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Abstract
Multimodal large language models (MLLMs) are proficient
in perception and instruction-following, but they still strug-
gle with spatial reasoning: the ability to mentally track and
manipulate objects across multiple views and over time. Spa-
tial reasoning is a key component of human intelligence, but
most existing benchmarks focus on static images or final
outputs, failing to account for the sequential and viewpoint-
dependent nature of this skill. To close this gap, we introduce
GamiBench, a benchmark designed to evaluate spatial rea-
soning and 2D-to-3D planning in MLLMs through origami-
inspired folding tasks. GamiBench includes 186 regular and
186 impossible 2D crease patterns paired with their corre-
sponding 3D folded shapes, produced from six distinct view-
points across three visual question-answering (VQA) tasks:
predicting 3D fold configurations, distinguishing valid view-
points, and detecting impossible patterns. Unlike previous
benchmarks that assess only final predictions, GamiBench
holistically evaluates the entire reasoning process of the mod-
els; measuring cross-view consistency, physical feasibility
through impossible-fold detection and interpretation of in-
termediate folding steps. It further introduces new diagnos-
tic metrics—viewpoint consistency (VC) and impossible fold
selection rate (IFSR)—to measure how well models handle
folds of varying complexity. By linking geometric evaluation
with sequential reasoning, GamiBench enables a comprehen-
sive evaluation of state-of-the-art MLLMs, revealing signif-
icant limitations in spatial reasoning capabilities and creat-
ing a new pipeline to advance geometric understanding in
real-world contexts. The GamiBench dataset and code will
be made available upon publication.

1 Introduction
Spatial reasoning is a fundamental component of human in-
telligence, crucial for interacting with the physical world,
understanding relationships between objects, and executing
multi-step actions. Tasks such as building furniture or fold-
ing origami require mentally simulating spatial transforma-
tions and tracking changing object states. As the interactions
between artificial intelligence systems and real-world envi-
ronments evolve, developing models that can reason about
space and change has become a core challenge. Recent
advances in multimodal large language models (MLLMs)
show strong progress in image recognition, VQA, and in-
struction following (Dongfang et al. 2025), (Jiang et al.
2025); however, they clearly struggle on high-quality and

Figure 1: 2D normal crease pattern (left), 3D final fold state
(middle), and 2D impossible crease pattern (right) of an ex-
ample Crane variation (furutaoripa orihazuru).

temporally extended sequential spatial reasoning tasks (Ra-
jabi and Kosecka 2024), (Tang et al. 2025), (Valmeekam
et al. 2023).

Existing multimodal benchmarks and tools have advanced
evaluation breadth (e.g., perception, captioning, instruction
following) (Fu et al. 2023), (Liu et al. 2023), but typically
emphasize single-step judgments, static scenes, or end-state
accuracy (Fu et al. 2023). Specialized efforts in spatial or
procedural reasoning test important skills such as geometric
consistency (Tang et al. 2025), (Rajabi and Kosecka 2024),
arrangement from descriptions (Tang et al. 2025), or plan
generation (Valmeekam et al. 2023), but often isolate nar-
row capabilities, fix visual formats, or under-specify multi-
view consistency and temporal coherence. Thus, currently
there is no framework that holistically evaluates how mod-
els plan, update, and validate spatial states across time and
across multiple viewpoints of the same 3D structure.

