
Fundamental Limits of Prompt Compression:
A Rate-Distortion Framework for Black-Box Language Models

Adway Girish ∗ 1 Alliot Nagle ∗ 2 Marco Bondaschi 1 Michael Gastpar 1 Ashok Vardhan Makkuva † 1

Hyeji Kim † 2

Abstract
We formalize the problem of token-level hard
prompt compression for black-box large language
models (LLMs). We derive the distortion-rate
function for this setup as a linear program, and
provide an efficient algorithm to compute this fun-
damental limit via its dual. We compare the per-
formance of existing compression schemes with
this fundamental limit on a synthetic dataset con-
sisting of prompts generated from a Markov chain,
natural language queries, and their respective an-
swers. Our empirical analysis demonstrates the
criticality of the compressor being aware of the
downstream task/query for the black-box. We ob-
serve a large gap between the performance of cur-
rent prompt compression methods and the optimal
strategy, and propose a query-aware, variable-rate
adaptation of a prior work to close the gap.

1. Introduction
In spite of the recent success of transformer-based (Vaswani
et al., 2017) large language models (LLMs) in language
modeling tasks, inference calls to a transformer can be costly
in both time and memory usage. Although implementation-
level optimizations (Kwon et al., 2023; Dao et al., 2022; Dao,
2023) and architecture-level optimizations and alternatives
(Wang et al., 2020; Peng et al., 2023; Gu & Dao, 2023) have
been proposed, a third type of optimization that compresses
the input (an input-level optimization) has the benefit that
it directly reduces the resource usage of an LLM inference
call, and it can be used in conjunction with other types
of optimizations for further efficiency gains. It is also the
only technique available when seeking to lower costs for
black-box API calls to closed-source models, where the
associated cost to the caller is determined by the runtime
and the number of input tokens. In this work, we offer a

*† Equal contribution 1EPFL 2UT Austin. Correspondence
to: Adway Girish <adway.girish@epfl.ch>, Alliot Nagle <acna-
gle@utexas.edu>.

Work presented at TF2M workshop at ICML 2024, Vienna, Austria.
PMLR 235, 2024. Copyright 2024 by the author(s).

framework and analysis for a recent body of literature in this
direction, known as prompt compression (Askell et al., 2021;
Snell et al., 2022; Wingate et al., 2022) (more in App. A).

The goal of a prompt compression method is to transform a
sequence of input tokens into a shorter sequence of tokens
that generates the same semantic response when passed as
input to a target LLM, thereby decreasing memory and run-
time requirements. In our framework and analysis, we focus
on the prompt compression for black-box models setting,
where the output of a prompt compression method is a set
of tokens (“hard prompts”) (Li et al., 2023; Jiang et al.,
2023c;b; Pan et al., 2024), and exclude methods which out-
put embedding vectors (“soft prompts”) (Mu et al., 2023;
Ge et al., 2024; Chevalier et al., 2023) as those are not
transferable to black-box models.

Despite the progress made in the prompt compression litera-
ture, there is a lack of proper formalization of this problem.
Though most works propose methods that work well, they
offer no insight into key questions, such as “How far are
we from the theoretical limit of the rate-distortion trade-
off?”, “How essential is the conditioning on the query when
compressing the prompt?”, among others. We offer a unify-
ing framework for the problem of prompt compression and
seek to answer these questions with theory and experimental
results. Our main contributions can be summarized as:

1. Theoretical analysis: We formulate prompt compres-
sion as a rate-distortion problem (Sec. 2.1), characterize
the optimal trade-off between the rate of compression
and the distortion incurred, i.e., the distortion-rate func-
tion, and provide a geometric algorithm to compute it
via a dual linear program (Sec. 2.2, Sec. 2.3).

2. Evaluation: We introduce a synthetic dataset with bi-
nary prompts and natural language queries, for which
we can compute the distortion-rate function, and com-
pare and obtain insights on existing prompt compression
algorithms as in Fig. 2 (Sec. 3).

3. Algorithm design: We propose “LLMLingua-2 Dy-
namic,” a query-aware, variable-rate adaptation of
LLMLingua-2 (Pan et al., 2024) that outperforms all
other prompt compression methods on our dataset and
has a distortion-rate curve that significantly reduces the
gap with the theoretical limit (Sec. 3).

1

LLMx PŶ = ϕLLM(x, q)

q

It was the best of times, it was the worst
of times, it was the age of wisdom, it was
the age of foolishness, it was the epoch of
belief, it was the epoch of incredulity, it
was the season of light, it was the season
of darkness, it was the spring of hope, it
was the winter of despair.

Prompt

How were the times?
Query

Best and worst. (60%)
Contrasting. (20%)
Mixed. (10%)
Dualistic. (5%)
.

Output

(a) Black-box LLM without prompt compression.

comp LLMx
m

PŶ = ϕLLM(m, q)

q

best times worst, age wisdom
foolish, epoch belief incredul,
season light dark, hope despair.

Compressed prompt (query-agnostic)

(b) Query-agnostic prompt compression

comp LLMx
m

PŶ = ϕLLM(m, q)

q

best worst.
Compressed prompt (query-aware)

(c) Query-aware prompt compression

Figure 1: Model for prompt compression in LLMs. (a): Without prompt compression, the LLM takes a long Prompt
and Query as input, and produces an Output distribution. (b), (c): A compressor comp shortens the prompt to obtain a
Compressed prompt, which together with the query, is input to the LLM. (b) comp does not have access to the query, and
preserves all highlighted tokens. (c) comp has access to the query, and preserves only the tokens highlighted in orange.

2. Distortion-rate function for prompt
compression

Our model for prompt compression is summarized in Fig. 1.
We consider two types of prompt compression, query-
agnostic (Fig. 1b, where the compressor does not have
access to the query) and query-aware (Fig. 1c, where the
compressor has access to the query). We focus on the for-
mer and define and characterize the distortion-rate function,
which describes the optimal trade-off between how much
and how well the prompt is compressed. An analogous for-
malization of the query-aware setup can be found in App. C.
Refer to App. B for an overview of the notation.

2.1. A formal model for prompt compression

Black-box LLM. We assume that our target LLM is pre-
trained LLM with vocabulary V . It takes a pair of the prompt
x ∈ Vnx and the query q ∈ Vnq , (x, q) ∈ Vnx+nq as input
The output of the LLM is given by PŶ = ϕLLM(x, q) ∈
P(V∗), where ϕLLM : V∗ → P(V∗) is a deterministic
function which maps sequences of tokens to a probability
distribution on sequences of tokens. We denote the set of all
prompts x by X and the set of all queries q byQ. We model
prompt-query pairs (X,Q) as random variables drawn ac-
cording to the joint distribution PXQ ∈ P(X ×Q).

In cases where we have a correct answer y ∈ Y = V∗ corre-
sponding to the pair (x, q), we characterize the “closeness”
of the LLM output PŶ = ϕLLM(x, q) to the answer y using
a distortion measure d : Y ×P(Y)→ [0,∞]. When deal-
ing with natural language queries, there is no single answer
that is uniquely correct. Thus, we allow for a random de-

pendence on x and q by modelling the answer as a random
variable Y drawn from the distribution PY |XQ(·|x, q). We
then characterize the “closeness” between the correct an-
swer and the LLM output by the average distortion, given
by EY∼PY |XQ(·|x,q)

[
d
(
Y, ϕLLM(x, q)

)]
.

Prompt compression. In query-agnostic prompt compres-
sion (Fig. 1b), the compressor comp is modelled a ran-
dom function from X toM, i.e., the set of all compressed
prompts. The compressor takes in the prompt X ∼ PX

and produces a compressed prompt M = comp(X) with
len(M) ≤ len(X). The user then provides the LLM with
the input (M,Q), instead of (X,Q), and the output distri-
bution produced by the LLM is PŶ = ϕLLM(M,Q). To
quantify the performance of this compressor comp, two
quantities are of interest, to measure how much and how
well the prompt is compressed respectively:

(1) the rate EPMXQY

[
len(M)
len(X)

]
, and

(2) the distortion EPMXQY

[
d
(
Y, ϕLLM(M,Q)

)]
,

Clearly, there is a trade-off between these quantities, which
we study via the distortion-rate function in Sec. 2.2.

2.2. Rate-distortion formulation for prompt
compression

Distortion-rate function D∗(R). The distortion-rate
function for any compression problem characterizes the fun-
damental trade-off between the distortion and the rate (Shan-
non, 1959; Berger, 1971; Cover & Thomas, 2006; El Gamal
& Kim, 2011). For a given rate R, the distortion-rate func-
tion D∗(R) is the smallest distortion that can be achieved
by a compressor with rate at most R.

2

D∗(R) for query-agnostic prompt compression. We
model the compressor as a random function from X toM,
which, by the functional representation lemma (El Gamal
& Kim, 2011; Hajek & Pursley, 1979), is equivalent to
a conditional distribution PM |X . Thus, we can explicitly
write

D∗(R) = inf
PM|X

EPMXQY

[
d
(
Y, ϕLLM(M,Q)

)]

s.t. PM |X is a compressor, and

EPMXQY

[
len(M)

len(X)

]
≤ R,

(1)

The constraint “PM |X is a compressor” is short for: (1)
for each x ∈ X ,

∑
m∈M PM |X(m|x) = 1, and (2) if

len(m) > len(x), then PM |X(m|x) = 0. The extension
to the query-aware setting is straightforward; we then have
query-dependent (or conditional) distortion-rate functions
D∗

q (R) for each q ∈ Q, and an average distortion-rate func-
tion, denoted by D̄∗(R) (refer to App. C).

We provide an overview of rate-distortion theory from the
information theory literature in App. E and describe how this
setup compares; in short, this is a rate-distortion problem
with side information for function computing with a “fixed
decoder”, which has not been studied before.

2.3. Linear program formulation of the distortion-rate
function

We now focus on solving the optimization problem in (1),
where the objective and constraints are linear in PM |X .
Though it is a linear program (LP), which is simple from
an optimization perspective (Boyd & Vandenberghe, 2004;
Dantzig, 2002), the dimensions of problem are still large
and solving the LP directly using off-the-shelf solvers is
infeasible. We first rewrite (1) as an explicit LP using
optimization-theoretic notation, and hide the probabilistic
notation involving expectations and conditional probabili-
ties in the parameters of the LP.

