑣+ (𝜃

𝑑𝑒𝑐𝑟𝑦𝑝𝑡
𝑖 ) < 𝑁𝑣− (𝜃

𝑑𝑒𝑐𝑟𝑦𝑝𝑡
𝑖 )

(8)

where 𝑁𝑒𝑤𝑖
represents the number of local training epochs in 𝑅𝑖,

𝑁𝑣+ (𝜃
𝑑𝑒𝑐𝑟𝑦𝑝𝑡
𝑖 ) indicates the number of positive votes and 𝑁𝑣− (𝜃

𝑑𝑒𝑐𝑟𝑦𝑝𝑡
𝑖 )

is the number of negative votes.
Lines 10 to 22 of the algorithm delineate the specific responsibilities

of the validator within the system: Upon receiving a transaction 𝑇 𝑟𝑤𝑖
transmitted by worker, the validator verifies the transaction details
and is accordingly rewarded for this verification task 𝑅𝑣𝑒𝑟𝑖𝑓𝑦. Once
𝑣𝑖
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Algorithm 1: TPE-BFL
Input: Total number of devices 𝑁 , Paillier Public-Private Key

Pair: (PubKey, PrivKey)
1 for each device 𝑖 in 𝑁 do
2 randomly assigned role is 𝑤𝑜𝑟𝑘𝑒𝑟, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟, 𝑚𝑖𝑛𝑒𝑟

3 for each CommunicationRound 𝑅𝑖, 𝑖 ∈ (1, 𝑁) do
4 for each Worker do
5 Train Model with local data → Local Params 𝜃𝑖;
6 PaillierEncrypt(PubKey, 𝜃𝑖) →(𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖 ) ;
7 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑅𝑒𝑤𝑎𝑟𝑑→ 𝑅𝑒𝑤𝑎𝑟𝑑(𝑅𝑤𝑖

);
8 CreateTransaction 𝑇 𝑟𝑤𝑖

=(𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖 , 𝐿w𝑖
, 𝑅𝑤𝑖

);
9 Send 𝑇 𝑟𝑤𝑖

to Validator;
10 for each Validator do
11 while receiving Transaction Result 𝑇 𝑟𝑤𝑖

from Worker do
12 Broadcast(𝑇 𝑟𝑤𝑖

);
13 if VerifySignature 𝑇 𝑟𝑤𝑖

is Successful GrantReward
𝑅𝑣𝑒𝑟𝑖𝑓𝑦
𝑣𝑖 then

14 Extract 𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖 ;
15 else

16 PaillierDecrypt(PrivKey, 𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖 ) → 𝜃𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖 ;
17 Verify and Vote𝜃𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖 → VoteResult 𝑣𝑖(𝜃

𝑑𝑒𝑐𝑟𝑦𝑝𝑡
𝑖 );

18 if VoteResult is Positive then
19 GrantReward 𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒

𝑣𝑖
;

20 else
21 Calculate Verification Reward → 𝑅𝑣𝑖 ;
22 CreateTransaction

𝑇 𝑟𝑣𝑖=(𝑅𝑣𝑒𝑟𝑖𝑓𝑦
𝑣𝑖 ,𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒

𝑣𝑖
,𝑣𝑖(𝜃

𝑑𝑒𝑐𝑟𝑦𝑝𝑡
𝑖 ),𝑇 𝑟𝑤𝑖

);

23 for each Miner do
24 while receiving 𝑇 𝑟𝑣𝑖 from Validator do
25 if Validation Result is Valid then
26 PaillierDecrypt (PrivKey, 𝑇 𝑟𝑣𝑖 (𝜃

𝑑𝑒𝑐𝑟𝑦𝑝𝑡
𝑖 ))

27 GrantReward 𝑅𝑚𝑖
;

28 CreateNewBlock;
29 Mine New Block using POS Consensus

Mechanism;
30 Add New Block to Blockchain;
31 UpdateModelGlobalModel, NewBlock’s Model

Updates;
32 else

verification is successfully completed, the validator extracts the training
parameters 𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖 from the transaction, which are in an encrypted state
t this point. Using Pr 𝑖𝑣𝐾𝑒𝑦 and applying Formula (6), the validator
ecrypts these training parameters to obtain 𝜃𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖 . Subsequently, the
alidator casts a vote on the decrypted training parameters 𝜃𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖 in
ccordance with the Proof-of-Stake (PoS) consensus mechanism and
eaps additional rewards 𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒

𝑣𝑖
for participating in the voting process.