In this work, we introduce GamiBench, a novel bench-
mark and framework for sequential spatial planning and rea-
soning that uses origami-inspired tasks to map 2D crease
patterns to 3D multi-view final states (front, back, top, bot-
tom, left, right). We take inspiration from the common tra-
ditional Japanese art of paper folding, Origami, using a sin-
gle square sheet of paper to create a figure without cutting,
gluing, or marking. The assembly of the 3D Origami model
consists of dozens of intermediary discrete folds to trans-
form a 2D paper plane into a 3D structure, providing an
ideal foundation for testing sequential spatial reasoning abil-
ities. We carefully curate a dataset of 186 regular and 186
impossible 2D square crease pattern configurations and 372



adjacent 3D folds, where each fold is part of a pair of cor-
rect folds for a given 2D crease pattern, using existing on-
line tools like Oriedita (Oolbekkink et al. 2021) and Origami
Simulator (Ghassaei 2018). GamiBench encompasses a col-
lection of 744 Visual Question-Answering (VQA) multiple-
choice sets spanning across 3 tasks, one of which is condi-
tioned on the final answer, from this dataset.

First, we develop a set of tests to assess MLLMs’ basic
spatial transformation understanding capabilities, including
single-step 2D-to-3D mapping, reinforcement of initial cor-
rectness via alternative 3D final states, and assessment of im-
possible fold configuration acknowledgement. We develop
our own metrics, such as Viewpoint Consistency (VC) and
Impossible Fold Selection Rate (IFSR), to measure model
performance across these 3 tasks.

GamiBench provides several distinct advantages com-
pared to existing spatial understanding benchmarks by eval-
uating (1) multi-perspective consistency across 3D views,
(2) feasibility via impossible-fold detection (violations of
physical origami axioms), and (3) sequential interpretation
of intermediate states induced by textual instructions and vi-
sual transitions. Furthermore, we classify folds by complex-
ity to stress-test models’ robustness to geometric density.

Leveraging GamiBench, we conduct evaluations on 21
state-of-the-art MLLMs, including proprietary models such
as GPT-5 and Gemini-2.5-Flash, as well as leading open-
source alternatives such as Llama-4-Maverick, Gemma-3-
27B-IT, Cogito-V2-Preview-Llama-109B-MoE, and GLM-
4.5V. Our results reveal a substantial gap in MLLM spatial
reasoning proficiency. Even the strongest models struggle
with basic spatial understanding tasks, at times performing
worse than weaker models on the same task.

Concretely, our contributions are as follows:

• A multi-view, sequential spatial benchmark that eval-
uates 2D-to-3D reasoning beyond final-state accuracy,
with tasks that require coherence across six views and
across time.

• New evaluation axes—Viewpoint Consistency and Im-
possible Fold Selection Rate (IFSR)—that diagnose fail-
ure modes missed by standard accuracy metrics.

• Origami-inspired task suite combining textual instruc-
tions with visual states to test whether MLLMs can plan,
update, and verify geometric transformations.

• Complexity controls (simple vs. complex crease patterns)
enabling analysis of scale effects on spatial planning.

Together, these contributions to spatial evaluation from
static recognition toward procedural, multi-view reasoning
provide clearer signals about where current MLLMs fall
short and how future architectures or training regimes might
improve.

2 Related Work
Various comprehensive benchmarks have been introduced to
assess various multimodal capabilities.

Foundations of Spatial and Embodied Reasoning. Spa-
tial intelligence has long been identified as a fundamen-
tal component of human cognition, underlying reasoning

about geometry and physical relationships (Bornstein 1986).
Recent embodied MLLM frameworks extend this concept
to machine perception and control. OpenVLA (Kim et al.
2024) links vision, language, and action to achieve gener-
alist visuomotor manipulation across diverse robots, while
ManipLLM (Li et al. 2024) integrates affordance reasoning
and pose prediction for object-centric manipulation in real
environments. In autonomous driving, DriveMLLM (Guo
et al. 2024) benchmarks spatial scene understanding un-
der occlusion and dynamic layouts, and DriveMLM (Wang
et al. 2023) aligns multimodal perception with behavioral-
planning states for closed-loop navigation. Follow-up stud-
ies reveal that modality imbalance limits generalization from
simple to complex visual reasoning tasks (Park et al. 2025),
and that MLLMs still struggle to remember and reconstruct
3D spaces from sequential observations (Yang et al. 2024).
Collectively, these works highlight the gap between em-
bodied perception and sustained geometric reasoning across
changing viewpoints.