Proposition 1 (Primal LP). The distortion-rate function
for query-agnostic prompt compression (1) is given by the
solution to the linear program

D∗(R) = inf
(zx∈RMx

+)
x∈X

∑

x∈X
D⊤

x zx

s.t.
∑

x∈X
R⊤

x zx ≤ R,

1⊤zx = 1, ∀x ∈ X ,

(LP)

where for each x ∈ X ,Mx denotes the set of compressed
prompts associated to x, i.e., the set of all possible to-
ken sequences of length smaller than len(x), the vectors
zx ∈ RMx

+ are the optimization variables and the constants
Dx,Rx ∈ RMx

+ with components indexed by m ∈Mx are

given by

Dx,m ≜ PX(x)EPQY |MX(·,·|m,x) [d(Y, ϕLLM(m,Q))] ,

Rx,m ≜ PX(x)
len(m)

len(x)
. (2)

Though solving (LP) directly may be infeasible, the dual
of (LP) can be solved efficiently using a simple geometric
algorithm. We characterize the dual in Thm. 1; refer to
App. D.1 for a full proof. The algorithm, given in Alg. 1,
takes as input R, (Dx)x∈X , (Rx)x∈X , and returns as out-
put the distortion-rate function at R, i.e., D∗(R); refer to
App. D.2 for a step-by-step example showing its working.

Theorem 1 (Dual LP). The distortion-rate function for
query-agnostic prompt compression (1) is given by the solu-
tion to the dual of the linear program (LP), i.e.,

D∗(R) = sup
λ≥0

{
−λR+

∑

x∈X
min

m∈Mx

[Dx,m + λRx,m]

}
.

(dual-LP)

Algorithm 1: To compute D∗(R) via (dual-LP)
Input: R, (Dx)x∈X , (Rx)x∈X
Output: D∗(R), the distortion-rate function at rate R

1 for x ∈ X do
2 FindM(x)

env ⊆Mx such that {(Rx,m,Dx,m)}
m∈M(x)

env

are on the lower-left concave boundary of
{(Rx,m,Dx,m)}m∈Mx

; ▷ see Fig. 3 for an example

3

{
m

(x)
1 ,m

(x)
2 , . . . ,m

(x)
kx

}
←M(x)

env ordered such that

R
x,m

(x)
kx

> · · · > R
x,m

(x)
1

;

4 for i = 1, . . . , kx − 1 do λ
(x)
i ←

D
x,m

(x)
i

−D
x,m

(x)
i+1

R
x,m

(x)
i+1

−R
x,m

(x)
i

;

5 λ
(x)
0 ← +∞; λ(x)

kx
← 0;

6 Λ(x) ←
{
λ
(x)
0 , λ

(x)
1 , . . . , λ

(x)
kx−1, λ

(x)
kx

}
;

7

{
λ̃0, . . . , λ̃k

}
←
⋃

x∈X Λ(x) with

+∞ = λ̃0 > λ̃1 > · · · > λ̃k−1 > λ̃k = 0;
8 for x ∈ X do
9 for j = 1, . . . , k do

10 Set m̃(x)
j ← m

(x)
i where

i ∈ {1, . . . , kx} :
(
λ
(x)
i , λ

(x)
i−1

)
⊇
(
λ̃j , λ̃j−1

)

11 for j = 1, . . . , k do
12 if

∑
x∈X R

x,m̃
(x)
j

> R then λj ← λ̃j−1

else λj ← λ̃j ;

13 Dj ← −λjR+
∑

x∈X

[
D

x,m̃
(x)
j

+ λjRx,m̃
(x)
j

]
;

14 Return maxj=1,...,k Dj ; ▷ = D∗(R)

3

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0

1

2

3

4

A
ve

ra
ge

d
is

to
rt

io
n

Log loss

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.1

0.2

0.3

0.4

0.5

0/1 loss

Selective

LLMLingua

LLMLingua Query

LLMLingua-2

Ours (LLMLingua-2 Query)

Ours (LLMLingua-2 Dynamic)

Optimal (Query-agnostic)

Optimal (Query-aware)

No Compression

Figure 2: The rate-distortion trade-offs of prompt compression methods compared against the query-agnostic and query-
aware theoretical limits. The distortion measures used are log loss (left) and 0/1 loss (right) as defined in (8).

3. Experiments
Our main experimental contribution is summarized in Fig. 2.
We compare the performance of existing prompt compres-
sion methods with the theoretical limit, the distortion-rate
function, for a synthetic dataset. We briefly summarize our
experimental setup here; refer to App. F for a more elaborate
explanation.

Dataset. To run experiments that are computationally
tractable but still meaningful to the prompt compression
problem, we construct a synthetic dataset {(xi, qi, yi)}Ni=1

with (1) binary prompts xi with 4 ≤ len(xi) ≤ 10, drawn
from a Markov chain (e.g., “00101”) , (2) natural language
queries qi (e.g., “Compute the parity”), and (3) their asso-
ciated answers yi (e.g., “0”). The optimal distortion-rate
function is computed using Alg. 1, taking PXQY to be the
empirical distribution PXQY = 1

N

∑N
i=1 δ(xi,qi,yi). We

take N = 1400; refer to App. H.1 for a complete specifica-
tion and to App. G for more details about this choice.

Baseline methods and models. We compare the opti-
mal rate-distortion trade-off (both query-aware and query-
agnostic) with prompt compression methods that can be
used to compress prompts for a black-box target LLM:
Selective Context (Li et al., 2023), LLMLingua (Jiang
et al., 2023c), LLMLingua Query (Jiang et al., 2023b),
LLMLingua-2 (Pan et al., 2024). We use Mistral 7B Instruct
v0.2 (Jiang et al., 2023a) as our black-box target LLM.

Our proposed methods. We add two novel contri-
butions over LLMLingua-2: (1) we adapt LLMLingua-
2 to the query-aware setting, whereas the original work
only proposed the query-agnostic approach, which we call
“LLMLingua-2 Query,” and (2) we further adapt this query-
aware approach into a variable-rate approach we refer to as
“LLMLingua-2 Dynamic.” Refer to App. F for more details.

Main results. From Fig. 2, we observe that (1) most
existing methods are far from the theoretical limit, suggest-
ing that there is still room for improvement in this field,
(2) conditioning on the query allows for a significant im-
provement, as seen by the performance of our query-aware
adaptation LLMLingua-2 Query against the query-agnostic
LLMLingua-2 (Pan et al., 2024), and (3) our proposed
method LLMLingua-2 Dynamic, a query-aware adaptation
of LLMLingua-2, achieves the best performance among all
methods considered, and is the only method to outperform
the optimal query-agnostic strategy. Moreover, Fig. 7 shows
that, for select queries, e.g., “Is the binary string a palin-
drome?” LLMLingua-2 Dynamic is the only method that
matches the optimal query-aware strategy in certain ranges
of the average rate. In App. I, we provide additional results
showing how the choice of query affects the theoretical limit
(since some queries are easier to compress for than others)
and the effect of tokenization, as described in App. F.

4. Conclusion
We characterize the optimal rate-distortion trade-off for
prompt compression for black-box target LLMs as an LP,
and derive an algorithm to solve this efficiently via its dual,
for both query-agnostic and query-aware settings. We com-
pare these optimal curves with existing prompt compres-
sion methods and adapt one of them, LLMLingua-2, to be
query-aware and variable-rate; this modified method, which
we call “LLMLingua-2 Dynamic,” exhibits superior perfor-
mance. As future work, it is important to exhaustively study
our proposed method on natural language datasets. An open
problem that remains is to identify a method to compute
the optimal rate-distortion trade-off for natural language
datasets; we provide preliminary results in this direction in
App. G.

4

Acknowledgements
The authors would like to thank Ananda Theertha Suresh
for introducing them to the problem of prompt compression.
AG would like to thank Emre Telatar for helpful discussions
on the problem formulation.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D.,

Henighan, T., Jones, A., Joseph, N., Mann, B., Das-
Sarma, N., Elhage, N., Hatfield-Dodds, Z., Hernandez,
D., Kernion, J., Ndousse, K., Olsson, C., Amodei, D.,
Brown, T., Clark, J., McCandlish, S., Olah, C., and Ka-
plan, J. A general language assistant as a laboratory for
alignment, 2021.

Berger, T. Rate Distortion Theory: A Mathematical Basis
For Data Compression. Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1971.

Biderman, S., Schoelkopf, H., Anthony, Q., Bradley, H.,
O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., Skowron, A., Sutawika, L.,
and Van Der Wal, O. Pythia: a suite for analyzing large
language models across training and scaling. In Proceed-
ings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023.

Boyd, S. P. and Vandenberghe, L. Convex optimization.
Cambridge university press, 2004.

Chevalier, A., Wettig, A., Ajith, A., and Chen, D. Adapting
language models to compress contexts. In Bouamor,
H., Pino, J., and Bali, K. (eds.), Proceedings of the
2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 3829–3846, Singapore, December
2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.emnlp-main.232. URL https://
aclanthology.org/2023.emnlp-main.232.

Cover, T. M. and Thomas, J. A. Elements of Information
Theory (Wiley Series in Telecommunications and Signal
Processing). Wiley-Interscience, USA, 2006. ISBN
0471241954.

Dantzig, G. B. Linear programming. Operations research,
50(1):42–47, 2002.

Dao, T. FlashAttention-2: Faster attention with better paral-
lelism and work partitioning. 2023.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. FlashAt-
tention: Fast and memory-efficient exact attention with
IO-awareness. In Advances in Neural Information Pro-
cessing Systems, 2022.

El Gamal, A. and Kim, Y.-H. Network Information Theory.
Cambridge University Press, 2011.

Ge, T., Jing, H., Wang, L., Wang, X., Chen, S.-Q., and
Wei, F. In-context autoencoder for context compres-
sion in a large language model. In The Twelfth In-
ternational Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=uREj4ZuGJE.

5

https://aclanthology.org/2023.emnlp-main.232
https://aclanthology.org/2023.emnlp-main.232
https://openreview.net/forum?id=uREj4ZuGJE
https://openreview.net/forum?id=uREj4ZuGJE

Ghalandari, D., Hokamp, C., and Ifrim, G. Efficient un-
supervised sentence compression by fine-tuning trans-
formers with reinforcement learning. In Muresan, S.,
Nakov, P., and Villavicencio, A. (eds.), Proceedings of
the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp.
1267–1280, Dublin, Ireland, May 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.
acl-long.90. URL https://aclanthology.org/
2022.acl-long.90.

Gray, R. Conditional rate-distortion theory. Technical report,
Stanford University, 1972.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Hajek, B. and Pursley, M. B. Evaluation of an achievable
rate region for the broadcast channel. IEEE Transactions
on Information Theory, 25(1):36–46, 1979.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. LoRA: Low-rank adaptation
of large language models. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=nZeVKeeFYf9.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b, 2023a.