𝑣𝑒𝑟𝑖𝑓𝑦
𝑣𝑖

= {𝑇 𝑟𝑤𝑖
} ∗ 𝑟 (9)

𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒
𝑣𝑖

= {𝑣𝑖(𝜃
𝑑𝑒𝑐𝑟𝑦𝑝𝑡
𝑖 )} ∗ 𝑟 (10)

𝑣𝑖 = 𝑅𝑣𝑒𝑟𝑖𝑓𝑦
𝑣𝑖

+ 𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒
𝑣𝑖 (11)

Lines 23–32 of the algorithm describe the specific work of miner,
iner first checks the received verifier transaction 𝑇 𝑟𝑣𝑖 , uses the private

ey to decrypt the encryption parameters in the transaction, and also
ets a return 𝑅 after the verification is finished. The verified results
6

𝑚𝑖
re then used to update the global model, generating a block containing
ll valid encrypted model updates and voting records as well as reward
ecords, and finally using the POS consensus mechanism to mine new
locks and add them to the blockchain.

𝑚𝑖
= |{𝑇 𝑟𝑣𝑖 (𝜃

𝑑𝑒𝑐𝑟𝑦𝑝𝑡
𝑖 )}| ∗ 𝑟 (12)

. Proof of security

In the proposed federated learning system based on blockchain, the
aillier algorithm is utilized by each worker to encrypt the local model
arameters after training. These encrypted parameters are subsequently
ransmitted to validators for verification. Similarly, the encapsulated
nformation received by miner from validators is also the result after
ncryption. In this process, the worker encrypts the training parameters
sing the public key, and the validator and miner use the private key for
artial decryption operations. As the paillier encryption system ensures
emantic security, the proposed blockchain-based federated learning
ystem incorporates a training parameter encryption mechanism that
ffectively safeguards the privacy of transmitted training parameters.

heorem. According to the decision compound residual assumption
DCRA), the privacy of local model training parameters can be safeguarded
y the proposed blockchain-based federated learning system’s encryption
echanism.

roof. The proposed training parameter encryption mechanism’s se-
urity relies on the utilization of the paillier encryption system. If
he semantic security of this encryption system is ensured, then the
lockchain-based federated learning system introduced in this paper
ill also possess semantic security.

It is assumed that there is an adversary A that can compromise
he semantic security of the Paillier encryption system, and thus have
ccess to private data.

Step1. Initialization: system generates public and private key pairs
𝑃𝑢𝑏𝐾𝑒𝑦, 𝑃 𝑟𝑖𝑣𝐾𝑒𝑦), and the 𝑃𝑢𝑏𝐾𝑒𝑦 is distributed to all workers.

Step2. Local model training: Each worker uses local data to train
ocal models 𝐿w𝑖

and generates training parameters 𝜃𝑖.
Step3. Encryption transmission: The worker utilizes a 𝑃𝑢𝑏𝐾𝑒𝑦 to

encrypt the training parameters generated, resulting in 𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖 , which
is then transmitted to the validator.

𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖 = 𝐸(𝜃𝑖, 𝑁, 𝑔) = 𝑔𝜃𝑖 ⋅ 𝑟𝑛 mod 𝑁2 (13)

Step4. Validation selection: The validator randomly selects two sets
of encrypted training parameters, denoted as 𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡1 and 𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡2 , which
may originate from different workers.

Step5. Decryption verification: The validator employs Pr 𝑖𝑣𝐾𝑒𝑦 to
decrypt the received encrypted training parameters, thereby obtaining
the plaintext 𝜃𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖 , and subsequently verifies its legitimacy.

𝜃𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖 = 𝐷(𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖 , 𝜆,𝑁) = 𝐿((𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖 )𝜆 mod 𝑁2) ⋅ 𝜇 mod 𝑁 (14)

Step6. Guessing challenge: Adversary A attempts to distinguish
whether 𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡1 and 𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡2 are encrypted training parameters derived
from 𝜃1 or 𝜃2.