General Multimodal Evaluation Benchmarks. Com-
prehensive multimodal benchmarks have advanced large-
scale evaluation of perception and reasoning. MME (Fu et al.
2023) systematically measures 14 multimodal subtasks, ex-
posing persistent weaknesses such as object hallucination
and spatial reasoning errors. MMBench (Liu et al. 2023)
introduces a bilingual multiple-choice framework for fine-
grained multimodal assessment, while MMMU (Yue et al.
2024) extends difficulty to college-level, discipline-specific
visual reasoning. Despite their breadth, these datasets pri-
marily test static understanding and lack mechanisms for
evaluating multi-view geometric coherence or physical fea-
sibility, both of which are core aspects addressed by
GamiBench.

Spatial and Geometric Reasoning. Recent benchmarks
directly target spatial reasoning capabilities. GSR-Bench
(Rajabi and Kosecka 2024) evaluates object-relation under-
standing and shows that MLLMs frequently confuse depth
and relative position, revealing weak geometric grounding.
LEGO-Puzzles (Tang et al. 2025) probes multi-step spa-
tial reasoning through LEGO-based assembly tasks and un-
covers severe performance gaps between humans (∼90%)
and MLLMs (∼50%). 3DSRBench (Ma et al. 2024) as-
sesses 3D reasoning across orientation, occlusion, and view-
point changes, finding that accuracy drops sharply under
non-canonical perspectives. OSR-Bench (Dongfang et al.
2025) examines omnidirectional spatial reasoning over 360°
panoramic inputs and reports poor rotation invariance in
current models. Psychometric analysis of basic spatial abil-
ities (Xu et al. 2025) corroborates these findings, identi-
fying deficits in mental rotation and coordinate transfor-
mation. Zhang et al. (Zhang et al. 2025) argue that such
weaknesses cannot be solved through scaling alone and
call for geometry-aware, physically grounded training data.
GamiBench complements these efforts by uniting physical
validity and cross-view spatial consistency through origami-
inspired folds.

Sequential Planning and Temporal Reasoning. Be-
yond static geometry, MARBLE (Jiang et al. 2025) tests
multimodal reasoning and planning across multi-step spa-



Figure 2: Visual mapping of the task flow in GamiBench.
The model receives a 2D crease pattern (komatsu dolphin)
and text prompt, encodes candidate 3D folds, and outputs
the most plausible match among multiple choices.

tial tasks, showing near-random performance even in sim-
plified subtasks. PlanBench (Valmeekam et al. 2023) pro-
vides a textual framework for evaluating reasoning about
actions and change, serving as a foundation for later multi-
modal planning benchmarks. Similarly, GamiBench models
sequential folding as a structured planning problem, requir-
ing consistency across transformations and temporal stages.

Interpretability and Evaluation Bias. VERIFY (Bi
et al. 2025) isolates visual reasoning fidelity using human-
annotated reasoning paths, revealing that models often reach
correct answers for the wrong visual evidence. In parallel,
Zheng et al. (Zheng et al. 2024) expose a systemic multiple-
choice selection bias in LLMs, showing preference for spe-
cific option positions independent of content. GamiBench
incorporates an Impossible Fold Selection Rate (IFSR) met-
ric and balanced MCQ design to mitigate such biases, ensur-
ing that geometric reasoning rather than positional heuristics
drives model performance.

Collectively, these studies have broadened multimodal
reasoning evaluation yet remain restricted to static percep-
tion, symbolic planning, or 2D scene understanding. None
directly assess 2D-to-3D transformation, multi-view spatial
coherence, or physical feasibility. GamiBench addresses this
gap through origami-inspired tasks that couple 2D crease
patterns with multi-view 3D structures, employing View-
point Consistency (VC) and Impossible Fold Selection Rate
(IFSR) to capture how MLLMs reason about geometry,
transformation, and physical constraints.