Jiang, H., Wu, Q., , Luo, X., Li, D., Lin, C.-Y., Yang, Y., and
Qiu, L. LongLLMLingua: Accelerating and enhancing
llms in long context scenarios via prompt compression.
ArXiv preprint, abs/2310.06839, 2023b. URL https:
//arxiv.org/abs/2310.06839.

Jiang, H., Wu, Q., Lin, C.-Y., Yang, Y., and Qiu, L.
LLMLingua: Compressing prompts for accelerated in-
ference of large language models. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 13358–13376. Association
for Computational Linguistics, December 2023c. doi:
10.18653/v1/2023.emnlp-main.825. URL https://
aclanthology.org/2023.emnlp-main.825.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Effi-
cient memory management for large language model
serving with PagedAttention. In Proceedings of the
29th Symposium on Operating Systems Principles, SOSP
’23, pp. 611–626, New York, NY, USA, 2023. Associa-
tion for Computing Machinery. ISBN 9798400702297.
doi: 10.1145/3600006.3613165. URL https://doi.
org/10.1145/3600006.3613165.

Li, Y., Dong, B., Lin, C., and Guerin, F. Compressing
context to enhance inference efficiency of large language
models, 2023.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilac-
qua, M., Petroni, F., and Liang, P. Lost in the mid-
dle: How language models use long contexts, 2023.
arXiv:2307.03172.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Ro{bert}a: A robustly optimized {bert} pretraining ap-
proach, 2020. URL https://openreview.net/
forum?id=SyxS0T4tvS.

Mu, J., Li, X. L., and Goodman, N. Learning to compress
prompts with gist tokens. 2023.

Niu, T., Xiong, C., and Socher, R. Deleter: Leveraging bert
to perform unsupervised successive text compression,
2019.

OpenAI. Gpt-4 technical report, 2024.

Pan, Z., Wu, Q., Jiang, H., Xia, M., Luo, X., Zhang, J.,
Lin, Q., Ruhle, V., Yang, Y., Lin, C.-Y., Zhao, H. V., Qiu,
L., and Zhang, D. LLMLingua-2: Data distillation for
efficient and faithful task-agnostic prompt compression.
ArXiv preprint, abs/2403.12968, 2024. URL https:
//arxiv.org/abs/2403.12968.

Peng, B., Alcaide, E., Anthony, Q. G., Albalak, A., Arcad-
inho, S., Biderman, S., Cao, H., Cheng, X., Chung, M. N.,
Derczynski, L., Du, X., Grella, M., GV, K. K., He, X.,
Hou, H., Kazienko, P., Kocon, J., Kong, J., Koptyra, B.,
Lau, H., Lin, J., Mantri, K. S. I., Mom, F., Saito, A.,
Song, G., Tang, X., Wind, J. S., Woźniak, S., Zhang, Z.,
Zhou, Q., Zhu, J., and Zhu, R.-J. RWKV: Reinventing
RNNs for the transformer era. In The 2023 Conference
on Empirical Methods in Natural Language Processing,
2023. URL https://openreview.net/forum?
id=7SaXczaBpG.

Schumann, R., Mou, L., Lu, Y., Vechtomova, O., and Mark-
ert, K. Discrete optimization for unsupervised sentence
summarization with word-level extraction. In Jurafsky,
D., Chai, J., Schluter, N., and Tetreault, J. (eds.), Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 5032–5042, On-
line, July 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.acl-main.452. URL https:
//aclanthology.org/2020.acl-main.452.

Shannon, C. E. Coding theorems for a discrete source with
a fidelity criterion. IRE Nat. Conv. Rec, 4(142-163):1,
1959.

6

https://aclanthology.org/2022.acl-long.90
https://aclanthology.org/2022.acl-long.90
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2310.06839
https://arxiv.org/abs/2310.06839
https://aclanthology.org/2023.emnlp-main.825
https://aclanthology.org/2023.emnlp-main.825
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://arxiv.org/abs/2403.12968
https://arxiv.org/abs/2403.12968
https://openreview.net/forum?id=7SaXczaBpG
https://openreview.net/forum?id=7SaXczaBpG
https://aclanthology.org/2020.acl-main.452
https://aclanthology.org/2020.acl-main.452

Simons, S. Minimax Theorems and Their Proofs, pp. 1–23.
Springer US, Boston, MA, 1995. ISBN 978-1-4613-3557-
3. doi: 10.1007/978-1-4613-3557-3_1. URL https://
doi.org/10.1007/978-1-4613-3557-3_1.

Snell, C., Klein, D., and Zhong, R. Learning by distilling
context, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
NIPS’17, pp. 6000–6010, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

von Neumann, J. Zur Theorie der Gesellschaftsspiele. Math.
Ann., 100(1):295–320, 1928. ISSN 0025-5831,1432-
1807. doi: 10.1007/BF01448847. URL https://doi.
org/10.1007/BF01448847.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity, 2020.

Weissman, T. and El Gamal, A. Source coding with limited-
look-ahead side information at the decoder. IEEE Trans-
actions on Information Theory, 52(12):5218–5239, 2006.
doi: 10.1109/TIT.2006.885500.

Wingate, D., Shoeybi, M., and Sorensen, T. Prompt com-
pression and contrastive conditioning for controllabil-
ity and toxicity reduction in language models. In Gold-
berg, Y., Kozareva, Z., and Zhang, Y. (eds.), Findings of
the Association for Computational Linguistics: EMNLP
2022, pp. 5621–5634, Abu Dhabi, United Arab Emi-
rates, December 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.findings-emnlp.
412. URL https://aclanthology.org/2022.
findings-emnlp.412.

Wyner, A. D. The rate-distortion function for source
coding with side information at the decoder-
II: General sources. Information and Control,
38(1):60–80, 1978. ISSN 0019-9958. doi:
https://doi.org/10.1016/S0019-9958(78)90034-7.
URL https://www.sciencedirect.com/
science/article/pii/S0019995878900347.

Wyner, A. D. and Ziv, J. The rate-distortion function for
source coding with side information at the decoder. IEEE
Transactions on Information Theory, 22(1):1–10, 1976.
doi: 10.1109/TIT.1976.1055508.

Yamamoto, H. Wyner-Ziv theory for a general function of
the correlated sources (corresp.). IEEE Transactions on
Information Theory, 28(5):803–807, 1982. doi: 10.1109/
TIT.1982.1056560.

7

https://doi.org/10.1007/978-1-4613-3557-3_1
https://doi.org/10.1007/978-1-4613-3557-3_1
https://doi.org/10.1007/BF01448847
https://doi.org/10.1007/BF01448847
https://aclanthology.org/2022.findings-emnlp.412
https://aclanthology.org/2022.findings-emnlp.412
https://www.sciencedirect.com/science/article/pii/S0019995878900347
https://www.sciencedirect.com/science/article/pii/S0019995878900347

The appendix is organized as follows:

1. In App. A, we describe the recent literature in the field of prompt compression.

2. In App. B, we provide a complete summary of the notation used throughout the paper.

3. In App. C, we formally characterize the distortion-rate functions for the query-aware prompt compression setting.

4. In App. D, we prove the main result of the paper (Thm. 1) and give a detailed description of the working of Alg. 1.

5. In App. E, we provide an overview of the information theory literature on rate-distortion theory, and explain how our
model compares.

6. In App. F, we provide more details on the experimental as described briefly in Sec. 3.

7. In App. G, we describe the limitations of our paper, and provide suggestions on how these limitations may be overcome.

8. In App. H, we provide details on the technical system details used for the experiments in Sec. 3 and App. I.

9. In App. I, we show additional experimental results.

A. Background and related works
Long prompts slow the inference process due to the increase in the number of tokens that the LLM has to process. It is also
known that very long prompts can cause LLMs to ignore or “forget” parts of the input and produce erroneous answers (Liu
et al., 2023). Therefore, studying how these prompts can be compressed is essential. As illustrated in Fig. 1, we wish to
design a compressor that, upon receiving the prompt, produces a “compressed” version in the sense that it should have fewer
tokens than the prompt called the compressed prompt, such that a target LLM is able to give answers that are “close enough,”
in the sense of some appropriately chosen metric, to the ground truth. Though similar in spirit to text summarization, prompt
compression has the advantage that the compressed prompt is not required to be human-readable.

All prompt compression methods belong to one of two groups: those that compress the prompt into soft prompts and
those that compress the prompt into hard prompts. In soft-prompt compression, the compressor is trained to transform the
input prompt into a set of embedding vectors (sometimes referred to as “soft tokens”) that do not map back into the token
space. These methods, including Gist Tokens (Mu et al., 2023), AutoCompressor (Chevalier et al., 2023), and In-Context
Auto-Encoder (Ge et al., 2024) are trained end-to-end and require specialized fine-tuning of the target LLM to interpret the
soft prompt inputs.

In this work, we focus instead on methods that compress the prompt into hard prompts, where the compressor’s output
is a set of tokens. While it is technically feasible to fine-tune the target LLM in this setting, it is unnecessary and often
avoided because the utility of this setting is compressing prompts for black-box models that are not fine-tuned. These
methods often use either the target LLM, or a smaller and faster LLM, to compress the prompt. The basic idea behind all
these methods is to identify the tokens that are “most relevant,” per an appropriate metric, and retain as many of them in
the compressed prompt as possible. These methods include Selective Context (Li et al., 2023), LLMLingua (Jiang et al.,
2023c), LLMLingua-2 (Pan et al., 2024), and LongLLMLingua (Jiang et al., 2023b). More details on these works can be
found in App. F. Precursors to the prompt compression works include text compression methods, which have the added
constraint that the compressed text is human-readable (Niu et al., 2019; Schumann et al., 2020; Ghalandari et al., 2022).
Prompt compression methods are different from these in that the text only needs to be interpretable by the target LLM, not
by a human.

We offer a framework for hard-prompt compression methods where we assume that a query is provided in addition to the
compressed prompt during the target LLM inference call. Functionally, this is the most useful interpretation of prompt
compression since it clarifies that the goal is to compress the prompt for a given query/task. This setting is also used in the
LLMLingua and LongLLMLingua works, and is slightly more general than the setting where no query is used (in that case,
the query can be empty).