Step7. If adversary A is unable to distinguish between 𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡1 and
𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡2 with non-negligible advantage 𝜀, then the system maintains
privacy during the transmission process.

Construct a new adversary A′, who can utilize adversary A to
undermine the semantic security of the Paillier encryption scheme. The
attack strategy of adversary A′ involves:

a. A′ accepts the challenge of A and can obtain the paillier 𝑃𝑢𝑏𝐾𝑒𝑦.
b. Adversary A′ generates two distinct legitimate model training

parameters 𝜃1 and 𝜃2. Then encrypt the two training parameters to get
𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡1 , 𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡2 . And the two encryption parameters are sent to A.

𝑒𝑛𝑐𝑟𝑦𝑝𝑡 𝜃1 𝑛 2 (15)
𝜃1 = 𝐸(𝜃1, 𝑁, 𝑔) = 𝑔 ⋅ 𝑟 mod 𝑁
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Table 2
Introduction of datasets.

Dataset Train Test Size Class

MNIST 60 000 10 000 28*28 10
Fashion-MNIST 60 000 10 000 28*28 10

𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡2 = 𝐸(𝜃2, 𝑁, 𝑔) = 𝑔𝜃2 ⋅ 𝑟𝑛 mod 𝑁2 (16)

Step8. Adversary A attempts to distinguish between 𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡1 and
𝑒𝑛𝑐𝑟𝑦𝑝𝑡
2 , and subsequently outputs a guess, denoted as b, indicating
hether 𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡1 and 𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡2 are encrypted from 𝜃1 or 𝜃2.

Step9. If adversary A can distinguish between 𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡1 and 𝜃𝑒𝑛𝑐𝑟𝑦𝑝𝑡2
ith an advantage of 𝜀, then adversary A′ can also make a guess with

he same advantage 𝜀 regarding the origin of b.
Step10. According to the Decisional Composite Residuosity Assump-

ion (DCRA): Even when provided with two randomly chosen elements
𝑎 and 𝑔𝑏, an adversary cannot distinguish between 𝑔𝑎+𝑏 and 𝑔𝑟 in poly-
omial time, where a+𝑏 ≡ 𝑟 mod 𝑛. There exists no adversary, denoted
s A′, capable of differentiating Paillier encryptions with non-negligible
dvantage.

Consequently, adversary A is also unable to distinguish between
ncrypted legitimate model parameters with non-negligible advantage
, thereby substantiating the privacy of the system.

. Experiments

In this section, we employ two publicly available datasets, namely
NIST and Fashion-MNIST, to empirically verify the effectiveness of

he Training Parameter Encryption scheme in our proposed Blockchain
ederated Learning system (TPE-BFL). The security of parameter trans-
ission is guaranteed by encrypting training parameters in TPE-BFL.

n this section’s experiment, the model’s performance will be assessed
y progressively augmenting the quantity of malevolent nodes. The
ubsequent details pertaining to the procedure will be expounded upon,
ncompassing both experimental configuration and analysis.
A. Experimental Settings
Setup: Our experiments are conducted on a machine equipped with

n Intel(R) Xeon(R) Gold 6326 CPU running at a speed of 2.90 GHz,
long with an NVIDIA GTX 3090 Ti. The software environment consists
f Python version 3.7.0 and Pytorch version 1.13.1. To validate our ex-
erimental results, we utilize two widely used datasets, namely MNIST
nd Fashion-MNIST.

MNIST is a dataset first proposed by Deng et al. [33] in 1998.
his dataset comprises 10 distinct categories of handwritten numerals,
ncompassing a grand total of 70,000 instances. Among these, 60,000
amples are allocated for training purposes while the remaining 10,000
erve as testing data. The MNIST dataset, as a benchmark dataset has
een widely used in experimental validation of machine learning. The
ashion-MNIST dataset is a dataset proposed by Han Xiao et al. [34], it
sed in this study is similar to the MNIST dataset in terms of image size,
ata format, and training and testing set structure. It comprises 70,000
rayscale images of fashion products from 10 different categories, each
ith a dimension of 28 * 28 pixels, which comes from different gender
roups: men, women, children, and neutral. Each category has 7000
mages. The Fashion-MNIST is divided into two categories for machine
earning benchmark testing: training set and testing set, with 60 000
nd 10 000 images respectively. Table 2 provides an introduction of
atasets.
Implementation: We have designated a total of 100 communica-

ion rounds for our model validation process, utilizing a collective of
0 devices. Each local training session will proceed with a batch size
f 10, employing a learning rate set to 0.01. And local train epoch set as
7