3 Methodology
GamiBench is a multimodal benchmark that evaluates
MLLMs on two-dimensional-to-three-dimensional spatial
reasoning through origami-inspired tasks. Designed to eval-
uate both perception and procedural planning, GamiBench
formalizes spatial reasoning as the process of mapping
crease patterns to structures while maintaining geometric
consistency throughout multiple viewpoints.

3.1 Task Definition
GamiBench makes use of two task clusters showing differ-
ing reasoning regimes: (i) Single-Step Spatial Understand-
ing (SSSU) that measures an MLLM’s ability to infer a
folded 3D structure based on a single 2D crease pattern, and

(ii) Multi-Step Spatial Reasoning that requires temporal rea-
soning within the context of cross-view coherence.

For the one-step setup, models will produce final shape
identification and view point recognition. The multi-step set-
ting will extend this reasoning over to complex folding pro-
gressions, requiring models to be cognizant of geometric
transitions and determine the step at which a fold can or
cannot feasibly take place; thus exposing the models un-
derstanding of spatial continuity and physical possibility.
This multi-step setting is implicit; we do not prompt models
with intermediate folding steps. Our multi-step process tests
models’ multi-step understanding of complex folds with
40+ creases that require lots of spatial transformations. An
overview of the task formulation and model decision flow is
shown in Figure 2. For analysis of scaling behavior, folds are
classified into two levels; simple folds (less than 40 creases),
and complex folds (greater than or equal to 40 creases).

3.2 Dataset Curation
Dataset Collection. The dataset comprises 186 origami in-
stances, each containing a normalized 2D crease pattern, 2D
impossible crease pattern, and two 3D renderings captured
from canonical viewpoints. For each instance, only two of
the six canonical viewpoints—front, back, top, bottom, left,
and right—are selected and verified by humans for plausi-
bility. To construct these instances, we sourced crease pat-
terns from the Flat-Folder platform (Ku 2025), which pro-
vides publicly available flat-foldable crease configurations,
and verified their geometry using the open-source software
Oriedita (Oolbekkink et al. 2021), which enables precise
control over mountain–valley assignments and fold geome-
try. Each pattern was then simulated and exported as a 3D
folded mesh via Origami Simulator (Ghassaei 2018). All
meshes were rendered under identical lighting and camera
conditions to ensure viewpoint consistency. We include both
physically valid and constraint-violating (impossible) folds
to evaluate model sensitivity to geometric feasibility. Each
instance was normalized and aligned to a shared coordinate
frame to maintain comparability across samples.

Foldability Verification. We verify the feasibility of each
crease pattern using Oriedita’s built-in programmatic veri-
fier, CAMv (Oolbekkink et al. 2021), which automatically
applies flat-foldability constraints derived from origami ax-
ioms and theorems such as Kawasaki’s (Barile 2002) and
Maekawa’s (Maekawa 1983). This ensures that physically
valid folds satisfy all geometric consistency conditions,
while infeasible folds violate at least one constraint. The ver-
ifier’s outputs are cross-checked during data generation to
confirm that impossible folds arise from genuine geometric
contradictions rather than rendering artifacts.

Origami Axioms. To distinguish physically valid folds
from infeasible ones, we define fold legality according
to geometric and physical origami constraints. A fold is
considered feasible if it satisfies flat-foldability conditions
such as Kawasaki’s (Barile 2002) and Maekawa’s theorems
(Maekawa 1983) and maintains continuous paper geom-
etry without self-intersection. Impossible folds are gener-
ated by deliberately violating these principles, for exam-
ple, by enforcing inconsistent mountain–valley assignments



Task-Specific Template (here for task SSSU)

Instruction: You are an Origami Folding Expert. You will
be given the final crease pattern of a folded origami model
and four candidate 3D models labeled A through D. Evaluate
all four symmetrically—do not privilege any order. Only one
of the candidate models corresponds exactly to the result of
folding the given crease pattern. In the crease pattern, red
lines represent mountain folds and blue lines represent valley
folds. Your task is to analyze the crease pattern and select the
correct 3D model based solely on visual and geometric
reasoning. Consider fold types, symmetry, flap orientation,
and structural features visible in the crease pattern. If none of
the four models are possible, respond with option E (“This
fold is impossible”). At each stage, respond with a single
uppercase letter A, B, C, D, or E.