8

B. Notation
General. We use ≜ to signify a definition. For a set X , with xi ∈ X for i = 1, . . . , n, we represent the sequence
(x1, . . . , xn) by xn ∈ Xn, which is short for X × · · · × X . We use X ∗ to denote

⋃
n≥1 Xn, the set of all nonempty

finite-length sequences on X . In general, for y ∈ Xn, we denote the length of y by len(y) = n. We denote the cardinality
of a set X by |X |. We use R+ to denote the set of nonnegative real numbers. For a set X = {x1, . . . , xk}, we use the
boldface (Ax)x∈X to denote the vector (Ax1

, . . . ,Axk
) indexed by elements of X . We also write RX

+ = {(vx)x∈X : vx ∈
R+ for each x ∈ X}. We use 1 to denote the indicator function, which takes the value 1 when its argument is true and 0
otherwise. The infimum and supremum of a set of values is denoted using inf and sup respectively. We use 0 and 1 to
denote the vectors of appropriate dimension with all elements equal to 0 and 1 respectively.

Probability. We deal with discrete probability distributions on finite sets, for which we use calligraphic letters to denote the
set (e.g. X), uppercase letters to denote the random variable (r.v., e.g. X) and lowercase letters to denote samples of the r.v.
(e.g. x). The set of all probability distributions on the set X is denoted by P(X). The probability distribution of the r.v. X
on X is denoted by PX ∈ P(X), and we say X ∼ PX . For a (measurable) function f , the expectation of the r.v. f(X) is
denoted by EX∼PX

[f(X)], EPX
[f(X)], or E [f(X)], with the subscripts dropped when the distribution and/or r.v.’s are

clear from context. The degenerate probability distribution with mass 1 at x ∈ X is represented by δx ∈ P(X). Conditional
probabilities from X to Y are denoted as PY |X , and for each x ∈ X , we denote the distribution on Y as PY |X(y|x).

Problem-setup-specific notation. In our model, we use V to refer to the vocabulary of the prompt. We use the uppercase
letters X to refer to the prompt, M to refer to the compressed prompt, Q to refer to the query and Y to refer to the answer as
random variables (and corresponding calligraphic and lowercase letters to denote the set and samples of the r.v. respectively).
We use PŶ to refer to the output distribution of the LLM, which is modelled as the function ϕLLM. For a given prompt
x, we useMx to refer to the set of possible compressed prompts, which is the set of all sequences of length smaller than
len(x). To denote the distortion measure, we use d, which can be either the log loss dlog or the 0/1 loss d0/1. We denote the
query-agnostic distortion-rate function at rate R by D∗(R). The average query-aware distortion-rate function is denoted by
D̄∗(R), and the conditional query-aware distortion rate function for query q ∈ Q is given by D∗

q (R).

C. Extensions to query-aware prompt compression
As mentioned in Sec. 2.2 and Sec. 2.3, analogous definitions and results can be obtained for the query-aware setting as
well. The difference is that the compressor has access to the query in addition to the prompt. Thus, the compressor comp is
a possibly random function from X ×Q toM. For the query Q, the compressor maps the prompt X to the compressed
prompt M = comp(X,Q) with len(M) ≤ len(X). The user provides the input [M,Q] to the LLM, which produces the
output distribution PŶ = ϕLLM(M,Q). Just as in the query-agnostic setting, two quantities of interest are

(1) the (average) rate E
[
len(M)
len(X)

]
, and (2) the distortion E [dlog(Y, ϕLLM(M,Q))],

with both expectations taken with respect to the joint distribution PMXQY . Since different queries may require different
amounts of information to be preserved during compression, it is also of interest to define the (conditional) rate and distortion
for the specific query q as E

[
len(M)
len(X)

]
and E [dlog(Y, ϕLLM(M, q))] respectively, with both expectations taken with respect

to the joint distribution PMXY |Q(·|q).

The rate-distortion problem for query-aware prompt compression can be also formulated similarly to (1). We model comp
as a random mapping PM |XQ from X × Q toM. Then, the (average) distortion-rate function at rate R is the smallest
distortion that can be achieved by a query-aware compressor with rate at most R, given by

D̄∗(R) = inf
PM|XQ

E
[
dlog

(
Y, ϕLLM(M,Q)

)]

s.t. PM |XQ is a compressor, and

E
[
len(M)

len(X)

]
≤ R,

(3)

with both expectations taken with respect to the joint distribution PMXQY = PM |XQPXQY induced by the compressor.
The condition “PM |XQ is a compressor” is short for (1) for each x ∈ X and q ∈ Q,

∑
m∈M PM |XQ(m|x, q) = 1, and

(2) PM |XQ(m|x, q) = 0 if len(m) > len(x). Similarly, the (conditional) distortion-rate function at rate R is the smallest

9

distortion that can be achieved by a query-aware compressor for query q at rate at most R, given by

D∗
q (R) = inf

PM|XQ(·|·,q)
E
[
dlog

(
Y, ϕLLM(M,Q)

)]

s.t. PM |XQ(·|·, q) is a compressor, and

E
[
len(M)

len(X)

]
≤ R,

(4)

with both expectations taken with respect to PMXY |Q(·, ·, ·|q).

Just like the query-agnostic setting, note that both (3) and (4) are linear programs, as the objective and constraints are all
linear in PM |XQ and PM |XQ(·|·, q) respectively. We obtain explicit linear programs analogous to (LP) by defining constants
D̄

q
x and R̄

q
x ∈ RMx

+ for the average distortion-rate function and Dq
x and Rq

x ∈ RMx
+ for the conditional distortion-rate

functions, for each x ∈ X and q ∈ Q, similarly to (2).

Proposition 2 (Query-aware primal LPs). The (average) distortion-rate function for query-aware prompt compression (3)
is given by the solution to

D̄∗(R) = inf
(zx,q∈RMx

+)
x∈X ,q∈Q

∑

x∈X ,q∈Q
D̄

q
x
⊤zx,q

s.t.
∑

x∈X ,q∈Q
R̄

q
x
⊤zx,q ≤ R,

1⊤zx,q = 1, ∀x ∈ X , q ∈ Q.

(avg-cond-LP)

The (conditional) distortion-rate function for query-aware prompt compression for query q (4) is given by the solution to

D∗
q (R) = inf

(zx∈RMx
+)

x∈X

∑

x∈X
Dq

x
⊤zx

s.t.
∑

x∈X
Rq

x
⊤zx ≤ R,

1⊤zx = 1, ∀x ∈ X .

(cond-LP)

For each x ∈ X ,Mx denotes the set of all possible compressed prompts associated to x, i.e., the set of all possible token
sequences of length at most len(x), the vectors zx,q ∈ RMx

+ for q ∈ Q and zx ∈ RMx
+ are the optimization variables

respectively and the constants D̄q
x, R̄

q
x,D

q
x,R

q
x ∈ RMx

+ are given by

D̄
q
x,m ≜ PXQ(x, q)E [dlog(Y, ϕLLM(m, q))] and R̄

q
x,m ≜ PXQ(x, q)

len(m)

len(x)
, m ∈Mx, (5)

Dq
x,m ≜ PX|Q(x|q)E [dlog(Y, ϕLLM(m, q))] and Rq

x,m ≜ PX|Q(x|q)
len(m)

len(x)
, m ∈Mx, (6)

with the expectation taken with respect to PY |MXQ(·|m,x, q).

Proof. This follows immediately from (3) and (4) by defining the constants D̄
q
x, R̄

q
x,D

q
x,R

q
x ∈ RMx

+ for each x ∈ X
and q ∈ Q as given in (5) and (6) and taking zx,q and zx to be PM |XQ(·|x, q) respectively,. We use the fact that
PM |XQ(m|x, q) = 0 when len(m) > len(x) to reduce the dimension of zx fromM toMx.

Remark 1. An interesting phenomenon here that does not occur in the query-agnostic setting is the comparison between
the average and conditional distortion-rate functions, i.e., D̄∗(R) and D∗

q (R) for q ∈ Q. One possible way to “average”
the conditional distortion-rate functions would be to simply compute EQ∼PQ

[
D∗

Q(R)
]
, but we always have D̄∗(R) ≤

EQ∼PQ

[
D∗

Q(R)
]
. This is because the latter averages the distortion-rate functions over PQ at a fixed value of the rate, i.e.,

the prompt for each query is forced to be compressed to the same rate R. For D̄∗(R), on the other hand, only the average
rate over the queries is required to be R. This allows the compressor to set a higher rate for “difficult queries” that have
higher distortion values, and use a lower rate for queries that have lower distortion values in general. This is exactly the
phenomenon we exploit in designing the variable-rate compression scheme LLMLingua-2 Dynamic in Sec. 3 and App. F,
which outperforms other existing schemes in our experiments.

10

Just as in the query-agnostic setting, it is useful to compute and solve the dual linear programs instead of directly solving the
linear programs above.

Theorem 2 (Query-aware dual LPs). The (average) distortion-rate function for query-aware prompt compression (3) is
given by the solution to the dual of the linear program (avg-cond-LP), i.e.,

D̄∗(R) = sup
λ≥0



−λR+

∑

x∈X ,q∈Q
min

m∈Mx

[
D̄

q
x,m + λR̄

q
x,m

]


 . (avg-cond-dual-LP)

The (conditional) distortion-rate function for query-aware prompt compression (4) is given by the solution to the dual of the
linear program (cond-LP), i.e.,

D∗
q (R) = sup

λ≥0

{
−λR+

∑

x∈X
min

m∈Mx

[
Dq

x,m + λRq
x,m

]
}
. (cond-dual-LP)

Proof. (Conditional) This follows trivially by simply observing that the linear program in (cond-LP) is identical to that in
(LP), except that Dx and Rx are replaced by the (conditional) query-aware versions Dq

x and Rq
x respectively. Henc, by

Thm. 1 the solution to (cond-LP) is given by (dual-LP) with Dx and Rx replaced by the (conditional) query-aware versions
Dq

x and Rq
x respectively, which gives (cond-dual-LP).

(Average) In addition to replacing Dx and Rx from (LP) by the (average) query-aware versions D̄q
x and R̄

q
x respectively,

we also have that the optimization variables are given by zx,q for each pair (x, q) ∈ X × Q as opposed to simply zx for
each x ∈ X . Hence, by Thm. 1 the solution to (avg-cond-LP) is given by (dual-LP) with Dx and Rx are replaced by the
(average) query-aware versions D̄q

x and R̄
q
x respectively and X replaced by X ×Q. This gives (avg-cond-dual-LP) exactly,

and we are done.

Note that both (avg-cond-dual-LP) and (cond-dual-LP) are of the same form as (dual-LP), with some minor differences. For a
given q ∈ Q, the conditional distortion-rate function D∗

q (R) is identical to the query-unaware distortion-rate function D∗
q (R)

with (Dx,Rx) replaced by (Dq
x,R

q
x), and hence can be solved by running Alg. 1 with the input

{
R, (Dq

x)x∈X , (Rq
x)x∈X

}
.