. To further refine our approach, we have apportioned the roles within t
ur system as follows: 12 workers, 5 validators, and 3 miners for the
irst configuration; and 8 workers, 9 validators, and 3 miners for the
econd. By varying the allocation of these roles, we intend to assess
he impact on the model’s performance. Our validation will involve
raining a Convolutional Neural Network (CNN) across two distinct
atasets: MNIST and Fashion-MNIST. In addition, to better evaluate our
pproach, we dynamically adjust the number of malicious nodes to 0,
and 5.
Baselines: We conduct an equitable comparison of the model accu-

acy for TPE-BFL across varying levels of malicious node infiltration—
pecifically, when the count of such nodes is 0, 3 and 5. Additionally,
ur analysis extends to the examination of model performance under
ifferent distributions of participant roles. In this context, we will
ompare TPE-BFL with two seminal models: Vanilla FL and VBFL.

The Vanilla FL method [19], a cornerstone in the domain of feder-
ted learning, is predicated on the principle of retaining training data at
he client level. It operates by amalgamating locally computed updates
o foster the learning of a shared model.

VBFL [9] emerges as an augmented framework within federated
earning. It integrates blockchain technology to remediate the vulner-
bilities associated with centralized architectures, which are prevalent
n traditional federated learning scenarios. These vulnerabilities include
he susceptibility to single points of failure and the inability to authen-
icate the legitimacy of local models, thereby preventing the potential
or malevolent devices to sabotage the model training process through
efarious activities.
B. Experimental Analysis
Our experimental evaluation will be conducted in two dimensions:

nitially, we will analyze the robustness of the TPE-BFL model; sub-
equently, we will conduct a comparative evaluation of the model’s
ffectiveness. The robustness assessment of TPE-BFL will be executed
cross two distinct datasets, MNIST and Fashion-MNIST, with varying
uantities of malicious nodes denoted as 0, 3, and 5. Additionally,
he model will be evaluated under conditions where malicious nodes
re present at a ratio of 15% of the overall participant count, with
ifferent allocations of participant roles. The comparative analysis
ill predominantly employ the MNIST dataset to contrast the model’s
fficacy from the vantage point of diverse configurations of malicious
ode quantities.
Model robustness analysis.
We mainly analyze the robustness of TPE-BFL model from the

ollowing two aspects. Firstly, we set up different number of malicious
odes from the point of view of the number of malicious nodes 0, 3,
, namely 0%, 15% and 20% of the total number of all devices; As the
uantity of malevolent nodes grows, we examine the effectiveness of
ur suggested approach TPE-BFL in aggregating global models. We use
NIST and Fashion-MNIST for experimental verification. The experi-
ent conduct three sets of 100 communication rounds for experimental

alidation and the precision attained by the global model, which was
enerated collectively by 20 devices after every communication round,
as recorded. In these 100 communication rounds, we divide these 20
evices into three roles: worker, validator and miner, with the number
f roles being 12, 5 and 3.

Figs. 2 and 3 show the accuracy rate of TPE-BFL in global model
raining, verified in data sets: MNIST and FashionMNIST respectively,
nd adjusted the number of malicious nodes to 0, 3 and 5 when the
umber of worker, validator and miner nodes is set to 12, 5 and 3.
he performance of TPE-BFL is assessed by gradually increasing the
uantity of malicious nodes. Table 3 demonstrates that even with the
ntroduction of malicious devices, our proposed TPE-BFL maintains a
igh level of accuracy during model training.

Second, when validating TPE-BFL, we divided 20 devices into three
oles for validation. In the above experiment, we divided 20 devices
nto 12 workers, 5 validators, and 3 miners. However, dividing the
umber of different characters can also have a certain impact on

he experiment. Next, we refer to the author’s idea of role number
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Table 3
TPE-BFL verified in MNIST and Fashion-MNIST(nm=0, 3, 5; worker, validator,
miner=12, 5, 3).