Question: What is the correct 3D model for the given 2D
crease pattern?

Answer: Ground Truth

Figure 3: Task-specific template. Our QA template includes
instructions, question, and answer for the SSSU task.

or overlapping crease intersections that would cause self-
intersections in a real sheet. Through this structured design,
GamiBench will test MLLMs understanding of spatial trans-
formations and ability to maintain consistency across multi-
view geometric representations. For completeness, we in-
clude the Huzita–Hatori axioms (Huzita 1991; Hatori 2002),
which define the geometric foundations of origami foldabil-
ity. These axioms state that a fold can pass through any two
given points, or place one point onto another; that a fold
can align two lines or pass through a point while being per-
pendicular to a given line; and that more complex condi-
tions allow folds to place one point onto a line while passing
through another point, to map two points each onto their re-
spective lines, or to position a point onto one line while re-
maining perpendicular to another. Collectively, these seven
axioms describe the complete set of single-fold operations
possible under Euclidean geometry and serve as the basis
for distinguishing valid from infeasible fold structures in our
dataset.

Question-Answer Generation and Quality Control. To
streamline our evaluations of MLLMs, we design a template
for question-answer generation. See Figure 3 for an exam-
ple. Each data example includes a multimodal instruction,
multiple-choice prompt, and an answer. For each 2D data
example, we define its 3D fold label as the correct answer,
randomly assigned to a letter between A-D. Additionally, we
randomly sample 3 other 3D viewpoints in our dataset as in-
correct answers, assigned to the remaining letters to build
our multiple-choice answer bank. Our prompt remains im-
mutable throughout all 3 tasks (See Figure 3). We condition
the viewpoint consistency task on the event that the standard
task is correctly answered.

To maintain reproducibility and minimize duplication er-
rors, five human annotators reviewed each multiple-choice
set, verifying (1) the absence of duplicated or mirrored folds,

(2) the balanced difficulty across options, and (3) the lack of
visually ambiguous distractors. These checks ensured that
the final answer banks remained balanced, non-redundant,
and free from biases that could influence model responses.
We also set a seed of 42 for randomizing answer choices and
a temperature of 0 for most models to facilitate deterministic
outputs.

4 Results
4.1 Overall Performance
Among the 21 MLLMs evaluated in GamiBench, perfor-
mance varied significantly, particularly when transitioning
from simple to complex folding tasks (See Table 1). Most
models demonstrated reasonable competence in SSSU, such
as interpreting a 2D crease pattern and identifying its corre-
sponding 3D structure. However, accuracy declined sharply
when multi-step reasoning was required. Tasks that de-
manded tracking fold sequences or maintaining geometric
consistency across temporal stages were especially chal-
lenging, revealing limitations in the model’s ability to in-
tegrate spatial transformations over time.