For the average distortion-rate function D̄∗(R), in addition to replacing Dx and Rx by D̄
q
x and R̄

q
x, we also have that

X is replaced by X × Q, hence D̄∗(R) is obtained by running 1 with the input
{
R, (Dq

x′)x′∈X ′ , (R
q
x′)x′∈X ′

}
, where

X ′ ≜ X ×Q and x′ runs over all pairs (x, q).

D. The dual linear program: proof and solution
D.1. Derivation of the dual linear program

Proof of Thm. 1. We start from the linear program (LP) and construct its dual. Recall that (LP) is given by

D∗(R) = inf
(zx∈RMx

+)
x∈X

∑

x∈X
D⊤

x zx

s.t.
∑

x∈X
R⊤

x zx ≤ R,

1⊤zx = 1, ∀x ∈ X .

Introduce the Lagrange multipliers λ ≥ 0 to handle the inequality constraint and µx ∈ R for each x ∈ X to handle the
equality constraints. Then, the above equation is equivalent to

D∗(R) = inf
(zx∈RMx

+)
x∈X

{∑

x∈X
D⊤

x zx + sup
λ≥0

λ

(∑

x∈X
R⊤

x zx −R

)
+
∑

x∈X

[
sup
µx∈R

µx

(
1⊤zx − 1

)]
}
.

To see why this equivalence holds, observe that the terms supλ≥0 λ
(∑

x∈X R⊤
x zx −R

)
and supµx∈R µx

(
1⊤zx − 1

)
are

both 0 when (zx)x∈X is in the feasible set of (LP) and +∞ otherwise. Let µ ≜ (µx)x∈X ∈ RX , then we can simplify the

11

above expression by rearranging terms, to obtain

D∗(R) = inf
(zx∈RMx

+)
x∈X

sup
µ∈RX ,
λ≥0

{∑

x∈X
(Dx + λRx + µx1)

⊤
zx − λR−

∑

x∈X
µx

}
.

Note that the objective
∑

x∈X (Dx + λRx + µx1)
⊤
zx − λR −

∑
x∈X µx is linear in (zx)x∈X and in (µ, λ), and the

minimization and maximization are both over convex sets. Hence, by the minmax theorem (von Neumann, 1928; Simons,
1995), we can switch their order without affecting the equality, i.e.,

D∗(R) = sup
µ∈RX ,
λ≥0

inf
(zx∈RMx

+)
x∈X

{∑

x∈X
(Dx + λRx + µx1)

⊤
zx − λR−

∑

x∈X
µx

}
.

If, for some x, there is a component of the vector Dx + λRx + µx1 ∈ RMx that is negative, then letting that component of
zx go to infinity, we have that the inner infimum is −∞. On the other hand, if every component of Dx + λRx + µx1 is
nonnegative for every x, then the infimum is simply 0, attained by setting zx = 0. Hence, the above equation reduces to

D∗(R) = sup
µ∈RX ,
λ≥0

− λR−
∑

x∈X
µx

s.t. Dx,m + λRx,m + µx ≥ 0 for every m ∈Mx and x ∈ X .

For a given x, the constraint Dx,m+λRx,m+µx ≥ 0 for all m ∈Mx is equivalent to−µx ≤ minm∈Mx
(Dx,m + λRx,m).

Letting νx ≜ minm∈Mx
(Dx,m + λRx,m) + µx and ν ≜ (νx)x∈X , the constraint is simply that νx ≥ 0 for all x, or

equivalently, ν ∈ RX
+ . Hence, the above equation can be written as

D∗(R) = sup
ν∈RX

+ ,
λ≥0

−λR+
∑

x∈X
min

m∈Mx

(Dx,m + λRx,m)−
∑

x∈X
νx.

Observe that only the first two terms depend on λ, and only the last term depends on ν. This lets us optimize over λ and ν
separately, to give

D∗(R) = sup
λ≥0

{
−λR+

∑

x∈X
min

m∈Mx

(Dx,m + λRx,m)

}
+ sup

ν∈RX
+

(
−
∑

x∈X
νx

)

= sup
λ≥0

{
−λR+

∑

x∈X
min

m∈Mx

(Dx,m + λRx,m)

}
,

since supν∈RX
+

(
−
∑

x∈X νx
)
= − infν∈RX

+

∑
x∈X νx = −

∑
x∈X infνx≥0 νx = 0, and we are done.

D.2. Proof and illustration of Alg. 1

In this section, we explain each step of Alg. 1 in detail. In doing so, we prove that the algorithm does indeed solve (dual-LP),
i.e., computes

D∗(R) = sup
λ≥0

{
−λR+

∑

x∈X
min

m∈Mx

[Dx,m + λRx,m]

}
.

We also use an artificial example as described below to show the working of the algorithm, in particular lines 1–9. For
convenience, the algorithm is repeated verbatim below, without comments:

Consider the following artificial example with X = {α, β}. Let (Rα,Dα) and (Rβ ,Dβ) be as given by the blue points in
the scatter plots over m ∈Mα and m ∈Mβ respectively in Fig. 3. In our example, we have |Mα| = 11 and |Mβ | = 8.
The following observation is crucial: recall the definitions of Rx and Dx,

Dx,m ≜ PX(x)E [dlog(Y, ϕLLM(m,Q))] and Rx,m ≜ PX(x)
len(m)

len(x)
, m ∈Mx,

12

Algorithm 1: To compute D∗(R) via (dual-LP)
Input: R, (Dx)x∈X , (Rx)x∈X
Output: D∗(R), the distortion-rate function at rate R

1 for x ∈ X do
2 FindM(x)

env ⊆Mx : {(Rx,m,Dx,m)}
m∈M(x)

env
are on the lower-left concave boundary of {(Rx,m,Dx,m)}m∈Mx

;

3

{
m

(x)
1 ,m

(x)
2 , . . . ,m

(x)
kx

}
←M(x)

env ordered such that R
x,m

(x)
kx

> · · · > R
x,m

(x)
1

;

4 for i = 1, . . . , kx − 1 do λ
(x)
i ←

D
x,m

(x)
i

−D
x,m

(x)
i+1

R
x,m

(x)
i+1

−R
x,m

(x)
i

;

5 λ
(x)
0 ← +∞; λ(x)

kx
← 0;

6 Λ(x) ←
{
λ
(x)
0 , λ

(x)
1 , . . . , λ

(x)
kx−1, λ

(x)
kx

}
;

7

{
λ̃0, . . . , λ̃k

}
←
⋃

x∈X Λ(x) with +∞ = λ̃0 > λ̃1 > · · · > λ̃k−1 > λ̃k = 0;

8 for x ∈ X do
9 for j = 1, . . . , k do

10 Set m̃(x)
j ← m

(x)
i where i ∈ {1, . . . , kx} :

(
λ
(x)
i , λ

(x)
i−1

)
⊇
(
λ̃j , λ̃j−1

)

11 for j = 1, . . . , k do
12 if

∑
x∈X R

x,m̃
(x)
j

> R then λj ← λ̃j−1 else λj ← λ̃j ;

13 Dj ← −λjR+
∑

x∈X

[
D

x,m̃
(x)
j

+ λjRx,m̃
(x)
j

]
;

14 Return maxj=1,...,k Dj ;

For a fixed value of x, the positive real numbers Dx,m can be arbitrary, but Rx,m must be an integral multiple of the
constant PX(x)

len(x) . Hence, for a given x, Rx,m takes at most len(x) possible values. This turns out to be extremely beneficial
in the first step, namely identifying the points on the lower-left concave boundary.

Rα,m

Dα,m

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

−λ
(α)
1

−λ
(α)
2

m
(α)
1

m
(α)
2

m
(α)
3

Rβ,m

Dβ,m

0.2

0.2

0.4

0.4

0.6

0.6

−λ
(β)
1

m
(β)
1

m
(β)
2

Figure 3: Scatter plots showing the points {(Rα,m,Dα,m)}m∈Mα
and {(Rβ,m,Dβ,m)}m∈Mβ

in blue. The associated
lower-left concave boundariesM(α)

bd = {m(α)
1 ,m

(α)
2 ,m

(α)
3 } andM(β)

bd = {m(β)
1 ,m

(β)
2 } are in red; λ(α)

1 , λ(α)
2 and λ

(β)
1 are

the magnitudes of the slopes of the associated line segments.

For x ∈ X , lines 2–3 of the algorithm identify the kx points m(x)
1 , . . . ,m

(x)
kx

that lie on the lower-left concave boundary of
{(Rx,m,Dx,m)}m∈Mx

. The lower-left concave boundaries are given by the red lines and the points lying on the boundary
are outlined in red. Observe that kα = 3 and kβ = 2. The quantities computed in line 4 are simply the magnitudes of the
slopes of the line segments on the boundary. A simple computation gives the result of line 6 of the algorithm in our example
to be Λ(α) = {+∞, 1.5, 0.5, 0} and Λ(β) = {+∞, 1, 0}. Clearly, for a given value of x ∈ X and λ ∈

[
λ
(x)
j , λ

(x)
j−1

)
, we

have that m(x)
i minimizes Dx,m + λRx,m over all m ∈Mx, by virtue of the fact that these points come from the lower-left

13

concave boundary. Hence, for λ ∈
[
λ
(x)
j , λ

(x)
j−1

)
, we have

∑

x∈X
min

m∈Mx

[Dx,m + λRx,m] =
∑

x∈X

[
D

x,m
(x)
j

+ λR
x,m

(x)
j

]
.

We cannot simplify this further in its current state since λ in the above expression depends on x. Hence, we must remove
the dependence of the range

[
λ
(x)
j , λ

(x)
j−1

)
on x. To do so, observe that each Λ(x) is a partition of R+ on which m

(x)
i is the

minimizer of Dx,m + λRx,m. Line 7 of the algorithm simply constructs the union of all these partitions, with k elements,
denoted by the λ̃ variables; here we have k = 4 and the union is {+∞, 1.5, 1, 0.5, 0}. For each x, the minimizer on each
interval

[
λ̃j , λ̃j−1

)
of the finer partition is known exactly to be one of the m

(x)
i ’s; lines 8–10 associate to each interval the

corresponding minimizer, given by m̃
(x)
j . There is no computation involved in these steps, only notational rewriting. The

corresponding values obtained for our example are given in the table below (with λ̃0 = +∞); observe that m̃(x)
j minimizes

Dx,m + λRx,m over m ∈Mx for λ ∈
[
λ̃j , λ̃j−1

)
.