Dataset nm = 0 nm = 3 nm = 5

MNIST 0.91 0.92 0.86
Fashion-MNIST 0.88 0.75 0.72

Fig. 2. Comparison in the MNIST dataset with the parameter setting as worker,
validator, miner = 12, 5, 3; nm = 0, 3, 5.

Fig. 3. Comparison in the FashionMNIST dataset with the parameter setting as worker,
validator, miner = 12, 5, 3; nm = 0, 3, 5.

Fig. 4. Comparison with the same malicious devices (nm = 3) in MNIST and
FashionMNIST dataset. The parameter setting is worker, validator, miner = 8, 9, 3.

division in [35], adjust the three roles number to 8,9,3. Furthermore,
we investigated how altering role numbers affects overall model accu-
racy. Experimental trials were performed on MNIST and FashionMNIST
datasets (Fig. 4), while maintaining a constant total count of learn-
ing devices (20) and malicious nodes (3). The remaining parameter
configurations remained unaltered to assess their influence on model
precision. As shown in Table 4, our method can still maintain high
accuracy on both data sets. This result shows that TPE-BFL is robust.

Model comparison analysis.
In this part, we compare TPE-BFL with Vanillia FL and VBFL models.

The comparison experiment mainly uses MNIST data set to conduct
comparative analysis from the perspective of setting different numbers
of malicious nodes.
8

Table 4
TPE-BFL verified in MNIST and Fashion-MNIST(nm=3; worker, validator, miner=8, 9,
3).

Dataset nm = 3

MNIST 0.81
Fashion-MNIST 0.79

Fig. 5. Comparison with Vanilla FL, VBFL and TPE-BFL. The parameter nm = 0,
worker, validator, miner = 12, 5, 3.

Fig. 6. Comparison with Vanilla FL, VBFL and TPE-BFL. The parameter nm = 3,
worker, validator, miner = 12, 5, 3.

Fig. 7. Comparison with VBFL and TPE-BFL. The parameter nm = 5, worker, validator,
miner = 12, 5, 3.

As depicted in Fig. 5, it is evident that the accuracy of the global
model remains unaffected by the absence of any malicious devices
when employing the proposed approach. That is to say, the incorpo-
ration of the paillier algorithm will have no impact on the formation
of the overall model. When the number of malicious devices is 15%
of the total number, there are 3 malicious devices. According to the
data presented in Fig. 6, TPE-BFL exhibits superior accuracy compared
to VBFL and Vaillia FL, with a model accuracy of 0.926. Fig. 7 il-
lustrates that when the proportion of malicious devices reaches 20%
of the overall count, specifically accounting for 5 devices, it becomes
evident that during this period, the VBFL model exhibits significantly
diminished accuracy in constructing the global model, only 0.103,
while the TPE-BFL proposed by us still maintains a stable state of
0.86. The experimental results show that when there are malicious
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devices, the accuracy of Vaillia FL and VBFL in constructing global
models is seriously affected, and TPE-BFL with the addition of paillier
homomorphic encryption algorithm has better performance.TPE-BFL
uses paillier algorithm to encrypt the transmitted training parameters
to ensure the security of the training parameters. The experimental
findings above demonstrate that the presence of malicious nodes does
not impact the model’s performance, thanks to the encryption applied
to training parameters. Consequently, a high level of accuracy can be
sustained.

6. Conclusion

In this article, we introduce a novel approach called Training Pa-
rameter Encryption scheme for Blockchain based Federated Learning
System (TPE-BFL). Unlike conventional blockchain federated learning
frameworks, our method employs the paillier encryption algorithm to
secure the transmission of local model parameters during the train-
ing process across worker, validator, and miner nodes. By utilizing
encrypted model parameters, we successfully train a global model
while ensuring data security. Experimental evaluation conducted on
MNIST and Fashion-MNIST datasets demonstrates the effectiveness and
accuracy of our proposed TPE-BFL.

In the future of our work, communication efficiency and computing
overhead need to be emphasized. We plan to adjust the POS consensus
mechanism and choose a consensus algorithm with less computational
overhead to improve the efficiency of the model.
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