Evaluation Metrics. To ensure consistent assessment
across all three VQA tasks, GamiBench employs three com-
plementary measurements: Accuracy, Impossible Fold Se-
lection Rate (IFSR), and Viewpoint Consistency (VC). Ac-
curacy captures the model’s ability to identify the correct
3D fold or viewpoint among four multiple choice options,
providing a direct measure of categorical prediction qual-
ity. IFSR quantifies how often a model incorrectly labels
a valid fold as impossible, reflecting its sensitivity to geo-
metric infeasibility and physical constraint reasoning. VC
measures whether a model that correctly identifies the 3D
fold for a crease pattern from one viewpoint remains cor-
rect when the same 3D fold is presented from a different
viewpoint (randomly chosen from the remaining available
views), using the same 3 distractor candidates as in the pri-
mary trial. Thus, VC here is a conditional single-view re-test
accuracy: the fraction of eligible items whose correctness
persists under a viewpoint change with an unchanged candi-
date set except for the new correct image (the denominator is
the number of primary successes). High VC scores indicate
consistent multi-view understanding, while lower scores re-
veal discrepancies in spatial alignment or rotation tracking.

Let D be the set of normal crease patterns with a valid
3D fold. For item i ∈ D, let yi be the correct 3D fold, v0
the primary view, and v1 ̸= v0 the re-test view (same three
distractors).

Normal accuracy.

Acc =
1

|D|
∑
i∈D

1
[
ŷ
(v0)
i = yi

]
(1)

Define the subset of primary-view successes

S =
{
i ∈ D : ŷ

(v0)
i = yi

}
. (2)

Conditional viewpoint consistency.

VC =
1

|S|
∑
i∈S

1
[
ŷ
(v1)
i = yi

]
(3)



Simple Complex Overall

Model Normal VC IFSR Imp. Normal VC IFSR Imp. Normal Imp.

Closed Source
Claude Opus 4.1 44.9 84.6 22.2 14.3 38.7 84.2 22.4 11.4 41.8 12.9
Claude Opus 4 38.8 63.2 34.1 12.2 36.5 64.1 34.9 15.9 37.7 14.1
Claude 4.5 Sonnet 34.7 82.0 20.6 0.0 48.2 88.2 19.0 16.7 41.5 8.4
Grok-4-Fast 36.7 70.7 29.4 0.0 33.6 64.0 31.7 6.1 35.2 3.1
GPT-o3 44.9 80.7 26.2 8.2 38.0 81.9 25.4 9.8 41.5 9.0
GPT-5 67.3 88.4 25.4 6.1 60.6 88.9 24.6 10.6 64.0 8.4
GPT-4o 61.2 83.9 27.0 8.2 38.7 82.2 28.6 18.2 50.0 13.2
GPT-4o-Mini 26.5 84.6 22.2 22.4 34.3 85.7 21.4 34.1 30.4 28.3
Gemini-2.0-Flash 26.5 83.5 22.2 10.2 29.9 85.0 23.0 25.8 28.2 18.0
Gemini-2.5-Pro 49.0 90.3 15.9 8.2 43.8 91.2 15.1 12.1 46.4 10.2
Gemini-2.5-Flash 49.0 88.3 17.5 8.2 38.0 89.5 16.7 5.3 43.5 6.8

Open Source
Mistral-Medium-3.1 26.5 84.6 22.2 42.0 24.8 82.5 24.6 40.2 25.7 41.1
Llama-4–Scout 34.7 64.1 26.2 0.0 44.5 67.4 26.2 0.0 39.6 0.0
Llama-4–Maverick 24.5 59.2 23.0 0.0 43.8 59.0 29.4 0.8 34.2 0.4
Gemma-3–27B-IT 38.8 86.2 23.0 12.0 46.0 86.0 22.2 8.3 42.4 10.2
Cogito-V2-Preview
Llama-109B-MoE 49.0 88.1 22.2 6.0 39.4 78.3 22.2 15.9 44.2 11.0

Qwen3-VL-8B–Thinking 28.6 67.6 22.2 0.0 27.0 64.0 23.0 0.0 27.8 0.0
Qwen3-VL-30B-A3B–Thinking 26.5 66.1 24.6 0.0 32.8 69.0 24.6 0.8 29.7 0.4
Qwen3-VL-235B-A22B–Thinking 24.5 66.7 22.2 2.0 35.8 72.9 22.2 0.8 30.2 1.4
Microsoft Phi-4 Multimodal-Instruct 36.7 66.7 27.0 2.0 38.7 72.9 23.8 3.0 37.7 2.5
GLM-4.5V 46.9 78.3 23.0 6.0 40.1 79.4 23.8 4.5 43.5 5.3

Table 1: GamiBench results (percent). Two-level headers: Simple vs. Complex; rightmost columns macro-average across both
complexities. VC = viewpoint consistency. Imp. = Impossible. Overall best, second best, and third best are highlighted as such.