Table 1: The outputs produced by lines 7–10 of Alg. 1 with (Rα,Dα) and (Rβ ,Dβ) as given in Fig. 3.

j λ̃j m̃
(α)
j m̃

(β)
j

1 1.5 m
(α)
1 m

(β)
1

2 1 m
(α)
2 m

(β)
1

3 0.5 m
(α)
2 m

(β)
2

4 0 m
(α)
3 m

(β)
2

At this point, we have for λ ∈
[
λ̃j , λ̃j−1

)
,

∑

x∈X
min

m∈Mx

[Dx,m + λRx,m] =
∑

x∈X

[
D

x,m̃
(x)
j

+ λR
x,m̃

(x)
j

]

=
(∑

x∈X D
x,m̃

(x)
j

)
+ λ

(∑
x∈X R

x,m̃
(x)
j

)
.

Hence, the right-hand side of (dual-LP) is simply

max
j=1,...,k

sup
λ∈[λ̃j ,λ̃j−1)

{(∑
x∈X D

x,m̃
(x)
j

)
+ λ

(∑
x∈X R

x,m̃
(x)
j
−R

)}

= max
j=1,...,k

{(∑
x∈X D

x,m̃
(x)
j

)
+ sup

λ∈[λ̃j ,λ̃j−1)

λ
(∑

x∈X R
x,m̃

(x)
j
−R

)}
,

where the first equality follows since
{
λ̃j

}k
j=0

is a partition of R+. Consider the term

supλ∈[λ̃j ,λ̃j−1)
λ
(∑

x∈X R
x,m̃

(x)
j
−R

)
. If R

x,m̃
(x)
j

> R, this supremum occurs in the limit as λ → λ̃j−1, other-

wise it is achieved at λ = λ̃j . Hence, defining λj to be λ̃j−1 or λ̃j accordingly as in line 12, we have that the above

expression is simply maxj=1,...,k

{(∑
x∈X D

x,m̃
(x)
j

)
+ λj

(∑
x∈X R

x,m̃
(x)
j
−R

)}
, which is exactly what line 14 returns.

Hence, we have that the algorithm correctly computes the distortion-rate function D∗(R).

E. Connections to information theory literature
Rate-distortion theory is an area of information theory introduced by Shannon (1959) to study the fundamental limits of
source compression. The simplest rate-distortion setup is shown in Fig. 4a: We are given a source which generates samples
X1, . . . , Xn independently and identically distributed (i.i.d.) according to the distribution PX on the set X . We are also
given a reconstruction alphabet X̂ , which may or may not be equal to X . The goal is to compress Xn to a sequence of
k elements from an alphabet V , such that a reconstruction onto X̂n is as “faithful” as possible, while keeping k as small

14

as possible (in the information theory literature, V = {0, 1} typically). The fidelity of representation is quantified by a
distortion function d : X × X̂ → [0,∞]. For example, the problem of compressing images with p real-valued pixels into bit
sequences can be cast in this formulation by taking X = X̂ = Rp, V = {0, 1}, and the squared-loss distortion function
d(x, x̂) = ∥x− x̂∥22.

Formally, the goal is to construct an encoder enc : Xn → Vk and a decoder dec : Vk → X̂n such that: (1) the rate k/n,
and (2) the (average) distortion E [d(Xn,dec(enc(Xn))], are both as small as possible. We say that the rate-distortion pair
(R,D) is achievable for the source PX under the distortion function d if there exists an (enc,dec) pair with rate at most R
and average distortion at most D. If the pair (R,D) is achievable, then clearly, for R̃ ≥ R and D̃ ≥ D, the pair (R̃, D̃)
is also achievable. Thus, the quantity of interest to us is the lower boundary of the set of achievable (R,D) pairs. This is
given by the distortion-rate function D∗, which is defined as follows: the distortion-rate function at rate R is the smallest
distortion D such that the pair (R,D) is achievable, or equivalently,

D∗(R) ≜ inf{D ≥ 0 | (R,D) is achievable} (7)
= inf{D ≥ 0 | there exists (enc,dec) with rate ≤ R and distortion ≤ D}.

Note that the distortion-rate function depends on the source PX and the choice of distortion measure. Closed form
expressions are known in some cases, the reader is encouraged to refer to classical texts on information theory (Berger, 1971;
Cover & Thomas, 2006; El Gamal & Kim, 2011) for examples. It is important to note that the distortion-rate function is a
fundamental limit; no choice of encoder and decoder can give a lower rate and a lower distortion. Thus, the distortion-rate
function characterizes the Pareto-optimal front of the trade-off between rate and distortion. It is more common in the
information theory literature to define the rate-distortion function R∗(D), which is the smallest rate R such that the pair
(R,D) is achievable. The two functions trace the same curve when plotted on the same two-dimensional plane.

Several variants of this problem can be defined by introducing the notion of side-information, where we have i.i.d. samples
(X1, Q1), . . . , (Xn, Qn) of a pair of correlated random variables (X,Q) ∼ PXQ ∈ P(X × Q). A natural question to
ask is what improvement is possible in terms of the rate-distortion trade-off for Xn when either the encoder or decoder
or both have access to this side-information Qn, which is correlated with X . If only the encoder has access to Qn, then
no improvement can be obtained. If both the encoder and decoder have access to Qn as shown in Fig. 4c and studied by
Gray (Gray, 1972), then, clearly, an improvement is possible. Surprisingly, we can obtain nontrivial improvements when the
decoder has access to Qn as shown in Fig. 4b and studied by Wyner and Ziv (Wyner & Ziv, 1976; Wyner, 1978).

enc decXn M
X̂n

(a) No side-information (Shannon, 1959)

enc decXn M
X̂n

Qn

(b) Side-information at only the decoder (Wyner & Ziv, 1976; Wyner,
1978)

enc decXn M
X̂n

Qn

(c) Side-information at the encoder and the decoder (Weissman &
El Gamal, 2006)

enc decXn M
Ẑn

Qn

(d) For function computation, Z = f(X,Q) (Yamamoto, 1982)

Figure 4: Rate-distortion models of compression.

These models resemble our setups for query-aware and query-agnostic prompt compression respectively, with a key
difference being that the decoder in our problem is the pretrained LLM, which is fixed. An rate-distortion setup that is closer
to our problem in this sense is that of compression for function computation, introduced by (Yamamoto, 1982). Here, the
goal is to recover an estimate Ẑn that is close to Zn, with Zi = f(Xi, Qi) for some desired function f . At first glance,
it might appear that this setup is exactly our model for prompt compression, but this turns out to be false — the desired
output is an estimate of f(X,Q), but the decoder can be designed to compute any arbitrary function of M and Q. In prompt
compression, we have the constraint that the function computed by the decoder is fixed to be ϕLLM, in addition to requiring

15

that the output be close to some function of X and Q. Thus, our model for prompt compression actually corresponds to a
rate-distortion problem for function computation with side-information with a fixed decoder, which has not been studied
before, to the best of our knowledge. The distortion-rate function D∗(R) for this setup is given by (LP) and (dual-LP). A
closed form solution D∗(R) requires further assumptions on ϕLLM; nonetheless, D∗(R) can be computed by solving Alg. 1.

F. Experimental setup
As described in Sec. 3, we provide a detailed explanation of our experimental setup in this section. In all our results, we
compare the performance of existing prompt compression methods (that are compatible with the black-box model setting
we consider in this work) with the optimal curve for a synthetic dataset. We report our results with the log loss and 0/1 loss
metrics, which are defined respectively as

dlog(y,PŶ) = log
1

PŶ (y)
and d0/1(y,PŶ) = 1

{
y ̸= argmax

ŷ
PŶ (ŷ)

}
. (8)

We include an ablation study on the impact of tokenization of the prompt compression problem, as tokenization is lossy since
it groups together multiple symbols into a single symbol before passing it to an LLM. We study the effect of tokenization on
the prompt compression problem by forcing the tokenizer on the encoder and decoder side to tokenize the bits of the binary
string prompts in our dataset individually, which we refer to as “forced tokenization.” We run experiments in this setting and
with the regular “standard tokenization.” Technical details regarding the system parameters for these experiments can be
found in App. H.

Baseline methods. We compare the rate-distortion trade-off of the optimal strategy (both query-aware and query-agnostic)
with prompt compression methods that can be used to compress prompts for a black-box target LLM: Selective Context
(Li et al., 2023), LLMLingua (Jiang et al., 2023c), LLMLingua Query (Jiang et al., 2023b), LLMLingua-2 (Pan et al.,
2024). As such, we do not consider methods like Gist Tokens (Mu et al., 2023), In-Context Autoencoder (Ge et al., 2024),
and AutoCompressor (Chevalier et al., 2023) since they require special training methods generally not compatible with
black-box target LLMs. Selective Context uses − logP (xi | x0, x1, . . . , xi−1) to score the i-th token, and retains the tokens
whose score is larger than the p-percentile, where p ∈ [0, 1] is the ratio parameter. LLMLingua uses a similar method,
but they first partition the input prompt into segments and condition on previously compressed segments to compress
the current segment. They later extended their method to perform query-aware compression, which is what we use for
LLMLingua Query. While these methods use a decoder-style (causal) transformer LLM to do prompt compression, this
approach makes an independence assumption on the influence of future tokens have on the i-th token. LLMLingua-2 instead
uses an encoder-style (bidirectional) LLM to perform a token classification task, where their model predicts whether a given
token should be kept or removed.

Our proposed methods. We add two novel contributions over the LLMLingua-2 work: (1) we adapt LLMLingua-2 to the
query-aware setting, whereas the original work only proposed the query-agnostic approach, which we call “LLMLingua-2
Query,” and (2) we further adapt this query-aware approach into a variable-rate approach we refer to as “LLMLingua-2
Dynamic.” This approach which lets the encoder model decide which tokens to keep based on the confidence over a specified
threshold. In other words, LLMLingua-2 and LLMLingua-2 Query accept a rate parameter to determine the compression
ratio, but LLMLingua-2 Dynamic replaces the rate parameter with a threshold parameter. As a result, the encoder model
predicts the probability of keeping a particular token, and the token is kept if the predicted probability is above a given
threshold, resulting in a variable-rate compression of the prompt. This is an important aspect of the prompt compression
problem, as some prompts are more compressible than others, and vice versa.