4.2 Closed-Source Models
Among closed-source systems, GPT-5 stood out as the
strongest performer. It correctly identified 60.6% of com-
plex folds and 67.3% of simple folds, while maintaining
relatively high viewpoint consistency and angular stability
(VC: 65.1% and 69.7%). These results suggest that GPT-5
has a comparatively stable understanding of 3D spatial rela-
tionships across multiple views.

In contrast, Grok-4-Fast and Gemini-2.0-Flash were the
least effective in this group, with complex-fold accuracies of
33.6% and 29.9%, respectively. Claude Opus 4.1 and Claude
4.5 Sonnet achieved midrange results, with complex-fold ac-
curacies between 38.7% and 48.2%, though the latter model
showed stronger spatial coherence (VC up to 82.4%). GPT-
4o performed well on simpler folds (61.2%) but plateaued
on complex ones (38.7%), a trend consistent across most
closed-source models.

Across this group, the Impossible Fold Selection Rate
(IFSR), which measures how often a model incorrectly clas-
sifies a valid fold as impossible, remained consistently low,
typically between 0–14%. Although a low rate might ini-
tially appear favorable, it actually reveals a limited sensitiv-
ity to geometric infeasibility: models rarely identify impos-

sible folds even when they should. This suggests that de-
spite strong visual reasoning, most closed-source MLLMs
still lack a robust understanding of physical constraints and
spatial validity.

4.3 Open-Source Models
Open-source models exhibited wider variability but of-
ten performed surprisingly well relative to their com-
mercial counterparts. Llama-4-Scout, Llama-4-Maverick,
and Gemma-3-27B-IT reached complex-fold accuracies be-
tween 44–46%, matching or slightly exceeding several
closed-source systems. More impressively, their VC scores
frequently surpassed 80%, suggesting a strong ability to
maintain visual and geometric consistency across view-
points, even when their final predictions were not always
correct.

Cogito-V2-Preview-Llama-109B-MoE balanced accu-
racy and coherence particularly well, achieving 39.4% on
complex folds and 49.0% on simple folds, with outstanding
VC performance (85–92%). On the other hand, the Qwen3-
VL models (8B, 30B, and 235B) consistently underper-
formed, recording accuracies below 33% on complex folds.

The GLM-4.5V model emerged as one of the most ca-



Figure 4: GamiBench Closed-Source Evaluations. Regular
accuracy (top) and Impossible accuracy (bottom) of models,
sorted in descending order from left to right, complex and
simple.

Figure 5: GamiBench Open-Source Evaluations. Regular ac-
curacy (top) and Impossible accuracy (bottom) of models,
sorted in descending order from left to right, complex and
simple.

pable open systems, achieving 40.1% accuracy on complex
folds and 46.9% on simple ones. Its VC scores (87.3% and
78.3%) placed it among the most consistent models in cross-
view reasoning, showing that open models can indeed com-
pete on structural coherence even without proprietary opti-
mization.

4.4 Trends and Observations
Across all systems, task complexity was the clearest predic-
tor of performance. On average, models performed 10–15%
better on simple folds than on complex ones. Complexity
controls in GamiBench categorize folds according to geo-
metric density and reasoning depth. For our purposes, sim-
ple folds (fewer than 40 creases) primarily test localized
spatial mapping and single-step 2D-to-3D transformations.
In contrast, complex folds (40 or more creases) require
multi-step reasoning, constraint tracking, and cross-view
geometric coherence. Interpreting our results through this
framework shows that increasing geometric density substan-
tially amplifies cognitive and planning demands. While most
MLLMs maintain stable accuracy on simple folds, their per-
formance degrades as structural interactions grow combina-
torially. This trend validates GamiBench’s complexity con-
trols as a diagnostic tool for assessing how model reasoning
scales with geometric and procedural difficulty. However,
higher viewpoint consistency did not always imply correct-
ness. Some models produced geometrically consistent yet
incorrect shapes, revealing what we term a visual plausibil-
ity bias. In such cases, the models could maintain coherent
visuals while misunderstanding the underlying 3D geome-
try.

Another persistent limitation was the inability to dis-
tinguish between valid and impossible folds. Even top-
performing models like Mistral-Medium-3.1 and GPT-4o-
Mini achieved combined average IFSRs of 27.6%, and
14.8%, respectively. This confirms that reasoning about spa-
tial constraints and physical feasibility remains an open
challenge in multimodal modeling.

We observe a miscalibration in Llama-4–Scout and
Llama-4–Maverick: both select “impossible” 0% of the time
on truly impossible items, yet show IFSR = 26.2%, indi-
cating they sometimes (incorrectly) choose “impossible” on
normal items. This asymmetric error pattern reflects a deci-
sion bias against the “E” option under ground-truth impos-
sible conditions, limiting reliability on feasibility detection.

Finally, we observed a subtle but consistent selection bias
in multiple-choice evaluations. Several models showed a
tendency to favor specific answer options (e.g., “Option A”)
regardless of content, echoing patterns noted in prior work
(Zheng et al. 2024). Future benchmark iterations should fur-
ther mitigate this issue by incorporating generative, open-
response formats that reduce residual positional bias and
more effectively capture authentic reasoning ability.

4.5 Limitations
While GamiBench provides a structured and interpretable
framework for assessing 2D-to-3D spatial reasoning, sev-
eral limitations remain. The benchmark focuses on synthetic



origami-inspired folds and does not yet account for real-
world conditions such as material deformation, lighting vari-
ation, or visual clutter, which may limit its generalization be-
yond crease-pattern reasoning. We also do not conduct true
multi-step tasks such as predicting intermediary folds be-
tween 2D and 3D. The dataset size is moderate, and its com-
plexity definition, which relies primarily on crease count,
may not accurately reflect true planning difficulty caused
by symmetry or long-range geometric dependencies. This
is further supported by our finding that some models per-
formed better on complex folds than on simple ones (i.e.
Llama-4 series, Claude 4.5 Sonnet), indicating that crease
count alone does not fully capture the true planning diffi-
culty.

Furthermore, evaluations were performed under a single
prompt and decoding configuration without systematic tem-
perature tuning or standardized API normalization. Because
proprietary APIs change over time, reproducibility remains
partially limited. Future work could establish a human base-
line to contextualize model performance, increase data real-
ism and scale, introduce interactive folding and feedback-
based tasks, integrate calibrated uncertainty metrics, and
standardize evaluation protocols to improve comparability
across evolving MLLM architectures.

5 Conclusion
Thus, we introduce GamiBench, a new benchmark for
evaluating spatial reasoning and 2D-to-3D planning that
aims to push the limits of modern MLLMs. By coupling
origami-inspired crease patterns with multi-view 3D states,
GamiBench advances beyond static visual understanding to-
ward dynamic and multi-perspective spatial reasoning. Our
results show that although leading MLLMs exhibit emerg-
ing competence in single-step geometric inference, they
struggle to maintain spatial coherence across time, view-
points, and physical constraints. Looking ahead, we envi-
sion GamiBench as a foundation for future spatial reason-
ing research, encouraging the development of models that
can truly think in space by integrating perception, geome-
try, and physical reasoning into a unified understanding of
real-world dynamics.
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