Models. We use Mistral 7B Instruct v0.2 (Jiang et al., 2023a) as our black-box target LLM (decoder side), which is
fine-tuned on the training set partition of our synthetic dataset. Critically, this model is fixed after fine-tuning and no
prompt compression methods have access to any part of it. All prompt compression methods use an LLM as part of
their compression algorithm (encoder side); we use deduplicated Pythia 1B (Biderman et al., 2023) for Selective Context,
LLMLingua, and LLMLingua Query and RoBERTa Base (Liu et al., 2020) for LLMLingua-2 methods. For each method,
we finetune on the training set partition to enable the best performance possible for that method. More information on how
we trained these methods and the data we used is in App. H. For all models, including the target LLM, we fine-tune with
LoRA (Hu et al., 2022) and conduct a hyperparameter grid search. We choose the configuration with the best performance
on a test set that is different from the validation set. More details on the hyperparameter search are provided in App. H.2.

16

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.5

1.0

1.5

2.0

2.5

A
ve

ra
ge

d
is

to
rt

io
n

Log loss, All

Log loss, Pruned

0/1 loss, All

0/1 loss, Pruned

Figure 5: Query-agnostic distortion-rate curves plotted for log loss and 0/1 loss distortion measures. The curves marked
with a ‘diamond’ are computed using all possible shorter sequences, while those marked with an ‘×’ are computed using
only pruned versions of the original prompt. They are nearly identical, which suggests that a good approximation to the
optimal distortion-rate curve can be obtained by considering pruned prompts only.

G. Limitations
Restriction to binary prompts. A major limitation of our paper is that the distortion-rate curves are computed using
Alg. 1 for only binary prompts, and not natural language prompts. The decisive bottleneck in running Alg. 1 turns out to be
obtaining Dx for each x ∈ X , i.e., the input to the algorithm. We require one inference call for each possible compressed
prompt m ∈ Mx to compute Dx for a particular prompt x and query. TakingMx to be all sequences of length smaller
than len(x), we see that that the size ofMx is

∑len(x)−1
i=1 |V|i, where V is the vocabulary of the LLM. The model used in

our experiments, Mistral 7B Instruct v0.2 (Jiang et al., 2023a), has |V| = 32,000. Clearly, it is then virtually impossible
to consider prompts with more than 2 tokens, and in fact, makes it difficult to consider even medium length prompts (50
tokens) for a vocabulary of size more than 2.

A key first step towards extending our algorithm for natural language prompts is the observation that all prompt compression
methods in the literature work by pruning tokens, i.e., (1) they are non-generative, i.e., work by removing tokens from the
original prompt and therefore do not generate any new tokens, and (2) they preserve the order of the tokens as they appear
in the input sequence. Hence, to compute the fundamental limit for the schemes that compress the prompt by pruning,
it is enough to considerMx to be the sequences that are obtained from x by removing some number of (not necessarily
contiguous) tokens. Then, we have |Mx| = 2len(x), irrespective of the vocabulary size |V|.

In Fig. 5, we observe that the distortion-rate curves obtained by restrictingMx to be only those sequences obtained from x
from via pruning, are nearly identical to the original curves, where we takeMx to be all shorter sequences. This suggests
two things: (1) there is no fundamental drawback to considering compression schemes are not generative, i.e., work by
pruning the original prompt, and (2) we can approximate the optimal distortion-rate function reasonably well by considering
only pruned versions of the prompt as possible compressed prompts. Thus, in principle, we can replicate experiments with
natural language prompts of the same lengths (4 to 10) as the binary prompts in our experiments above, with the same
computational cost. However, it is difficult to identify sufficiently rich natural language prompts of such short lengths for
which compression is a reasonable problem, and hence, use binary prompts (generated from a Markov chain, to model the
dependence between tokens) with natural language queries (since there is no computational restriction on the vocabulary of
the queries) to run experiments such as those in Sec. 3 and App. I at scale.

LLMLingua Query seems to offer nearly no improvement over LLMLingua. While LLMLingua Query is a query-
aware prompt compression model and should, in principle, perform better than LLMLingua, in all of our experimental
results in Sec. 3 and App. I, we see that their performance is comparable at best. In order to confirm that this is simply a
consequence of our synthetic dataset with binary prompts, we construct a synthetic dataset (see App. H.1 for details) with
natural language prompts of length up to 15, so that we can also compute the optimal distortion-rate curves. This requires
215 = 32,768 inference calls per prompt and query. The advantage of Alg. 1 is that only requires these quantities to be

17

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]

0.5

0.6

0.7

0.8

0.9

A
ve

ra
ge

d
is

to
rt

io
n

(1
-

R
ou

ge
L

) LLMLingua

LLMLingua Query

Optimal

No Compression

Figure 6: Query-agnostic distortion-rate function for the natural language dataset described in App. H.1 using the RougeL
metric. Since a higher RougeL metric is better, we plot “1− the computed average distortion”).

computed once per dataset, and the distortion-rate function can then be computed at any rate R with minimal overhead
computational cost.

H. Experiment details
We provide additional details regarding our synthetic dataset and how we fine-tuned all models. Experiments were run on
three different machines, two of which are identical machines with an AMD Ryzen Threadripper PRO 5975WX CPU (32
cores), 256 GB of system RAM, and 2x Nvidia RTX 4090 GPUs with 24 GB each. We also ran experiments on a DGX
machine with an AMD EPYC 7742 64-Core Processor, 512 GB of system RAM, and 4x 80GB SMX4 A100 GPUs. LLM
fine-tuning varies in length, depending on the model being fine-tuned. In general, it takes 10 to 30 minutes for a single
fine-tuning run. Running the code necessary to reproduce all plots takes several hours.

We use code from the LLMLingua and Selective Context GitHub repos, which is released under the MIT license. In our
experiments, we use the following models: Mistral 7B Instruct v0.2 (Apache-2.0), RoBERTa Base (MIT), and Pythia 1B
deduped (Apache-2.0).

Each method requires a rate or threshold parameter r, for which we use r ∈
{0.04, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.96, 0.99, 1.0} in our experiments. However, the length of the re-
turned compressed prompt might not be faithful to this rate parameter, so, for each r, we report the average rate and average
distortion on the examples in our validation dataset. LLMLingua and LLMLingua Query have one additional parameter
controlling the size of each segment the prompt is broken into before compressing each segment. We found that using a
segment size of 2 works best for our synthetic dataset.

H.1. Dataset

Solving for the optimal distortion-rate curve requires a substantial amount of compute as mentioned in App. G. To overcome
this, we construct a synthetic dataset consisting of binary string prompts, natural language queries, and numerical and yes/no
answers, for a total of 1400 examples (7 queries, 200 examples per query) in the validation set. We show a few examples of
the validation partition of our synthetic dataset in Table 2. The binary prompts are generated according to a Markov chain
with probability of switching 0.9 and probability of remaining in the same state 0.1.

We curated a small natural language dataset to generate results shown in Fig. 6 by prompting GPT-4 (OpenAI, 2024) to
provide short natural language prompts of 15 tokens or less, provide four questions about each prompt, and give the answer.
Afterward, we modified some of the questions and prompts slightly when the generated prompt by GPT-4 was too long or
the questions and answers contained too much overlap with each other for a given prompt. In total, our dataset consists of
ten prompts with four questions each. A few examples of our dataset are shown in Table 3.

18

Table 2: One example of each query from the validation set of our synthetic dataset

Prompt Query Answer

110011111 Count the number of 1s. 7
11111 Count the number of 0s. 0
00000111 Compute the parity. 1
11011111 What is the length of the longest

subsequence of 0s or 1s?
5

0110 Is the binary string a palindrome? Yes
1100111100 Count the number of transitions

from 0 to 1 and 1 to 0.
3

111111 Predict the next bit. 1

Table 3: One example of each prompt from our natural language dataset.

Prompt Query Answer

After dinner, the cat chased a mouse
around the house.

What was the cat doing? The cat was chasing
a mouse.

The dog barked loudly at the
passing mailman on a quiet street.

Where did the barking
occur?

On a quiet street.

After school, the child played with
toys in the cozy living room.

When was the child playing? After school.

At the art gallery, the artist painted
a colorful mural on the wall.

Where was the painting
done?

On the wall at the art
gallery.

H.2. LLM fine-tuning

Given that our synthetic dataset of binary prompts is not naturally in the distribution of training data of LLMs, we use
Mistral 7B Instruct v0.2 (Jiang et al., 2023a) as our black-box model, and fine-tune it on tuples of (prompt, query, answer).
This is also known as “instruction fine-tuning;” we only compute the loss over the answer.

Each prompt compression method requires an LLM as part of its compression algorithm; we fine-tune Pythia 1B deduplicated
(Biderman et al., 2023) for Selective Context and LLMLingua-based methods. Selective Context and LLMLingua only
use negative log-likelihood scores over the prompt, so for these methods we fine-tune with the next-word prediction over
the prompts. For LLMLingua Query, we place the (query, prompt, answer) tuple into context and then perform next token
prediction over the entire context. We place only the query and prompt into the context for the prompt compression step
(inference time).

LLMLingua-2 methods require an additional label set for every prompt as ground-truth answers to teach the model to predict
which tokens should be kept. For our dataset, gathering the labels for each prompt is deterministic if the query is known, so
it is easy to assemble the label set for query-aware LLMLingua-2 methods. For example, for the query “Is the binary string
a palindrome?” we can easily choose the shortest sequence of tokens from the input that is also a palindrome (if the answer
is “yes”) as the ground-truth compressed prompt. For LLMLingua-2 Query and LLMLingua-2 Dynamic, both of which are
query-aware, we put the query and prompt into context and then train the LLM to predict which tokens to keep using the
constructed label set. This process is less straightforward for query-agnostic LLMLingua-2 since it is not clear how to assign
the labels without the query. In this case, we choose the ground-truth compressed prompt to consist of the highest entropy
tokens. Given the Markov chain from which our prompts were generated, these tokens contain the transitions between bits.
For all LLMLingua-2 methods, we fine-tune RoBERTa Base (Liu et al., 2020).

We conduct a grid search over a set of hyperparameters before fine-tuning the final model used for each method. Specifically,
we use the training set to fine-tune a model with all combinations of hyperparameters, evaluate the final performance on
each model with a test set, and choose the combination of hyperparameters leading to the best performance. We then merge
the train and test set and train with the chosen hyperparameters and do a final evaluation on the validation, which is the
dataset used in the results of this paper.

19

All models are searched over the same learning rate {5e-6, 1e-5, 5e-5, 1e-4}, batch size {16, 32}, LoRA rank {16 32 64
128}, and LoRA alpha {16 32 64 128} hyperparameters. For the number of training epochs, we search over {1, 2, 4} for
Mistral 7B Instruct v0.2 and Pythia 1B deduplicated, and {8, 12} for RoBERTa Base.

We report our final set of hyperparameters used to fine-tune the LLM used for each prompt compression method in Table 4.

Table 4: Final set of hyperparameters used to train the LLM used in each prompt compression method.

Method Tokenization Epochs Batch
Size

Learning
Rate

LoRA
Rank

LoRA
Alpha

Selective Context Standard 1 16 5e-5 32 32

Selective Context Forced 1 16 5e-5 128 64

LLMLingua Standard 1 16 5e-5 32 32

LLMLingua Forced 1 16 5e-5 128 64

LLMLingua
Query

Standard 4 32 1e-4 128 128

LLMLingua
Query

Forced 4 16 1e-4 64 128

LLMLingua-2 Standard 12 32 1e-4 128 128

LLMLingua-2 Forced 12 32 1e-4 64 128

LLMLingua-2
Query

Standard 12 32 1e-4 128 128

LLMLingua-2
Query

Forced 12 32 1e-4 64 128

LLMLingua-2
Dynamic (Ours)

Standard 12 32 1e-4 128 128

LLMLingua-2
Dynamic (Ours)

Forced 12 32 1e-4 64 128

Black-box target
LLM

Standard 4 16 5e-5 16 16

Black-box target
LLM

Forced 4 16 5e-6 16 64

I. Additional experimental results
As described in 3, Fig. 2 summarizes our experimental contributions. We observe a large gap between the optimal curve and
existing prompt compression methods. Thus, we propose LLMLingua-2 as a query-aware, variable-rate modification of
LLMLingua-2. Our results show that LLMLingua-2 Dynamic achieves the best performance and, in fact, is the only method
to outperform the optimal query-agnostic strategy. We also note that the optimal distortion-rate curves eventually fall below
the baseline performance of using the full prompt (no compression). This observation is especially interesting because it
shows that compressing prompts can improve performance on downstream tasks, as observed on natural language datasets in
previous prompt compression works (Jiang et al., 2023c;b; Pan et al., 2024). We accredit the performance of LLMLingua-2
Dynamic to variable-rate compression, where we allow the compressor to choose how much it should compress based on
the query and prompt as input (see App. C, Remark 1 for a formal explanation of variable-rate compression). Even though
this approach relinquishes explicit control over the rate, our experiments show that variable-rate compression is the closest
to optimality. Our remaining empirical results are as follows.

20

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.00

0.05

0.10

0.15

0.20

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)

Is the binary string
a palindrome?

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.1

0.2

0.3

0.4

0.5

Count the number of transitions
from 0 to 1 and 1 to 0.

Selective

LLMLingua

LLMLingua Query

LLMLingua-2

Ours (LLMLingua-2 Query)

Ours (LLMLingua-2 Dynamic)

Optimal (Query-aware)

No Compression

Figure 7: We highlight the distortion-rate curves for two of the seven queries in the validation partition of our synthetic
dataset. Our method, LLMLingua-2 Dynamic, is able to match the performance of the optimal query-aware strategy (left).
Some queries naturally incur less distortion than others with the target LLM, even with a query-agnostic approach, if the
query is aligned well with the data generation process for the prompt (right). Note that LLMLingua-2 Query covers the line
of LLMLingua-2 as their performance is identical for this query.

Gap from optimality depends on the query. In Fig. 7, we highlight the distortion-rate curves for two out of seven of the
queries in our synthetic dataset. Despite the fact that Fig. 2 shows a gap in average performance between the query-aware
optimal strategy and LLMLingua-2 Dynamic, Fig. 7 (left) shows that LLMLingua-2 Dynamic can match the performance of
the optimal query-aware compression scheme. Comparing Fig. 7 (left) and (right), we see that the prompt compression
problem is easier (methods are closer to optimality) for certain tasks or queries depending on how the prompts were
generated. For our synthetic dataset, all prompts are generated from a Markov chain with a transition probability of 0.1 and
a probability of 0.9 for remaining in the same state. This means the tokens with the highest entropy are those that are part of
a transition, and those tokens are the most important for answering this query. As a result, we see that methods that use the
negative log-likelihood as a means for compression (Selective Context, LLMLingua, and LLMLingua Query) perform well,
even without conditioning on the query. An exception here is the performance of LLMLingua Query, which we find has
mixed performance compared to vanilla LLMLingua for token-level prompt compression on our dataset. LLMLingua Query
performs markedly worse for this query (refer to Fig. 10 for results on all queries).

Effect of tokenization. The results of our ablation study on the effects of tokenization are provided in Fig. 8, which shows a
direct comparison between the trade-off for methods using standard and forced tokenization. Interestingly, the optimal curves
are nearly identical, suggesting that tokenization does not play a role in attaining the best possible trade-off. Furthermore,
we see that, for a fixed rate, the standard tokenization performance often matches or exceeds the performance of forced
tokenization. However, the standard tokenization approach does not allow for average rates below 0.6 due to the limited
size of the prompts in our synthetic dataset, so the comparison is somewhat limited. In particular, standard tokenization
allows for compression of at most four tokens (but usually only two or three tokens), whereas forced tokenization allows for
compression of at most ten tokens. Fig. 9 is similar to Fig. 2, but shows the result when the prompt compression method
uses standard tokenization rather than forced tokenization.

Trade-off for each query. Finally, Fig. 10, Fig. 11, Fig. 12, and Fig. 13 show the rate-distortion trade-off curves for each of
the seven queries in our synthetic dataset. Fig. 10 shows forced tokenization with 0/1 loss, Fig. 11 shows forced tokenization
with log loss, Fig. 12 shows standard tokenization with 0/1 loss, and Fig. 13 shows standard tokenization with log loss.

21

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)

Standard tokenization

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.1

0.2

0.3

0.4

0.5

Forced tokenization

Selective

LLMLingua

LLMLingua Query

LLMLingua-2

Ours (LLMLingua-2 Query)

Ours (LLMLingua-2 Dynamic)

Optimal

Optimal (Query-aware)

No Compression

Figure 8: Performance comparison when standard tokenization (left) and forced tokenization (right) is used on our synthetic
dataset. Interestingly, the optimal performance is nearly equivalent between the two, and, for a given rate, methods with
standard tokenization match or improve upon the performance of a method that forced separate tokenization of every
bit. However, standard tokenization results in compression of 1 to 4 tokens on our dataset, whereas forced tokenization
compresses up to 10 tokens, allowing for a greater range of rates.

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0

1

2

3

4

5

6

A
ve

ra
ge

d
is

to
rt

io
n

Log loss

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.1

0.2

0.3

0.4

0/1 loss

Selective

LLMLingua

LLMLingua Query

LLMLingua-2

Ours (LLMLingua-2 Query)

Ours (LLMLingua-2 Dynamic)

Optimal

Optimal (Query-aware)

No Compression

Figure 9: The distortion-rate curves of all prompt compression methods and the optimal strategy attained by solving our
dual LP formulation when standard tokenization is used for the prompt. All methods are compared with the log loss (left)
and 0/1 loss (right) metrics.

22

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)
Count the number of 1s.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Count the number of 0s.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)

Compute the parity.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

What is the length of the longest subsequence of 0s or 1s?

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.00

0.05

0.10

0.15

0.20

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)

Is the binary string a palindrome?

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.1

0.2

0.3

0.4

0.5
Count the number of transitions from 0 to 1 and 1 to 0.

0.0 0.2 0.4 0.6 0.8 1.0

0.10

0.15

0.20

0.25

0.30

0.35

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)

Predict the next bit.
Common Legend

Selective

LLMLingua

LLMLingua Query

LLMLingua-2

Ours (LLMLingua-2 Query)

Ours (LLMLingua-2 Dynamic)

Optimal (Query-aware)

No Compression

Figure 10: The rate-distortion trade-off of all methods on each individual query for forced tokenization and 0/1 loss.
23

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

A
ve

ra
ge

d
is

to
rt

io
n

(l
og

lo
ss

)
Count the number of 1s.

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

Count the number of 0s.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

d
is

to
rt

io
n

(l
og

lo
ss

)

Compute the parity.

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

What is the length of the longest subsequence of 0s or 1s?

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
ve

ra
ge

d
is

to
rt

io
n

(l
og

lo
ss

)

Is the binary string a palindrome?

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Count the number of transitions from 0 to 1 and 1 to 0.

0.0 0.2 0.4 0.6 0.8 1.0

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

d
is

to
rt

io
n

(l
og

lo
ss

)

Predict the next bit.
Common Legend

Selective

LLMLingua

LLMLingua Query

LLMLingua-2

Ours (LLMLingua-2 Query)

Ours (LLMLingua-2 Dynamic)

Optimal (Query-aware)

No Compression

Figure 11: The rate-distortion trade-off of all methods on each individual query for forced tokenization and log loss.
24

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)
Count the number of 1s.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Count the number of 0s.

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

0.25

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)

Compute the parity.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

What is the length of the longest subsequence of 0s or 1s?

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.00

0.05

0.10

0.15

0.20

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)

Is the binary string a palindrome?

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.1

0.2

0.3

0.4

Count the number of transitions from 0 to 1 and 1 to 0.

0.0 0.2 0.4 0.6 0.8 1.0

0.10

0.15

0.20

0.25

0.30

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)

Predict the next bit.
Common Legend

Selective

LLMLingua

LLMLingua Query

LLMLingua-2

Ours (LLMLingua-2 Query)

Ours (LLMLingua-2 Dynamic)

Optimal (Query-aware)

No Compression

Figure 12: The rate-distortion trade-off of all methods on each individual query for standard tokenization and 0/1 loss.
25

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

A
ve

ra
ge

d
is

to
rt

io
n

(l
og

lo
ss

)
Count the number of 1s.

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

Count the number of 0s.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

d
is

to
rt

io
n

(l
og

lo
ss

)

Compute the parity.

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

12

What is the length of the longest subsequence of 0s or 1s?

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.5

1.0

1.5

2.0

2.5

A
ve

ra
ge

d
is

to
rt

io
n

(l
og

lo
ss

)

Is the binary string a palindrome?

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0

1

2

3

4

5

Count the number of transitions from 0 to 1 and 1 to 0.

0.0 0.2 0.4 0.6 0.8 1.0

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

d
is

to
rt

io
n

(l
og

lo
ss

)

Predict the next bit.
Common Legend

Selective

LLMLingua

LLMLingua Query

LLMLingua-2

Ours (LLMLingua-2 Query)

Ours (LLMLingua-2 Dynamic)

Optimal (Query-aware)

No Compression

Figure 13: The rate-distortion trade-off of all methods on each individual query for standard tokenization and log loss.
26

